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Abstract. We consider sparse matrix estimation where the goal is to estimate an n-by-n
matrix from noisy observations of a small subset of its entries. We analyze the estimation
error of the popularly used collaborative filtering algorithm for the sparse regime. Specifi-
cally, we propose a novel iterative variant of the algorithm, adapted to handle the setting
of sparse observations. We establish that as long as the number of entries observed at ran-
dom scale logarithmically larger than linear in 7, the estimation error with respect to the
entry-wise max norm decays to zero as 1 goes to infinity, assuming the underlying matrix
of interest has constant rank r. Our result is robust to model misspecification in that if the
underlying matrix is approximately rank r, then the estimation error decays to the approxi-
mation error with respect to the max-norm. In the process, we establish the algorithm’s
ability to handle arbitrary bounded noise in the observations.
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1. Introduction

We consider the task of sparse matrix estimation giv-
en noisy observations. Let F be an n X n matrix that
we would like to estimate, and let Z be a noisy signal
of matrix F such that E[Z] = F. Let £ C [n] X [1] denote
the subset of indices that are observed. In particular,
we observe matrix M where M(u, v) = Z(u, v) for
(u,v)e &, and M(u,v)=0 for (u,v)¢E. We assume
that the entries of Z are independent random varia-
bles, and we assume a Bernoulli sampling model;
each (u, v) € [n] X [n] is in £ with probability p € (0, 1]
independently. The goal is to estimate F.

As a prototype for such a problem, consider a noisy
observation of a social network where observed inter-
actions are signals of true underlying connections. We
might want to predict the probability that two users
would choose to connect if recommended by the plat-
form, for example, LinkedIn. As a second example,
consider a recommendation system where we observe
movie ratings provided by users, and we may want to
predict the probability distribution over ratings for
specific movie-user pairs. A popular collaborative fil-
tering approach suggests using “similarities” between

pairs of users to estimate the probability that a con-
nection is formed or the probability a user likes a par-
ticular movie. Traditionally, the similarities between
pair of users in a social network is computed by com-
paring the set of their friends or in the context of mov-
ie recommendation by comparing commonly rated
movies. In the sparse setting, most pairs of users have
no common friends, or most pairs of users have no
commonly rated movies; thus, there is insufficient
data to compute the traditional similarity metrics.

In this work, the primary interest is to provide a
principled way to extend the simple, intuitive ap-
proach of computing similarities between pair of users
or items to perform sparse matrix estimation via near-
est neighbor collaborative filtering. We propose to do
so by incorporating information within a larger radius
neighborhood of the data graph rather than restricting
only to immediate neighbors. This variation of collab-
orative filtering and its analysis in this work can be
viewed as a natural extension of the work by Abbe
and Sandon (2015a, 2016) in the context of stochastic
block model and Zhang et al. (2017) and Lee et al.
(2016) for traditional collaborative filtering.
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1.1. Summary of Contributions

The primary contribution of this work is an analysis
of an iterative collaborative filtering algorithm in the
sparse regime. We consider the setting of a latent vari-
able model where the matrix F =[F(u, v)] can be de-
scribed by a latent function f evaluated over latent
variables associated to the coordinates. In particular,
we assume that F(u, v) = f(0,,0,) where f is a piece-
wise Lipschitz function, and 6,0, € [0, 1] are coordi-
nate latent variables sampled uniformly at random.
Details of the model are described in Section 2.

As the main result of this work, we establish that
with high probability the max entry-wise error associ-
ated with the resulting estimate converges to zero as
long as the latent function f when regarded as an inte-
gral operator has finite spectrum with constant rank r
and p=Q(n~**) for x >0. In addition, if we have
knowledge of the spectrum, the algorithm can be im-
proved so that the max entry-wise error of the esti-
mate converges to zero as long as p = Q(n~'In'"*n) for
any « > 0. We also establish robustness of our result
with respect to the low rank requirement of f. In par-
ticular, we provide a robust version of our result that
holds when f has e-approximate rank r; that is, there
exists a rank r function that approximates f within ¢
with respect to the £, norm. We establish it by argu-
ing that if all the observed entries are perturbed arbi-
trarily or adversarially within ¢, then the algorithm
estimates for each entry are perturbed by at most
O(max (¢, €)). The efficacy of the proposed algorithm
with respect to arbitrary noise is an interesting result
on its own.

Algorithmically and methodologically, our work
builds on Abbe and Sandon (2015a, b, 2016), which es-
timates clusters of the stochastic block model by com-
puting distances from local neighborhoods around
vertices. We improve on their algorithm and analysis
to provide bounds on the maximum entry-wise esti-
mation error for the general latent variable model
with finite spectrum. This includes a larger class of
generative models such as mixed membership sto-
chastic block models in contrast to their work that
focuses on the stochastic block model with nonover-
lapping communities. The algorithm considered in
this work uses the knowledge of which entries are ob-
served and which are not, in line with the literature
on matrix estimation. In the setting of clustering
(Abbe and Sandon 2015a, b, 2016), such knowledge is
absent from the purview of the algorithm.

With the exception of a few recent results, by and
large the literature on matrix estimation has focused
on providing estimation error bounds with respect to
the normalized Frobenius norm. In contrast, we pro-
vide bounds on the max entry-wise estimation error
that is a lot more challenging. Our bounds are restrict-
ed to the latent variable model, whereas the traditional

matrix estimation literature considers the underlying
matrix to be an arbitrary instance from the family of
(approximately) low-rank matrices with incoherence-
like conditions. Indeed, understanding the relationship
between these two seemingly different model classes
remains an important direction for future work.

A weaker version of this result was published in the
NeurIPS conference as Borgs et al. (2017b). In contrast,
this paper provides sharper bounds for both the MSE
and max-norm error that improves the exponent in
the convergence rates. We have also included a per-
turbation analysis of the algorithm that shows under
“adversarial” bounded noise, the error scales graceful-
ly with the bound on the noise. This enables analysis
of our work for the approximately low-rank setting.
We also included a modified algorithm that achieves
the same rates with a reduced computational com-
plexity, and we showed extensions of our results to re-
laxed modeling assumptions on the latent variable
model. We added empirical evaluation of our method
compared with state-of-art methods.

1.2. Related Work

The related work includes that of matrix estimation or
completion, collaborative filtering, and graphon esti-
mation arising from the asymptotic theory of graphs.
We provide a brief overview of prior works for each
of these topics.

In the context of matrix estimation or completion,
there has been much progress under the low-rank as-
sumption and additive noise model. Most theoretically
founded methods are based on spectral decomposi-
tions or minimizing a loss function with respect to
spectral constraints (Candes and Recht 2009; Candes
and Tao 2010; Keshavan et al. 2010a, b; Negahban and
Wainwright 2011; Recht 2011; Davenport et al. 2014;
Chatterjee 2015; Chen and Wainwright 2015; Xu 2018).
In a nutshell, this collection of works establishes that if
the underlying matrix has rank r, then it can be estimat-
ed so that the estimator has normalized mean squared
error (MSE) going to zero as n— oo as long as
p = Q(rn~'logn). Furthermore, Keshavan et al. (2010b)
and Candes and Plan (2010) showed that w(rn™!) sam-
ples are necessarily required for such a guarantee.
These near optimal sample complexity results hold
when the noise in each entry of the matrix is indepen-
dent and identically distributed. For the setting of ge-
neric noise and the general latent variable model where
the latent function is analytic, Chatterjee (2015) and Xu
(2018) provide an estimator for which the MSE decays
to zero as n — oo as long as p = Q(n~'poly(logn)).

The guarantee with respect to MSE does not neces-
sarily guarantee recovery of all entries accurately. In-
deed, bounding max entry-wise error provides such a
guarantee as established by our result. In parallel with
our work, there has been recent progress on developing
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matrix estimation methods that provide max entry-
wise bounds for matrices with rank r. In particular, for
sufficiently nice rank r matrices, Abbe et al. (2020) es-
tablish that a simple spectral algorithm can recover the
matrix with max entry-wise error decaying to zero as
long as p =Q(logn/n). Indeed, improving such max
entry-wise guarantee has been actively pursued over
the past few years witnessed in the growing body of
works (Ma et al. 2018, Zhong and Boumal 2018, Cai
et al. 2021, Chen et al. 2019, Ding and Chen 2020).

The collaborative filtering method has been success-
fully used across industry applications (Netflix,
Amazon, YouTube) because of its simplicity and scal-
ability (Goldberg et al. 1992, Linden et al. 2003, Koren
and Bell 2011, Ning et al. 2015); however, the theoreti-
cal results have been relatively sparse. We call special
attention to the recent works by Zhang et al. (2017),
Lee et al. (2016), and Li et al. (2020) that provide a
nonparametric statistical perspective for the tradition-
al collaborative filtering method. In particular, they
suggest that the practical success of these methods
across a variety of applications may be because of its
ability to capture local structure like the classical near-
est neighbor or kernel regression method. They estab-
lish that as long as the latent function f is Lipschitz,
the MSE of the resulting estimator decays to zero as
1 — oo as long as p = w(n~'/?). A key limitation of this
approach is that it requires a dense data set with suffi-
cient entries to compute similarity metrics, requiring
that each pair of rows or columns has a growing num-
ber of overlapped observed entries, which does not
hold when p = o(n~1/2).

Graphons emerged as the limiting object of a se-
quence of large dense graphs (Borgs et al. 2008, Diaconis
and Janson 2008, Lovasz 2012), with recent work extend-
ing the theory to sparse graphs (Borgs et al. 2017a, 2018,
2019; Veitch and Roy 2015). In the graphon estimation
problem, one observes a single instance of a random
graph sampled from an underlying latent variable mod-
el, and the goal is to estimate the function that governs
the edge probabilities of the graph. Gao et al. (2015a)
and Klopp et al. (2017) provide minimax optimal rates
for graphon estimation; however, most of the proposed
estimators are not computable in polynomial time, be-
cause they require optimizing over an exponentially
large space (e.g., least squares or maximum likelihood),
(Wolfe and Olhede 2013; Borgs et al. 2015, 2021; Gao
et al. 2015a; Klopp et al. 2017) provides a polynomial
time method based on degree sorting in the special case
when the expected degree function is monotonic. Xu
(2018) analyzes universal singular value thresholding
(USVT) for graphon estimation in settings that the spec-
trum decays quickly, showing convergence rates which
matches the minimax optimal rate for low dimensional
smooth functions.

Stochastic block model (SBM) parameter estimation
is an instance of graphon estimation, where the under-
lying function has a specific structure. Under the
SBM, each vertex is associated to one of » community
types, and the probability of an edge is a function of
the community types of both endpoints. This implies
that the edge probability function is block constant.
Estimating the n X n parameter matrix becomes an in-
stance of matrix estimation with a technical distinc-
tion: all entries are fully observed; that is, each edge is
present (one) or absent (zero). In SBM, the expected
matrix is at most rank r because of its block structure.
Precise thresholds for cluster detection (better than
random) and estimation have been established by
Abbe and Sandon (2015a, b, 2016). As mentioned be-
fore, our work, both algorithmically and methodically
is closely related to their work. The mixed member-
ship stochastic block model (MMSBM) allows each
vertex to be associated to a length r vector, which rep-
resents its weighted membership in each of the r com-
munities. The probability of an edge is a function of
the weighted community memberships vectors of
both endpoints, resulting in an expected matrix with
rank at most r. Recent work by Steurer and Hopkins
(2017) provides an algorithm for weak detection for
MMSBM with sample complexity 21, when the com-
munity membership vectors are sparse and evenly
weighted. They provide partial results to support a
conjecture that r?n is a computational lower bound,
separated by a gap of r from the information theoretic
lower bound of rn. This gap was first shown in the
simpler context of the stochastic block model Decelle
et al. (2011). Xu et al. (2014) proposed a spectral clus-
tering method for inferring the edge label distribution
for a network sampled from a generalized stochastic
block model. When the expected function has a finite
spectrum decomposition, that is, low rank, then they
provide a consistent estimator for the sparse data re-
gime, with Q(nlog 1) samples.

In the previous discussion, we focused primarily on
the sample complexity required for consistent estima-
tion, that is, the scaling of the number of samples re-
quired (pn) such that the normalized estimation error
such as the MSE or max-norm goes to zero. When con-
sistent estimation is feasible, we can further consider
the rate of decay of the error guarantees. To that end,
we provide a brief overview of the minimax scaling
with respect to boudns on the MSE. Chatterjee (2015)
identifies a minimax lower bound on the scaling of
the MSE for a generic matrix estimation task charac-
terized by the nuclear norm of the target matrix.
In particular, for symmetric matrices with nuclear
norm bounded by 0, the minimax MSE scaling is low-

er bounded by min(é/\/n3 ,62/712, 1); furthermore,
Chatterjee (2015) argues that the universal singular
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value thresholding achieves this scaling. This bound
holds even in the scenario where observed entries are
noiseless. This characterization, however, is loose for
the setting of low-rank matrices. Observe that for rank
r symmetric matrices with entries bounded in [-1, 1],
the nuclear norm can scale as n+r; resulting in a

bound of +/r/np (for small enough p) (Chatterjee
2015). For the setting of rank r matrices with noiseless
observations, Keshavan et al. (2010a, b) provide an es-
timator with MSE scaling as r/np for p = Q(1/n). This
points to the fact that the class of matrices with
bounded nuclear norm is more complex than the class
of rank r matrices with bounded entries. In the setting
of low rank graphon estimation (i.e., binary observa-
tions), Gao et al. (2015b) and Klopp et al. (2017) show
a minimax lower bound on the MSE scaling as
logr/pn for small enough p = Q(logr/n); however, the
existence of a computationally efficient estimator that
achieves this lower bound under the more general
noise setting of graphon estimation is still an open re-
search direction.

2. Setup

2.1. Model and Assumptions

Recall that our goal is to estimate the n X n matrix F; Z
is a noisy signal of matrix F such that E[Z]=F. The
available data are denoted by (€, M), where £ C [n] X
[n] denotes the subset of indices for which data are
observed, and M is the n X n data matrix where
M(u,v) = Z(u,v) for (u,v)€&, and M(u,v)=0 for
(1, v) ¢ £. The observations can be equivalently repre-
sented by an directed weighted graph G with vertex
set [n], edge set £, and edge weights given by M. We
assume that {Z(u, v)}(”,v)e[n]z are independent random
variables across all indices with E[Z(u, v)] = F(u, v),
and that the underlying matrix and observations are
bounded, that is, F(u, v), Z(u, v) € [0, 1]. We assume a
uniform Bernoulli sampling model, where each entry
is observed independently with probability p, that is,
{I((u,v) € 5)}(%0)6[”]2 are independent Bernoulli(p) ran-
dom variables.

2.1.1. Latent Variable Model. Assume that each u € [n]
is associated to a latent feature variable 6, ~ U[0, 1],
which is drawn independently across indices [7] uni-
formly on the unit interval. We assume that the ex-
pected data matrix can be described by the latent
function f, that is, F(u, v) = f(0,, 0,), where f : [0, 11> -
[0, 1] is a symmetric bounded function. The symmetry
assumption can be easily relaxed but is assumed for
ease of notation in the analysis. The latent function f is
assumed to be fixed and independent of the dimen-
sion n. We additionally impose local neighborhood
properties that are primarily used in the nearest
neighbor portion of the analysis. We will assume that

f is Lipschitz, but this assumption can be relaxed as
discussed in Section 2.2.

2.1.2. Low Rank. We assume that the latent function f
has finite spectrum with rank r when regarded as an
integral operator, that is, for any 0,0, € [0, 1],

f(eur Qv) = i /\qu(eu)qk(ev)/
k=1

where Ay €R for 1 <k<r, and g, are orthonormal ¢,
functions for 1 < k < r such that

1 1
/ qk(y)zdy =1and / g an(y)dy =0 for k # h e [r].
0 0

We assume there exists some B such that sup, .

l9x(y)| < B for all k € [r]. Let A denote the r X r diago-
nal matrix with {A}ef,; as the diagonal entries, and
let Q denote the r X n matrix where Q(k, u) = qx(6,,).
Because Q is a random matrix depending on the
sampled 0, it is not guaranteed to be an orthonormal
matrix (even though g are orthonormal functions).
By definition, it follows that F= QTAQ. Let ¥ <r be
the number of distinct valued eigenvalues among
{Akbkerr- Let A denote the rxr matrix where
Aa, b) = )\f;*l.

The finite spectrum assumption also implies that the
model can be represented by latent variables in the
dimensional Euclidean space, where the latent variable
for node i would be the vector (41(6;),...4,(6;)), and
the latent function would be bilinear, having the form

fq.9)=>  dakgy =q" A
k

This condition also implies that the expected matrix F
is low rank, which includes scenarios such as the
mixed membership stochastic block model and finite
degree polynomials. The function f is fixed with re-
spect to 1, the rank r is assumed to be finite in the low
rank setting.

The mixed membership model for network data can
be represented with a finite spectrum latent variable
model. Each coordinate is associated to a vector m € A,,
sampled independently and identically distributed
(ii.d). from a distribution P. For two nodes with respec-
tive types m and m’, the observed interaction is
f(r, ') = 3ymim/By = 'Br’, where Be[0,1]" and
assumed to be symmetric. Because B is symmetric,
there exists a diagonal decomposition B=UAU" with
U denoting the eigenvectors, such that f(m,7') =
Sy Aulmul . Tt follows from this decomposition
that the Hilbert-Schmidt integral operator associated to
function f: A, X A, — [0, 1] has finite spectrum with
rank at most 7.
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Interaction data arising from symmetric finite de-
gree polynomials also leads to finite spectrum latent
variable models. Let f(x, y) be a finite degree symmet-
ric polynomial, represented by f(x,y) =313
cix'y/, where ¢;; = ¢;; for all ij. Let x = (1, x,x%,...x") and
y=(1,y,y%...y"), and let C denote the (r +1) X (r+ 1)
matrix with entries [c;], so that f(x, y) = x"Cy. Because
C is symmetric, there exists a diagonal decomposition
B=UAUT with U denoting the eigenvectors, such
that f(x, y) = Sy, Akl xU]y. Tt follows from this de-
composition that the Hilbert-Schmidt integral opera-
tor associated to function f has finite spectrum with
rank at most .

2.1.3. Approximately Low Rank. More generally, we
shall consider approximately low-rank f (Udell and
Townsend 2019). Specifically, for a given ¢ >0, a sym-
metric function fis said to have e-approximate rank r if

sup  |f(00, 00—~ S M@0 <6 (1)
k=1

6“/ eve[ol 1]

where Ay eR for 1<k<r, and gx are orthonormal
{» functions for 1 <k <r. In this case, it follows that
F=QTAQ+ & where ¢ = [e;7] € R™" is such that max;
|eij| < €. That is, the matrix F is approximately rank r.
Functions f that do not have finite spectrum but for
which the eigenvalues decay quickly can be shown
to have approximately low rank. Chatterjee (2015)
and Xu (2018) use this observation to analyze the
USVT algorithm for latent variable model estimation
with Lipschitz, Holder, and Sobolev functions. Udell
and Townsend (2019) also show that any analytic
function with bounded derivatives has approximate-
ly low rank. Recall again that we assume the func-
tion f is fixed with respect to 1, but we can consider
the choice of ¢ to be dependent on 7, so that the ¢ ap-
proximate rank 7 would grow with respect to 7.

2.1.4 Discussion of Latent Variable Model. The latent
variable model assumes a random generative model
on the underlying matrix F, as opposed to the typical
deterministic incoherence style conditions found in
the literature. The generative model assuming i.i.d.
sampled latent variables and boundedness of the ei-
genfunctions of f guarantee similar properties as inco-
herence with high probability, as any single row or
column will not dominate the signal in a way that de-
viates too much from the typical values of f. The i.i.d.
sampling assumption on the latent variables is used in
analyzing the local neighborhoods of the observation
graph; however, this assumption can likely be re-
placed by regularity assumptions over the empirical
distribution of the latent factors for large 7, for exam-
ple, if the latent factors are close to a typical sample
set from a well-behaved underlying distribution.

The Lipschitzness assumption of f together with the
assumption that 6, ~ U[0, 1] guarantees that for any
given u € [n] there are sufficiently many other coordi-
nates v € [n] such that the observed entries are similar
across both rows or columns. These assumptions can
be relaxed as long as the key property of “sufficiently
many similarly behaving coordinates” is maintained.
As examples, a piecewise Lipschitz function f or a set-
ting with finite latent types would also satisfy the
needed local neighborhood properties. Similarly, the
scalar assumption on the latent variables and the uni-
form distribution U[0, 1] are not crucial and can be re-
laxed to ii.d. sampled random latent vectors from a
larger class of distributions. The critical conditions to
maintain are the finite spectrum of f, boundedness of
eigenfunctions, and local neighborhood properties.
The local measure needs to be concentrated enough
relative to the rate of change in the function f so that
when 7 points are sampled from the space, there are
sufficiently many nearby neighbors for whom the
function behaves similarly for any given point we
would want to estimate. This primarily affects the
nearest neighbor portion of the algorithm and analy-
sis. Li et al. (2020) also provides a formal discussion
and results for extending the nearest neighbor analy-
sis to accommodate settings beyond scalar Lipschitz
functions. Our model can also be extended to asym-
metric matrix settings and categorical data. Section 6
discuss how our theorem extend to some of these
model variations.

2.2. Goal

The goal is to produce F, an estimate of F, using obser-
vation matrix M and knowledge of £. We measure the
estimation error through the maximum entry-wise error
and the mean squared error. The maximum entry-wise
error or co-norm of the error matrix F — F is defined as

IF = Pl = max |F(w,0)~F,0)l. ()

We will provide bounds on this that hold with high
probability, that is, with probability converging to one
as n — oo, The MSE is defined as

MSE(E) = %E S Ew o) ~Fw, 0. @)

In measuring error either with high probability or in

expectation, the randomness is considered over the
data generation process.

3. Algorithm

We propose and analyze a variation of the similarity
based collaborative filtering algorithm. At its core, the
collaborative filtering algorithm attempts to produce
the estimate F(u,v) by averaging over observed
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entries F(u’,v’) for a subset of tuples (1/,v") such that
u’ is similar to u and v’ is similar to v.

Sample Splitting: To state the precise algorithm,
for technical reasons, we shall use sample splitting.
Recall that € c [1]* denotes the set of indices for which
we observe noisy signals of F(u, v), that is, for each
(u,v)e & M(u, v) = Z(u, v), where E[Z(u, v)] = F(u, v).
We assumed that £ is generated according to a Ber—
noulli(p) sampling model, that is, for each (u, v) € [n]?,
it belongs to £ with probability p independently. We
split the samples £ into three subsets as follows: for
each tuple or edge (1, v) € £, with probability one-
quarter, it is placed in &', with probability one-
quarter, it is placed in £”, and with the remaining
one-half probability, it is placed in & = E\(E" U £”).

We will use additional virtual edges that will aid in
estimating the distance as part of the algorithm. To
that end, note that conditioned on the edge set &', for
some (u,v)e¢ &, P((u,v)e&”|&)=p/(4-p)=p’. Fur-
thermore, conditioned on &', 1((u, v) € £’) are inde-
pendent random variables. Conditioned on &', we
generate a random subset &4 C &  such that each
(1, v) € & is included in & 4 independently with prob-
ability p’ =p/(4—p). Therefore, conditioned on &, the
set &4 U E” is distributed according to a Bernoulli(p”)

sampling model, where each (i, v) € [1]* are included
in & 4 U E” independently with probability p’.

For each u,ve[n], define M’'(u,v)=1((u,v) €&’)
M(u, v), Ml 4(u, v) =1I((1, v) € Eg) M1, v), M (1, v) =
I((u, v) € E"YM(u,v), and M (u,v) =1((u, v) € ")
M(u, v); let M’'=[M'(u, v)], M{,y = [M]4(u, v)], M" =
[M"(u, v)] and M""” = [M"”(u, v)] denote the associated
n X n matrices. Note that M/ , is strictly contained
within M’ as &4 € &’. The algorlthm will use observa-
tions M’ and M” to producing distance estimates d,
and it uses observations M"”’ to produce the final esti-
mate F given d.

Noisy Nearest Neighbor Algorithm: We consider
the following noisy nearest neighbor algorithm, fol-
lowed by three different subroutines to compute dis-
tances depending on the sparsity regime of the data set.

1. Compute distances d(u, v) between pairs of coor-
dinates u, v € [n]? using M’ and M".

2. Foreachu, v € [n]?, produce an estimate

1 7’
o 3 M) @
uol(a, byesr

where &) ={(a,b)e&” : d(u, a) < n, d(v, b) < n}t for
some small enough 1 > 0.

We will choose the threshold 1 = n(n) depending on
the local geometry of the latent feature space with re-

F(u,v) =

spect to d(u, v) to guarantee that 7(n) is small enough
to drive the bias to zero, yet large enough to ensure
|E7| diverges so that the variance because of

observation noise is small. The key part of the algo-
rithm is determining how to estimate the distances
d(u, v). In what follows, we describe three variations
depending upon the observation density, p.

3.1. Estimating Distance d

3.1.1. Dense Regime. When p = w(17'/?), it is feasible
to compute distances by simply looking at the over-
lapping entries; this is popularly done in practice
Goldberg et al. (1992) and analyzed theoretically in re-
cent works (Zhang et al. 2017, Lee et al. 2016). For any

(u, a) € [n]?,
d(u, a) =

> (M(u, y) = Ma, y))?, ©)

| Ouu |j€0

where O,, ={y € [n]: (4, y),(a, y) €& Y}. This is a finite
sample approximation of /o Y(F(Ou, y) = f(00, y))* dy.
When p = w(n~'/?), it follows that |O,,| = w(1) for all
u,a€[n]* with high probability, so that d(u,a)=~
/;( f(Ou, y)—f(Oy, y))2 dy. Lee et al. (2016) subsequently
prove that for any Lipschitz latent function f the MSE
decays to zero as n — oo as long as p = w(n~'/2). The ar-
guments of Lee et al. (2016) can be adapted to show
that the maximum entry-wise error decays to zero with
high probability as well. However, for p = o(n~'/?), for
most u,a € [n]*, O, =0 with high probability and
hence a different approach is needed, overcoming the
sparse regime is the primary interest of this work.

3.1.2. Sparse Regime. Consider the sparse regime
where p = n71** for any « € (0,1/2); in this regime, the
overlap is small and thus new distance estimates are
required. Recall that the function f has finite spectrum,
that is, f(04,0) = SyAj1qk(0.)qk(0,). We propose an
estimator that approximates d(u, v) = ||A'Q(e, —ey) ||2
by comparing depth ¢ neighborhoods of 1 and v in the
data graph G = ([n],&’). Specifically, let the weight of
an edge (4, b) € £ in graph G be the observed value
M(a, b) (= M'(a, b)). By assumption, in expectation this
weight equals F(a, b) = f(0,,0;). Therefore, the prod-
uct of weights along a path from u to y, of length ¢, de-
noted as (u,x1,...,%-1,Yy) with (u,x1),(x1,%2),...,
(x:-1, y) € &, in expectation equals

t-2
EXl,...,XH f(eurxl) X l_[f(XsrXs+l) Xf(Xt—lr ey) | eur ey
s=1

= > Mae(0.)q(6y)
k=1

=elQTA'Qe,. (6)
Therefore, the product of weights along the path con-
necting u to y is a good proxy of quantity el QTA’Qe,.
Recall that each entry is observed 1ndependently with
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probability p because of our assumed Bernoulli sam-
pling model. Therefore, for any u € [n], the number of
neighbors of u in G scale as pn = n*. More generally,
for 1 <t <1/x, the number of nodes at distance f from
u scale as n*. We choose t large enough to guarantee
that for any two nodes u and v, there is a sufficient
overlap between the two subsets of nodes at distance
y from nodes 1 and v, respectively. This suggests that
we choose t so that n* ~n'/2, which in effect aggre-
gates enough data in the sparse regime to match the
expected number of observations per row in the dense
regime. We formalize this intuition in the following
construction of the distance estimates.

Let S,,s denote the set of vertices which are at dis-
tance s from vertex u in the graph defined by edge set
&'. Specifically, i€ S, if the shortest path in G=
([n],€") from u to i has a length of s. Let 7, denote a
breadth-first tree in G rooted at vertex u. The breadth-
first property ensures that the length of the path from
u to i within 7, is equal to the length of the shortest
path from u to i in G. Let 7%, C T,, denote the subtree
containing all nodes and edges in 7, up to and in-
cluding depth t. If there is more than one valid
breadth-first tree rooted at 1, choose one uniformly at
random. Let N, ; € [0,1]" denote the following vector
with support on the boundary of the depth-t neigh-
borhood of vertex u (we also call N, ; the neighbor-
hood boundary):

[ M'(a,b) ifieS,;,
Nu,t(i) ={ (a, b)epathy, (u, i)
0 ifi¢ Sy,

where path, (1, i) denotes the set of edges along the
path from u to i in the tree 7. The sparsity of N, (i)
is equal to | Sy, ¢, and the value of the coordinate N, ;(7)
is equal to the product of weights along the path from

utoi Let N it denote the normalized neighborhood
boundary such that N ut =Nut/ Syl For each tuple
(1, v) € [n]?, compute d(u, v) according to

N 1 - - - -
A, 0) = (;)(Nu,t R )T (MY + Mg (N1 = N1,
%

3.1.3. Sparser Regime. Consider the even sparser re-
gime where p=n~'In'"*n for some x> 0. Let us as-
sume that the algorithm knows the eigenvalues
{Ak}kepr)- Recall that ” <7 denotes the number of dis-
tinct valued eigenvalues among {Ax};,)- Recall that A
is the diagonal matrix with Ay = Ay, and Aistherxr
Vandermonde matrix where A(a, b) = A", Let ze R”
be the vector that satisfies A**?Az=A?1; z always

exists and is unique because A is a Vandermonde

matrix, and A %1 lies within the span of its columns.
For every (u,v) € [n]z, compute distance according to

~ 1 < 7 24 4
d(u,v) = (,) > 2Ny =Ny ) (M + Mg
=

(NM,HZ - Nv, t+£’)- (8)

3.2. Reducing Computation by
Subsampling Vertices

The pairwise distances can only be estimated up to a
limited precision depending on the sparsity of the
data and amount of noise in the observations, and fur-
thermore we tune the nearest neighbor threshold to
tradeoff between bias and variance. As a result, the
performance of the algorithm can be maintained with
reduced computation by clustering the coordinates so
that not all n” pairwise distances need to be computed.
This would involve adding an extra step at the begin-
ning of the algorithm that samples sufficiently many
anchor vertices K C [n] that cover the space well. |K|
should be chosen large enough such that for any vertex
u € [n], there exists some anchor vertex i € K, which is

close to u in the sense that || AQ(e, —e¢;)|[; is small. For
all n vertices, we only compute the distances to each of
the | K| anchor vertices, and we let 7:[n] — K be a
mapping from each vertex to the anchor vertex that

minimizes the estimated distance d as computed in the
original algorithm statement, 7(u) = arg minexcd (i, i).
The final estimate then is given by

1

ﬁ(uz v) = ﬁ(n(”)r n(v)) = m
nw)n(@) (g, b

Z MN/ (ﬂ, b),

)Egn(u)n(m

where E;r(; denotes the set of undirected edges
(a,b) such that (a,b)€&; and both d(n(u),a) and
d(n(v), b) are less than some threshold 1. We can com-
pute £ n) by the clustering assignments and dis-
tances of all vertices to the anchor vertices.

3.3. Computational Complexity

To analyze the computational complexity of the algo-
rithm, we consider each step. Growing local neighbor-
hoods around each vertex costs at most 7 | €|, because
there are n vertices and the breadth first trees visit
each edge at most once. Computing the inner product
for all pairs of vertices given the local neighborhood
vectors costs at most 112 | €|, because there are n” vertex
pairs and |£| entries in the data matrix M. The final
nearest neighbor estimator involves a (weighted) av-
erage of the datapoints, which costs at most 1n? ||, as
there are n” entries in the matrix to estimate, and at
worst the estimate would involve averaging over |£|
datapoints. This extremely crude bound leads to a
computational complexity of O(pn*). The bottleneck
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of the algorithm is the final nearest neighbor estimate,
which may be reduced by using approximate nearest
neighbor methods.

If we instead used the modified algorithm that sub-
samples |K| anchor vertices at random and treats
them as “cluster centers,” there are only (IKP +n|K))
pairwise distances computed, for a computational
cost of (|K* + 1 |K|) | €| instead of 72| &|. Once we clus-
ter the vertices, the final estimate is only computed for
the pairwise cluster blocks, as the final estimate is a
block constant matrix with only |KC]* distinct valued
estimates. This results in |K[* |€] computation for the
final step of the estimation. The computational com-
plexity reduces from O(12|&|) to O((|K]* +n|K]) |E)).
The choice of || depends on the distribution of latent
variables, the shape of the latent function, and the er-
ror tolerance. In a setting with finitely many latent
types, then |K| would be roughly linear in the number
of latent types.

A practical benefit of our algorithm is that it is ame-
nable to a distributed and parallelized implementation.
The key computational step of our algorithm involves
comparing the expanded local neighborhoods of pairs
of vertices to find the “nearest neighbors.” As the algo-
rithm is inherently local with respect to the data graph,
it can be easily implemented for large scale datasets
where the data may be stored in a distributed fashion
optimized for local graph computations. The local
neighborhoods can be computed in parallel, as they are
independent computations. Using approximate nearest
neighbor techniques and subsampling vertices to clus-
ter will additionally reduce the computation.

3.4. Discussion

In practice, we may not know the model parameters,
and we would use cross validation to tune the BFS
tree depth t and nearest neighbor threshold 7. If the
depth ¢ is either too small or too large, then the vector
N,,+ will be too sparse, and will not optimally aggre-
gate the datapoints. The threshold 7 trades off be-
tween bias and variance of the final estimate. When
the sampled observations are not uniform across en-
tries, the algorithm may require more modifications to
properly normalize for high degree hub vertices, as
the optimal choice of depth t may differ depending on
the local sparsity.

In our algorithm, we assumed that we observed the
edge set £. Specifically, this means that we are able to
distinguish between entries of the matrix that have
value zero because they are not observed, that is,
(i, j) € €, or if the entry was observed to be value zero,
that is, (i, /) € £ and M(i, j) = Z(i, j) = 0. This fits well
for applications such as recommendations, where the
system does know the information of which entries
are observed or not. Some social network applications
contain this information (e.g., Facebook would know if

they have recommended a link which was then ig-
nored) but other network information may lack this in-
formation, for example, we do not know if link does
not exist because observations are sparse or because
observations are dense, but the probability of an edge
is small. The absence of this knowledge would primar-
ily affect the normalization of the neighborhood vec-
tors and the normalization in the final averaging step.

The idea of comparing vertices by looking at larger
radius neighborhoods was introduced in Abbe and
Sandon (2015a), and has connections to belief propaga-
tion (Decelle et al. 2011, Abbe and Sandon 2016) and
the nonbacktracking operator (Krzakala et al. 2013,
Karrer et al. 2014, Massoulié 2014, Bordenave et al.
2015, Mossel et al. 2018). The nonbacktracking opera-
tor was introduced to overcome the issue of sparsity.
For sparse graphs, vertices with high degree dominate
the spectrum, such that the informative components of
the spectrum get hidden behind the high degree verti-
ces. The nonbacktracking operator avoids paths that
immediately return to the previously visited vertex in
a similar manner as belief propagation, and its spec-
trum has been shown to be more well behaved, per-
haps adjusting for the high degree vertices, which get
visited very often by paths in the graph. In our algo-
rithm, the neighborhood paths are defined by first se-
lecting a rooted tree at each vertex, thus enforcing that
each vertex along a path in the tree is unique. This is
important in our analysis, as it guarantees that the dis-
tribution of vertices at the boundary of each subse-
quent depth of the neighborhood is unbiased because
the sampled vertices are freshly visited.

4. Results

In all the following results, we assume the latent vari-
able model assumptions laid out in Section 2. As a re-
minder, we assume uniform Bernoulli sampling with
density p, independent bounded observation noise, and
a generative latent variable model where coordinates
are associated to ii.d. sampled latent variables and the
underlying matrix behaves according to a bounded la-
tent function f that is Lipschitz and low rank (or ap-
proximately low rank) with bounded eigenfunctions.

4.1. Latent Function Has Finite Rank

We first provide theoretical bounds for the estimation
error in both sparse regimes mentioned previously
when f has finite spectrum with rank r.

4.1.1. Sparse Regime. Theorem 1 shows that the maxi-
mum entry-wise error of the collaborative filtering algo-
rithm using Distance Function (7) converges to zero in
the sparse regime when p = n™1** for some « € (0,1/2).

Theorem 1. Let f have rank r, p=n"""* for some x €
(0,1/2) so that 1/x is not an integer. Consider the
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estimates produced by the nearest neighbor algorithm using
the distance defined in (7) for t = [In(1/p)/In(np)] and se-
lecting the nearest neighbor distance threshold to satisfy
n=0n 12 forany p € (0, x). Let Cf =|A1] / || de-
note the condition number of the latent function f. With
probability 1 —o(1),

”ﬁ —Flly = O (YC}/Kn_1/4(7<_p))- )
Furthermore,

~ 1 - K- K—
MSE(F) = — |F - I}, = O(rZC;/ n /2 P>). (10)

4.1.2. Sparser Regime. Theorem 2 shows that the
maximum entry-wise error of the collaborative filter-
ing algorithm using Distance Function (8) converges
to zero in the sparser regime when p =n~'In'""*n for
some x > 0.

Theorem 2. Let f have rank r, p=n""In"**n for some
K > 0. Consider the estimates produced by the nearest
neighbor algorithm using the distance defined in (8) for t =
[In(0.08/p)/In(0.275np) — '] and selecting the nearest

neighbor distance threshold to satisfy n = ©((Inn)~"/><))
forany p € (0, k). With probability 1 — o(1),

1F = Fllyay = Of(tnm) /1070) ()
Furthermore,

MSE(E) = O((ln n)”V/ 2(“‘P)n). (12)

Theorems 1 and 2 show that for symmetric sparse ma-
trix estimation, as long as the fraction of entries ob-
served at random scale as log!**(1)/n for any fixed
K >0, the estimation error of our proposed iterative
variant of the classical collaborative filtering algo-
rithm with respect to the max-norm decays to zero as
n — oo, assuming the underlying matrix of interest
has constant rank r.

4.2, Latent Function Has Approximately
Finite Rank

We extend the previously stated result to the setting
when the latent function f has e-approximate rank r;
this captures settings where f may have infinite but
quickly decaying spectrum. We formally state the ex-
tension in the sparse regime (p = n~'**), but we believe
that a similar result is likely to hold for the sparser re-
gime (p=n"'log'™*(n)) as well, which we omit for
simplicity of presentation.

Theorem 3. Let f have e-approximate rank r for some
e>0,p=n"""" for some x € (0,1/2) so that 1/x is not an
integer. Consider the estimates produced by the nearest
neighbor algorithm using the distance defined in (7) for t =

[In(1/p)/In(np)] <L —1 and selecting the nearest neighbor

distance threshold to satisfy n=0(n"12 ")) for any
p €(0, k). Let Cr,, =|A1] / |A;| denote the condition num-
ber of the rank r approximation to the latent function f.

With probability 1 —o(1),
”ﬁ - F”max
_ 1/x~1/4(c—p)
= O(rCf,r n P )

+O(| Ar|—1/1<\/;(\/%(1+€)1/2x—1/2+§(1+€)1/K—3/2)).
(13)

Furthermore,

MSE(F) = O(AC}/ n71/270)

2
-2/x E 1/x-1 5_ 2/x-3
+O(|/\r| r(K(1+e) +1<2 (1+¢) ))
(14)

As we assume the function values are bounded in
[0,1], we can assume that ¢ €0, 1], such that the

dominating terms in (13) are O(rC}/rKn‘1/4(’<—P))+

O(Ver 1A% KK_l), and the dominating terms in (14)

are O(r2CJ%,/rKn*1/2("*P)) +O(er |A,[*1).  Although
we assume the function f is fixed with respect to n,
when the function f has infinite spectrum, we can
choose ¢ to decrease with n in order to tradeoff be-
tween the two terms in the error bound. The approxi-
mate rank r and the approximate condition number
Cy,, also depend on the choice of ¢. In particular the
relationship between ¢, r, and Cy,, will depend on the
spectrum of f and how quickly the tail decays to zero.
Choosing a larger value of r will increase the condi-
tion number as |A,| will be smaller, and it will de-
crease the approximation error €. We present a specif-
ic example as a consequence of Theorem 3.

Corollary 1. Let p = n™** for some « € (0, 3) so that 1/x
is not an integer. Consider f such that for any r > 1, it has
e,-approximate rank r with |A,| corresponding to rank r ap-
proximation with Cy,=|M|/|A;| being the condition
number such that |A1| = O(1) and

lim & |A,[2/*r=0. (15)
Then, for any 6> 0, for all n large enough, with probability
1—0(1), ||F = Fllyu = O(V0). Furthermore, MSE(E) = O(9).

Proof of Corollary 1. For any 6 > 0, by (15), there exists
large enough r = r(0) such that e, |A,]7%/*r < 6. Because
of [A1]=0(1), Cr,, = O( A,|"). Given choice of r=r(0),
for n large enough we have rCfl,/rKn_l/ 40-p) < 5. By
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(13) of Theorem 3, it follows that ||F = F||,., = O(V0)
with probability at least 1 —o0(1). By (14) of Theorem 3,

it follows that MSE(F) = O(5). O

From Corollary 1, it follows that I|E = || = 0(1)
with probability 1—0(1) and MSE(F) = o(1) when the
spectrum decays in such a way that lim, ¢,
A5 =0.

4.3. Discussion

In our latent variable model, the latent function f is
fixed with respect to 1, so the max norm of the truth
matrix is constant ||F||. = ©(1), and the Frobenius
norm of the truth matrix scales linear with the matrix
dimension so that 1/n?||F ||%r= ©(1). As a result, the
previously stated results also show the convergence
rates with respect to the relative errors of the max
norm and normalized Frobenius norm.

The overall proof sketch can be split into two parts.
First, we prove that the estimated pairwise distances
concentrate to a metric computed with respect to the
true latent function f. Second, we prove that given well-
behaved estimated distances, the nearest neighbor esti-
mate with properly chosen thresholds to balance mean
and variance will converge at the previously stated
rate. This second part of the proof is straightforward
and follows the standard proof for any nearest neigh-
bor style algorithm. The crux of the proof is arguing
that in sparse settings the computed distances concen-
trate well. This relies on the uniform sampling assump-
tion, independence of the observation noise, regularity
of the latent feature variables, and the finite spectrum
assumption of the latent function. The assumptions on
the specific distribution of the latent variables and the
Lipschitzness of the latent function are in fact primarily
used for the second nearest neighbor portion of the
proof, and thus can be relaxed. The key property need-
ed is that there are sufficiently many nearest neighbor
coordinates; the precise distribution of the latent varia-
bles and shape of the latent function will affect the tun-
ing of the threshold parameter to tradeoff between bias
and variance. We provide formal statements for a few
variations of the model in Section 6.

In addition to providing bounds on the MSE, our the-
orem also provides bounds on the maximum entry-wise
error of the estimate. The rate of our maximum entry-
wise error is the square root of the MSE rate, which sug-
gests that the error is uniformly spread across all entries.
This is a stronger guarantee that the typical MSE bounds
found in the literature, and it can be useful for down-
stream results that use the estimates for decision making
such as ranking and recommendations.

Thus far, we focused on finding conditions on p
that allow for consistent estimation with respect to
both the MSE and max entry-wise error. Our results
also provide the rate at which the error decays.

Specifically, our bound for the MSE scales as

O((pn)_l/ 2*PY for any arbitrarily small constant p >0,
and our bound for the max entry-wise error is

O((pn)~"/**?) for any small p.

5. Proof Sketch for Analyzing Noisy

Nearest Neighbors

As the algorithm uses a fixed radius nearest neighbor
estimate, the analysis boils down to arguing that the
distance functions as defined in (7) and (8) have cer-
tain desired properties that enable the classical nearest
neighbor algorithm to be effective. In this section, we
characterize the needed properties for the conver-
gence of noisy nearest neighbors.

Our algorithm estimates F(u, v), that is, f(0,, 0,), ac-
cording to (4), which simply averages over datapoints
M(u’,v") corresponding to tuples (1,v’) for which 1’
is close to u and v’ is close to v according to the esti-
mated distance function d. This simple nearest neigh-
bor averaging estimator suggests that the last step of
the analysis involves choosing the threshold n to
tradeoff between bias and variance.

The primary desired property is that the data-driven
distance estimates d (1, v) concentrate around some ideal
data-independent distance d(6,, 6,) for d : [0,1]2 — R,.
We can then subsequently argue that the nearest neigh-
bor estimate produced by (4) using d(0,,0,) in place of
d(u, v) will yield a good estimate by properly choosing
the threshold 7 to tradeoff between bias and variance.
The bias will depend on the local geometry of the func-
tion f relative to the distances defined by d. The variance
depends on the measure of the latent variables {0, },[,
relative to the distances defined by d, that is, the number
of observed tuples (1/,v") € £ such that d(0,,0,/) <7
and d(0,, 0 ) < n needs to be sufficiently large. We for-
malize the previously stated desired properties.

Property 1 (Good Distance). We call an ideal distance
functiond : [0,1]* — R to bea bias-good distance function
for some bias : Ry — Ry if for any given 1> 0 it follows
that | f(0q,0p) —f(Ou, 0,) [<bias(n) for all (04,0,
0,,0,) € [0,1]4 such that d(0,,,0,) < nand d(6,,0;) < 1.

Property 1 follows from choosing an appropriate
ideal distance function d. In particular, we will choose
d with respect to the spectral representation of f, and
the desired property and the expression for bias(n)
will follow from the low rank assumption as well as
the boundedness of the eigenfunctions.

Property 2 (Good Distance Estimation). For some A >0,
we call distance d : [n]* = R, a A-good estimate for ideal
distance d : [0,1]* — Ry, if |d(0,,0,) —d(u, a)| < A for all
(u, a) € [n]*.

Showing Property 2 is the crux of the proof and fol-
lows from the design of the algorithm along with the
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assumptions of uniform sampling and the latent vari-
able model. It essentially uses all the model assump-
tions except for Lipschitzness of f.

Property 3 (Sufficient Representation). The collection of
coordinate latent variables {0,},c[,) is called meas-
represented for some meas : R, — Ry if for any u € [n]
and n’ >0,1/n3 o, 1(d(u, a) <71') > meas(n’).

Property 3 is only used for the final step of the near-
est neighbor analysis. In particular, as the estimate
averages datapoints within an estimated nearby re-
gion of the target coordinates, there is a bias variance
tradeoff that depends on how the datapoints are local-
ly distributed. In particular, we need to guarantee that
for any (a, b) € [1]*, there exists sufficiently many ob-
served pairs (1, v) € [n]* such that the function be-
haves similarly, that is, f(a, b) is close to f(u, v). This
property follows from our assumption that the latent
variables are sampled ii.d. from U[0, 1], and that the
function f is L-Lipschitz. As discussed in Section 2,
these assumptions can be relaxed, but alternative as-
sumptions would need to guarantee Property 3 for
some reasonable local measure function meas(1).

Given the previous three properties, we can then
prove Lemma 1, which characterizes the error of the
noisy nearest neighbor algorithm as a function of the
bias function, meas function, and estimation error A.
Section 8 uses Lemma 1 to establish Theorems 1-3 by
simply showing the three properties for suitable
choices of bias, meas, and A and tuning ) according-
ly to balance between different terms of the error.
Proving that the distance estimates concentrate well,
that is, Property 2, is the most involved part of the
analysis, which we defer to Sections 9 and 10. Proper-
ty 1 follows from the low rank assumption, and Prop-
erty 3 arises from the latent variable model assump-
tions, in particular the distribution of the latent
variables and shape of the latent function.

Lemma 1. Assume that Properties 1-3 hold with probabili-
ty 1 —a for some n,A, and ' =n—A; in particular d is a
bias-good distance function, d as estimated from M’ and
M" is a A-good distance estimate for d, and {0}, is

meas-represented. The noisy nearest neighbor estimate F
computed according to (4) satisfies

2
(1-0)p(meas(n— A)n)2

MSE(F) < bias?(n+A) +

+exp|- 62p(measi1] - A)n)2 fa

forany 6 € (0, 1). Furthermore, for any &' € (0, 1),

max |ﬁ(”r ) _f(eur 0,)] < bias(n +A)+ 0,

(w,v)e[n]?

with probability at least
1—n’exp (—iézp(meas(n - A)n)z)
— n’exp (—6’2(1 —O)p(meas(n— A)n)z) -

Proof of Lemma 1. Recall that the algorithm uses sam-
ple splitting, where d is computed using M" and M”,
and the final estimate F is computed using M"”. There-
fore, for some (g, b) €&, the observation M(a, b) =
Z(a, b) is independent of d, and E[M(a, b)] =f(0q4,0p).
Conditioned on £, by definition of F and by assum-
ing Properties 1 and 2, it follows that

2

|5/// Z f(@u,eb) _f(eufev)

uv | (a,b)egy;

Z Var|[M(a, b)]

| 5:[’1: | (a, b)egr!

E[(F(1,0)~£(0.,6,)*]=

< b1a52(17 +A)+ },,
|guv |
Inequality (a) follows from Properties 1 and 2:
|d(u, a) —d(u, a)| < A and d(u, a) <n=du,a) <n+A.
By definition M(a, b) €[0,1] for all (s, b), which
implies Var[M(u b)] <1 forall(a, b) € £ . Define V,, =
{(a,b) € [n)?: d(u,a) < n—A, d(v,b) <n—A}. Assuming
Property 3,

Vol = H{a€[n]:d(u, a) < TY_AH
[{b € [n] :d(v, b) < — A}| = (meas(n — A)n)’.

By the Bernoulli sampling model and sample splitting
process, each tuple (4, b) € [n]2 belongs to & with
probability p/2 independently. By a straightforward
application of Chernoff’s bound, it follows that for
any 6€(0, 1),

IF’(|5’” NVl < a —26);7 (meas(n - A)n)z)

8%p (meas(n - A)n)z). (16)

< —

<exp ( 2
Therefore, by assuming Property 2, it follows that with
probability at least 1 — exp (—ézp(meas(n — M)’/ 4),

1€ = {(a, b) € & - d(u, a) <1, d(v, b) < n}|
>{(a, b) €& :d(u,a) <n-A, d(v, b) <n-A}|
= | & n V1w|
Z(l—é)p
2

(meas(n - A)n)’.

Define the event H={|&]|>(1-06)p/2(meas(n—

uo

An)?l}. Tt follows that P(HC) < exp(—1/46p (meas
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(n- A)n)z). By definition, F(u, v) =f(6,, 0,) € [0, 1] for
all u, v € [n]. Therefore, assuming Properties 1-3 hold,
E[(F(1,0) = £(0.,0,))]
< E[(F(1,0) = £(0,,0.)° | 1| +P()
2
(1-0)p(meas(n- A)n)2

+exp (—}Lézp(meas(n - A)n)z).

We add an additional « in the final MSE bound to ac-
count for the probability that Properties 1-3 are violated.

To obtain the high-probability bound on the maxi-
mum entry-wise error, note that M(a, b) are indepen-
dent across indices (a, b) € £’ and independent of ob-
servations in £’ U £”. Additionally, the model assumes
that M(a, b), F(a, b) € [0, 1], and E[M(a, b)] = F(a, b) for
observed tuples (4, b). By an application of Hoeffding’s
inequality for bounded, zero-mean independent varia-
bles, for any ¢’ € (0, 1) it follows that assuming Proper-
ties 1-3 hold,

:

p{[Beees M1~ )
<exp (—5’2(1 — 5)p(meas(n- A)n)z).

<bias?(n+A)+

uv | g/” | 2 6/

uo

By union bound, it follows that

max |Fyp —f(0,,0,)] < bias(n+A)+0,
(u,v)e[n]?

with probability at least
1-n’exp (—}lézp (meas(n - A)n)z)
- nexp (—6’2(1 - 0)p (meas(n - A)n)z) - a.

This completes the proof of Lemma 1. O

6. Extensions

6.1. Subsampled Anchor Vertices

As mentioned in Section 3.2, we can reduce the com-
putational complexity of the algorithm by subsam-
pling a set of anchor vertices K and only computing
pairwise distances relative to the anchor vertices,
equivalent to computing a clustering among vertices
and using that to estimate. For pairs of anchor vertices
(a, b) € K?, which we also refer to as cluster centers,
the algorithm estimates E(a, b) according to the origi-
nal stated algorithm with no modifications. For u ¢ K,
we denote 7t(u) = arg minie;cai(u, i) to be a clustering
that maps from u to the closest anchor vertex in K.
The final estimate for (i, v) ¢ K is then given by the
estimate of the associated anchor vertices, which act

as cluster centers, (i, v) = F(n(u), n(v)).

The original argument provides high probability
bounds on |E(u, v) — F(u, v)| for cluster centers (i, b) €
K2, as nothing changed in the algorithm for the cluster
centers. The only additional part of the proof is to
bound the additional bias for noncluster centers,
as | F(u,v) = F(u,v)| < |E(n(u), n(v)) — F(r(u), m(v))| +
|F(rt(u), m(v)) —F(u, v)|. The first term is directly
bounded by the current analysis, and the bias from
the second term will depend on the size of | £|. Re-
call our latent variable model assumption that each
vertex u is associated to a latent variable 6, % U[0, 1]
such that F(u, v) =f(60,,0,) and f is L-Lipschitz with
respect to the latent variables. For || =2/61log(1/0),
with probability at least 1 -6, each interval [(i —1)o,
i6] for i € [1/6] contains at least one anchor point in
K, as the latent variables of these anchor points are
chosen at random. Under this good event, then
maXe[;)MiNjex |0, —0;] <0.

We discuss the results and analysis for the sparse
setting when p = n 1% for some « € (0,1/2); however,
a similar argument applies for the sparser setting of
p=n"In""n as well. Equation (20) will show that
d(0.,0,) <|A[*L2 0, — 6,7, so that for some u € [n],
the closest anchor point a € K with respect to the latent
representation will also satisfy d(6,,0,) <|A1*L26%
As Property 2 guarantees |d(0,,0,) — d(u, a)| < A for all
estimated distances, it follows that d(0,,0ru) < |
MPPL26% +2A for all u € [n]. By Property 1, |F(m(u),
7(v)) = F(u, v)| < bias(|A1[*L26> +2A). We choose |K|

so that 6 = \/K/L | A1[', and we plug in the choice of A

and t from Theorem 1, resulting in 5 = Br | Aq|<V/x

L1n 1/46=p) = o(1) so that | K| = ©(n'/4(-P)). This choice
of | | will guarantee that the extra added bias does not
change the existing guarantees in Theorem 1 by more
than a constant.

6.2. Local Geometry

We can generalize the latent variable model beyond sca-
lar valued latent variables and Lipschitz latent functions.
These assumptions only affect the function meas in
Property 3, and thus it only changes the last portion
of the nearest neighbor proof in which we tune the
threshold 7 to tradeoff between the bias and variance
terms. We present two examples of extending our re-
sults to a different local geometry, illustrating the modi-
fications for the sparse setting when p = n1** for some
ke (0,1/2).

If there were only m distinct latent types such that
0, € [m] and pmin = minye(,,)P(6,, = i) > 0, then meas(n’)
could be chosen to be a constant slightly less than pmin
for every value of n > 0. If the minimum distance mea-
sured by d(0,,0,) between any two distinct types 0, #
0y is larger than 2A, then we can choose 1 to be A so that
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by Property 2, the algorithm will achieve perfect cluster-
ing. In particular, if Property 2 holds then no vertex of a
different type will have estimated distance less than 7
and bias(n+ A) =0. Given this, each type has at least
Pmin? instances realized on average. Therefore, for a
given u, v € [n], there are roughly (pmnn)® entries
(w',v") € [n] X [n] such that u,u’ and v, are of the
same type. Each of these (pmin71)” is observed with prob-
ability p. Therefore, by taking average over these ob-
served entries, the MSE should scale as 1/ (p(pminn)z)
and the max entry-wise error would scale as
(P(Pmin n)z)fl/ 2. In the case that the minimum distance
between any two distinct types is less than A, then the
bias term will still be there and the limiting term is still
bias(A), and thus the convergence rate would be limit-
ed by the same rate as stated in Theorem 1.

Next, we discuss a higher-dimensional setting. As-
sume the latent variables are sampled uniformly over
a m-dimensional hypercube such that 6, ~ U([0,1]™)
and the latent function f is L-Lipschitz with respect to
an underlying metric d,,, such that the measure of a
ball with radius 6 is ©(0™). Property 3 would instead
hold for meas(n’) = O((v77/A'L)™), resulting in a dif-
ferent choice of threshold n to balance between bias
and variance. If m<(x+2)/x, then the current
bias(A) term dominates such that we would choose
n=0(A), and the error convergence rate will be the
same as that stated in Theorem 1. For high dimension

m>(x+2)/x, we choose the threshold n=
O((pn?)™"*V) such that the MSE bound will scale as

O((pn2) V") = @(n~(#9)/(m+)) and the max entry-

wise error bound will scale as @(r~(1+%)/2(m+1))

6.3. Asymmetric Matrix

Although our stated results are for symmetric models,
we can transform an asymmetric latent variable model
to a symmetric model as long as the row and column
dimensions grow proportionally to one another. Con-
sider an n X m matrix F, which we would like to learn,
where F(u, v) =f(ay,p,) €0, 1], and f has finite spec-
trum. We can construct a (n+m) X (n+m) matrix
where F is placed on the off-diagonal blocks and the
diagonal n x n and m x m blocks are set to zero. We
can argue that this constructed matrix is sampled
form a symmetric latent model, so that we can apply
our algorithm and analysis directly.

6.4. Categorical Valued Data

If the edge labels are categorical instead of real valued,
then the goal is instead to estimate the distribution
over the different categories or labels. This is particu-
larly suitable for a setting in which there is no obvious
metric between the categories such that an aggregate sta-
tistic such as the expected label would not be meaningful.

If the edge labels take values within m category types, we
can split the data are split into m different matrices, each
containing the information for a separate category (or
edge label). For each category or label ¢ € [m], the associ-
ated matrix Fy represents the probability that each data-
point  is labeled with ¢, such  that
P(Z(u, v) = ) =F(u, v) = fe(ay, ay), where f is a sym-
metric function having finite spectrum. The algorithm
can then be applied to each matrix separately to estimate
the probability of each category across the different en-
tries. Because we need the estimates across different cate-
gories for the same entry to sum to one, we can simply
let the estimate for the mth category one minus the sum
of the estimates for the first m — 1 categories. To obtain an
error bound, we can simply use union bound across the
m — 1 applications of the algorithm, which simply multi-
plies the error probability by m — 1.

6.5. Nonuniform Sampling

We assumed a uniform sampling model, where each
entry is observed independently with probability p.
However, in reality, the probability that entries are ob-
served may not be uniform across all pairs (i, j). Our
results can be extended to a setting where the sam-
pling probability is instead a function of the latent var-
iable, i.e. entry (i,j) is observed with probability
cng(0;,0;) where g is a Lipschitz low rank function in-
dependent of 1 and ¢,, is a scaling factor governing the
density. The observed data M(i, j) would then be sam-
pled according to

M, 7) = 0 with probability 1 - ¢,g(6;,0)
v {Z(i, j)  with probability ¢,g(0;, 0).

for E[Z(i, j)] =f(0;,0;). Whereas previously we had
E[M(i, j)] = pf(0;,0;), in this modified model, E[M
(i, D] = ¢ug(0;,0,)f (0;,0;). A limitation of this model is
that we need the sampling probabilities to all scale at
the same order with respect to 7. The model is not fully
identifiable as we could multiply c,, by a constant and
divide g by the same constant and obtain the same data
distribution, and thus we can only estimate up to a
constant scaling factor.

We can essentially then apply our algorithm twice,
first using data matrix M to estimate the product
8(0;,0,)f(0;,0;) up to a scaling factor. Second, we ap-
ply our algorithm to the binary adjacency matrix rep-
resenting the sparsity of the observation set () in order
to estimate g(0;,0;) up to scaling factor. The one nu-
ance one would have to handle is that because the set
of observed entries is not uniformly sampled, the con-
structed BFS trees will grow nonuniformly, which
will affect the normalization and scaling terms. As the
model is only recoverable up to scaling, this is the best
we can do. If we had data from a two-step sampling
process in which we first observe binary edges
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sampled uniformly with probability ¢, and then sub-
sequently observed datapoints sampled with an addi-
tional probability g(6;,0;), then the model would ex-
actly fall into our assumptions and the results could
directly be applied to estimating ¢(0;,0;) and the
product g(0;, 0,)(0;, 0;).

7. Experiments

We show results on synthetic data to illustrate the per-
formance of our algorithm. We did not do sample
splitting as it is primarily introduced for the purpose
of the analysis. We computed distances according to
Equation (7) (but again without sample splitting) for
fixed radius parameters of t € {0, 1, 2, 3, 4}. The depth
for expanding the BFS tree is until ¢+ + 1. We did not
specifically tune the nearest neighbor threshold n, but
simply chose it to be the 70th percentile amongst all
estimated distances. As a result, the expected number
of entries used to compute the final weighted average
estimate is 0.49pn*. We compare against a naive base-
line which predicts using the column-wise mean. And
we compare against the softimpute implementation in
python’s fancyimpute package and alternating least
squares with rank 2 from parafac algorithm in the py-
thon tensorly package (higher rank performed more
poorly in the sparse setting as it overfit to noise). Nu-
clear norm minimization was too slow for the size of
instances that we show and thus was omitted.

The matrix F is generated as follows. For rank r = 10,
we first sample two Gaussian n X r latent factor matri-
ces U e R™ and V € R™. Each entry of the latent fac-
tor matrices is sampled from an independent Gaussian
distribution with mean 10 and standard deviation 10.
Next, we compute F according to

_(UVT —mean(UVT))
~ max(abs(UVT))

For a k €(0, 1], the density is chosen to be p=n
and each entry is observed (and thus included in

—1+x
7

sample set ()) with probability p independently of
all other entries. For each observed entry (u, v) € Q,
there is an added independent Gaussian noise
M(u,v)= F(u,v)+e(u,v), where &(u,v)~N(0,0%)
where o is chosen to be the 40th percentile of the
magnitude of entries in F. We show results for n =
500, 1,000, and 5,000.

We compute an adjusted MSE, limited to the error
in predicting missing entries, and we normalize by
the squared error of predicting with zeros. When the
adjusted MSE is larger than one, it means the estimate
is worse than predicting all zeros.

Z(u,v)eQ(ﬁ(ur U) - F(M, U))Z

adjusted MSE = 5
Z(u,v) ¢ Q) F(u' U)

Figure 1 shows the adjusted MSE of the algorithms
with respect to the sampling probability p. When p
is very small, then our algorithm with the optimal
choice of the depth parameter t performs better
than alternating least squares (ALS) and SoftImpute;
however, when it is too sparse, then either the sim-
ple mean estimate or predicting with all zeros is
best. We did not do any tuning of the nearest neigh-
bor parameter 1, and thus there may be additional
gains possible for our algorithm. If we consider the
minimum density for which the algorithm performs
better than the simple mean, SoftlImpute requires the
most dense observation. The minimum density re-
quired for our algorithm depends on optimally
choosing the depth parameter ¢, but for an optimal
choice of t, our algorithm outperforms ALS when
the data is very sparse.

Figure 2 shows the adjusted MSE of the algorithms
with respect to the exponent of the density parameter
x where p =n"1**. This rescales the x-axis so that the
small values of p are more visible. We plot only up to
x = 0.6 as we are focusing on the sparse regime with
little overlaps in entries between pairs of rows and

Figure 1. (Color online) Adjusted MSE of Missing Entries vs. Sampling Probability p

500-by-500 matrix, 0= 0.072

1000-by-1000 matrix, c=0.078

5000-by-5000 matrix, c=0.063

1.4 1.2
col_mean col_mean 1.2 col_mean
w 1.2 = = softimpute w10 _— = = softimpute w = = softimpute
uz') A wens ALS c£ S=—__"t ALS 21.0 ———— wans ALS
- 1.0 = sparseCF - = sparseCF - \-. Py fl— sparseCF
2 2038 ‘~a 208 -
08 g |5 ==
k5 T 0.6 T 0.6
©0.6 ® 8 .
''''' 0.4 AT
oal Tl 04 e | e
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.00 0.01 0.02 0.03
p P p

Notes. The rank of the ground truth matrix is 10, and the observations are perturbed with mean zero additive Gaussian noise with variance o”.
Results are shown left to right for matrices of sizes 500 x 500, 1,000 x 1,000, and 5,000 x 5,000.



Borgs et al.: /terative Collaborative Filtering for Sparse Matrix Estimation

Operations Research, Articles in Advance, pp. 1-33, © 2021 INFORMS

15

Figure 2. (Color online) Adjusted MSE of Missing Entries vs. Sampling Probability Exponent x = In(pn)/In(1n)

500-by-500 matrix, 0= 0.072

1000-by-1000 matrix, c=0.078

5000-by-5000 matrix, c=0.063

1.4
1.2 12

1.2
I 0o - (1.0 mervmrmrmpi o = = — —_—
=10 ——— =ty = SN = N \\\
kel oS 0.8 N kel 0.8 ‘e,
[ - ~ [ o U, .
‘g’ 0.8 col_mean . S *%' col_mean ", S ‘g’ col_mean s, \\
5 = = softimpute S 0.6/ == softimpute 50.6{ == softimpute *
© © © B

0.61 ==== ALS sues ALS sues ALS

0al — sparseCF . 0.4{ = sparseCF .. 0.41 —— sparseCF el

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
K K K

Notes. The rank of the ground truth matrix is 10, and observations are perturbed with mean zero additive Gaussian noise with variance 2. Re-
sults shown left to right for matrices of sizes 500 x 500, 1,000 x 1,000, and 5,000 x 5,000.

columns. In our simulations, the optimal choice of ¢
was typically only 2, except for the very sparse re-
gimes in the largest matrix of size 5000, in which the
optimal choice of t was 3.

Figure 3 shows the time each of the algorithms took
to run. We can see that our proposed algorithm is fast-
er than Softlmpute, and this gap in speed is amplified
with large n. ALS is very fast, nearly as fast as the sim-
ple mean. Nuclear norm minimization was too slow
to run on the size of instances in our example and
thus was not included.

8. Proofs for Theorems 1-3

In this section, we use the noisy nearest neighbor and
Lemma 1 to establish Theorems 1-3. Proofs of the
concentration of distance estimates are deferred to
Sections 9 and 10.

8.1. Analyzing Sparse Regime: Proofs of
Theorem 1 and 3

We prove that as long as p =n '** for any « € (0,1/2),

with high probability, Properties 1-3 hold for an appro-

priately chosen function d, and for distance estimates d

computed according to (7) with t=[In(1/p)/ In(np)].
We subsequently use Lemma 1 to conclude Theorem 1.
The most involved part in the proof is establishing
that Property 2 holds with high probability for
an appropriately chosen A, which is delegated to
Lemma 2.

Good distance d and Property 1. We start by defining
the ideal distance d as follows. For all (i, v) € [n]?, let

d(6.,60,) = | A" Qleu — )3

= Zrl A (qu(0,) = q(02))%. 17)
k=1

Recall that t=|In(1/p)/In(np)]. Assuming p =n~1*%,
Ke(0,1/2),

L 1J.

K

We want to show that there exists bias:R, — R,
so that |f(6,,0p) —f(0,,0,)| <bias(n) for any n>0

and (u,a,0,b)e[n]* such that d(6,,6,)<n and

(18)

Figure 3. (Color online) Computation Time vs. Sampling Probability Exponent x = In(pn)/In(rn)

500-by-500 matrix, 0= 0.072

1000-by-1000 matrix, c=0.078

5000-by-5000 matrix, c =0.063
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Notes. The rank of the ground truth matrix is 10, and the observations are perturbed with mean zero additive Gaussian noise with variance o~.

2

Results are shown left to right for matrices of sizes 500 x 500, 1,000 x 1,000, and 5,000 x 5,000.
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d(0,,0p) < 1. By the finite spectrum characterization
of the function f, it follows that

|F(6u,0) (64, 61)]
= ] Q"AQe, — el QT AQes |
= ey Q"AQ(e, —€,) = (ea =€) Q" AQey |
CBVF1AQ(e — el + BYF | AQ(e — e,
< BVF I A% Qe — )l
+BVr AT A Qlew - el
= BI A" VF(V(0,,0) + (0., 00))

<2B|A,["'\m =bias(y), (19)

where (a) follows from assuming that |gx(0)| < B for
all k€ [r] and 6 €[0, 1]. In summary, Property 1 is sat-
isfied for distance function d defined according to (17)

and bias(n) = 2BJA,|" .
Good distance estimate d and Property 2. We state

the following Lemma when f has rank r, whose proof
is delegated to Section 9.

Lemma 2. Let f has rank 1, p = n’“"’for x €(0,1/2) such
that 1/x is not an integer. Consider d as computed in (7)
with t = [In(1/p)/In(np)]. For any p € (0, x),

max_ |d(6,,0,) - ai(u, a)| = O(Br |)\1|2/Kn_1/2(’<_p)),

u,a€ln]

with probability at least 1 — O (nexp (—© (n™n(p,<(E=1/2))))

Lemma 2 implies that Property 2 holds with proba-
bility 1—0(1) for some A =©(Br| M n=(=p)/2) and
any p € (0, x). The distance error bound A is mini-
mized by choosing p arbitrarily close to zero so that A
can be arbitrarily close to ©(Br|A; Pn=x/2) = @(Br
[P o)),

The corresponding statement for f that has e-
approximate rank r is stated here.

Lemma 3. Let f have e-approximate rank r, p =n"'** for
x € (0, %) such that 1/« is not an integer. Consider d as
computed in (7) with t=[In(1/p)/In(np)]. For any
p€(0,x),

max |d(9u,6u)—(§(u,a)| = O(Br| ,\1|2/’<n—1/2(K—P))

u,ae[n)?

+ O(te(l +e) +P2e2(1+ g)ZH),

with probability at least 1 — O(n*exp (—@(n™n(p, <(t=1/2)y)),

Sufficient representation and Property 3. Because f is
L-Lipschitz, the distance d as defined in (17) is bound-
ed above by the squared ¢, distance:

d(0,,0,) =|| A Qe —e0) |3
< |/\1|2t ”AQ(eu - ev)”%

1
YW /O (f(Ou, 1) F(00, y)dy
<ML 6, - 6, (20)

We assumed that the latent parameters {0,},[, are
sampled i.i.d. uniformly over [0, 1]. Therefore, for any
0,€[0,1], foranyve[n]and ' >0,

P(d(0,,0,) <17’ | 6,) > P(Mﬂz*ﬁ 10, — 0,2 <1 | eu)

Z]P)(|6u_60| < \/T |6u)
|Al'L

Zmin(l, 1 )
|A1'L

Let us define
|A1['L
for all i/ € (0, | A1[*L?). By an application of Chernoff’s

bound and a simple majorization argument, it follows
that for all 7’ € (0, | A1/*L2) and 6 € (0, 1),

meas(n’) =

P(ﬁ > I(d(u, a) <1') <meas(n) | Gu)

ae[n]\u
& (n— 1\

21ML )
By using union bound over all n indices, it follows
that for any 1’ € (0, |A1[*L2), with probability at least
1—nexp (—62(n -1 /2| /\1|tL), Property 3 is satis-
fied with meas as defined in (21).

<exp (—

Concluding Proof of Theorem 1. In summary, with
probability at least 1 — a for

a= O(nzexp (—@(nmi“(P' w(t-1/ 2)))))

B *(n—-1)\n—A

2L

4

+ nexp(

Properties 1-3 are satisfied for the estimate d comput-
ed from (7) with t = [In(1/p)/In(np)], and the choices
of
d(0,,0,) = ||At+1Q(eu - ev)”% ’
bias(n) = 2B|A,[" v,
A= @(BT’ |A1|2/1<n—1/2(1<—p)),

(1-0\17
ML’ 2

meas(n’) =
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for any 1n>0,p€(0,x),6€(0,1) and 7' =n-Ae
(0, [M[*L?). By substituting the expressions for
bias, meas, and « into Lemma 1, it follows that

2 AP 12
(1-06)pn2(n—A)
&pr*(1-56)*(n=A)

ALz |\
+0 (nzexp (—G)(nmm("' K(t=1/ 2)))))
?(m—-1)n-A
o=y =4) 23)
2|M[L
Additionally, for any 6" € (0, 1),

max 1B, 0) = f(0,,6,)| < 2B | AV + &) + &

(u,v)e[n]

MSE(F) < 4B% | A,['r(n+ A) +

+ exp (—

+nexp (—

(24)
with probability at least

201 V2000201
1—nexp _6°(1-9) PZ (n—4)
41712
8'2(1 -6’ pr*(n - A)
— n2 eXP(_ |/\1|2th

-0 (nzexp (—@(nm"“(r’/ '<(t*1/2))))) ~nexp (_ M .

2| ML

By selecting n=0Br| A7 *n1/200)) with a large
enough constant, it follows that

n+A=0(n) = (),
pn217 — @(BT’ |/\1|2/K7’11+K_1/2(K_p)) — Q(BT’ |A1|2/K711+K/2),
nyn= w(VBr | AV*n7/3).
By substituting this choice of 7 and 6 = 1/2 into (23), it
follows that
MSE(F) = O(PB* ALl /12 71260). (25)
By choosing & =2B|A,| '\r(n+A), it follows that

8"2pn*n = Q(n). Therefore, by substituting into (24), it
follows that with probability 1 —o(1),

max |1:"(u, v) — (04, 6y)|

(u,v)e[n]
= O(rB2 A, (M| /1A, ) 14 26)
This completes the proof of Theorem 1. [

Concluding Proof of Theorem 3. Like the proof of
Theorem 1, with probability at least 1 — & for

a=0 (nzexp (—@(nmj“(‘" (t-1/ 2)))))

_62(;1 -Dyn—-A

2| AL

7

+nexp(

Properties 1-3 are satisfied for the estimate d
computed from (7) with ¢ =[In(1/p)/In(np)], and the
choices of

d(0u,0,) = | A" Qe — ) Il3,
bias(n) = 2B|A,| "y,
A = O(Br | M/ 1/200)

+ @(te(l +eo) + 221+ e)ZH),

%, (27)
AL

for any 17>0,p€(0,x),6€(0,1) and n=n—-Ae€

(0, [A1[*L?). The only difference is in choice of A be-

cause of Lemma 3 for f that has e-approximate rank r.

By substituting the expressions for bias, meas, and a
into Lemma 1, it follows that

meas(n’) =

2| [HL2
(1-06)’pr2(n—A)
& pr*(1-06)*(n—A)
412 | A

MSE(F) < 4B* | A,| Zr(n+ A) +

+exp (—

+0 (nzexp (—@(nm("' "(H/Z)))))

_62(11 -Dyn-A '

28
2L (28)

+nexp (
Additionally, for any 6’ € (0, 1),
max _|F(u, v) = f(0u, 05)| < 2B |\, [Vr(n + A) + &,

(u,v)€[n]

(29)
with probability at least
201 V200002 1y
1 - nexp _07(1-9) pr (n-4)
4|M]7L?
2201 _ )3,,,,2 _
x|~ 3= 8 P = )
| a7 L2

-0 (nzexp (_@(nmin(p,K(t—l/Z)) )))

&(n - 1)\/7)'

—nex -
p( 2 ML

By selecting 1 = © (Br |A1[*/“n~/20)) 4+ @ (te(1 + €)' +
2e2(1+ ¢)*™!) with appropriately large enough con-
stants, it follows that

n+xA=0(n) =0(4),

pnzn — Q(n1+1</2),

nyi = w(n’’®).
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By substituting this choice of 7 and 6 =1/2 into (23),
and using t < 1/« — 1, it follows that

MSE(E) = O (r2(| A1] / | A)Y /2000
Ol|A -2/x, (& 1 1/1=1 e? 1 2/k-3
+O{IA |-+ e) T (14 ) _

(30)

By choosing &' = ©(B|A,["\r(n+A)), it follows that
8"*pnn = Q(n). Therefore, by substituting into (24), it
follows that with probability 1—o0(1),

max |E(u, v) —f(6.,0,)]

(u,v)e[n]

= Or(1al /A nt/2=0)

+ O(|Ar|_l/K‘/;(\/i(1 + 6)1/2;<—1/2 +§(1 + 5)1/’<_3/2)).
(31)
This completes the proof of Theorem 3. L

8.2. Analyzing Sparser Regime: Proof of
Theorem 2

Similar to the proof of Theorem 1, we prove that
as long as p=logn'**/n for any x>0, with high
probability, Properties 1-3 are satisfied for an appro-
priately chosen function d and for distance estimat-
esd computed according to (8) with ¢ =[In(0.08/p)/
In(0.275pn) — r']. We subsequently use Lemma 1 to
conclude Theorem 2. The most involved part in the
proof is establishing that Property 2 holds with high
probability for an appropriately chosen A, which is
delegated to Lemma 4.

Good distance d and Property 1. We start by defining
the ideal distance d as follows. For all (i, v) € [n]%,

1
d(0,,0,) = | AQ(e, — )| = /0 (F(Ou, 1)~ F(Oo, )y,
(32)

For any u, v,a, b € [n] with corresponding 0,,0,,0,,
0, €[0,1],

| f(Ou, 65) = £(0a, 0p) | = |e, Q" AQe, — el Q" AQes |
=lef Q"AQ(e, — €5)
— (ea—eu) Q" AQes |
BV IAQ(es - el
+BVF | AQ(ew —ea)ll,
= B\/T_’(\/d(evr Gb) + \/d(@u, 9:1))1

where (a) follows from assuming that |g,(0)| < B for
all ke [r] and 6 € [0, 1]. It follows that for any 1 > 0, if
d(0,,6,)<n and d(6,,0,) <1, then |f(6,,0,)—f(O,

0p)| < 2B4frn. In summary, Property 1 is satisfied for
distance d defined in (32) with bias:R; —» R, de-
fined as bias(n) = 2B+/r.

Good distance estimation d and Property 2. We state
the following lemma whose proof is delegated to Sec-
tion 9.

Lemma 4. Assume that p=n"1n""*n for some «>0.
Consider d as computed in (8) with

- { In(0.08/p) _ 4

In(0.275np)
Forany p €(0, ),
max |d(6u/ Ga) - d,\(u, El) | < C(ln n)_l/z(K_P)
u,ae[n]?

with probability at least
1-0 (nzexp (-O((In n)1+p))),
where ¢ =c(A1,Ar,Agap, 7, B) is independent of n and
Agap = MiNy <5<y <r |As — /\; |
Therefore, Property 2 is satisfied with probability 1—
o(1) for some A = @((lnn)_l/z(K_p)) forany p € (0, k).
Sufficient representation and Property 3. Because fis

L-Lipschitz, the distance d as defined in (17) is bound-
ed above by squared ¢, distance:

1
d(6,,6,) = | AQe, — o) |2 = /0 (F(Ou v) — F(B0, 1)dy.

(33)

<1%|6, -6, (34)

The only difference in (20) and (34) is the constant

I? |)\1|2t versus L2 It follows by a similar argument

that with probability at least 1-nexp (—62(71 -1)

V1’ /2L), for any 1 € (0,L?), Property 3 is satisfied with
meas(n’) = (1-0)4/1’/L.

Concluding Proof of Theorem 2. In summary, with
probability at least 1 — a for

a= O(nzexp (-0 ((In n)1+p))) +nexp (_ 52(";#)

Properties 1-3 are satisfied for the estimate d computed
from (8) with t = [In(0.08/p)/In(0.275np) — '], and the
choices of

d(eu/ ev) = HAQ(eu - ev) ”% ’
bias(n) = 2B/,
A= ((Inn)12P),

A=0)vy (35)

meas(n’) = I ,
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for any 1n>0,p€(0,x),6€(0,1) and 7' =n-Ae
(0,L?). By substituting the expressions for bias, meas,
and « into Lemma 1, it follows that

26212
(1-0)°pn2(n—A)
8*pn2(1-06)*(n-A
+exp(_ pr= 0P =4
+ O(n2exp (-O((In n)1+p)))

m—1)n-A
LI R

MSE(F) < 4B?r(n+ A) +

+nexp (—

Additionally, for any 6" € (0, 1),
max |E(u, v) — f(B.,0,)| <2B\r(n+A)+ &  (37)

(u,v)e[n]

with probability at least

0%(1-8)*pn(n - A)
1—n2exp(— L2

201 _ S\3, 20
_,gexp(_é (1 62§n<n A)

-0 (n2exp (-O((In n)“p))) —nexp (—

By selecting 1= @((ln”“’ n/ np)1/2) = G)((ln n) L/ ))
with a large enough constant, it follows that
N+ A=0(n) = O(n),
pr*n=Q(n),
il = w(Vi).
By substituting this choice of  and 6 = 1/2 into (36), it
follows that
MSE(F) = O(n) = Of(nm) *7). (38)

By choosing &' =©(y/7), it follows that &pn®n=
w(+/n). Therefore, by substituting into (37), it follows
that with probability 1 —o(1),

max |F(u, v) = f(Ou,0,)| = O(y7)

(u,v)e[n]
= o((1nn)‘1/4<"—P>). (39)

This completes the proof of Theorem 2. [J

9. Proving Distance Estimates Are Close
When f Has Rank r

This section is dedicated to establishing that the dis-

tance estimates (7) and (8) are good approximations

of the desired ideal distances as claimed in the

8 (n—1)\n— A)
2L '

statements of Lemmas 2 and 4 when f has rank r. We
start by establishing key auxiliary concentration re-
sults that will lead to their proofs.

9.1. Regular Enough Growth of Bread-First-
Search Tree

Recall that we grow the neighborhood of each u € [n]
in G=([n],£’) and use associated observations in M’
and M” to compute the distance estimates d. By the
assumed Bernoulli sampling model, any tuple (a, b) €
[1]* is independently included in & with probability
p/4. Therefore, the expected number of immediate
neighbors of u (not including itself) is (n—1)p/4 =
np/4. The expected number of nodes at distance s > 1
from a given u scales as (np/4)°. We define some nec-
essary notation before we present the formal state-
ment of this event. Given 0 € (0, 1), define

1-6
1-6v2/3

For any p = w(1/n) and p =o(1),

1/2
P(0) = 1—( ) <1 (40)

s—1
s(6, p, n) = sup {s >1 Z((1+46)HP) < (;5(6)}. (41)

For any given 0, s*(0, p, n) is well defined for n large
enough because p = o(1).

Lemma 5. Let w(1/n)<p<o0(1),6€(0,1). For1<s<s"
(6/ p/ n)/

s (1-0)np g (1+0)np "
ol
o[ = 0mp)

i} p(]za_5¢za)

The proof of Lemma 5 follows from standard argu-
ment using repeated application of Chernoff’s bound
and is well known in the literature in various forms.
For completeness, we included it in the Appendix.
Lemma 5 suggests definition of events that will hold
with high probability. Specifically, for any u € [n] and

h >1, define
F?ﬂf?ﬂ”@m

We note that by event A} ,(5), we simply require
that the number of nodes at distance / from a given
node u € [n] is nearly (np /4)h . However, it does not
impose any restrictions on how the nodes are con-
nected or the latent parameters associated with the
nodes themselves.

A};,h(é) = {|Su,h| €
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9.2. Concentration of a Quadratic Form One

The event N5t A}‘,h(é) implies that the size of |S, ;|
grows regularly as expected for h <s+{<s(5, p, n).
Conditioned on this event, we prove that a specific
quadratic form concentrates around its mean. This
will be used as the key property to eventually estab-
lish that the distance estimates are a good approxima-
tion to the ideal distances.

Lemma 6. Let w(1/n)<p<o0(1),6€(0,1),s>0,(>1
fors+€ <56, p, n). Then

]P’<|€1];QN14,5+€ - BZA[QN”,S |

> A1 - )np/H) 2| it AL 9))

2,2
<2exp (—%),

as long as x < 2((1 = 8)np/4) ™2 /B | A | (1+ | Ag )

Proof of Lemma 6. Recall that conditioning on event
Nt A ,(6) simply imposes the restriction that the
neighborhood of u € [1n] grows at a specific rate, that
is, number of nodes at distances h <s+ ¢ is within
(1 =06)np /4)h. However, this event is independent
from latent parameters {0;},.,; and the realization of
observations M(i, j) = Z(i, j) for (i, j) € [n] x [n]. Con-
sider any realization of the tree 73 satisfying N;
All,/h(é),' the tree contains information regarding the
depth s+ ¢ neighborhood of u. Given such a realiza-
tion, let F,, j, for 0 <h < s+ { denote the sigma-algebra
containing information about the latent parameters,
edges and the values associated with 7", i.e. the depth
h BES tree rooted at u. Specifically, F, ¢ contains infor-
mation about latent parameter 0, associated with
u € [n]; F,,s contains information about latent parame-
ters Uj_; {0i}ics,, and all edges and observations in-
volved in the depth 1 BES tree, that is, {M(i, j)}(i, JeTh
This implies that F, g C F,,1 C F,,2, and so on.

We shall consider a specific martingale sequence
with respect to the filtration 7, ; that will help estab-
lish the desired concentration of e QN sie— el A
ON, ;. Fors+1<h<s+{, define

T A s+—h N
Yu,h =€ N QNu,h
Du,h = Yu,h - Yu,h—l
Yysie—Yus=e QN e —ef A‘QN s -
1, s+¢ u,s = € Q u,s+¢ — € Q 1,s

s+l

= Z Du,h

h=s+1

Note that Y, ; is measurable with respect to F, ; be-
cause e] A*'""QN,, , only depends on observations in
T Z and latent variables associated to vertices in S, .

We will show that Y, ; is martingale with finite mean
with respect to F,, , fors+1<h <s+¢,

E[Yy,n = Yun1|Fun-1]=0and E[|Dy 4|]] <co. (43)
Foranys+1<h<s+¢,

Du,h = Yu,h - Yu,h—l
+0—h{ T AN T AN
= Ai (ek QNu,h - /\kek QNLt,h—l)

= Az”"h( et QN — Ake,?QNu,h_l)
|Su,h|
gl 1 ) -
= APt > Ny u()q(6:) — Akt QN -1
|8u,h| =
= Z Xi/
iES,,,;,

where fori € S, ,, we define

/\S+€—h ~
X, & T (N (D6(0) = M QN ). (49)
|Su,h|
By definition,
Nuw@) = >3 K(,j) € EIMA, PNupa(f).  (45)

j ESM, h-1

Conditioned on Fy j—1, Ny n-1(j) for j €S, -1 is deter-
mined and so is 0;. However, 6, is conditionally inde-
pendent random variable. Also, given the construc-
tion of the breadth-first-search tree, for any given
i€S,, any of the j€S, ;-1 is equally likely to be its
parent with probability 1/|S, j—1|. Therefore, we have
that X;, i € S, ; are independent and

IE[Xi | fu,h—l]

Ai+[—h 1
|Su,h| j5§,h71|su,h_1| [f( ! /)qk( i) | ]]

Nu,h—l(j) - /\kelZQNu,h—l)- (46)

Now Nu,hfl(]‘)/ |Su,h—1| = Nu,hfl (]) And

ELF(0,,6)6(0) | 6] = > A Elgi (001 (6,426 | 6]
k=1

= iAk’Qk’ (0))E[qr (0:)qx(0:)]

=1
= Mqr(6)),

where we use the orthonormality of g, k" €[r].
Therefore,

1 ;
> |S—E[f (01,6,)91(0:) | 0j]1Ny, 11 (7)
€Su i1 u,h—1|
= > Ag(0)N, 51 ())
jESu,h—l

T
= Akek QNu,h—l-
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Therefore, we conclude that fori € S, 5,
E [Xz' | -Fu,h—l] =0. (47)

That is, E[Yy = Yy n-1|Fun-1] =0. By definition, we
have N, ,(i)€[0,1] for any i€S,; and [ gille. <
Therefore, it follows that for any i € S, p,,

B(1+ | Ag]) [ A"

| Xi] <
1 |Su,h|

(48)

Therefore, it follows that
Dyl < B(L+ [ Ad) [ Al ™" (49)

Thus, we have {(D,, , . ;) :s+1<h <s+{} as a mar-
tingale difference sequence with differences being
uniformly bounded. Now we wish to establish its con-
centration. To that end, consider X; for i € S, ;, as de-
fined in (44). Its variance is bounded as

Var[Xi | ]:u,h—l]

2(s+f—h) o , o
_ N Var[ ST, j) € )M, j)
/ES“,,,,l

| u, h|
Nu,h—l(j)qk(ei) |-7:u,h—1]-

Because Var[Z]<E[Z?] for any Z, we can upper
bound the variance expression by the second moment,
additionally using the fact that I((7, j) € £’) only takes
a value of one for a single j€5, -1 and otherwise
takes a value of zero,

Var[Xi | fu,h—l]

2(s+f-h) L. , .
_ M E[ > G, ) € EIMG )
| Su,h |2 J€Su-1

Nﬁ,hfl(j)qi(ei) | fu,h—l]-

We use the fact that M(i, ]) <1, E[g(6;)] =1 because
of orthonormality assumptions on g, for i€ S, it
holds that E[1((i, j) € &’ | Fun-1]1=1/| Su,n-1 |, so that

s+0-1 -1
AT N eally @ A
1Sunl? 1Sun-1l = Sl
where (a) follows from the assumption that N, ;1 has
sparsity S, ;-1 and has entries bounded in [0, 1]. It fol-

lows that X; conditioned on F, j_; is subexponential
with parameters

AT B+ A A
|Su,h| ! |811,h|

Var [Xi | fu,h—l] <

Now D,, j, is sum of such X; for i € S,, 5, which are inde-
pendent of each other conditioned on F, j_;. There-
fore, it follows that conditioned on F, y_1, D, j, is sub-
exponential with parameters

AT B+ IAD [
|Su,h| ’ |Su,h|

Because {(D, 5, Fyn):s+1<h<s+{} is a martingale
difference sequence, 35, D, , conditioned on F, ; is
subexponential with parameters

2(s+f—h _
SOATTY e BAIAD A
h=s+1 | Sl "he[s+ls5+0] |Sul

Under event N5 Al ,(6), for any realization of the
breadth-first-search tree of u, |S, ;| € [((1—6)np/4)h,
((1+6)np/4)h for all he[s+{]. Therefore, we can
bound the subexponential parameters of 35, D,

conditioned on F, s using the property p = w(1/n) or
np =w(1) as

_ —(s+1)/2
(Ag_l 2((1 6)np) ,

4

_ —(s+1)
B I g1 )

By Azuma’s  concentration inequality, for
0<x<2((1=0)np/4)"2 /B | Al (1+] Ael),

P (| eleNll,S+[ - ezAfQNu,s |
> A1 = 0)np/4) Vx| 072 AL ,(6), F o)

o [PAR x| A (L= )np /4y
SZexp( mm( 1 2B(1+ | Ay

212
<2exp (— xf")

This completes the proof of Lemma 6. O

Lemma 6 suggests the following high probability
events: for any ue[n], kelr],x>0,5s>0,(>1,6¢
(0, 1), define
{|e]’£QNu,S+[ - E;AKQN,,,A

< AL((1 — )np/4) V2,

Aﬁ,k,s,t’(x' 0) =

9.3. Concentration of a Quadratic Form Two
We state a useful concentration that builds on Lemma 6
toward establishing Lemma 2.

Lemma 7. Let w(l/n)<p<o(1),6€(0,1),s>0,(>1
with s + € <s*(5, p, n), and x < B((1— 6)11;2/4)1/2 Consid-
er any u,ve [n] Then, conditioned on event N_,
(Au k,0, s(x 6) N -Av k0, s+€(x 6)) we have

Nu SFNZ) et — QTA25+f+lQeU|

£

“a- 6) p/4)1/2
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and
r
|NZ,SFNv,s+€| < 4B2(Z |/\k|25+€+1)'
k=1

Proof of Lemma 7. Assuming event Nj_, (A} .
(x, 0) N A? o o(x, 0)) holds, and using the fact that
F=QTAQ, it follows that

T o~
|Nu,sFNU/S+f - ez;QTAzs-wH Qev|

~ T .
S |(NL¢/5QT - egQTAS)(AQNU,S‘F[ - As+€+1 QEU)|
- T
+ |(N“,SQT _ eZ;QTAS)AS+£’+1Qev|
+ |55QTAS+1 (QNU,SH’ - ASH)Qev) |

<

)
> (ef QN s —ef A°Qeu)(ef AQN,s1r —ef A4 Qey)
k=1

r

> (ef ONy s —ef A°Qe)ef A1 Qe
k=1

)
> (eE A Qen)(ef QN e —ef A Qey)
k=1

+

+

k=1

X X
S((1—6)ma/4>1/2(<(1—<s>n;o/4>1/2+

3Bx - 25+0+1
S5 2, Ml , (50)
((1—6)np/4)1/2(§
where we have used the conditioned event

Nioq (Ai/k/o/s(x) N Ag,k,o,s +¢(x)), the model assumption
that ||Qll. < B, and the fact that x < B((1 - (_‘5)11;)/4)1/2
for n sufficiently large. From (50), it follows that

~T ~
|Nu,tFNU,t+[|

~T
< |EZQTA2t+[+1Qev| + |N

u,t

< (BZ + SBZ)(Z |/\k|2t+€+l)- 0

k=1

FNv, e~ egQTAZH[H Qe, |

9.4. Concentration of a Quadratic Form Three
We establish a final concentration that will lead us to
the proof of good distance function property.

Lemma 8. Let w(1/n)<p<o0(1),6€(0,1),s>0,(>1
with s+ € <5*(6, p, n) and 0 <x < B((1 - 6)np/4)1/2. Let
u, v € [n]. Define event

A, 0,8, 0)(x) =N, (Ai,k,o,s(x) N Airklo,s%(x))

NA, NA

0,5+("

For 0<z< 482\/(er(=1 |/\k|25+€+1) X p;((l _ 6)np/4)25+[’,

conditioned on the event A’'(u, v, s, £)(x), with probability
at least

22 , (1 _ 6)np 25+[—%
1 —ZeXp(—@)—exp(—(@(p (74 R ) ,

it holds that
1 - 77 ’ 7 ] %
'?Nll,S(M +Mind)Nv,s+€ _Nu,sFNv,s+[’

2s r 2s+{+1
= |Ar|1/2 + Z\/ Zk:l |Ak| 254"
(pn) p'((1—06)np/4)

Proof of Lemma 8. We establish this result by arguing
that conditioned on the event A’(u, v, s, £)(x), the ma-
trix M"" + M 4 is statistically very similar to a freshly
sampled data set with density p’. Recall that & 4 was
constructed so that conditioned on &', the set & 4 U &”
is distributed according to a Bernoulli(p’) sampling
model, where each (i, v) € [n]* are included in Eng Y
&” independently with probability p’. The event A’ (1,
v,s, {)(x) depends on & and the values M(i,j) such
that (i, j) € 75 U TS, Therefore, datapoints M(i, j) =
Z(i,j) for tuples (i,j)& 75 UT:" are independent
from the event A’(u, v, s, £)(x).
Let us define M{/, = [M{",(i, j)], where

n

MG, j)=Z(G,j) if (i) €€ UEy
and (i, ) ¢ 75 UTSH

if (i, j) € &,y and
(i,))e TS U TS,

My, j) =
nd Zina(i, )

and Zing(i, ) is a freshly sampled observation for edge
(i, j), distributed equivalently to Z(i,j). Conditioned on
& and the event A’(u, v, s, £)(x), M}/ 4 has sparsity pat-
tern &7 U &y, which is distributed according to a
Bernoulli(p’) sampling model where each (i, j) € [n]? is
included in £” U & 4 with probability p’. Furthermore,
conditioned on A’(u, v, s, £), for each (i,j) € £’ U & 4
with probability p’, the datapoint M/’ (i, j) is indepen-
dent of all observations used to compute N us and

N o,s+¢- As aresult, M’ (i, j) is a fresh independent sig-
nal of F(i, j), distributed according to Z(i, j). First, we

will argue that
1T\ 17 ’ S 1\~1 P
(?)Nu,s( + Mind)Nv,s+1 ~ (?)Nu,sMinde,S+1-

By construction, M/, differs from M"” + M , only for

indices (i, j) € &4 N (T U T5). Therefore, it follows
that

| Nu,sMi,r:de,sM - Nu,s(M” + Mi,nd)Nv,s+€ |

< DI, ) € g DTS UTS)
i,j

|Zind(ir ]) - Z(lr ]) |Nu,s(i)Nv,s+f(j)-
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By the boundedness assumption, |Zing(i,j)— Z(i, j)|
< 1. Furthermore, Ny, s({)Ny, s+¢(j) € [0, 1] is only non-
zero for (i, j) € Sy, s X Sy s+¢- Therefore,

|Nu sMi/,:de s+l — Nu S(M” + M|nd)Nv,s+€|
< D31 ) € Epa N (T3 U TN, ) € Sis X Sos00)
isj

= (i, ) € Epg N (T UT5) N (Suys X S0l =: X

Conditioned on £ and the event A’(u, v, s, £)(x), the
previous quantity, denoted as X, is distributed as a Bi-
nomial random variable, where each pair (i, j) € (T, U
T3 N (Suys X Sys4¢) is included in the set &4 inde-
pendently with probability p’. The number of tuples
in (75U Tb”) N (Su,s X Sp,s+¢) is bounded above by
|Su,sl + |Sy,s+¢l, because the only edges in 77 UTS+€
that intersect with S, s X Sy, s+¢ must be at the last lay—
er of 7% or T5'. By construction, the number of edges
in tree ’T at depth s is equal to |S,, 4|. For sufficiently
large n, by event A’(u,v,s,{)(x), it follows that
|Su,sl < |Sy,s+¢- Therefore, the random variable X is
stochastically dominated by a Binomial(2|Sy, s+l ,p’)
random variable. For sufficiently large 1, conditioned
on & and the event A’(u,v,s, {)(x), by Chernoff’s
bound,

Plx> P |Su s||8vs+€|
A2 ()2

p |Su,s| |Sv,s+€|
A= ()2

- 2P, |Sv,s+£’|))

2 1S,
_EP |Sv,s+(’| (W _ 1))
< exp|~2 /(“ - 5)np)“‘ (1-06)" ((1 - 6)np)5% »
< p 3P 4 4 |/\r|—l 4 |/\r|72

= exp (—@(p/((ilj“??ﬁp)25+f—%)).

It follows that conditioned on event A’(u, v, s, £)(x),
with probability at least 1-exp ( - G)(p’((l —0)np

/4] Arrl)zsﬂul/z))l
1

<exp _5(

=exp

u sMHde s+l —

1 -~ ~
P Nu,s(M” + Mi/nd)Nv,sH’

. X A
a P’ |8u,s| |Sv,s+€| - (pn)l/z .

G
Next, we prove that with high probability,

1\ - N 7 (N S =T S
(;)(Nu,s - Nv,s)TMind(Nu,sﬂ - Nv,s+1) ~ Nu,sFNv,sH’-

Let F(u, v, s, £, x) denote all the information related to
7T° and 7%, including the node latent parameters

and observations in M’ that are associated to edges in
T5 U TS, Furthermore, let F(u, v, s, £, x) be condi-
tloned on the event that A’(u, v, s, {)(x) holds, which
is fully determined by the realization of edges and
weights in 7% and 75*'. We establish concentration of
Ny M} Ny, s+¢ by showing that the expression can be
written as a sum of independent random variables
conditioned on F(u, v, s, £, x),
Nj MirgNo e = > 1 ) €E7 U Epg

u,s
i

Ml’d(l ])Nu S(Z)NZ) S+l(])

where each term of the summation is bounded in [0, 1]
because all observed entries are bounded in [0, 1]. Let

@i, j) =1((G, j) € £ U Eng)Migq (i, )Nu,s(D)No,s+¢())-
By construction, {¢(i, ])}(l ;> are independent ran-
dom variables condlhonecf on F(u,v,s,{, x), because
N, s and N, are measurable with respect to
F(u,v,s, ¢, x), and conditioned on &, £" U & 4 is dis-
tributed according to the Bernoulli(p’) sampling mod-
el, and the corresponding observations in M, are
constructed to be independent because of resampling
observations Zing(i, j) for (i, j) € TS U T5. We can ver-
ify that
E[¢(i, ]) |]:(ur v,s, ¢, X)] = p/F(i/ j)Nll,S(i)NU,S+(’(7)/ and
Var[¢(, )| F(u, v, s, €, x)]

= (Nu s(i)Nv q+(’(j))2
E[1((G, /) € £” U EngMipa(i.j)* | F (u, 0, 5, £, x)]

@ , ,
< Nu S(Z)NU s+£’(])

E[1(G, j) € £" U Eing)Migg(i, )| F(u, v, 5, €, x)]
<p Nu,s(l)Nv,H((])F(l/ ])/

where inequality (a) follows from the assumption that
observed entries are within [0, 1]. Therefore,
B[N, M No,see | Fu, 0,5, €, x)] = p'Nyy FNy,set,
(52)
and
Var[NI M GNy see| F(u, 0,5, €, x)]

< p/Nu,sFNv,sH’

<4 |8, 40,51l BZ(Z wf”“). (53)
k=1

The last inequality follows from Lemma 7. By an ap-

plication of Bernstein’s inequality, for z <4Bz(2k 1
| A |Zs+f+1)

(5

4

MmdNU s+ —

N,
(| u,s _p,NT FNZ)S+€|
P |Su s||Svs+£’|Z|-7:(u v, s, 4, x))

Nu,sFNv,:H[

>z|F(u,v,s,¢, x))

mdNU s+¢
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2./ ,
SZexp —min Zzp |:S.u,<||8;,é:_i|l ,Zp |Su,52||SU,S+[|
8B (Zk:1 |/\k| )

exp| - P’|&S‘u,s||Sv,s+€|Z2 )
8B2(x)_, =)

Conditioned on the event A’(u,1v,s,£)(x), |Sysl
and |S, . are lower bounded by ((1-06)np/4)°

and ((1-06)np/4)°*. By
\/2£=1 I (1= 8)np /4)**, we conclude that

reparametrizing z-—z

1

p( L
p
r 2s+{+1
S Z\/ Zk:1 |Ak| —
p' (1= 0)np/4)
ZZ
S 2 eXp (_ @),

for 0<z< 482\/(,22:1 AR X (1 = 0)np /)%,
The final step in the proof is to combine the previous
probability bound with the inequality stated in (51). [

~ o ~ ~
Nu,s Minde,s+t’ - Nu,sFNv,sH’

F(u,v,s,¢C, x)]

Define event

1. 17 / ] 7 N
A?,,v,s,g(zr 5) = {‘ I?N“,S(M +Mind)Nv,s+t’ - Nu,sFNv,s+€

2s r 2s+{+1
< |Ar| +Z\/ Zk=1 |/\k| — (54)
(pm)'> Np (1= 0)np /4™

9.5. Proof of Lemma 2

By statement of Lemma 2, we have t=|In(1/p)
/In(np)| with p =n~1**, where 1/x is not an integer.
We wish to establish that distance d, as defined in (7)
is a good proxy of distance d as defined in (17). We
shall establish this result under event A, where

A=AY0.1) N A*#%,01) N A3@P?,01),  (55)
where
A nP?,0.1) = Ny pepn A o, 1 (1772, 0.1),
AP(nP72,0.1) = Oy ke (AL i g, (1772, 0.1)
NAL Lo t+1(np/2r

-Al(o 1) = ue[n mHl (0 1)

ll§

We shall use Lemmas 5-8 to conclude the desired re-
sult. To that end, we verify that appropriate condi-
tions required in the statement of these lemmas are
satisfied.

A crucial condition is that t + 1 < s*(n, p, 6), original-
ly imposed by Lemma 5. By definition of s*(n, p, 0), it
is sufficient to establish that

p((1+06)np
D) o (56
where recall ¢(5) = 1—(1—5/1 —5\/2/_3)1/ * We shall

fix 6 =0.1 for the convenience through the remainder
of the proof. To that end, it can be checked that
¢(0.1) > 0.01. Therefore, it is sufficient to have

. In(©.08/p) _ In(84(0.1)/p)
~ In(0.275np) In(0.275np)

We have chosen t = [In(1/p)/In(np)]. That is,
_ {(1—1<)lnnJ _ {(1—K)‘| - 1-x

xlnn K K

7

because 1/« is not an integer. And,
In (8¢(0.1)/p) S In0.08 + (1 —x)Inn R 1-x
In(0.275np) — In0.275+«Inn K
=%
K

=t

for n large enough. That is, for all n large enough,
t+1<s'(n, p,0.1). Because 1/x is not an integer, for
some y € (0, 1),

t_{(l—K)J _1-x

K K

—_ ‘)/.
That is,
k(t+2)—1=x(1-y)>0. (57)

For p € (0, k), we use x = nf/? in statement of Lemmas
6-8, and z = 1°/? in statement of Lemma 8. We need to
verify condition on x and z. Note that 6, B, [A4f, 1, t
are all constant with respect to n. Lemma 6 requires
2((1 = 6)np/4)?
AQZOMPIY =~ @) ),
B[ Akl (14 | Akl)
and Lemma 7 requires

x <B((1=0)np/4)"? = &((np)"?).

Because np =n* and x = n?/? with p <, both of the
previous conditions are satisfied for sufficiently large
n. For Lemma 8, we require

1/2
z<4B2[ (1= 0)np/4)*! (Z I |2”2) ]

-o(pow)")

Now p/(np/4)** = @(n?<t+D-1), By (57), 2k(t +1) =1 =
K(t +2) — 1+t >kt > x. By choice, z=nf/? for p <x <
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2k(t+1) — 1. Therefore, for sufficiently large n, the
above condition is also satisfied.

Now we are ready to bound the difference between
d(u, v) and d(u, v) for any u, v € [n]. Recall,

d(0, 05) = | A Qlew = eo)II”
= (ey— ev)TQTAZHZQ(eu —ey)
= eTQTA*2Qe, + T QTAX*2Qe,
eTQTA?*2Qe, — eTQT A2 (e, (58)
Recall, that according to (7),

A, 0) = (p )(Nu (= Ry ) (M 4 M) (N1 = N 1),

1 44
= p u t(M +M|nd)Nu t+1
1
+ ? v, t(MH + Mlnd)NU t+1
1

- ?Nu,t M +Mi,nd)Nv,t+1
- p—N 0, (M +Mi N 1. (59)

Under event A as defined in (55), by Lemmas 7 and 8,

1.7 1" ’
N Nu,t(M + M d)NM t+1 — €y QTAZH—ZQEM

pr2 A [
*(@-%) p/4>1/2(2| ) (pn)*/*?
. Z¢ Zk:l |Ak|2t+2
p (1= 8)np /4y
3Bnr/? 2| A
= (0.225n p)1/2(2| ’ 2) (pn)'/?

Zk . | Ak|2t+2

Jp '(0.225np)*

= O(Br [P 0072) 4 O(|A,P'n7?)
+O((r | M2 2 R0

_ O(Br |/\1|2t+2n—1/2(x—p))l

where the last equality follows from observing that
the first term asymptotically dominates with respect
to n as p <k <2k(t+1)—1. Similarly, all other three
terms on the right-hand side in (58) and (59) can be
bounded by same quantities. Therefore, we conclude
that for any u, v € [n]

401, 60) = d(u, )] = O[Br [P/ /209, (60)

where we used t <1 - «x/x.
To conclude the proof, we need to argue that event
A holds with high enough probability. To that end,

through union bound and Lemmas 5, 6, and 8, we
have

P(~A) < IP’(ﬂA3(nP/2, 0.1) | A'(0.1) N A2(n?/?, 0.1))
+IP(—|A2(nP/2, 0.1) | Al(o.1)) +]P’(w41(0.1)).

By union bound and Lemma 8, we have that

P(ﬂAa(np/z,O.l) | AY0.1) N A2(nP"?, 0.1))

2t+1
o )

<

20(exp (-0 + exp (- ()

2 40) (nzexp (—O(n)) + n*exp (_6 (nK/Z)))’

A

where the inequality (a) follows from the choice of ¢,
and the fact that 6 and t are constant with respect to n.
By union bound and Lemma 6, we have that

]P)(ﬁAZ(nP/Z, 0.1)] Al(O.l)) < O(nrexp (—O(n?))).
By union bound and Lemma 5, we have that
]P’(ﬂAl(O.l)) < O(nexp (-O(1"))).

In summary, (60) holds with probability 1 — O(n? exp
(—=@(nmin(p-x(=1/2))))  This completes the proof of
Lemma?2. O

9.6. Concentration in the Sparser Regime
We state consequence of earlier results that will help
establish Lemma 4.

Lemma 9. Fix 6 = 0.1, p = n 'In"**n for some i > 0. Let

In(0.08/p)
=1
In(0.275np)

Let p € (0, ). Suppose the events, Nj_; ( AZ %0, t(ln(1+P)/2
(Tl) 6) N AU k,0, t(ln(l+p)/2(n) 6)) mkE[r m[_ AU kt, ¢ (11’1(1+p)/2
(n),8), Oy AD,, (In"P2(n), 6) and O (A (8) N

Al (6)) hold. Then,

u,s

1 1"
Z Zk’ (p ) u, t(M + Mmd)Nv, t+k ez;QTAZQev
ke[r]

<cln P2y

for some constant ¢ = c(A1, A, Agap, 1, B), independent of n
with Agap =MmiNj<s<y<r |/\s - /\s’ -

Proof of Lemma 9. By choice of ¢, we have that

In(0.08/p) In(0.08/p)
n©275mp) | =" “im@azmy L OV
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We would like to verify that ¢+ <s*(5,p,n) for
0 =0.1. By definition of s*(n, p, 9), it is sufficient to es-
tablish that

1 -1
) S0

1/2
where recall p(5) = 1— (1 ~5/1- 5\/2/3) For6=0.1,

it can be verified that ¢(0.1) > 0.01. Therefore, it is suffi-
cient to have

In(0.08/p)

far =1 < —005/p)
T S 0275

which is implied by (61).

For p=n"In""n, Innp=InIn"**n = (1+x)Innn.
We choose p € (0, k), which implies p € (0, In(np)/
Inlnn—1). Throughout the proof, we will denote
x=In"P/2 5 = w(1). Tt follows that for sufficiently
large n,

2((1-0)np/4) L =4(1-6) YInn) P =0(1). (62)

Next, we verify properties of z. Recall that z is a vector
that satisfies A%#*?Az = A%1. That is, for any ke [r],

>z T = A (63)
kelr']
Therefore,
> zeel QTAP 1 Qe, = el QT A Qe (64)
ke[r]

Let L be the " X " diagonal matrix containing only the
distinct eigenvalues among {A }iep,q, such that Ly, de-
notes the hth distinct eigenvalue. Let L denote the as-
sociated 7’ X ¥’ Vandermonde matrix containing only

the distinct eigenvalues, that it, if L. takes the value
of the ath distinct eigenvalue raised to the (b—1) th

power. Note that A**?Az = A1 is satisfied whenever
L**[z=11
is satisfied. Let us define a diagonal matrix D with
= |A1|_(b_1). Therefore, the explicit expression for z
is given by
z=D(ILD)'L™1,
such that for £ € [r'],
ze= > [ " ED L (65)
helr']

Theorem 1 of Gautschi (1962) provides bounds on the
sum of entries of the inverse of a Vandermonde ma-
trix. It states that for a N X N Vandermonde matrix V
such that V, = /\3’1, if V-1 denotes the inverse of V,
then

max > (V- 1)l]|_maxl_[ 1+]Ad

FEINT jeTNy = Al

Using this result, we obtain
1+ |Lif / M|
(D) < (
][Z [Z ! ]; 1;[ |Li =Lyl / 14]
r-1

min; ; [Li; — L]

r—1
— r’(2 |A1|) , (66)

A 8ap

where Ag,p is the minimum gap between eigenvalues
only amongst the distinct eigenvalues,
Agap =min |[L;—Lj|= min [A;=Aj.
gap i | i ]| LA, | i ]|

Our interest is in bounding

1 44
> zk,( )NutM + M )Ny 1 —; QTA*Qe,
per] P

<

1
Z Zk’(( ) u,t M + M|nd)NU,t+k’ Nu tFNv t+k’) ’
per] W

(67)

~T ~ ~T , ~
| 37 2( Ny, QTAQN e = N, QTAY QN
k’elr]

(68)

+ Z Zk’( " tQTAk +1QN _ egQTA2t+k’+1Qev) ]

k'elr]

(69)

Conditioned on events Nj_, (Au k0,4(X, 0) N A?,,klo,t
(x,0)) and given that all conditions of Lemma 7 are
satisfied, it follows that

1(69)] =

> A QN (e QN )

kelr]

~ (F A'Qe)(e] A'Qey)

Z Zj A]];,_l)

ke[r']

S Zf( QNL,,t—e,fAthu)

kelr]
(e,{QN,, s — el A'Qe, +el A Qev)

+> /\f_Zte,ZAth,,(e,{QN 0= e,{Athv)
kelr]

221 4 pt,2((1=0)np -
<> e (|Ak| A=)

@

ke[r]
_ -1/2
+2B |/\k|2tx((1 6)np) )
4
(1= o)np\"?( (A - o)np\ "/ )
Sx( 1 S +2B %} ARl

where (a) follows from (63).
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Similarly, conditioned on events N_ N, (Ai,k,t, ‘

(x, 0)N Azz,,k,t,()(x, 8)) with x = In"*?/2; and 6 = 0.1, we
have

68)] < > zv

kelr]

Z Ak(e;{QNu,t)
k

(EEQNU, k" — e]];Ak’ QNv,t)

Z |Ak|k’+l

kelr]

2 5 (020
] 4

Kelr

(b) K17 =1 g —
= > >0 W FTED), L
k’elr' ] helr']

~(t+1)/2
Bx(—(1 —f)np) (Z |Ak|k,+1)

kelr]

© (=8| Adnp) "
C —
=i |Ar|zBrx(+””)

(Z S (LD)g}
]

k'e[r'] he[r

@ 1=6) M) T 2 Ay
<|AP |/\r|2Brx(4rp) r’(l)

A gap

where (a) follows from events N[_;N7_; (A7, ,(x, 6) N
A, o(x, 0)) and showing that el QN ; < B because of
the boundedness of Q and || N uwtlli <1 by normaliza-
tion; (b) follows from (65); (c) follows from |Ax| <|A4]|
and |L,}| <|A,[™"; and (d) follows from (66).
Conditioned on the event N_; A2 (In"/2(n), 6)

u,o,t,
and Lemma 7, x = In+0)/ 251, and 6 = 0.1, it follows that

, 1/2
Zr_ |/\k|2t+k +1 |/\r|2t
[(67) < > zi|x ( =l ;
k%’] pr(L=)yp/4* | (pm)'?

(ﬂ) _ ~ _ _
< > > LALD)g A

ke[r]helr]
1/2
L AP ]

N Z[);:l |Ak|2t+k’+1
p((1=8)mp/a* | (o)

7 |/\1|2t+2

1/2
-2t
=1 [x(pf«l —6>np/4>2‘“)

max (1, [A]7"* -
St ) '1}2' ))(Z > (LD)g,
(Pﬂ) k' e[r'] helr']

® 2r AL Ay /
=0y |AP A p 4
max (1, A7) (2 1A\
, max( |1/12| )r,(|1|) ,
(pn)

A &ap

where (a) follows using (65) and the fact that np =
w(1) and hence for n sufficiently large, ((1-9)
np/4) = ((1- 6)np/4)_t_k/ for any k' > 0; and (b) fol-
lows using (66).

In summary, we conclude

1\ 7 ’ N
> zk,(—,)Nu/t(M + M ON, 1 — e QTA?Qe,
kel \P

2r A A 2
S 2 1 2t+1
p((1=08) A [ A mp/4)~"

max (1, |A7) 2 A\
+ i T 1 (69)
(pn) gap

B 4 —(t+1)/2 vl

+ |/\1|2 |Ar|ZBT’x (1 6) |/\T’| np rl(z |/\1|) (71)
4 Agap

(1=8)mp\ [ (A=8)up\ )

+x(T A=y +2B %]] NP (72)

Observe that because of (62), x((1— 6)11;7/4)71/2 =o0(1)
and t = O(Inn/Inlnn) = w(1), hence there exists some
constant ¢y =c1(A1,Ar, Agap, 7, B), independent of n,
such that

[term(71) + term(72)| +

max (1, |A1|‘r’“)r,(2 |A1|)r"1

12

(pn) Agap

< clx(np)_l/z.

Recall that we chose t such that by (61),
In(p’) = In(p) —In(4 - p)

=In(0.08/(4 - p)) = In(0.08/p)
>1In(0.08/(4—p)) — (t+1")In(0.275np).

(73)

It follows by t=©(In(1/p)/In(np)) = O (In(n)/Inlnn)
= w(1) that

In(p'((1 = 0) [ Al* [ A1l p /4))
>1n(0.08/(4 —p))— (t+1")In(0.275np)

_ 2
In (%) +In np)
= tIn(np) +In(0.08/(4 — p)) — r'In(0.275np)
1= AR
W) 1n(0.275))
= O(tIn(np)) = O(In(n)) = w(1). (74)

This implies that for some constant c¢; =cp(A1,4,,
Agap, 1, B), the square of the first term in (70) satisfies

x2r |/\r|2 |/\1| (r/)z(z |Al|)2(r’_1)
P (1 =8) [P | | mp/a)* ! Agap

< cx?(np) .

~

+2

+t(21n

(75)



28

Borgs et al.: /terative Collaborative Filtering for Sparse Matrix Estimation

Operations Research, Articles in Advance, pp. 1-33, © 2021 INFORMS

Putting everything together, we have that for some

constant ¢ = c(Ay, A, Agap, 7, B),

1\~1 ” , J
Z 2K (_’)Nzl,t(M + Mu,v, t,k’))NUr ke
ke[r'] p

- el QTA?Qe,| < cx(np)_l/ 2, (76)

Replacing x = In"*P)2, we obtain the desired result. [

9.7. Proof of Lemma 4
The proof of Lemma 4 would follow from Lemma 9
and once we verify the probability of events required
to hold for Lemma 9 to be applicable. To that end, giv-
en k>0 so that p = n~'In"**n, let p € (0, k) be parame-
ter of choice. We set

. { In(0.08/p) 4

| In(0.275np) ’

Define event A, where

A=AY0.1) N A2(In"P2 (), 0.1) N A3 (In4P2(1),0.1),
(77)

where

A(In"P2(1),0.1)

= Nyoen] Ny A o 1 ((INHP72(1), 0.1),
A2(nP2(1),0.1)
= O] ket An .o, (0 P/2(1), 0.1)
Ouefn)Mkelr] m?:l Ai,k,t,t‘(ln(Hp )/2(71)/ 0.1),
AN0.1) = Nyeg NET A, (0.1).

We shall use Lemmas 5-8 to conclude the desired re-
sult. To that end, we verify that appropriate condi-
tions required in the statement of these lemmas are
satisfied.

To argue that A'(0.1) holds with high probability,
we wish to apply Lemmas 5 that requires verifying
t+1" <s*(n,p,0.1), which is done in the proof of
Lemma 9. To argue that A2(n"P2(1),0.1) and
A3(In"2(),0.1) hold with high probability, we
will use Lemmas 6-8 with x=In"""/2(n) and z=
In"*P/2() in the statement of Lemma 8. We need to
verify conditions on x and z. Lemma 6 requires

_2AA-0)mp/4)"2
T BIA QA
and Lemma 7 requires
x < B((1-06)np/4)">.

For sufficiently large n, these conditions are
satisfied by our choice of x because of p <«. For

Lemma 8, we require
. 1/2
z< 482 p/((l _ 6)np/4)2t+[ % (Z |Ak|2t+€+l)) ]
k=1

Now z=In"""/2 and np =In'"*n and because p <,
we have that z = 0((11;7)l 2). By the same argument as
(74) in the proof of Lemma 9, p'((1-0)|A/
np/ 4)* = w(1). As a result, the right-hand side of the in-
equality is w((np)"/?), which implies that for sufficiently
large n, the previous condition on z is satisfied.
Conditioned on event .4, by Lemma 9, it follows im-
mediately that for distances defined as per (32) and (8):

In'*fn
n

(78)
To conclude the proof, we need to argue that event A

holds with high enough probability. To that end,
through union bound and Lemmas 5, 6, and 8, we have

ma[x] 1d(6,,0,) —d(u, v)| = O(ln_gn) =0
u,ve[n

P(-=A) < ]P(—'A3(]n(1+p)/2(n), 0.1)] AX(0.1)
A AP 2(n), 0.1)
+B(= A0 /2(n), 0.1) | A'(0.1)
+ P(ﬂAl(O.l)).
By union bound and Lemma 8, we have that
P(=A% 0" *02(n), 0.1) | A'(0.1) 0 A0 (n), 0.1)),

(79)
<0 (n2r’exp (- @(lnl+Pn)))

Al ) e

By the ChOi/CE of t to satisfy (61), it follows that
p(0.275np)"*" > 0.08. Therefore,

1 ’
, (1 _ 6)np)2t+f—§ p H_,/( (1 _ (S) )t+r
CZOMp) "5 P (275mp)t |2

p(4|Arl ! 4-p P

+0 (nzr’exp -0

((1 - (5)np)t+%r’
4|0

/

24 2\
_0.08((1—6)) (1 —0)np
4-p\1.1|A,7" 44|70,

t+i-r
- @[((1 - 5)2n§) ]
44N

= Q(np) = O (In"**n),
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where we used the fact that 6, |A,|,7’ are all constants,
whereas t = w(1) and np = w(1). By union bound and
Lemma 6, we have that

P(=A%(n" (), 01) | A'(0.1))
< O(nrr’exp (—O(In"** n))). (81)

By union bound and Lemma 5, we have that
P (—uAl (0.1)) < O(n exp(-© (ln1+Kn))). (82)

In summary, the desired claim holds with probability
1-0O(n%exp (- —O((Inn)'**))). This completes the proof
of Lemma4. [

10. Proving Distance Estimate Is Close
When f Has ¢-Approximate Rank r

In this section, we extend the result that Distance Esti-
mate (7) is a good approximation of the desired ideal
distance as claimed in the statement of Lemma 3
when f has e-approximate rank r. We will primarily
establish robustness of the distance estimate with re-
spect to the arbitrary additional error of magnitude at
most ¢ in each observed entry. This will help conclude
Lemma 3 from Lemma 2.

10.1. Robustness of the Quadratic Form in (7)
When f has e-approximate rank r, the F = QTAQ+¢
with |||l < €. In contrast, when f has rank 7, e =0,
i.e. F=QTAQ. That is, the setting of f has e-approxi-
mate rank 7 can be viewed as a perturbation of the set-
ting with f having rank r: each observation M(i, j) is
first generated as per rank r setting and then arbitrary
perturbation or adversarial noise ¢; is added to it
where |¢;;| < e. Therefore, we shall analyze the dis-
tance estimate as defined in (7) for the setting of f that
has e-approximate rank r by bounding the perturba-
tion (or change) induced in distance estimates for the
setting of f that is rank r, because of the addition of
such an arbitrary perturbation ¢;;.

Lemma 10. Let f have rank r, w(1/n)<p<o(l),0€
0,1),t>0 with t+1<5'(5,p,n) and 0<x<B((1-0)
11;7/4)1 2 Letu,ven]. As before, define event

A, 0,1, 1)(x) = Moy (A7 g0, (0) NVAS g 101 (%)
N 'Al N 'Av t+1°

u,t

We condition on the event that A’(u, v, t, 1)(x) holds. Let
d(u, v) be the distance estimate computed according to (7).
On adding arbitrary e; € [~¢, €] to M(,j) for each
(i, j) € &, with probability at least

)2t+1))

1—exp (—@ (p’(%

d(u, v) changes at most by O(te(1+ €)' + 2e>(1 + e .

Proof of Lemma 10. Recall that d(u, v) is the sum of
four quadratic terms (see (59) for example). For each
of these terms, we shall argue that it changes by O(¢ +
te(1+¢) + ¢ 2(1+€)2t 1) with high probability as
claimed. This will conclude the proof. To that end, let

us start by considering LNT ,MN,;;, where
M= M” + M, 4; others follow in a similar manner.

Specifically, consider

Ny (MNy, 141 =

u,t

= >1((G,j) € £" U EL )M, j)
iyf

Nu,t(i)Nv, t+1 (])

Let F(u, v, t, 1, x) denote all the information related to
7! and 7%, including the node latent parameters
and observations in M that are associated to edges in
T! UT". Furthermore, let F(u,v,t,1,x) be condi-
tioned on the event that A’(u, v, t, 1)(x) holds, which

is fully determined by the realization of edges and
weights in 7", and 7'''. We wish to understand how
Nu MN, 111 changes if we perturb each entry M(, )
by adding arbitrary ¢;; so that |&;] < ¢ for all (i, j) € £.
To that end, define

(P(l ]) ]I((l ]) ef’u gmd)M(ir j)Nu,t(i)Nv,t+1(j)-

By construction, {¢(i./)} je[a? iN NONZEro only if all
four terms in its product are. Given F(u, v, t, 1, x)
and conditioned on &', I((i,j) € £" U &,) are iid.

Bernoulli(p’). Each M(i, j) is perturbed at most by e.
By definition, N, (i) is a product ¢ terms, each of
which takes value in [0,1] and is perturbed by
at most ¢ (in absolute) value. Let N, (i) = [T}, ws
with |ws|<1 for all s<t. Let & be perturbation
added to w; with |e4 < € for all s <t. The change in

N,,+(i) is bounded as
t t

l_[ws_l_l(ws"'gs) = Z l_lgs l_[ Ws
s=1 s=1 Sc[t]:S#0 s€S  se[t]\S

< Z n|55| n fews|

Sc[t]:S#0 seS se[t]\S

< Z e'szi(t)es

SCIH]:5+0 s=1\5
t S
Dt
(Z«t—l)—s)'s' )

(S

te(1+e) " (83)
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Similarly, the perturbation in Ny, 4+1(j) can be bounded
above by (t +1)e(1 +¢)'. That is, the overall perturba-
tion in M(i, )Ny, ({)Ny +1(j) is bounded above as
O(te(1+¢)' +2e2(1+¢)*™") because each of the
M(i, j),N,, (i), Ny, 141(j) are O(1). Therefore, the overall
perturbation in NI ,MN, ;. is bounded above by
O(te(1+¢)' + 2e2(1+€)* ") times the number of (i, j)
such that N, (i), Ny +1(j) are nonzero and I((7, j) €
E"U& ). Given F(u,v,t,1,x), this is precisely
Binomial(|S,, ¢ |So,t+1] ,p’). Therefore, by Chernoff’s
bound, it follows that 3; je;1I((7, ) € £” U &fy) is at
most 2|8y ¢||Sy 1| p° with probability at least
1—exp (=[S |Sy, 41l p’/3). That is, perturbation in
NT .MNy, 41 is bounded above by O(|S,, i||Sy,t+1] ') X

u,t
O(te(1+ €)' + 2e2(1+)*™") with probability at least
1—exp (=[S |So, 41| p’/3). Conditioned on the event
A'(u,v,t,1)(x), |Sys+el are lower bounded by ((1-0)
np/4)" and ((1-6)np/ 4)™!, That is, the previous claim
holds with probability at least 1-—exp(—(1-0)
np/4**p’ /3). Recall that N, ; = Ny, 1/|S,, /|- It follows
that the perturbation in }}N : t]\_/IN wt+1 1S bounded
above by O(te(1 + €)' + 2e2(1 + £)* ") with probability
atleast 1 —exp(—(1 - 6)np/4)2t+1 ’/3). Using an identi-
cal argument, the same conclusion holds for perturba-

tion induced in the other three terms in Distance Esti-
mate (7). This completes the proof of Lemma 10. O

10.2. Proof of Lemma 3

Using Lemma 10 and Lemma 2, we establish the proof
of Lemma 3. As argued in the proof of Lemma 2, for
choice of t=In(1/p)/In(np)] with p=n"1"*, where
1/x is not an integer and 6 = 0.1, we have that t+1 <
s*(n, p, 0.1) for n large enough. Furthermore, np = n*

and p'(np/4)"*" = @(u2E)T) with < 2ic(t+1) - 1.

As in Lemma 2, we choose x = n/? for p € (0, k) in
Lemma 10. By this selection, we have x < (np/4)"/* for
n large enough. As in Lemma 2, the event A (recall
definition from (55)) holds with probability at least
1—O(nexp (—@(n™n (P <(t=1/2)))) " Indeed, A implies
the condition required for Lemma 10 to hold with x =
nP/2 for all u + v € [n]. Finally, given this, the conclu-
sion of Lemma 10 holds for all u # v € [n] with proba-
bility at least 1-—exp (n’exp(-©(1n¥))). In summary,
from Lemma 10 and Lemma 2, it follows that

|d(u, v) — d(u, v)| < O(Br | Ay [/ n=1/20p)y
+O0(te(1+ &) + 221 +e)* ™),
(84)

holds with probability at least 1—O(n?exp(-©
(nminlp<(t=1/20))) - This completes the proof of
Lemma3. O

Appendix A. Proof of Extra Lemmas

Lemma A.1. We use two simple inequalities to argue when a
summation is dominated by the single largest term. For any
p=2,

leSSZp’.

For any p>r"/0=Y, it holds that p*>sp for all s <r. If addi-
tionally exp (—ap) <1/2,

Zr: exp (—ap®) < 2exp (—ap).

s=1

Recall the definitions of ¢ and s",

1/2
1-0 ) < 1.

1-6y2/3

For any p = w(1/n) and p =o0(1),

$0)=1 —( (A1)

s—1
s*(é,p,n)zsup{sz1:g((”f)”p) s¢(5)}. (A2)

For any given 0, s*(0,p,n) is well defined for n large
enough because p = o(1). Event A},{S(é) is defined as

A ) {|Su e [((1 - f)np)s/((l + f)nr’)s]}.

Lemma A.2. Let w(l/n)<p<o(l1),6€(0,1). For 1<s<
S*(él p/ n)/

P 0) 1052 ALy (0)) < zexp(_

52 1-0)mp
3(1—5\/2%)( 4 ))

It follows that for t+ € <s*(5, p, n),

P(‘_ L 9(6)) < 4exp(—

s=1

(1= 0)np)
12(1-6+2/3))

Proof of Lemma A.2. By definition, s <s*(5, p, n) implies
that

1p((1+6)np)s_1sl_ 1-6
8 4 1-0642/3

Let us denote B, ;1 —U,, Su,n- Conditioned on Mj_; !
" AL (5), we can upper bound | By s—1| by

1/2
) =00 (A3)

B 1|—1+Z|suh|< 1+Z((“6)””)

s—1
< 1+2(%) ,

where the last step follows from Lemma A.l1 showing
that the summation is dominated by the largest term for
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sufficiently large n. By assuming s <s* (9, p, n), it follows
that for sufficiently large n, because np = w(1),

16¢(6)

|Bu,sfll < 1+—— < (P((S)

Conditioned on the set B, -1 and the set S, 1, any ver-
tex i € [n]\By,s—1 is in S,,s independently with probability
(1 —(1—%)‘8“"’”). Thus, the number of vertices in S, is
distributed as a binomial random variable. By Chernoff’s
bound,

[Su, -1
B{1S.d> @+l - |Bu,s_1|>(1 -2

1
‘ Bu,s—l s Su,s—l 7 'Au,s—l)

<exp[- 370 B, 1-(1-5) ‘))

(a) 1 U,5—
< exp (_562(71 - |Bu,s 1| (p |S 1|)(1 SP | Su s—1 |))

®)
<exp|-—

Frp(1 - qs(a))((l 5)”’”) 1- ¢(6)>)

52“ 9(6) (1 6)np)
3 1-96

R 52 (1-0d)np
—oP 3(1—5«/2%)( - ))

where inequality (1) follows from (1-(1-x)")>
xy(1 —1/2xy) for x € (0, 1) and y € Z,, inequality (b) follows
from the event A}, and the assumption s<s*(5,p, n),
and equality (c) follows from the fact that we constructed
¢ such that (1-6+2/3) (1 —¢(8))* =(1-5). We obtain a
lower bound on |S,, s by a similar argument using Chern-
off’s bound,

(|sl, J < (1-6v2/3)(n

(1 (1 p)‘ v l‘) ‘ Bu,s—lrsu,s—llAtll,s—l)

<exp (—E(m/%)z(n - IBu,s—lD(1 -(1- g)\su,m))

1 Suys- 1
<exp (_562(7'1 - |Bu,s—1|)(%)(l - gp |Su,s—1|))

B 52 (1-08)np\’
Sexp( 3(1_5¢m)( z ))

Conditioned on Au s_1, the previous two inequalities show
that A}l . holds with high probability. The upper bound

follows from

1Sl < (1+6)(n— | BL,,HD( e 1‘)

<00 P1s,als (F2),

=exp|-

|Bus 1|

and the lower bound follows from
1804 2 (1= 0y2 0= 18,1 - (1-5) )
> (1=0y2 (1 = o) 5 115,
> (1-5v273) P (1~ 6(0)) 1S, n( p( ) )

> (1-6v2/3) 1 (1= $(6)) S, (1 = (6)
= (1 6\/_) |Su 5— 1| (1 (P(é))

(1 —8)np (1—-8)np
=1 | Sy, s-1] = (T)

7

where equality (b) follows from the fact that we con-
structed ¢ such that (1 —06+/2/3)(1 - q)(é)) =(1-0).

We finally lower bound the probability of event
Nt Al , by a repeated application of Chernoff’s bound

u,s’

forall se[t+{],

t+€

Z]P(_‘ALI 5(6) | mlsr

il ol 5 (1-o)mpy’
& ((1=6)np)

(a)
S4exp( 1201 - 6\/_))

where inequality (a) follows from the assumption that
pn=w(1l) such that the largest term in the summation
dominates. O

IP’(:Q}AE,,S(&) AL 4(6)
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