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ABSTRACT

We consider the problem of dividing limited resources to individ-
uals arriving over T rounds. Each round has a random number of
individuals arrive, and individuals can be characterized by their
type (i.e. preferences over the different resources). A standard no-
tion of ‘fairness’ in this setting is that an allocation simultaneously
satisfy envy-freeness and efficiency. For divisible resources, when
the number of individuals of each type are known upfront, the
above desiderata are simultaneously achievable for a large class of
utility functions. However, in an online setting when the number
of individuals of each type are only revealed round by round, no
policy can guarantee these desiderata simultaneously.

We show that in the online setting, the two desired properties
(envy-freeness and efficiency) are in direct contention, in that any
algorithm achieving additive counterfactual envy-freeness up to
a factor of LT necessarily suffers a efficiency loss of at least 1/L7.
We complement this uncertainty principle with a simple algorithm,
GuARDED-HoOPE, which allocates resources based on an adaptive
threshold policy and is able to achieve any fairness-efficiency point
on this frontier.
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1 INTRODUCTION AND MODEL

Our work here is motivated by a problem faced by a collaborating
food-bank (Food Bank for the Southern Tier of New York (FBST))
in operating their mobile food pantry program. In these systems,
the mobile food pantry must decide on how much food to allocate
to a distribution center on arrival without knowledge of demands
in future locations. As a simplified example, every day the mobile
food pantry uses a truck to deliver B units of food supplies to
individuals over T rounds (where each round can be thought of as
a distribution location: soup kitchens, pantries, nursing homes, etc).

The full version of the paper is available at https://arxiv.org/abs/2105.05308.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS/PERFORMANCE °22 Abstracts, June 6-10, 2022, Mumbai, India

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9141-2/22/06.

https://doi.org/10.1145/3489048.3526951

Siddhartha Banerjee
sbanerjee@cornell.edu
Cornell University
Ithaca, NY, USA

95

Christina Lee Yu

cleeyu@cornell.edu

Cornell University
Ithaca, NY, USA

When the truck arrives at a site ¢ (or round t), the operator observes
N; individuals and chooses how much to allocate to each individual
(X; € RNt) before moving to the next round. The number of people
assembling at each site changes from day to day, and the operator
typically does not know the number of individuals at later sites
(but has a sense of the distribution based on previous visits).

In offline problems, where the number of individuals at each
round (Nt);¢ 1] are known to the principal in advance, there are
many well-studied notions of fair allocations of resources. Envy-
freeness requires that each individual prefers their own allocation
over the allocation of any other. Efficiency requires that the allo-
cations clear the available resources. For divisible resources, the
above desiderata are simultaneously achievable for a large class of
utility functions, with multiple resources, and is easily computed by
maximizing the Nash Social Welfare (NSW) objective subject to al-
location constraints. In this (simplified) setting, the fair allocation is
easily computed by allocating X°P? = % to each individual, where
N = Yte[r] Nt is the total number of people across all rounds.

Many practical settings, however, the principal makes allocation
decisions online with incomplete knowledge of the demand for
future locations. These principals do have access to historical data
allowing them to generate histograms over the number of individu-
als for each round (or potentially just first moment information).
Satisfying any one of these properties is trivially achievable in on-
line settings. The solution that allocates X; = 0 to each individual
at location ¢ satisfies hindsight envy-freeness as each individual is
given an equal allocation. The solution that allocates X; = B/Np
to individuals at the first location and X; = 0 for t > 2 satisfies
efficiency as the entire budget is exhausted at the first location. A
more difficult challenge in this setting is achieving low counterfac-
tual envy, ensuring that the allocations made by the algorithm (X;)
are close to what each individual should have received with the fair
solution in hindsight (B/N).

2 APPROXIMATE FAIRNESS

In sequential settings, one way to measure the (un) fairness of any
online allocation (X“Y) is in terms of its counterfactual distance
(for both envy and efficiency) when compared to the optimal fair
allocation in hindsight (i.e., offline allocation X°P?). Another mea-
sure is hindsight envy (when compared only to allocations made by
the algorithm). In particular, we define the counterfactual envy as
Agp = ||u(Xgpt, 0)— u(X;lg, 0)]|co to be the maximum difference in
utility between the algorithm’s allocation and the offline allocation
where agents are characterized by their type 0, define the hind-
sight envy as ENVY = max; p g ¢ u(Xta,lg,, 0) — u(Xtaleg, 0) to be the
maximum difference between the utifity individuals would have
received if given someone else’s allocations, and let Aggiciency =
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Figure 1: Graphical representation of the major contribution
(Informal Theorem 1). The x-axis denotes Agp (the maximum
difference between utility individuals receive from the algo-
rithm and the fair allocation in hindsight), and the y-axis
denotes Agpiciency, the remaining resources. The dotted line
represents the impossibility due to statistical uncertainty in
the optimal allocation, and the region below the solid line
represents the impossibility due to the envy-efficiency un-
certainty principle.

B-3%, Nthalg be the algorithm’s total leftover resources. These
are all very stringent metrics, akin to the notion of regret in online
decision-making settings, which subsume many other objectives.

In these settings with competing objectives, practitioners often
resort to ad-hoc rules of thumb and trial-and-error adjustments of
the system to attempt to manage the balance between objectives.
How these criteria interact and trade-off amongst one another is
often not well understood or characterized, and furthermore there
typically does not exist a clear objective function that determines
which tradeoffs are better than others.

3 MAIN RESULTS

Our main technical contribution is to provide a complete characteri-
zation of the achievable pairs of (Agp, ENVY, Agficiency)- Our results
hold in expectation and with high probability, under multiple divis-
ible resources, and with a finite set of individual types with linear
utilities. In particular, we show the following informal theorem (see
Fig. 1 for a graphical representation).

INFORMAL THEOREM 1. Under mild regularity conditions on the
distribution of N;, we have the following (where > ignores problem
dependent constants, logarithmic factors of T, and 0(1) factors):

1. (Statistical Uncertainty Principle): Any online allocation algo-
rithm must suffer counterfactual envy of at least App > %

2a. (Counterfactual Envy-Efficiency Uncertainty Principle): Any
online allocation algorithm necessarily suffers

Aeﬁ‘iciency 2 min{\/i 1/Agr}.
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2b. (Hindsight Envy-Efficiency Uncertainty Principle): Any on-
line allocation algorithm necessarily suffers

Aeﬁciency s min{ﬁ, 1/ENvy}.

3 (Upper Bound via GUARDED-HOPE): For any choice of LT, with
probability at least 1 — 8, GUARDED-HOPE with parameter Lt
achieves:

Envy < Lt Agr < max{l/\/f, Lt}

Furthermore, we provide a simple algorithm, GUARDED-HOPE,
which achieves the correct trade-off between envy and waste, match-
ing the lower bound in terms of T up to logarithmic factors. Our
algorithm achieves this using novel concentration arguments on
the optimal Nash Social Welfare solution, utilizing a sensitivity
argument on the solution to the optimization problem instead of the
objective (as commonly used for competitive ratio guarantees) to
learn a lower guardrail on the optimal solution in hindsight. Given
this, we construct an upper guardrail to satisfy the desired Agp
and ENvy bound. We then achieve the proper trade-off by carefully
balancing allocating to the established lower guardrail with the
upper guardrail while simultaneously ensuring the algorithm never
runs out of budget.

To get some intuition into the envy-efficiency uncertainty prin-
ciple, consider the simple example described above for a single
resource (with arrivals Ny in each location, and X°P* = B/N where
N = 3te[r] Nt). For convenience we assume that each agents util-
ity is directly proportional to their allocation (i.e. u(X, 0) = X)).
Consider allocation X at the first location: via standard concentra-
tion arguments, one can find a high probability lower confidence
bound for B/N with a half-width on the order of 1/YT. Now it’s
not hard to argue that allocating according to the lower confidence
bound at all locations achieves counterfactual envy of Agp ~ 1/VT,
Envy = 0, and Aggiciency ~ VT. This corresponds to the cusp of the
efficiency-envy trade-off curves in Fig. 1.

Now if we relax the Agp or ENVY constraint to ~ 1/ T3 and
use the naive static policy of always allocating via the lower con-
fidence bound on that order, we get a waste of T - T-1/3 = 72/3,
Our algorithm instead takes a different approach, using the lower
confidence bound of order 1/VT as the lower guardrail allocation,
and sets the upper guardrail allocation to be the lower one plus
the desired bound on Agp or ENvy. If we were to establish that the
algorithm always allocates within the guardrails, we automatically
have the desired bound on Agr and ENvy. The main additional
factor in achieving the tradeoff for Agfciency is ensuring we prop-
erly allocate according to the upper threshold while ensuring we
do not run out of budget to ensure the lower threshold allocation.
With this GuARDED-HoPE achieves Agficiency T1/3, which further-
more is the best possible. Moreover, we complement our theoretical
results with experiments highlighting the empirical performance
of different algorithms (both on synthetic settings, as well as a
dataset based on mobile food pantry operations), which shows that
GUARDED-HOPE has much lower waste and envy compared to static
under-allocation, as well as other natural heuristics.

Aefficiency < min{\/i 1/Lt}.



