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Following the many successful implementations of effective universal configuration-interaction Hamiltonians,
we endeavored to produce a universal f p shell interaction tailored for the calcium isotopes, which we call UFP-
CA. Starting from a state-of-the-art in-medium similarity renormalization group (IMSRG) interaction, linear
combinations of Hamiltonian parameters that define the natural basis of the parameter space are constrained
by the latest experimental data for the neutron-rich calcium isotopes. We show that this data-driven method for
improving the Hamiltonian provides an excellent description of the known binding energies and spectra for the
calcium isotopes within the f p model space. This together with comparisons to results from energy-density
functional models leads us to conclude that 60Ca is doubly magic at a similar level to 68Ni. Several predictions
are presented for unobserved low-lying excited states in 55−59Ca that will be accessible to future experiments.
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Next-generation experiments performed at newly built
rare-isotope facilities will provide a greatly expanded view of
the nuclear landscape. While qualitative predictions are avail-
able, quantitative predictions for those soon-to-be-discovered
nuclei are needed to guide and motivate these experiments.
In this Letter, we present a process to quantitatively describe
the calcium isotopes out to 60Ca, probably the last doubly
magic nucleus to be discovered by the new radioactive-beam
facilities.

Hamiltonians used for configuration-interaction calcula-
tions of nuclei are continually being improved. The ab initio
based methods now include three-body interactions together
with improved methods for handling short-ranged correla-
tions and model space truncations [1] and are now able to
describe binding energies within several MeV and energy
spectra within about 500 keV. A recent example for the sd
shell is shown in Ref. [1].

One can phenomenologically improve upon these interac-
tions by using the energy data for nuclei in a given mass region
to obtain effective two-body matrix elements (TBME) for a
given model space. An effective method for doing this is to
start with an ab initio based Hamiltonian and then to modify
the best determined linear combinations (LC) of TBME that
are required by the energy data using the singular value de-
composition (SVD) method. The result is that both binding
energies and energy spectra can be described to within 150–
200 keV (see Fig. 9 of Ref. [1] and Fig. 5 of Ref. [2]).

The SVDmethod has resulted in widely used Hamiltonians
for the sd model space [2,3], the f p model space [4–6], the
mixed sd (protons) and f p (neutrons) model space [7], the
sd-p f model space with particle-hole excitations [8,9], and
the j j44 model space (see the Appendix in Ref. [10]). The
relatively small modifications to the ab initio based TBME
(on the order of up to 100–200 keV) reflect deficiencies in the
many-body method, as well as the input NN + 3N force.

We show that this data-driven method for improving the
Hamiltonian provides an excellent description of the known
binding energies and spectra for the calcium isotopes within
the f p model space. The new universal f p interaction for
calcium (UFP-CA) is presented in the Supplemental Material
[11]. This together with comparisons to results from energy-
density functional (EDF) models leads us to conclude that
60Ca is doubly magic at a similar level to 68Ni.

The data set used for this work contains the absolute
binding energies for 46–57Ca, with the available experimental
values from the 2016 Atomic Mass Evaluation [12] used for
A < 55. Recently, the first mass measurements of 55–57Ca
were published [13], and these are adopted here for the fit.
Additionally, 23 well-known f p excited states are included in
the fit as they contain important information for constraining
the parameters involving the high-lying 0 f5/2 and 1p1/2 orbits.
Along with the 12 ground-state binding energies, our data
set consists of 35 energy levels for these f p-shell calcium
isotopes. Energies for A < 46 were excluded to avoid the in-
fluence of low-lying intruder states on the 0 f7/2 parameters in
the interaction. The excited states included in the fit are shown
as green points at their experimental excitation energies in
Fig. 1 along with a broad look at the energy spectra calculated
with UFP-CA for the calcium isotopes with A > 45. Each line
corresponds to a predicted energy level with the length and
color representing the spin and parity of the level.

The fit begins by formulating the problem as a χ2 mini-
mization of Np parameters p j on a data set of size Nd :

χ2 =
Nd∑
i

wi(E ( �p) − E exp
i ), (1)

where the weights are set to wi = (σi)−2 with the adopted
errors σi taken as the recorded experimental errors and a theo-
retical error added in quadrature. To normalize the minimized
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FIG. 1. Theoretical level schemes for neutron-rich calcium isotopes with A > 45 calculated using UFP-CA. Experimental excitation
energies included in the fit are marked in green. Positive-parity states are shown in red, and negative-parity states are shown in blue. Each
of these lines represents a level predicted to exist by the theory. Theoretical one- and two-neutron separation energies are shown as the purple
and black lines, respectively.

χ2 to the degrees of freedom (Nd − Np), we set σ th = 75 keV.
The χ2 is minimized when �p = �p0, which can be found using
standard methods. However, the nuclear interaction parame-
ters are highly correlated and the states included in this fit will
be more dependent on some LC than others. This motivates us
to truncate the parameter space.

Performing a SVD of the real symmetric data matrix (Eq.
(9) in Ref. [3]) results in a diagonal matrix containing the sin-
gular values of the data matrix and a “rotation” matrix whose
columns form an orthogonal basis that spans the parameter
space. Small singular values correspond to poorly determined
LC, which can be replaced with LC taken from an ab initio
interaction ps. This process is explained in depth in Ref. [3],
and produces a family of solutions �p0(n), where n is the
number of LC allowed to vary in the fit.

The parameter variance-covariance matrix S can be de-
termined for each �p0(n) by inverting the singular value
decomposition of the data matrix G, with the i > n diagonal
terms of the D matrix set to zero in order to capture only
the statistical uncertainties from the regression. With S(n),
parameter uncertainties can be taken as �pi(n) = √

S(n)ii.
This defines a “reasonable domain of model parameters” [14]
around the minimum that provides interactions of similar
quality to �p0. Naturally then, the model-calculated observ-
ables, in this case binding and excitation energies, will have
an acceptable range of values in this parameter domain. Using
this, we can generate the statistical uncertainty introduced to
the calculated energies at each n. At n = 0, these will be zero
and tend to grow with n. The full uncertainty is a combination
of the statistical uncertainty with the model uncertainty of
around 100–200 keV for these effective interactions.

A reasonable starting interaction is needed for this pro-
cedure in order to effectively navigate the parameter space
and maintain a physically grounded interaction. The calcium
f p-shell data set allows us to think of our nuclei as a core
of 40Ca in its ground state with valence neutrons in the f p

orbits. We construct a Hamiltonian for this system using a
zero-body term (H0), a one-body term (H1), and a two-body
term (H2). H0 is a fixed energy term set equal to the exper-
imental energy of 40Ca (−342.052MeV). H1 is accounted
for through single-particle energies, εα , for each neutron f p
orbit α. For compatibility with the chosen H0, we set these
initially to the values found in the GPFX1A [4–6] interaction
and then allow them to vary. As was done for the previous
Hamiltonians in this region of the nuclear chart, εα are taken
to be mass independent.

H2 describes the interactions among the valence neutrons
and contains the TBME, vJT (α, β; γ , δ), to be constrained.
The TBME have a mass scaling of the form,

vJT (ab; cd )(A) =
(
42

A

)p

vJT (ab; cd )(A = 42). (2)

The two-body nuclear strong interaction terms contained in
H2 scale with p = 0.3, consistent with Refs. [2,3,15]. Forces
involving three or more nucleons are effectively constrained
in H1,2 by the fitting procedure. For this work, the TBME are
set initially to values taken from a valence-space in-medium
similarity renormalization group (VS-IMSRG) calculation
[16]. Beginning with the EM1.8/2.0 NN + 3N interaction
[17] in an oscillator basis of frequency h̄ω = 16 MeV and
2n + � � emax = 14, we normal order with respect to the
Hartree-Fock ground state of 48Ca and decouple the neutron
f p valence space.

The limited size of our data set prevents us from fitting
every TBME as the SVD of the full parameter data matrix
fails. We limit our parameters to only the diagonal TBME and
the εα for each f p orbit, the terms most impacted by three-
body interactions and coupling to the continuum [18]. This
gives us a total of 30 parameters pi with which to perform the
modified χ2 minimization, as done in Ref. [2]. This family
of solutions can be compared by examining their energy rms
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FIG. 2. Root-mean-square (rms) deviations plotted against var-
ied LC. The black circles show the energy rms deviation between
theory and experiment for the well-known levels included in the fit.
The black crosses show the parameter rms deviation from the starting
interaction. The average and maximum �p are denoted by the purple
triangles and points. The singular values are plotted on a log scale in
the inset.

deviations from the data set and the parameter rms deviations
from the initial parameters. These results are shown in Fig. 2.

At n = 4 (green), there is a sharp drop in the energy rms
deviation to around 180 keV, which indicates that the four
εα are the most important parameters to achieve good agree-
ment with experiment. The energy rms deviation continues
to decline to around 30 keV; however, the maximum statis-
tical uncertainty among the interaction parameters increases
rapidly after n = 20, suggesting that the data are unable to
constrain the interaction sufficiently after this point. To avoid
this, we stop at n = 18 (red). The parameter rms deviation
grows smoothly from around 60 keV at n = 4 to around 150
keV at n = 18. Results for the whole range of solutions from
n = 4 to n = 18 are similar, and beyond n = 11 (blue) the
improvements are very small.

As it is representative of our results, we choose the n = 11
solution as UFP-CA. The resulting single-particle energies
and two-body matrix elements for T = 1 are given in the
Supplemental Material [11]. The two-body matrix for T = 0
are taken from the GPFX1A Hamiltonian [4–6]. Figure 3
contains a scatter plot comparing the TBME in UFP-CA
against the initial IMSRG interaction. The UFP-CA energy
spectra for 46–60Ca are shown in Fig. 1 along with the one-
and two-neutron separation energies. In addition to these
states, unnatural-parity intruder states involving the 1s-0d
orbits start at an excitation energy of 4 MeV near A =
48, and, in the weak-coupling model, intruder states involv-
ing and the 2s-1d-0g orbits will come as low as 1.4 MeV
near A = 60.

There are several experimentally observed states with no
definite spin assignment in this region that were not included
in the fit. In 49Ca, the National Nuclear Data Center (NNDC)
reports the level at 3.354 MeV as (9/2+) but has recently been
corrected to 7/2− [19]. We predict a 7/2− state at approx-
imately this energy along with a second nearby 7/2− state.

FIG. 3. A comparison of the TBME between UFP-CA and the
initial IMSRG interaction is shown in panel (a). The ESPE discussed
in the text are shown for GPFX1A (b), UFP-CA (c), and a Skyrme
interaction (d). The red crosses show the IMSRG values at N = 28.
The 0 f5/2 (�) and 0g9/2 (�) are shown for the SKM* (green) and
UNEDF0 (blue) EDF functionals.

Apart from this, there are nine levels with unknown spin in
49-55Ca that fall within 150 keV of our predictions. There
are no known levels up to 5 MeV that are contrary to our
predictions, except for the unnatural parity states and three
states in 51Ca only observed in one three-nucleon transfer
reaction [20].

The calculated S2n for UFP-CA are compared to experi-
ment in the top panel of Fig. 4. We see excellent agreement
with experiment for the separation energies across the shell,
with expected minor deviations for 46Ca and 40Ca from mix-
ing with low-lying intruder states. The bottom panel of Fig. 4
highlights the deviations from the UFP-CA predictions for
experiment and several interactions: the GPFX1A interaction
[4–6], results from Ref. [21] both with and without three-body
correlations, and results from using nuclei-specific IMSRG
interactions [16]. These theories all predict significantly lower
S2n at the top of the f5/2 shell. Other previous theoretical work
on the neutron-rich calcium isotopes using ab initio methods
include Refs. [22–26].

Our results indicate that the calcium isotopes are stable to
neutron decay out to 60Ca as observed experimentally [27].
There are three sources of uncertainty in the extrapolation out
to 60Ca. First, the quality of the reproduction of the experi-
mental data for n = 11 varied linear combinations within f p
model space leads to statistical uncertainties on the energies
on the order of 90 keV. Second, the predictions beyond 56Ca
rely on the IMSRG model for the 0 f5/2 TBME that are not
constrained by data. The rms deviation between the UFP-CA
and IMSRG TBME, see Fig. 2, is 120 keV. This implies that
the uncertainty in the energies within the f pmodel space from
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FIG. 4. Experimental and calculated S2n for the calcium isotopes.
See text for a description of the bottom panel.

56Ca to 60Ca is about 120 keV. The third source of uncertainty
is the adequacy of the f pmodel space. For this, we rely on the
observation that all of the known energy data can be described
by an effective set of TBME within the f p model space and
that these TBME are close to those predicted by the IMSRG
calculations. The most critical test will be new experimental
data from 56Ca to 60Ca. An interesting detail is the presence
of 4+ states in 56,58Ca with dominant (0 f5/2)2,4 configurations
with a predicted lifetime of about 20 ns.

The renormalization of the f pHamiltonian implicitly con-
tains the effects from sdg admixtures. This means that the
shell gap between f p and sdg orbitals at Z = 28 and N =
40 is large enough to prevent the 2p-2h configurations from
becoming ground states as they do in the islands of inver-
sion [28]. The known regions of islands of inversion involve
deformations driven by the proton-neutron interaction. Thus,
54Cr and 56Fe are known to be inside the N = 40 island of
inversion. Is there an island of inversion for 60Ca? A signature
would be if 58–60Ca are more bound than we predict. Low-
lying excited states not described by our predictions will also
give direct information on the location of the 0g9/2, 1d5/2, and
2s1/2 orbitals.

An important goal of this work is to determine whether
60Ca can indeed be treated as a closed shell. This designation
is dependent on the magnitude of the energy gap between
the 0 f5/2 orbit and the 0g9/2 orbit. As our model space does
not include this orbit, we extrapolate through comparisons
to energy-density functional (EDF) calculations. To allow
intermodel comparisons, we introduce the “effective” single
particle energies (ESPE) that evolve with the nuclear mass.

These are a combination of the TBME and εα for the one-
particle and one-hole configurations around a closed shell at
N = 28, 34, and 40. The four ESPE calculated with GPFX1A
and UFP-CA are plotted in Figs. 3(b) and 3(c).

The shell gap can be inferred from EDF calculations based
on a closed-shell configuration for 60Ca. The EDF can be
tested against the ESPE we obtain from the binding energy
differences of 60Ca and 59Ca with one hole in f p.

The ESPE for 48,56,60Ca obtained with the Skx functional
[29] are shown in Fig. 3(d). In the Mass Explorer [30], binding
energies of 61,60,59Ca are given for the SKM* [31] and UN-
EDF0 [32] models. The results implied for the 0 f5/2 and 0g9/2
ESPE are shown on the right-hand side of Fig. 3(d). The EDF
ESPE agree with UFP-CA ESPE within about 1 MeV. This is
similar to the differences between Skx EDF and experimental
ESPE observed for other doubly magic nulcei [29]. All of
these comparisons point to a gap of about 3 MeV between
the 0 f5/2 and 0g9/2 in 60Ca within an uncertainty of about 1
MeV. The ESPE gap for 68Ni obtained with the Hamiltonian
in Ref. [33] is 1.95 MeV. Therefore, we expect the properties
around 60Ca to be comparable to those around 68Ni.

For 61Ca, S1n = e9 where e9 is the single-particle energy of
the 0g9/2 orbital. With Skx, e9 is near zero energy, and 61Ca
may or may not be bound. For 62Ca S2n = 2e9 +V0, where
V0 is the effective TBME for 0g29/2, J = 0 which is on the
order of 2 MeV. Thus 62Ca is likely to be inside the neutron
drip line. These conclusions are in line with the Bayesian
model averaging results of Neufcourt et al. [34], which predict
a bound 60Ca with S2n = 5(1) MeV and report an exis-
tence probability of 46% for 61Ca. They further conclude
that even-even calcium isotopes out to A = 70 are likely to
exist.

Lenzi et al. [35] have extrapolated the neutron effective
single-particle energies from Z = 28 down to Z = 20 based
on their LNPS Hamiltonian. Their 0 f5/2-0g9/2 ESPE gap for
60Ca is close to zero (see Fig. 1 in Ref. [35]), in contrast to the
EDF gaps of about 3 MeV. As shown in Ref. [36], the ESPE
of the 0g9/2 has a strong influence on the structure of 56–60Ca
that can be tested by experiment.

We have presented UFP-CA, a new interaction tailored to
the f p shell calcium isotopes, based on the best available
experimental data. Using this, we have presented extrapolated
predictions out the 60Ca and compared those results to exper-
iment and other theoretical works. Our extrapolation along
with comparisons to EDF calculations implies that 60Ca is
likely doubly magic at a level similar to 68Ni. However, this is
ultimately a question that will be decided by experiment. To
further refine a shell model view of this isotopic chain, more
experimental data involving the 0 f5/2 and the 0g9/2 orbits is
needed.
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