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Tensor Completion with Nearly Linear Samples

Given Weak Side Information
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Tensor completion exhibits an interesting computational-statistical gap in terms of the number of samples

needed to perform tensor estimation. While there are onlyΘ(C=) degrees of freedom in a C-order tensor with =C

entries, the best known polynomial time algorithm requires $ (=C/2) samples in order to guarantee consistent

estimation. In this paper, we show that weak side information is sufficient to reduce the sample complexity

to $ (=). The side information consists of a weight vector for each of the modes which is not orthogonal to

any of the latent factors along that mode; this is significantly weaker than assuming noisy knowledge of the

subspaces. We provide an algorithm that utilizes this side information to produce a consistent estimator with

$ (=1+^ ) samples for any small constant ^ > 0. We also provide experiments on both synthetic and real-world

datasets that validate our theoretical insights.
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1 INTRODUCTION

A tensor is a mathematical object that can be used to represent multiway data. A dataset in which

each datapoint is indexed by C indices can be represented by a C order tensor. A 2-order tensor is

simply a matrix, with each datapoint being referenced by two indices referring to the row and

column. Multiway data arises in many applications. For example, image data can be represented by

a 3-order tensor, with two indices referring to the pixel location, and the third index referring to

the color modes of RGB. Video data could then be represented by a 4-order tensor with the 4th

mode representing time. E-commerce data is also multiway, with each datapoint of interaction on

the platform being associated to a user id, product id, and timestamp. As network data is naturally

represented in a matrix form, data collected from monitoring a network changing over time can

be represented in a 3-order tensor. Neuroimaging data involves 3D-scans that can be represented

in a 3-order tensor. Microbiome studies or protein interaction data involves network data of co-

ocurrence or interaction counts; this network can be collected across many different patients with

different demographics, and it may be useful to represent the full data as a 3-order data to look for

patterns amongst subpopulations rather than to just aggregate the data into a single matrix.
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Often the tensor dataset can be very sparse due to the observation process. For example, e-
commerce data is very sparse as any given user only interacts with a small subset of the products
at sparse timepoints. In experimental studies, each datapoint may be costly to collect, and thus
the sparsity could be limited by available budget. The observations themselves can also be noisy
or corrupted due to the experimental process or mistakes in data entry. As a result, the task of
tensor estimation, or learning the underlying structure given noisy and incomplete tensor data, is a
significant building block in the data analysis pipeline.
In the setting of sparse tensor completion, a critical question is how many datapoints does one

need to observe (sampled uniformly at random) in order to estimate the underlying tensor structure?
Consider a C- order data tensor with =C entries, i.e. each mode has dimension =. When we only
observe a small subset of entries, it is impossible to guarantee recovery without imposing structure
on the underlying tensor. The typical assumptions to impose are low rank and incoherence style
conditions. Essentially the low rank conditions reduce the number of unknown model parameters
to linear in = even though the number of possible tensor entries is =C for a C-order tensor. The simple
statistical lower bound on the sample complexity, or minimum number of observations for recovery,
is thus Ω(=), as there are linear in = degrees of freedom in the low-rank model. Tensor nuclear
norm minimization requires $ (=3/2) observations for a C-order tensor, however the algorithm is
not polynomial time computable as tensor nuclear norm is NP-hard to compute [16, 38]. The best
existing polynomial time algorithms require $ (=C/2) observations for a C-order tensor. There is a
large gap between what is polynomial time achievable and the statistical lower bound.
For a 3-order tensor, [1] conjectured that Ω(=3/2) samples are needed for polynomial time

computation based on a reduction of tensor completion for a class of a rank 1 tensors to the random
3-XOR distinguishability problem. Conditioned on the hardness of random 3-XOR distinguishability,
their result proves that any approach for tensor completion that relies on the sum of squares
hierarchy or Rademacher complexity will require Ω(=3/2) samples. The fact that the class of hard
instances in [1] are simply rank 1 tensors suggests that rank may not be a sufficient measure
of complexity for tensor estimation. As a result of the hardness conjecture, recent literature has
accepted the threshold of Θ(=C/2) as a likely lower bound for computationally efficient algorithms,
and instead has shifted attention to reducing dependence with respect to constant properties of the
model, such as rank or incoherence constants.

In this paper we consider what conditions are sufficient to achieve nearly linear sample complexity
by the use of auxiliary information. In the most general setting of tensor estimation, the indices of
the data entries themselves are not expected to carry valuable information other than linking it to
other entries associated to the same index. In particular, the distribution of the data is expected
to be equivalent up to permutations of the indices. However, in reality we often have addition
knowledge or side information about the indices in each mode such that the full generality of an
exchangeable model is not the most appropriate model. For example, with video or imaging data,
we expect the data to exhibit smoothness with respect to the pixel location and frame number,
which are encoded in the indices of the associated modes. For e-commerce data, there is auxiliary
data about the users and products that could relate to the latent factors. While there has been
several empirical works studying the potential promise for utilizing side information in tensor
completion, none of the works provide theoretical results with statistical guarantees.

1.1 Related Literature

Tensor completion has been studied in the literature as a natural extension of matrix completion to
higher dimensions. The approach and techniques have naturally focused around extensions ofmatrix
completion techniques to tensor completion. The earliest approaches unfold the tensor to a matrix,
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and apply variations of matrix completion algorithms to the constructed matrix [17, 25, 33, 34].
Given a C-order tensor where each mode has dimension =, there are 2C − 1 possible unfoldings of
the tensor to a matrix, each corresponding to a partition of the C modes. For example, if g� and g�
are disjoint non-empty subsets of [C] such that g� ∪ g� = [C], the corresponding unfolding of the
tensor would result in a = |g� | × = |g� | matrix, where each row would correspond to a member of the
cartesian product of coordinates in the modes referenced by g�, and each column would correspond
to a member of the cartesian product of coordinates in the modes referenced by g� . There would
still be overall =C entries in the matrix, with a 1-1 mapping to the =C entries in the original tensor.
The above results utilize the fact that low rank and incoherence conditions for the original tensor
result in low rank and incoherence conditions for the unfolding of the tensor to the constructed
matrix. As matrix completion algorithms are limited in their sample complexity by the maximum of
the dimensions of the rows and columns, the unfoldings that minimize sample complexity are those
that unfold the tensor to a = ⌊C/2⌋ × = ⌈C/2⌉ matrix, resulting in a sample complexity of $ (= ⌈C/2⌉).

Unfolding the tensor to a matrix is limiting as the algorithm loses knowledge of the relationships
amongst the rows and columns of the matrix that were exhibited in the original tensor, i.e. there are
rows and columns in the unfolded matrix that share coordinates along some modes of the original
tensor. There have subsequently been a series of works that have attempted to use tensor structure
to reduce the sample complexity. The majority of results have focused on the setting of a 3rd order
tensor, but many of the results can also be extended to general C-order tensors. Tensor nuclear
norm minimization requires only sample complexity of $ (=3/2) for a general C-order tensor, but
tensor nuclear norm is NP-hard to compute and thus does not lead to a polynomial time algorithm
[16, 37]. The best polynomial time algorithms require a sample complexity of $ (=C/2) for an order
C tensor. These results have been attained using extensions from a variety of techniques similar to
the matrix completion setting, including spectral style methods [27, 35], convex relaxation via sum
of squares [1, 30], minimizing the nonconvex objective directly via gradient descent [8, 35, 36] or
alternating least squares [3, 20], or iterative collaborative filtering [31]. The naive statistical lower
bound is Ω(=) as the number of unknown parameters in a low rank model grows linearly in =.
This still leaves a large gap between the sample complexity of the best existing polynomial time
algorithms and the statistical lower bound. [1] provides evidence for a computational-statistical
gap by relating tensor completion via the Rademacher complexity and sum of squares framework
to refutation of random 3-SAT.

While the above works all consider a uniform sampling model, [40] considers an active sampling
scheme that achieves optimal sample efficiency of$ (=). Their approach requires a specific sampling
scheme that aligns all the samples to guarantee that along each subspace there are entire columns of
data sampled. While this result yields optimal bounds and is useful for settings where the data can
be actively sampled, many applications do not allow such active control over the sampling process.
[9] considers the tensor recovery problem, which allows for general measurement operators instead
of only single entry observations. They prove that spectral initialization with Riemannian gradient
descent can recover the underlying tensor with only$ (=A 2) Gaussian measurements, achieving the
optimal linear dependence on =. Their result relies on the tensor restricted isometry property that
arises from the Gaussian measurements. As such, it does not extend to entrywise observations.
The inductive matrix completion problem considers the setting when exact or partial subspace

information is provided alongside thematrix completion task [7, 13, 14, 18, 19].When exact subspace
information is given, the degrees of freedom in the model is significantly reduced as one only
needs to estimate the smaller core matrix governing the interaction between the row and column
subspaces. As a result, the sample complexity reduces from a linear to logarithmic dependence on
the matrix dimension = [19]. [14] further considers the setting where noisy or partial information
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about the subspace is given, modeling the desired matrix as a sum of the interaction between the
side information and a low rank residual matrix. However, under partial or noisy side information,
the sample complexity is still linear in = as the degrees of freedom in the model is still linear
in =. There have been empirical works showing benefits of utilizing side information for tensor
completion. The most common model assumes that the side information is given in the form of a
subspace for each of the modes that contains the associated column subspace of each matricization
associated to an unfolding of the tensor [2, 6, 10, 29, 43]; this is a natural extension of the inductive
matrix completion setting. Given the subspaces, since the degrees of freedom in the model no
longer grows with =, one would expect that the sample complexity would reduce to logarithmic in
=, although none of these papers provide formal statistical guarantees. [28] assumes that the side
information is given in the form of similarity matrices amongst indices in each mode of the tensor,
which they incorporate into the algorithm via a Laplacian regularizer. [23] considers a Bayesian
setup in which the side information is in the form of kernel matrices that are used to construct
Gaussian process priors for the latent factors. None of these above mentioned results in tensor
completion with side information provide formal statistical guarantees, although the empirical
results seem promising.

We utilize a similar insight as [22], which shows that for orthogonal symmetric tensors, when all
entries are observed, tensor decomposition can be computed by constructing = × = matrices with
the same latent factors as the tensor. Their setting assumes that all entries are observed, and thus
does not provide an algorithm or statistical guarantees for noisy and sparsely observed datasets.
We extend the idea to sparsely observed tensors and beyond orthogonal symmetric tensors. Our
specific algorithm uses the nearest neighbor collaborative filtering approach for matrix completion,
introduced in [4, 5, 24, 31, 32].

1.2 Contributions

Consider a C-order tensor with dimension = along each mode, and assume we are given a sparse set
of noisy observations where each entry is sampled independently with probability ? and observed
with mean zero bounded noise. When the tensor has low orthogonal CP-rank, we assume a weak
form of side information consisting of a single vector for each mode which simply lies in the column
space of the associated matricization of the tensor along that mode. Furthermore suppose the side
information vectors are not exactly aligned with any of the latent factors. Under these assumptions,
we provide a simple polynomial time algorithm which provably outputs a consistent estimator as
long as the number of observed entries is at least Ω(=1+^) for any arbitrarily small constant ^ > 0,
nearly achieving the linear lower bound resulting from the degrees of freedom in the model. We
extend our results beyond low orthogonal CP-rank tensors as well, providing a characterization for
sufficient side information to admit nearly linear sample complexity.

To our knowledge, this is the first theoretical result for tensor completion with side information,
provably showing that given weak side information the sample complexity of tensor estimation
can reduce from the conjectured =C/2 to nearly linear in =. The side information we assume is
significantly weaker than assuming knowledge of the full subspaces, and thus is more plausible for
real applciations. Our proposed algorithm is simple, essentially using matrix estimation techniques
on constructed matrices of size = × = to learn similarities between coordinates. These similarities
are used to estimate the underlying tensor via a nearest neighbor estimator. An additional benefit
of our analysis is that we are able to prove that with high probability, the maximum entrywise error

of our estimate decays as $̃ (max(=^/4, =−(^+1)/(C+2) ) where the expected number of observations

is =1+^ for any small constant ^ > 0 and the $̃ notation simply hides polylog factors. Our result
implies an infinity norm bound on the error rather than the looser typical mean squared error
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mode 1

mode 2

mode 3

unfolded tensor along mode 1

slice of tensor along modes (1,2)
mode-1 fiber

Fig. 1. Depicting an unfolding of a 3rd order tensor along mode 1, denoted as )(1) . The columns of the

resulting matrix are referred to as the mode-1 fibers of the tensor. The submatrices alternating in color are

referred to as slices of the tensor along modes (1, 2).

bounds provided in the existing literature. We also provide experiments on both synthetic and
real-world datasets that validate our theoretical insights.

2 PRELIMINARIES

Consider the task of estimating a C-order tensor ) given observations {)>1B (i)}i∈Ω for some Ω ⊂
[=1] × [=2] × · · · [=C ] where |Ω | is significantly smaller than =1=2 . . . =C . Assume an additive noise
model where)>1B (i) = ) (i) + � (i) for i ∈ Ω, and � is the noise matrix with independent mean zero
entries. We assume a uniform Bernoulli samplingmodel where each entry is observed independently
with probability ? , i.e. 1[i∈Ω] ∼ Bernoulli(?).

Let )(ℓ) denote the unfolded tensor along the ℓ-th mode, which is a matrix of dimension =ℓ ×∏
ℓ′∈[C ]\{ℓ } =ℓ′ . We refer to columns of )(ℓ) as mode-ℓ fibers of tensor ) , which consists of vectors

constructed by varying only the index in mode ℓ and fixing the indices along all other modes not
equal to ℓ . We refer to slices of the tensor along modes (ℓ, ℓ ′) to be the matrix of entries resulting
from varying the indices in modes ℓ and ℓ ′ and fixing the indices along all modes not equal to ℓ or
ℓ ′. Figure 1 visualizes one such unfolding of the tensor.

We must impose low dimensional structure on the underlying tensor to reasonably expect sparse
tensor estimation to be feasible. Unlike in the matrix setting, there are multiple definitions of tensor
rank. CP-rank is the minimum number of rank-1 tensors such that their sum is equal to the desired
tensor. An overcomplete tensor is one for which the CP-rank is larger than the dimension =. The
latent factors in the minimal rank-1 CP-decomposition may not be orthogonal. The Tucker rank, or
multilinear rank, is a vector (A1, A2, . . . AC ) such that for each mode ℓ ∈ [C], Aℓ is the dimension of the
column space of )(ℓ) , the unfolded tensor along the ℓ-th mode to a =ℓ ×

∏
8≠ℓ =8 matrix. The Tucker

rank is also the minimal values of (A1, A2, . . . AC ) for which the tensor can be decomposed according
to a multilinear multiplication of a core tensor Λ ∈ RA1×A2×...AC with latent factor matrices &1 . . . &C

for &ℓ ∈ R=ℓ×Aℓ , denoted as

) = (&1 ⊗ · · ·&C ) · (Λ) :=
∑

k∈[A1 ]×[A2 ] ·· ·×[AC ]
Λ(k)&1 (·, :1) ⊗ &2 (·, :2) · · · ⊗ &C (·, :C ), (1)

and depicted in Figure 2. The higher order SVD (HOSVD) specifies a unique Tucker decomposition
in which the factor matrices &1 . . . &C are orthonormal and correspond to the left singular vectors
of the unfolded tensor along each mode. Furthermore, the slices of the core tensor Λ along each
mode are mutually orthogonal with respect to entrywise multiplication, and the Frobenius norm of
the slices of the core tensor are ordered decreasingly and correspond to the singular values of the
matrix resulting from unfolding the tensor along each mode [15]. The direct relationship between
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Fig. 2. (Le�) The tensor CP-rank admits a decomposition corresponding to the sum of A rank-1 tensors.

(Right) The Tucker rank or multilinear rank (A1, A2, . . . AC ) admits a decomposition corresponding to a multi-

linear multiplication of a core tensor of dimensions (A1, A2, . . . AC ) with latent factor matrices associated to

each mode. The number of degrees of freedom in each model scales linearly with = via the latent factors.

the HOSVD and the SVD of each unfolded tensor provides a direct method to compute the HOSVD
and thus the multilinear rank from complete observation of a tensor.

If the CP-rank is A , the Tucker-rank is bounded above by (A, A, . . . A ) by constructing a superdiago-
nal core tensor. If the Tucker rank is (A1, A2, . . . AC ), the CP-rank is bounded by the number of nonzero
entries in the core tensor, which is at most A1A2 · · · AC/(maxℓ Aℓ ) [15]. While the latent factors of the
HOSVD are orthogonal, the latent factors corresponding to the minimal CP-decomposition may not
be orthogonal. For simplicity of presentation, we will first consider a limited setting where there
exists a decomposition of the tensor into the sum of orthogonal rank-1 tensors. This is equivalent
to enforcing that the core tensor Λ associated to the Tucker decomposition is superdiagonal, or
equivalently enforcing that the latent factors in the minimal CP-decomposition are orthogonal.
There does not always exist such an orthogonal CP-decomposition, however this class still includes
all rank 1 tensors which encompasses the class of instances used to construct the hardness conjec-
ture in [1]. Our results also extend beyond to general tensors as well, though the presentation is
simpler in the orthogonal setting.

As some of our matrix and tensor variables will have subscripts, we will index entries in the matrix
or tensor by arguments in parentheses, i.e. &ℓ (0, 1) denoting the entry in matrix &ℓ associated to
index (0, 1). We will use bold font i = (81, 82, . . . 8C ) to denote the index vector of a tensor and 8ℓ to
denote the ℓ-th coordinate of vector i. For data vectors, we use parentheses notation to access entries
in the vector. We use 40 to denote the standard basis vector with 1 at coordinate 0 and zero elsewhere,
and we use 1 to denote the all ones vector. We denote the set [=] = {1, 2, . . . =}. Δ(S) denotes the
probability simplex over S. For ~ ≠ I ∈ [C]2, let I~I (0, 1) = {i ∈ [=1] × · · · × [=C ] s.t. 8~ = 0, 8I = 1}
denotes the set of indices i such that the ~-th coordinate is equal to 0 and the I-th coordinate is
equal to 1. Similarly define J~I (0, 1) = {k ∈ [A1] × · · · × [AC ] s.t. :~ = 0, :I = 1}.

3 KEY INTUITION IN A SIMPLE SETTING

Consider a simple setting for a 3-order tensor that has low orthogonal CP-rank A , i.e.

) =

A∑
:=1

_:&1 (·, :) ⊗ &2 (·, :) ⊗ &3 (·, :), (2)

where ⊗ denotes an outer product and the columns of the latent factor matrices &1 ∈ R=1×A ,
&2 ∈ R=2×A , and&3 ∈ R=3×A are orthonormal. This is equivalent to assuming a Tucker decomposition
consisting of the latent factor matrices &1, &2, and &3, with a superdiagonal core tensor Λ having
(_1, _2, . . . _A ) on the superdiagonal. Suppose that you were given additional information that for
each : ∈ [A ] and ℓ ∈ [3], |〈&ℓ (·, :), 1

=3
1〉| > ` > 0. Let us construct matrix ">1B

12 by averaging
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observed entries along the 3rd mode,

">1B
12 (0, 1) =

∑=3

8=1)
>1B (0, 1, 8)1[ (0,1,8) ∈Ω]∑=3

8=1 1[ (0,1,8) ∈Ω]
. (3)

The expectation of ">1B
12 with respect to the randomness in the sampling pattern and obser-

vation noise is a rank A matrix that has the same latent factors as the underlying tensor, i.e.

conditioned on (0, 1) being observed, E
[
">1B

12 (0, 1)
]
= 4)0&1Λ̃&

)
2 41 where Λ̃ is diagonal with

Λ̃:: = _: 〈&3 (·, :), 1
=3
1〉. The key observation is that the matrix E

[
">1B

12 (0, 1)
]
and tensor ) share

the same latent factor matrices &1 and &2. In Section 5.3, we show that this insight extends to the
general context of a C-order tensor. Repeating this construction along other modes would result
in matrices whose expected values share the latent factor matrix &3 with the tensor. A natural
approach is to use these constructed matrices to estimate the latent factors of the original tensor
along each mode. This insight is also used by [22] in the context of tensor factorization with a fully
observed tensor.
Denote the sparsity pattern of matrix">1B

12 with Ω̃12, where (0, 1) ∈ Ω̃12 iff there exists at least
one 8 ∈ [=3] such that (0, 1, 8) ∈ Ω, i.e. there is an observed tensor datapoint involving both
coordinates 0 and 1. Due to the Bernoulli sampling model, 1[ (0,1) ∈Ω̃12] is independent across all
(0, 1) ∈ [=1] × [=2], and P((0, 1) ∈ Ω̃12) = 1 − (1 − ?)=3 =: ?̃ ≈ ?=3, where the approximation
holds if ?=3 = > (1). As a result, the density of observations in">1B

12 is ?̃ = Θ(min(1, ?=3)), which is
significantly more dense than the original tensor dataset.
In this simple setting where |〈&ℓ (·, :), 1

=3
1〉| > `, we have reduced the task of estimating the

latent factor matrices of a sparsely observed tensor ) to the easier task of estimating the latent
factors of a not-as-sparsely observed matrix E

[
">1B

12

]
, where the data is also generated from a

Bernoulli sampling model. As matrix estimation is very well understood, we can then apply methods
from matrix estimation to learn the latent factors of E

[
">1B

12

]
. The non-zero singular values of

E
[
">1B

12

]
are _: 〈&3 (·, :), 1

=3
1〉, which has magnitude bounded below by |_: |` by assumption from

the additional information. If this inner product were equal to zero for any value of : , it would
imply that the rank of E

[
">1B

12

]
is strictly smaller than the A such that we would not be able to

recover the full desired latent factor matrices for ) by estimating E
[
">1B

12

]
.

The distribution of">1B
12 (0, 1) depends not only on the original additive noise model of the tensor,

but also the sampling process and the latent factors &3. For example the simplest rank-1 setting
with exact observation of the tensor entries is depicted in Figure 3. The observation ">1B

12 (0, 1)
takes value _&1 (0, 1)&2 (1, 1)/01 , where

/01 =

∑=3

8=1&3 (8, 1)1[ (0,1,8) ∈Ω]∑=3

8=1 1[ (0,1,8) ∈Ω]
. (4)

This highlights that the noise is in fact a multiplicative factor /01 , where E [/01] = 〈&3 (·, :), 1
=3
1〉

and the independence in the original tensor observations also implies /01 are independent across
indices (0, 1). Incoherence style assumptions on the latent factor guarantee that this multiplicative
noise factor is not ill-behaved. While any matrix estimation algorithm could plausibly be used on
">1B

12 , the theoretical results require analyses that are robust to more general noise models beyond
the commonly assumed Gaussian additive noise model. When the data entries are bounded, we
will use the approach in [4, 31, 32] as they provide statistical guarantees for general mean zero
bounded noise.

Let’s consider the impact on the sample complexity when the dimensions are equal, i.e. =1 = =2 =
· · ·=C = =. In contrast to approaches that unfold the tensor to a matrix, our algorithm collapses the
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When does such side information in the form of these specified weight vectors exist? And
when would it be reasonable to assume knowledge of such side information? The condition that
|〈&ℓ (·, :), 1

=ℓ
,ℓ〉| > ` > 0 for all ℓ, : simply imposes that the properly scaled weight vector,ℓ

must not be nearly orthogonal to any of the latent factors &ℓ (·, :). In comparison to other common
models of side information, this is significantly weaker than assuming full knowledge of the column
space of&ℓ . The requirement that,ℓ is not directly aligned to the latent factors is mild, for example
it would be satisfied by any linear combination of the latent factors with coefficients bounded
away from zero, e.g. choosing a weight vector according to 1

=ℓ
,ℓ =

∑A
:=1 `ℓ&ℓ (·, :) would satisfy

〈&ℓ (·, :), 1
=ℓ
,ℓ〉 = `ℓ . If the latent factor matrices &ℓ satisfy incoherence-like properties, the vector

,ℓ would also satisfy similar regularity conditions. As a result, given observed features of the
indices, it is relatively mild to assume that one can construct a vector that satisfies the desired
properties for the side information.
When the tensor does not have low orthogonal CP-rank, i.e. the core tensor corresponding to

the HOSVD is not superdiagonal, the equivalent condition for sufficient side information is slightly
more involved. We discuss the formal conditions for general tensors in Section 5. Also, one may
ask whether we could simply use the observed entries to construct a weight vector,ℓ , in which
case one would not need to be provided the weight vector in advance as auxiliary side information.
Although this could be possible in special scenarios, a case study of the set of hard instances used
in [1] shows that this is not possible in fullest generality, which we discuss in section 5.2.

4 ALGORITHM

Given sparse noisy observations of the tensor )>1B , and given side information in the form of
a weight vector,ℓ ∈ R=ℓ for each mode ℓ ∈ [C], the main approach is to transform the tensor
estimation problem into a matrix problem where the latent factors of the matrix are the same as
the latent factors of the tensor. Once we learn the latent factors of the tensor, we use the estimates
to reconstruct the original tensor. While one could use different existing matrix algorithms for
estimating the latent factor matrices given the constructed matrices, we choose to use a variant of
the iterative collaborative filtering algorithm from [5] due to its ability to handle general bounded
noise models.
Our algorithm uses a subroutine from the iterative collaborative filtering algorithm in [5] to

compute distances 3̂~ (0, 1) that approximate ‖&)
~ (40 − 41)‖, for an appropriate, . Subsequently

it uses those distance estimates to compute nearest neighbor estimates over the tensor dataset. For
simpler notation, we assume that =1 = =2 = . . . =C = = and the density of observations ? = =−(C−1)+^

for ^ > 0. The analysis can be modified to extend to tensors with uneven dimensions as long as the
dimensions scale according to the same order. An additional benefit of using a nearest neighbor
style algorithm is that the analysis leads to bounds on the maximum entrywise error of the final
estimate as opposed to aggregate mean squared error bounds typical in the literature.

4.1 Formal Algorithm Statement

To facilitate cleaner analysis, we assume access to three fresh samples of the dataset, )>1B
1 , )>1B

2 ,

and )>1B
3 associated to observation sets Ω1,Ω2,Ω3 respectively (this is not necessary and can be

instead handled by sample splitting as illustrated in [5]). Each dataset is used for different part of
the algorithm to remove correlation across computations in different steps.)>1B

1 is used to construct

">1B
~I in (6); )>1B

2 is used in the distance computation in (8), and )>1B
3 will be used for the final

estimates in (10).

Phase 1 (Estimating distances): For each mode ~ ∈ [C], choose some I ≠ ~ and follow Steps 1-3

to estimate distances 3̂~ (0, 1) for each pair of (0, 1) ∈ [=~]2 using the datasets )>1B
1 and )>1B

2 .
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Step 1: Construct">1B
~I and associated data graph. Construct">1B

~I using data in )>1B
1 according to

">1B
~I (0, 1) =

∑
i∈I~I (0,1) )

>1B
1 (i)∏ℓ∈[C ]\{~,I },ℓ (8ℓ )
|Ω ∩ I~I (0, 1) |

, (6)

where recall that I~I (0, 1) = {i ∈ [=1] × · · · × [=C ] s.t. 8~ = 0, 8I = 1}, and i = (81, 82, . . . 8C ). Let Ω̃~I

denote the index set of nonzero entries in">1B
~I . Let G~I denote the bipartite graph with vertex sets

[=~] and [=I] and edge set E~I . The pair (0, 1) ∈ [=~] × [=I] is an edge in E~I iff (0, 1) ∈ Ω̃~I .

Step 2: Construct BFS trees and associated statistics. For each 0 ∈ [=~], construct a breadth first
search tree rooted at vertex 0 using edges in G~I . Let S0,B denote the set of vertices in G~I that are
at distance B from root vertex 0. Let B0,B denote the set of vertices in G~I that are at distance at
most B from 0, i.e. B0,B = ∪B

ℎ=0
S0,ℎ . Let path(0, 8) denote the set of edges along the shortest path

from vertex 0 to 8 . Define neighborhood vectors

#0,B (8) = 1[8∈S0,B]
∏

(D,E) ∈path(0,8)
">1B

~I (D, E). (7)

Denote normalized neighborhood vectors as #̃0,B = #0,B/|S0,B |. Choose the depth B = ⌈ln(=)/ln(?=C−1)⌉.

Step 3: Distance computation. For each 0 ≠ 1 ∈ [=]2, compute distance estimates 3̂~ (0, 1) via

3̂~ (0, 1) = � (0, 0) + � (1,1) − � (0, 1) − � (1, 0) (8)

� (D, E) = 1

?=C−2

∑
8, 9

#̃D,B (8)#̃E,B+1 ( 9)
∑

h∈I(8, 9)
)>1B
2 (h)

∏
ℓ∈[C ]\{~,I }

,ℓ (ℎℓ ) (9)

where I(8, 9) = I~I (8, 9) for even values of B and I(8, 9) = I~I ( 9, 8) for odd values of B .

Step 4: Latent subspace computation (optional).While the distance estimates in 3̂~ will be sufficient to
compute the nearest neighbor estimator described below in Phase 2, if one desires to directly obtain
an estimate for the latent subspaces, one could compute the singular value decomposition of the

symmetric matrix corresponding to the distance estimates 3̂~ , and let &̂~ denote the eigenvectors

corresponding to the top A~ eigenvalues of the estimated distance matrix. &̂~ serves as an A~-
dimensional approximation for the latent subspace along the ~-th mode of the tensor.

Phase 2 (Nearest neighbor averaging): Given the distance estimates 3̂~ (0, 1) for all ~ ∈ [C] and
(0, 1) ∈ [=~]2, estimate the tensor using nearest neighbor averaging,

)̂ (i) =
∑

i′∈Ω3
)>1B
3 (i′) (i, i′)∑

i′∈Ω3
 (i, i′) for  (i, i′) =

∏
ℓ∈[C ]

1[3ℓ (8ℓ ,8′ℓ ) ≤[] . (10)

where we use a simple threshold kernel with parameter [ = Θ
(
max(=−^/2, =−2(^+1)/(C+2) )

)
.

Let< = |Ω | denote the number of observations in the tensor, and let<′
= max~,I |Ω̃~I | denote

the maximum number of observations in the matrices that are constructed from averaging out
C − 2 modes of the tensor, where the maximium is taken over ~, I. A naive upper bound on the
computational complexity of the algorithm is C (< + =<′ + =<′) + =C<, where the terms are from
constructing the matrix">1B

~I , for constructing the BFS trees associated to G, computing pairwise
distances, and calculating the nearest neighbor estimator. One could improve the computational
complexity of the algorithm by choosing only to compute pairwise distances between a subset
of vertex pairs, and clustering the vertices. For an appropriate choice of number of clusters, this
would achieve the same theoretical guarantees while having significantly reduced computation.
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4.2 Variations of the Algorithm

We presented a specific algorithm above to illustrate how to use the given side information to
simplify tensor completion. However, the basic approach of using the side information to reduce
the tensor to a matrix along each mode can also lead to other natural algorithms arising from other
matrix estimation algorithms, as presented below.

Phase 1 (Estimate latent subspaces): For each mode ~ ∈ [C] and some I ≠ ~, construct the
matrix">1B

~I according to equation (6). Use any low rank matrix estimation algorithm to estimate

E

[
">1B

~I

]
, denoting the output as "̂~I . Compute the singular value decomposition of "̂~I , and let

&̂~ denote the left singular vectors corresponding to the top A~ largest singular values of "̂~I . &̂~

is as an A~-dimensional approximation for the latent subspace along the ~-th mode of the tensor.

Phase 2 (Least squares minimization): Using the matrices &̂~ as an approximation for the latent
factor matrices &~ , the tensor can be approximated by a multilinear multiplication of the latent

factor matrices &̂1, &̂2, . . . &̂C with a A1 × A2 × · · · AC core tensor. Compute )̂ by solving the following
unconstrained convex program minimizing the squared error

minimize
∑
i∈Ω

()>1B (i) − )̂ (i))2 (11)

s.t. )̂ = (&̂1 ⊗ · · · &̂C ) · (Λ̂) (12)

Λ̂ ∈ RA1×A2×···AC (13)

Empirically, we find that both proposed variants of Phase 1 are not computationally costly (unless
the matrix estimation subroutine chosen is itself costly), but the nearest neighbor averaging in
Phase 2 can be slow. The least squares minimization variant of Phase 2 is both faster and seems to
perform slightly better in practice, as it does not require tuning of hyperparameters, whereas nearest
neighbor averaging is sensitive to the choice of the averaging threshold. The nearest neighbor
averaging variant is still useful to present though as it facilitates an easier analysis for showing our
significant gains in sample complexity.

5 THEORETICAL GUARANTEES

We will present theoretical guarantees for the algorithm presented in Section 4.1, which builds
upon the iterative collaborative filtering style matrix estimation algorithm; as a result the model
assumptions and analysis are similar to [5]. The first two are standard assumptions on uniform
sampling and mean zero bounded observation noise.

Assumption 1 (Sampling Model). The set of observations is draw from a uniform Bernoulli(?)
sampling model, i.e. each entry i ∈ [=1] × [=2] × ·[=C ] is observed independently with probability ? .

Assumption 2 (Observation Noise). Each observation is perturbed by independent mean zero

additive noise, i.e. )>1B (i) = ) (i) + � (i) where � (i) are mean zero and independent across indices.

Furthermore we assume boundedness such that |)>1B (i) | ≤ 1.

The boundedness on)>1B (i) implies that the noise terms � (i) are also bounded and and also allow
for heteroskedastic noise. The next assumption is in lieu of the standard incoherence assumption,
which imposes regularity. We assume a latent variable model, in which the coordinates of each
mode ℓ are associated to latent variables that are drawn from a population distribution, which for
simplicity of notation is modeled as uniform over the unit interval. The population distribution can
be easily extended to general distributions over a bounded set.
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Assumption 3 (Latent Variable Model). For each mode ℓ ∈ [C], each coordinate 8ℓ ∈ [=ℓ ] is
associated to an i.i.d. sampled latent variable Gℓ (8ℓ ) ∼ * [0, 1]. Each mode is associated to a set of A

bounded orthonormal functions {@ℓ: }:∈[A ] with respect to* [0, 1], i.e. |@ℓ: (G) | ≤ � and

E [@ℓ: (G)@ℓℎ (G)] =
∫ 1

0

@ℓ: (G)@ℓℎ (G)3G = 1[:=ℎ] . (14)

The ground truth tensor can be described by a bounded latent function 5 of the latent variables with

finite spectrum A , where |5 (x) | ≤ 1 and 5 can be decomposed according to

) (i) = 5 (G1 (81), G2 (82), . . . GC (8C )) =
∑

k∈[A ]C
Λ(k)@1:1 (G1 (81))@2:2 (G2 (82)) · · ·@C:C (GC (8C )) (15)

for some core tensor Λ ∈ R[A ]C .

The decomposition in (15) implies that the tensor ) can be written according to a Tucker

decomposition as in (1) with latent factor matrices &ℓ (8, :) = @ℓ: (Gℓ (8)) and core tensor Λ(k)
having dimension A × A × · · · A . This implies the multilinear rank or Tucker rank is bounded above

by (A, A, . . . A ). The multilinear rank of the tensor) will be given by the multilinear rank of the core

tensor Λ. As formally stated, we assume the latent variables are sampled from * [0, 1], but this can
be relaxed to any general population distribution %ℓ over a bounded set.

The latent variable model assumptions impose a distribution over the latent factors of the tensor

such that in expectation over the randomness in the latent factors, they are orthogonal. The latent

variables induce a distribution on the latent factors of the low rank decomposition via the functions

@ℓ: (G). For sufficiently large =1, =2, . . . =C , the distribution of the sampled latent variables will be

close to that of the population distribution, such that the finite averages over the sampled latent

variables will converge to the population mean over the latent variable distribution. As a result,

&1 . . . &C are random latent factor matrices that have orthogonal columns in expectation with

respect to the latent variable distribution, and as =1, =2, . . . =C → ∞ the columns of the sampled

latent factor matrices of the tensor will be approximately orthogonal with high probability.

Alongwith the boundedness property, the generativemodel over the latent factors also guarantees

incoherence style regularity conditions with high probability. Intuitively, incoherence attempts

to formalize the concept that the signal is well spread amongst the coordinates and no single

coordinate contains a critical component of the signal that is not exhibited by any other coordinate.

When the latent factors are sampled from an underlying population distribution over a bounded

set, then for sufficiently large =ℓ , there will be other coordinates that exhibit similar latent variables,

and thus carry similar information content. This assumption also helps to ensure that the ground

truth tensor is not too empty. In particular, as the latent function is independent of the dimensions

=1, . . . =C and sparsity ? , even if the latent function 5 may take value zero for some subset of the

latent feature space, it is still a constant measure with respect to the dimensions and sparsity

parameters. As a result, the fraction of indices i for which i ∈ Ω and 5 (i) ≠ 0 will scale as Θ(?).

Assumption 4 (Lipschitzness). The latent function 5 (x) is !-Lipschitz with respect to the 1-norm

over the latent vector x ∈ [0, 1]C .

The Lipschitz assumption is used only in the analysis of the final estimate computed from nearest

neighbor averaging. This assumption can be replaced by conditions on the induced distribution

over&ℓ (8, ·) guaranteeing that for any index 8 ∈ [=ℓ ], there exists sufficiently many indices 9 ∈ [=ℓ ]
such that ‖&)

ℓ (48 − 4 9 )‖2 is small, such that averaging over similar indices in the nearest neighbor

estimator will converge.
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Assumption 5 (Side Information). Side information is provided in the form of weight vectors,ℓ ∈
[−1, 1]=ℓ such that their values are consistent with associated weight functionsFℓ : [0, 1] → [−1, 1]
evaluated on the latent variables, i.e.,ℓ (8) = Fℓ (Gℓ (8)). Furthermore, for each pair ~ ≠ I ∈ [C]2, the
matrix Λ̂~I ∈ RA×A defined by

Λ̂(0, 1) :=
∑

k∈J~I (0,1)
Λ(k)

∏
ℓ∈[C ]\{~,I }

1

=

∑
8∈[=]

@ℓ: (Gℓ (8))Fℓ (Gℓ (8)) . (16)

is well conditioned with high probability with respect to the latent variables, i.e. the condition number

of the matrix Λ̃ is bounded by a constant. Recall that J~I (0, 1) = {k ∈ [A ]C s.t. :~ = 0, :I = 1}.

When the core tensor Λ is superdiagonal, i.e. only having nonzero entries in indices k =

(:, :, . . . :), then the assumption on side information is equivalent to assuming that for each

ℓ ∈ [C] and : ∈ [A ], 1
=

∑
8∈[=] @ℓ: (Gℓ (8))Fℓ (Gℓ (8)) is bounded away from zero. Assumption 5 gener-

alizes the intuition presented in Section 3 beyond low CP-orthogonal rank tensors as Λ does not

need to be superdiagonal for this condition to be satisfied. However, Assumption 5 does require the

multilinear rank of the core tensor Λ to be balanced and equal to (A, A, . . . A ) in order for there to

exist such a weight function such that Λ̃~I is full rank and well-conditioned for all (~, I).
For simplicity of notation, we present our main theorem for =1 = =2 = · · · = =C = =, however the

result extends to uneven dimensions as well as long as they scale proportionally together.

Theorem 1. Assume the data generating model for the observation tensor)>1B satisfies Assumptions

1 to 4, and assume the side information {,ℓ }ℓ∈[C ] satisfies Assumption 5. Under sparse observations

with ? = =−(C−1)+^ for ^ > 0, with probability 1 − 8(1+> (1))
=

, the max entrywise error of the estimate

output by our algorithm is bounded above by

max
i∈[=]C

|)̂ (i) −) (i) | = $
(
max

( log1/4 (=2)
=min(^,1)/4 ,

log1/(C+2) (=C+1)
= (^+1)/(C+2)

))
.

It follows then that the mean squared error is also bounded above by

E

[ 1
=C

∑
i∈[=]C ()̂ (i) −) (i))2

]
= $

(
max

(
log1/2 (=2)
=min(^,1)/2 ,

log2/(C+2) (=C+1)
=2(^+1)/(C+2)

))
.

Theorem 1 implies that given our model assumptions for ultra-sparse settings where the density

? = =−(C−1)+^ for any arbitrarily small ^ > 0, with high probability the max entrywise error of the

estimate output by our algorithm goes to zero. Our result suggests that given appropriate side

information, the estimation task is no harder for tensor estimation relative to matrix estimation,

requiring only nearly linear sample complexity. This nearly linear sample complexity is a significant

improvement from the best sample complexity of $ (=C/2) achieved by polynomial time algorithm,

and is even better than the best achieved bound of$ (=3/2) of any statistical estimator. This form of

side information only requires weak signal of the latent subspaces, and is significantly easier to

satisfy than assuming full knowledge of the latent subspaces, as has been commonly assumed for

previous empirical works studying tensor completion with side information.

The proof of the main theorem revolves around showing that the estimated distances 3̂~ (0, 1)
concentrate around a function of the true distances with respect to the tensor latent factors,

i.e. ‖�&)
~ (40 − 41)‖22 for a well conditioned matrix �. Given bounds on the estimated distances,

we only need to bound the performance of the nearest neighbor estimator, which follows from

the independence of observation noise, the assumption that there are sufficiently many nearby

datapoints, and a simple bias variance tradeoff.
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5.1 Discussion

Our results assume a latent variable model and constant rank as it builds upon the algorithm and
techniques from [4]. These assumptions replace the typical incoherence style conditions, as they
guarantee that with high probability the latent factors are incoherent. This is reasonable for real-
world settings with high dimensional data, as it essentially imposes regularity that the dimensions
are associated to an underlying population distribution which satisfies regularity properties. The
Lipschitz assumption is used to analyze the final nearest neighbor estimator, and is not necessary if
we directly estimate the tensor from the latent factors.

Simulations suggest that the alternate variations of the algorithm using other matrix estimation
algorithms also attain similar guarantees, which give us reason to believe that the theoretical
guarantees also likely extend. However, the analysis of the matrix estimation algorithms would
need to handle heteroskedastic noise (or just arbitrary bounded mean zero noise), as the variance
across sampling of entries in the other C − 2 modes would depend on how widely the entries vary
across the tensor. Additionally one would need guarantees on the row recovery of latent factors,
which many of the previous work do not have. Recent work by [12] provides stronger control
on recovery of latent factors, however it assumes a Gaussian noise model and would need to be
extended to allow for arbitrary bounded noise that could result from aggregating entries sampled
along other modes of the tensor.

The most restrictive assumption on the tensor is that the multilinear rank must be balanced, i.e.
equal to (A, A, . . . A ) for some constant value of A . When the multilinear rank is not evenly balanced,
the proposed algorithm will not be able to fully recover information about the latent subspaces,

since the dimension of the column space of Λ̃~I for any choice of weight vectors may be strictly
lower than A~ , which is equal to the dimension of the column space of )(~) , the unfolded tensor
along the ~-th mode. The limitation of our result follows from the specific construction of the
matrix">1B

~I by computing a weighted averaging along all other modes of the tensor except ~ and I.

In particular, the 8-th column of">1B
~I consists of a weighted average of mode-~ fibers of the tensor,

but specifically restricted to fibers corresponding to the 8-th column of the slices of the tensor along
modes (~, I), weighted according to the same weight vector. As such, the dimension of the column

space of the expected matrix E
[
">1B

~I

]
is limited by the dimension of the column space of unfolding

of the tensor along mode-I, which could be smaller if AI < A~ . A possible extension of our idea

that we leave for future exploration is to construct a different type of matrix">1B
~ which consist of

columns derived from weighted combinations of the mode-~ fibers, not limited to aligning fibers
along slices of the tensor. The goal would be to construct ">1B

~ such that the column space of

expected matrix E
[
">1B

~

]
is equal to the column space of )(~) . This seems plausible as the mode-~

fibers span the desired subspace. The weighted combinations should combine a significant number
of the mode-~ fibers in order to guarantee that even when the dataset is only sparsely sampled, the
density of observations in">1B

~ is sufficiently large.

5.2 In the Absence of Side Information

The requirements of the side information for our result are weak and minimal in contrast to the
assumptions made by other works in the literature, which either assume knowledge of the latent
subspace [2, 6, 10, 29, 43], or similarity or kernel matrices that express relationship amongst the
coordinates [23, 28]. We only require knowledge of a weight vector for which taking a weighted
average along the specified mode does not zero out any component of the signal, which is far from
requiring knowledge of the latent subspaces. One may ask whether it could be possible to construct
the side information perhaps by sampling random weight vectors, or computing it as a function of
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the data itself. If this were possible, it would suggest an algorithm achieving nearly linear sample
complexity even without side information. In general this is not possible without further conditions
restricting the class of possible tensors. For example, consider the class of rank-1 tensors used to
argue the hardness result from [1]. The latent factor vector \ ∈ {−1, +1}= consists of randomly
sampled entries where \ (8) for 8 ∈ [=] is −1 with probability 1/2 and +1 with probability 1/2.
As a result, for any choice of weight vector, ∈ R= which is not too sparse, the expected value
of 〈\,, 〉 is zero, and furthermore with high probability, the typical vector \ will also result in a
small inner product with the weight vector due to the symmetry in the generating distribution.
As a result, the constructed matrices ">1B

~I would have an expected value of zero, clearly not
preserving the latent subspace. Any class of tensors with such symmetry would also exhibit similar
properties; for example if we sampled the latent factor matrices by normalizing random matrices
where each entry is sampled from an independent mean-zero Gaussian, with high probability the
latent factors would be orthogonal to any fixed or randomly sampled weight vector. However, one
could argue that such perfect symmetry is in fact not common in real-world datasets. In section
6, we benchmark our algorithm on both synthetic and real-world datasets, and we find that this
assumption on side information is in fact satisfied for the real-world datasets derived from traffic
and MRI measurements. We conjecture that in fact many real-world datasets are not perfectly
symmetric, such that the naive all ones weight vector would perform well; this only requires that
the sums of the latent factors are not too close to zero.

The ability to collect a limited amount of active samples could alternately replace the requirement
for side information. If for each mode ℓ ∈ [C] we actively sampled an entire mode-ℓ fiber at random,
then the sampled vector could be used as the weight vector,ℓ . The mode-ℓ fiber lies in the desired
column space by definition, and by sampling a fiber at random, it is likely that the sampled vector
would satisfy the required conditions. This suggests that given a budget of C= active samples, we
could produce a consistent estimate of the full tensor with nearly linear sample complexity, in
contrast to the =C/2 sample complexity without the active samples. This is consistent to the result
in [40], which states that with an active sampling scheme, one can estimate the full tensor with
$ (AC=) samples by directly estimating the latent subspaces from the actively sampled datapoints.
Our result shows that limited ability to collect samples actively, can still be immensely beneficial
even if the active samples are not sufficient themselves to fully recover the tensor.

5.3 Proof Sketch

While we defer the formal proof to the appendix, we give the rough intuition and sketch of the

proof here. The main property that the approach hinges on is that the column space of E
[
">1B

~I

]
is

the same as the column space of )(~) , and furthermore the matrix">1B
~I resulting from collapsing

the tensor satisfies the desired regularity conditions in order to use a similar analysis as [5].
First, we show that the expected value of the constructed matrix, with respect to the additive

noise terms and the sampling distribution conditioned on the latent variables, indeed shares the
same column space as the original tensor.

E

[
">1B

~I (0, 1)
��� (0, 1) ∈ Ω̃, {Gℓ (8)}

]
(17)

= E

[ ∑
i∈I~I (0,1) )

>1B
1 (i)∏ℓ∈[C ]\{~,I },ℓ (8ℓ )
|Ω ∩ I~I (0, 1) |

����� (0, 1) ∈ Ω̃, {Gℓ (8)}
]

(18)

=

∑
i∈I~I (0,1)

E


) (i)

∏
ℓ∈[C ]\{~,I }

,ℓ (8ℓ )

������ {Gℓ (8)}

E

[
1[i∈Ω]

|Ω ∩ I~I (0, 1) |

���� (0, 1) ∈ Ω̃

]
(19)
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=

∑
i∈I~I (0,1)

∑
k∈[A ]C

Λ(k)@~:~ (G~ (0))@I:I (GI (1))
∏

ℓ∈[C ]\{~,I }
@ℓ:ℓ (Gℓ (8ℓ ))Fℓ (Gℓ (8ℓ ))

1

=C−2
(20)

=

∑
9,ℎ∈[A ]2

@~ 9 (G~ (0))@Iℎ (GI (1))
∑

k∈J~I ( 9,ℎ)
Λ(k)

∏
ℓ∈[C ]\{~,I }

1

=

=∑
8=1

@ℓ:ℓ (Gℓ (8))Fℓ (Gℓ (8)) (21)

= 4)0&~Λ̂&
)
I 41 (22)

for matrix Λ̂ as defined in (16). If we take expectation with respect to the latent variables, then it

follows that Λ̂ concencentrates around Λ̃~I , which is full rank by Assumption 5. Let the SVD of

Λ̂ be denoted *̂ Σ̂+̂) , where the diagonal entries of Σ̂ are denoted as f̂1 . . . f̂A . Let &̃~ = &~*̂ and

&̃I = &I+̂ with the associated latent functions @̃~: , @̃I: defined similarly. It follows then that">1B
~I

is modeled by a latent variable model where the latent function is low rank and !-Lipshitz.

E

[
">1B

~I (0, 1) | (0, 1) ∈ Ω̃

]
= 4)0 &̃~ Σ̂&̃

)
I 41 =: 5̃ (G~ (0), GI (1)) . (23)

We can verify that the associated latent functions also exhibit orthonormality, e.g.

∫ 1

0
@̃~: (G)@̃~ℎ (G)3G =

∫ 1

0

©­«
∑
8∈[A ]

@~8 (G)*̂ (8, :)ª®¬
©­«
∑
9 ∈[A ]

@~ 9 (G)*̂ ( 9, ℎ)ª®¬
3G (24)

=

∑
8, 9 ∈[A ]2

*̂ (8, :)*̂ ( 9, ℎ)
∫ 1

0
@~8 (G)@~ 9 (G)3G = 1[:=ℎ] . (25)

Let �̃ be an upper bound on the latent functions @̃ℓ: such that |@̃ℓ: (G) | ≤ �̃. Due to boundedness of

the functions @ℓ: , �̃ is at most �A . As a result, the latent function associated to 5̃ (G~ (0), GI (1)) is
rank A with the decomposition

5̃ (G, G ′) =
A∑

:=1

f̂:@̃~: (G)@̃~: (G ′). (26)

Furthermore we can verify that 5̃ is also !-Lipschitz, inheriting the property from the latent function
5 . We use 5 (G~, GI, x−~I (i)) to denote the latent function 5 evaluated at the vector having values G~
and GI in the ~ and I coordinates, and having values Gℓ (8) for all other coordinates ℓ ∈ [C] \ {~, I}.

| 5̃ (G~, GI) − 5̃ (G ′~, G ′I) | =

������
1

=C−2

∑
i∈[=]C−2

(5 (G~, GI, x−~I (i)) − 5 (G ′~, G ′I, x−~I (i)))
∏

ℓ∈[C ]\{~,I }
,ℓ (8ℓ )

������
≤ ! |G~ − G ′~ | + ! |GI − G ′I | (27)

where the last inequality follows from Lipschitzness of 5 as well as the boundedness assumption on
|,ℓ (8ℓ ) | ≤ 1. This setup nearly satisfies the same data generating model that is used in [5]. A minor
difference is that our model is asymmetric, however this leads to very little change in the analysis.
The key difference in our model is that the distribution over">1B

~I (0, 1) is more involved as it arises
from the averaging of values over the other modes of the tensor. Furthermore we consider a wider
range of densities ?̃ , from as sparse as $ (=−1+^) to as dense as constant.
The proof relies on Lemma 1, stated below, which shows that the estimated distances that our

algorithm produces will approximate a function of the true distances with respect to the tensor
latent factors. The first step is to argue that the sparsity of the observed local neighborhood graph
grows sufficiently quickly, which follows from standard arguments for the properties of an Erdos-
Renyi graph that results from the Bernoulli sampling model. The second step is a careful martingale
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concentration argument to show that 4)
:
&̃~#̃0,9 ≈ 4)

:
Σ̂
9&̃~40 . The third step is to use show that

� (0, 0′) concentrates around #̃)
0,B&̃

)
~ Σ̂&̃I#̃0′,B+1. Standard applications of concentration inequalities

yield results that are too loose when ? is very sparse, i.e. ? = =−(C−1)+^ for ^ ∈ (0, 1). As a result
we define a “truncated” modification of � (0, 0′), which can be shown to concentrate well via a
standard application of Bernstein’s inequality, and we use the sparsity condition to argue that the
truncated modification of � (0, 0′) is in fact equal to � (0, 0′) with high probability.

Lemma 1. Assume ? = =−(C−1)+^ for ^ > 0. Let ?̃ = 1 − (1 − ?)=C−2 . With probability 1 − 6(1+> (1))
C=

,

3̂~ (0, 0′) computed from (8) satisfies

max
0,0′∈[=]2

|3̂~ (0, 0′) − ‖Σ̂B+1&̃)
~ (40 − 40′)‖22 | ≤

5A�f̂B+1max (1 + f̂Bmax) log1/2 (CA=2) (1 + > (1))
(=?̃)1/2

.

Next Lemma 2 uses the Lipschitz and latent variable model assumptions to argue that there are

sufficiently many nearest neighbors with respect to the distances defined by ‖Σ̂B+1&̃)
~ (40 − 40′)‖22.

Lemma 2. For any 8 ∈ [=], ℓ ∈ [C], [ ′ > 0

P
©­«

∑
8′≠8∈[=]

1[ ‖Σ̂B+1&̃)
~ (40−40′ ) ‖22≤[′] ≤ (1 − X) (= − 1)

√
[ ′

f̂Bmax!

ª®¬
≤ exp

(
−X

2 (= − 1)√[ ′
2f̂Bmax!

)
.

The final steps of the proof of the main theorem follow from a straightforward analysis of the
nearest neighbor averaging estimator given the estimated distances.

6 EXPERIMENTS

We provide a sequence of experiments ranging from synthetic to real-world datasets in order to
understand the performance of our proposed algorithm as compared against state-of-the-art tensor
completion algorithms. We benchmark the algorithms in the following four datasets.

Synthetic: We generate Gaussian matrices * ,+ ,, ∈ R100×10, with entries that are independently
sampled from # (1, 1). We sample a diagonal core tensor ( ∈ [0, 1]10×10×10, where each of the 10
diagonal entries is sampled from* [0, 1]. Let / = (* ⊗+ ⊗, ) · (() be the multilinear multiplication
of the core tensor ( with the latent factor matrices * ,+ ,, . We then construct the ground truth
tensor by normalizing / so that |) (8, 9, :) | ≤ 1, according to ) = //max8, 9,: |/ (8, 9, :) |. The ground
truth tensor has rank 10 and dimensions 100 × 100 × 100. For each observed location (8, 9, :) ∈ Ω,
we add zero mean Gaussian observation noise with variance f2, for f = 0.1.

MRI:We construct a dataset in which the tensor ) is a scaled version of a volumetric MRI brain-
scan. We used a volumetric MRI brain-scan dataset from the MIRIAD dataset, which contains brain
scans of Alzheimer’s sufferers and healthy elderly people [26]. We used a single MRI scan from the
dataset, which is represented as a 256 × 256 × 124 tensor. We normalized the data such that the
absolute value is bounded by 1. We do not add additional noise to the measurements, but study the
performance under sparse sampling.

Traffic:We use the urban traffic speed dataset of Guangzhou, China from [11]. This is a dataset
which consists of speed measurements from 214 anonymous road segments (consisting of urban
expressways and arterials) from Guangzhou, China. The measurements were collected at 10-minute
intervals from August 1, 2016 to September 30, 2016. The dataset is represented as a 214 × 61 × 144
tensor, where the modes correspond to road segment, day, and time window.We normalized the data
such that the absolute value is bounded by 1. We do not add additional noise to the measurements,
but study the performance under sparse sampling.
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Random 3XOR:We generate an instance of tensor completion which embeds a 3XOR formula, as
described in [1]. We randomly sample a latent vector 0 ∈ {−1, +1}= , where 08 independently takes
values −1 or +1 each with probability 1/2. For each observed index (8, 9, :) ∈ Ω,

)>1B (8, 9, :) =
{
080 90: with prob 15/16,
−080 90: with prob 1/16.

The expected tensor is rank 1, given by ) =
7
8
0 ⊗ 0 ⊗ 0, such that E

[
)>1B (i)

]
= ) (i) for all i ∈ Ω.

We will use the naïve all ones weight vector for the “side information”. While this does not
inherently encode extra information, we will see that the algorithm performs well for the Synthetic,
MRI, and Traffic datasets. To verify the required condition on the weight vector, we took each of the
ground truth tensors ) , computed the true latent factor matrices, and computed the inner product
between the column in the latent factor matrices and the all ones vector. For the Synthetic, MRI,
and Traffic datasets, the minimum inner product across all modes and latent factors is 0.135, 0.0149,
and 0.000992, respectively. This supports our conjecture that real-world datasets are not perfectly
symmetric, such that a naïve choice of weight vector may indeed suffice. In contrast, the inner
product between the all ones vector and the latent factor in the 3XOR setting is as small as
9.71 × 10−17. Consistent with the intuition from our analysis, our algorithm performs poorly for
the random 3XOR dataset, as the latent factor is orthogonal to the weight vector.

6.1 Implementation Details of Our Proposed Algorithm

The key idea of our proposed algorithm is to reduce the tensor latent subspace estimation task to the
simpler matrix latent subspace estimation task over a small matrix. We include implementations of
three variations of our algorithm arising from different choices for Phases 1 and 2 of the algorithm.

• ICF_NN denotes the original algorithm as presented in Section 4.1, which consists of esti-
mating distances in Phase 1 followed by nearest neighbor averaging in Phase 2.

• ICF_LS denotes the algorithm which uses Phase 1 from Section 4.1, which estimates latent
subspaces via the estimated distances as described in Step 4, followed by least squares
minimization for Phase 2 as presented in Section 4.2.

• ALS_LS denotes the algorithm presented in Section 4.2, using alternating least squares [39]
for matrix estimation in Phase 1, followed by least squares minimization in Phase 2.

The depth parameter used in steps 2 and 3 of estimating distances in Phase 1 is chosen to be B = 1.
The threshold for the nearest neighbor averaging in Phase 2 is chosen to be the 10th percentile of
the estimated distances. We found that the algorithm performed well even without optimizing the
hyperparameters; naturally the least squares variant (which has no hyperparameters) performed
better than the nearest neighbor variant with the above fixed choice of hyperparameters. The rank
hyperparameter for least squares minimization in Phase 2 is set to 10 along each mode for the
Synthetic, MRI, and Traffic datasets, and set to 1 along each mode for the random 3XOR dataset.

6.2 Other Algorithms for Comparison

As a simple baseline, we compare with the naïve average, which simply fills in all missing entries
with the average of all observed datapoints. When the data is extremely sparse, the benchmarked
algorithms start to degrade significantly such that they perform worse than the naïve average. In
addition, we compare against the following state of the art tensor completion algorithms. As all
of these algorithms are iterative, the stopping criteria is met after a certain number of iterations
(specified below) or when the difference between the iterates falls below a tolerance of 10−5.
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TenALS: Tensor alternating least squares (TenALS) uses an alternating minimization based method
to solve a non-convex least square problem, initializing with a tensor power method [20]. The
authors prove that under incoherence assumptions, TenALS can provably recover a three-mode
= × = × = dimensional rank-A tensor exactly from $ (=3/2A 5 log4 =) randomly sampled entries [20].
We set the rank hyperparameter of TenALS to 10 for the Synthetic, MRI, and Traffic datasets, and
we set it to 1 for the random 3XOR dataset. We use the default of 10 initializations and 50 iterations.

LRTC: Low rank tensor completion (LRTC) refers to a class of algorithms minimizing a variant of
the tensor nuclear norm, which is a weighted average of the nuclear norms of all matrices unfolded
along each mode [25]. The authors do not provide statistical guarantees for their algorithms.
We benchmark against SiLRTC, which uses block coordinate descent, and HaLRTC, which uses
alternating direction method of multipliers (ADMM). For SiLRTC, we set the hyperparameters as:
U = ( 13 ,

1
3 ,

1
3 ) and V = (1, 1, 1). Due to slow convergence, we set the number of maximum iterations

to be 1000. For HaLRTC, we set the weights as U = ( 13 ,
1
3 ,

1
3 ). We adaptively increase the Lagrangian

multiplier, setting the initial value to be 10−2, and increasing the multiplier by a factor of 1.1 in
each iteration. The upper bound for the multiplier is set to be 1010, and the number of maximum
iterations is set to be 500.

TNN: [42] proposed a tensor nuclear norm (TNN) minimization algorithmwhich uses a definition of
tensor nuclear norm constructed from the tensor-Singular Value Decomposition (t-SVD) proposed
in [21]. Under incoherence condtions, TNN can provably recover a three-mode =×=×= dimensional
rank-A tensor exactly from $ (=2A log=) randomly sampled entries [41]. To minimize the tensor
nuclear norm penalized objective function, they employ the general framework of ADMM. We set
the initial value of the Lagrange multiplier to be 10−2, and increase it gradually by a factor of 1.1
until it reaches 1010. The number of maximum iterations is set to be 500.

6.3 Empirical Results

In each of these experiments, we specifically pay attention to the performance at extreme levels
of data sparsity, close to the threshold where the algorithms “breaks”, i.e. performs worse than
the naïve average baseline. As a result, we benchmark on values of ? ∈ [0, 0.08]. We evaluate the
algorithm’s performance with respect to the normalized mean squared error (MSE), defined as

Normalized MSE :=

∑
8∈[=1 ]

∑
9 ∈[=2 ]

∑
:∈[=3 ]

(
)̂ (8, 9, :) −) (8, 9, :)

)2
∑

8∈[=1 ]
∑

9 ∈[=2 ]
∑

:∈[=3 ] ) (8, 9, :)2

Figure 4 plots the normalized MSE achieved by the output of each algorithm as a function of the
data sparsity ? . The scale of the x-axis for each plot are set differently in order to highlight the
results at the sparsest regimes near the lower threshold of performance. The scale of the y-axis
for each plot are set to highlight the performance relative to the naïve average baseline, which
is depicted by the red dashed line. Let us first focus on the results from the Synthetic, MRI, and
Traffic datasets. Firstly, we notice that ICF_LS consistently performs the best in the sparsest regimes
relative to any other algorithm, followed by ALS_LS and ICF_NN. This suggests that our proposed
algorithm in fact does do well in addressing data-poor settings. TenALS and HaLRTC perform very
poorly in these sparse regimes, at times having MSE that is orders of magnitude higher than the
average baseline (and thus not depicted in Figure 4). TNN and SiLRTC give reasonable performance,
though it degrades more quickly than our proposed algorithms as the data becomes sparser. These
experiments validate that our approach of reducing the tensor to a significantly smaller matrix to
estimate the latent subspaces in fact does allow the algorithm to perform well at extreme levels of
sparsity, even when the “side information” weight vector is naïvely chosen to be the all ones vector.
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7 APPENDIX A: PROOFS

7.1 Proof of Main Theorem

The proof of the main theorem uses Lemmas 2 and 1, whose proofs we defer to Sections 7.2 and
7.3. Given the results in these lemmas, the remaining proof of the main theorem follows from a
straightforward analysis of the nearest neighbor averaging estimator given the estimated distances.
Proof of Theorem 1: Recall that our final estimate is computed via a nearest neighbor,

)̂ (i) =
∑

i′ )
>1B
3 (i′) (i, i′)∑

i′ 1[i′∈Ω3 ] (i, i′)
where  (i, i′) =

∏
ℓ∈[C ]

1[
3̂ℓ (8ℓ ,8′ℓ ) ≤[

] .
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We can decompose the entrywise error into a bias term and an observation noise term,

|)̂ (i) −) (i) | =
∑

i′ 1[i′∈Ω3 ] (i, i′) |) (i′) −) (i) |∑
i′ 1[i′∈Ω3 ] (i, i′)

+
�����
∑

i′ 1[i′∈Ω3 ] (i, i′) ()>1B
3 (i′) −) (i′))∑

i′ 1[i′∈Ω3 ] (i, i′)

����� .
Let us denote d~ (ℎ) =

∑
k∈[A ]C Λ(k)1[:~=ℎ] . The bias term we can bound by

|) (i′) −) (i) | =

������
∑

k∈[A ]C
Λ(k) ©­«

∏
ℓ∈[C ]

@ℓ:ℓ (Gℓ (8ℓ )) −
∏
ℓ∈[C ]

@ℓ:ℓ (Gℓ (8 ′ℓ ))
ª®¬
������

≤
∑
ℓ∈[C ]

������
∑

k∈[A ]C
Λ(k)

∏
ℓ′<ℓ

@ℓ′:ℓ′ (Gℓ′) (@ℓ:ℓ (Gℓ (8ℓ )) − @ℓ:ℓ (Gℓ (8
′
ℓ )))

∏
ℓ′′>ℓ

@ℓ′′:ℓ′′ (Gℓ′′ (8ℓ′′))

������
≤

∑
ℓ∈[C ]

�C−1

������
∑
ℎ∈[A ]

(@ℓℎ (Gℓ (8ℓ )) − @ℓℎ (Gℓ (8 ′ℓ )))dℓ (ℎ)

������
≤

∑
ℓ∈[C ]

�C−1
√
A

∑
ℎ∈[A ]

(@ℓℎ (Gℓ (8ℓ )) − @ℓℎ (Gℓ (8 ′ℓ )))2dℓ (ℎ)2

≤ �C−1
√
A

∑
ℓ∈[C ]

max
ℎ∈[A ]

|dℓ (ℎ) |
√
‖&)

ℓ (48ℓ − 48′ℓ )‖
2
2,

where we used the assumption that maxℓ,: supG |@ℓ: (G) | ≤ �. By construction, Λ̂ = *̂ Σ̂+̂) and

&̃~ = &~*̂ where *̂ and +̂ are orthonormal such that

‖Σ̂B+1&̃)
~ (40 − 40′)‖22 = (40 − 40′)) &̃~ Σ̂

2(B+1)&̃)
~ (40 − 40′)

= (40 − 40′))&~ (Λ̂Λ̂) ) (B+1)&~ (40 − 40′)

≥ f̂2(B+1)min ‖&)
~ (40 − 40′)‖22.

Let dmax := maxℓ∈[C ]ℎ∈[A ] |dℓ (ℎ) |. It follows then that,

|) (i′) −) (i) | ≤ �C−1
√
Admaxf̂

−(B+1)
min

∑
ℓ∈[C ]

‖Σ̂B+1&̃)
ℓ (48ℓ − 48′ℓ )‖2 . (28)

By construction, if  (i, i′) > 0, then for all ℓ ∈ [C], 3̂ℓ (8ℓ , 8 ′ℓ ) ≤ [. Conditioned on the good event
from Lemma 1, it follows that for i, i′ such that  (i, i′) > 0 and for all ℓ ∈ [C],

‖Σ̂B+1&̃)
ℓ (48ℓ − 48′ℓ )‖

2
2 ≤ [ +

5A�f̂B+1max (1 + f̂Bmax) log1/2 (CA=2) (1 + > (1))
(=?̃)1/2

.

Let �3 = 5A�f̂B+1max (1 + f̂Bmax). Next we argue that the number of datapoints i′ ∈ Ω3 such that
 (i, i′) > 0 is sufficiently large such that the noise term in the estimate is small. Conditioned on
the good event in Lemmas 1 and 2 with

[ ′ = [ − �3 log
1/2 (CA=2) (1 + > (1))

(=?̃)1/2
,
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it follows that ∑
i′
 (i, i′) ≥

∑
i′

∏
ℓ∈[C ]

1[
‖Σ̂B+1&̃)

ℓ (48ℓ −48′ℓ ) ‖
2
2≤[−

�3 log1/2 (CA=2 ) (1+> (1) )
(=?̃ )1/2

]

=

∏
ℓ∈[C ]

©­«
1 +

∑
8′≠8ℓ

1[
‖Σ̂B+1&̃)

ℓ (48ℓ −48′ℓ ) ‖
2
2≤[−

�3 log1/2 (CA=2 ) (1+> (1) )
(=?̃ )1/2

]ª®¬
≥ ©­«

1 + (1 − X) (= − 1)
f̂Bmax!

√
[ − �3 log

1/2 (CA=2) (1 + > (1))
(=?̃)1/2

ª®¬
C

. (29)

We assumed that Ω3 is a freshly sampled dataset such that
∑

i′ 1[i′∈Ω3 ] (i, i′) is distributed as a
Binomial(∑i′  (i, i′), ?). By Chernoff’s bound,

P

(∑
i′

1[i′∈Ω3 ] (i, i′) ≤ (1 − W)?
∑
i′
 (i, i′)

)
≤ exp

(
−1

2
W2?

∑
i′
 (i, i′)

)
. (30)

Conditioned on Ω3, the noise terms ()>1B
3 (i′) −) (i′)) are independent, mean zero, and bounded in

[−1, 1]. By Hoeffding’s bound,

P

(�����
∑

i′ 1[i′∈Ω3 ] (i, i′) ()>1B
3 (i′) −) (i′))∑

i′ 1[i′∈Ω3 ] (i, i′)

����� ≥
√

2 log(=C+1)∑
i′ 1[i′∈Ω3 ] (i, i′)

)
≤ 2

=C+1
. (31)

As a result, conditioned on the good events in Lemmas 1 and 2, with probability

1 − 2

=C+1
− exp

©­«
−1

2
W2?

©­«
1 + (1 − X) (= − 1)

f̂Bmax!

√
[ − �3 log

1/2 (CA=2) (1 + > (1))
(=?̃)1/2

ª®¬
Cª®¬
,

for constants X,W , and for

[ ≥ 2�3 log
1/2 (CA=2) (1 + > (1))
(=?̃)1/2

,

it holds that

|)̂ (i) −) (i) |

= C�C−1
√
Admaxf̂

−(B+1)
min

√
[ + �3 log

1/2 (CA=2) (1 + > (1))
(=?̃)1/2

+
√
2 log(=C+1) ©­«

(1 − W)? ©­«
1 + (1 − X) (= − 1)

f̂Bmax!

√
[ − �3 log

1/2 (CA=2) (1 + > (1))
(=?̃)1/2

ª®¬
Cª®¬

− 1
2

= Θ
©­«
C�C−1

√
Admaxf̂

−(B+1)
min

√√√
max

(
[,
A�f̂2B+1max log1/2 (=2)

=^/2

)ª®¬
+ Θ

(√
f̂BCmax!

C log(=C+1)
?=C[C/2

)
.

By choosing [ to balance the two terms, the bound is minimized for

[ = Θ

(
max

(
log1/2 (=2)
(=?̃)1/2

,
log2/(C+2) (=C+1)
=2(^+1)/(C+2)

))
. (32)
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Recall that =?̃ = Θ(=min(^,1) ). For this choice of [, it follows by (29) that with high probability

?
∑
i′
 (i, i′) = Θ

(
? (=

√
[ ′)C

)
= Ω

(
log(=C+1)

[

)
= Ω(=min(^/2,1/2,2(^+1)/(C+2)) ).

We can plug in this bound to simplify (30). Given this choice of[, we can also simplify the probability
of error in Lemma 2 by the fact that

=
√
[ = Θ

(
max

(
=1−min(^,1)/4 log1/4 (=2), =1−(^+1)/(C+2) log1/(C+2) (=C+1)

))
= Ω(=1/2).

As we would like to show the entrywise error bound over all =C entries, we take the intersection
of all the good events and apply union bound. We use Lemma 1 for each of the ℓ ∈ [C] modes. We
use 2 for each of the ℓ ∈ [C] modes and 8 ∈ [=] coordinates. We union bound over all i ∈ [=]C
entries for the bounds in (30) and (31). It follows that for constant X,W , and [ chosen according to
(32), with probability at least

1 − 6C (1 + > (1))
C=

− C= exp
(
−X

2 (= − 1)√[ ′
2f̂Bmax!

)
− =C exp

(
−1

2
W2?

∑
i′
 (i, i′)

)
− =C

(
2

=C+1

)

= 1 − 8(1 + > (1))
=

− C= exp
(
−Ω(=1/2)

)
− =C exp

(
−=min(^/2,1/2,2(^+1)/(C+2))

)
= 1 − 8(1 + > (1))

=
,

the estimate output by our algorithm satisfies

max
i∈[=]C

|)̂ (i) −) (i) | = $
(
max

(
log1/4 (=2)
=min(^,1)/4 ,

log1/(C+2) (=C+1)
= (^+1)/(C+2)

))
.

It follows then that

E


1

=C

∑
i∈[=]C

()̂ (i) −) (i))2

= $

(
max

(
log1/2 (=2)
=min(^,1)/2 ,

log2/(C+2) (=C+1)
=2(^+1)/(C+2)

))
.

�

7.2 Sufficiently Many Nearest Neighbors

In this section, we prove Lemma 2, which states that there are sufficiently many nearest neighbors.
Proof of Lemma 2: By construction,

‖Σ̂B+1&̃)
~ (40 − 40′)‖22 ≤ f̂2Bmax‖Σ̂&̃)

~ (40 − 40′)‖22

= f̂2Bmax

∫
01
( 5̃ (G~ (0), G ′) − 5̃ (G~ (0′), G ′))23G ′

≤ f̂2Bmax!
2 (G~ (0) − G~ (0′))2

where the last inequality follows from Lipschitzness of 5̃ as shown in (27). As a result, for any

[ ′ > 0, if |Gℓ (8) − Gℓ (8 ′) | ≤
√
[′

f̂B
max!

, then ‖Σ̂B+1&̃)
~ (40 − 40′)‖22 ≤ [ ′. By the model assumption that for

8 ∈ [=], the latent variables Gℓ (8) are sampled i.i.d., it follows that for any 8 ∈ [=],∑
8′≠8∈[=]

1[ ‖Σ̂B+1&̃)
~ (40−40′ ) ‖22≤[′]

stochastically dominates a Binomial
(
= − 1,

√
[′

f̂B
max!

)
distributed random variable. Therefore the lemma

statement follows by Chernoff’s bound. �
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7.3 Concentration of Distance Estimates

This section focuses on proving the key Lemma 1, which shows that the estimated distances

concentrate well. We will assume ? = =−(C−1)+^ for ^ > 0; it follows then that B = ⌈ ln(=)
ln(?=C−1) ⌉ = ⌈ 1

^
⌉.

When ^ < 1, then ?̃ = Θ(=^−1) such that ?̃ = > (1). When ^ ≥ 1, then ?̃ = Θ(1) and the constructed
matrix">1B

~I is dense.
Let us denote event

A1
0,B (X,�) = ∪B−1

ℓ=1{|S0,ℓ | ∈ [((1−X)=?̃)ℓ (1−> (1)), ((1+X)=?̃)ℓ ]}∪{|S0,B | ≥ �=}∪{|S0,B+1 | ≥ �=}.

Lemma 3. Assume ? = =−(C−1)+^ for ^ > 0. For B = ⌈ 1
^
⌉ and any X ∈ (0, 1) and 0 ∈ [=], there exists

some constant � such that

P
(
¬A1

0,B (�)
)
≤ 2 exp

(
−X

2 (=?̃) (1 − > (1))
3

)
.

The proof is deferred to Section 7.4.

Recall that f̂: denotes the :-th singular value of the matrix Λ̂ defined in (16), and Σ̂ is the diagonal
matrix with f̂: on the :-th diagonal entry.
Let us denote event

A2
0,9,: (X) =




{
|4)
:
&̃~#̃0,9 − 4): Σ̂

9&̃~40 | ≤
f̂
9−1
:

log1/2 (CA=2)
( (1−X)=?̃)1/2

}
if 9 is even,{

|4)
:
&̃I#̃0,9 − 4): Σ̂

9&̃~40 | ≤
f̂
9−1
:

log1/2 (CA=2)
( (1−X)=?̃)1/2

}
if 9 is odd.

Lemma 4. Assume ? = =−(C−1)+^ for ^ > 0. For B = ⌈ 1
^
⌉, constants X ∈ (0, 1) and � , and any

0 ∈ [=], : ∈ [A ], 9 ∈ [B + 1],

P

(
¬A2

0,9,: (X) | A
1
0,B (X,�),

{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I }

)
≤ 2(1 + > (1))

CA=2
,

where T = [C] \ {~, I}.

The proof is deferred to Section 7.5.
If B is even, let us denote event

A3
0,0′ =

{ ���� (0, 0′) − #̃)
0,B&̃

)
~ Σ̂&̃I#̃0′,B+1

���
≤ max

(
2 log1/2 (C=3)

(?=C−2 |S0,B | |S0′,B+1 |)1/2
,

8 log(C=3)
3|S0,B | |S0′,B+1 |

)
(1 + > (1))

}
.

and if B is odd, let us denote event

A3
0,0′ =

{ ��� (0, 0′) − #̃)
0,B&̃

)
I Σ̂&̃~#̃0′,B+1

��

≤ max

(
2 log1/2 (C=3)

(?=C−2 |S0,B | |S0′,B+1 |)1/2
,

8 log(C=3)
3|S0,B | |S0′,B+1 |

)
(1 + > (1))

}
.
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Lemma 5. Assume ? = =−(C−1)+^ for ^ > 0. For B = ⌈ 1
^
⌉, constants X ∈ (0, 1) and � , and any

0, 0′ ∈ [=], it holds that

P

(
¬A3

0,0′ (q) | A1
0,B (X,�),∩A

:=1A
2
0,B,: (X),A

1
0′,B (X,�),∩A

:=1A
2
0′,B+1,: (X), {{Gℓ (8)}8∈[=]}ℓ∈[C ]\{~,I }

)
≤ 2

C=3
+ 1

=6
.

The proof is deferred to Section 7.6.

Proof of Lemma 1: Conditioned on events A1
0,B (X,�),A1

0′,B (X,�),∩A
:=1

A2
0,B,:

(X),∩A
:=1

A2
0′,B+1,: (X),

if B is even,

|#̃)
0,B&̃

)
~ Σ̂&̃I#̃0′,B+1 − 4)0 &̃)

~ Σ̂
2B+2&̃~40′ |

=

�����
∑
:

f̂: (4): &̃~#̃0,B ) (4): &̃I#̃0′,B+1 − 4): Σ̂
B+1&̃~40′) +

∑
:

f̂: (4): &̃~#̃0,B − 4): Σ̂
B&̃~40) (4): Σ̂

B+1&̃~40′)
�����

≤ �
∑
:

f̂B+1
:

log1/2 (CA=2)
((1 − X)=?̃)1/2

+ �
∑
:

f̂2B+1
:

log1/2 (CA=2)
((1 − X)=?̃)1/2

≤ A�f̂B+1max (1 + f̂Bmax) log1/2 (CA=2)
((1 − X)=?̃)1/2

.

When B is odd, a similar argument shows that

|#̃)
0,B&̃

)
I Σ̂&̃~#̃0′,B+1 − 4)0 &̃)

~ Σ̂
2B+2&̃~40′ | ≤

A�f̂B+1max (1 + f̂Bmax) log1/2 (CA=2)
((1 − X)=?̃)1/2

.

To put it all together, conditioned on eventsA1
0,B (X,�),A1

0′,B (X,�),∩A
:=1

(A2
0,B,:

(X) ∩A2
0,B+1,: (X)),

∩A
:=1

(A2
0′,B,: (X) ∩ A2

0′,B+1,: (X)),A
3
0,0′ (q),A3

0,0 (q),A3
0′,0 (q),A3

0′,0′ (q), for constant X ,

|3̂~ (0, 0′) − ‖Σ̂B+1&̃)
~ (40 − 40′)‖22 | ≤ max

(
8 log1/2 (C=3)

(?=C−2 |S0,B | |S0′,B+1 |)1/2
,

32 log(C=3)
3|S0,B | |S0′,B+1 |

)
(1 + > (1))

+ 4A�f̂B+1max (1 + f̂Bmax) log1/2 (CA=2)
((1 − X)=?̃)1/2

The first term scales as Θ
(
max( log

1/2 (C=3)
= (1+^ )/2 ,

log(C=3)
=2 )

)
and the second term scales as Θ

(
log1/2 (CA=2)

min(=^/2,=1/2)

)
The first term is always dominated by the second term. We plug in a choice of X =

9
25 to get the

final bound.

To guarantee this bound on the distance estimates for all pairs0, 0′ ∈ [=]2, we take the intersection
of the good events over pairs 0, 0′ ∈ [=]2. The max bound on the distance estimates hold when

events ∩0∈[=]A1
0,B (X,�),∩0∈[=] ∩A

:=1
(A2

0,B,:
(X) ∩ A2

0,B+1,: (X)),∩0,0′∈[=]2A3
0,0′ (!) hold. By Lemmas

3, 4, 5 and union bound, for constant X , these good events hold with probability at least

1 − 2= exp

(
−X

2=^ (1 − > (1))
3

)
− 4A=(1 + > (1))

CA=2
− 2=2

C=3
− 1

=6
= 1 − 6(1 + > (1))

C=
.

�

7.4 Rate of Local Neighborhood Growth

Proof of Lemma 3: We first handle the setting that ? = =−(C−1)+^ for ^ ≥ 1. By definition,

?̃ = (1 − (1 − ?)=C−2 ) = (1 − (1 − =^−1

=C−2
)=C−2 ).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 39. Publication date: June 2022.



39:28 Christina Lee Yu and Xumei Xi

Recall that 4−G = lim=→∞ (1 + −G
=
)= . Therefore for ^ = 1, ?̃ → 1 − 4−1 = Θ(1). For ^ > 1, then

?̃ → 1 = Θ(1). As a result, in the setting where ^ ≥ 1, the density of observations ?̃ in our
constructed matrix is constant. For B = 1, |S0,B | ∼ Binomial(=, ?̃). By Chernoff’s bound, it holds
that for � = (1 − X)?̃ = Θ(1),

P
(
|S0,B | ≥ �=

)
≥ 1 − exp

(
−X

2 (=?̃)
3

)
.

Conditioned on |S0,B | ≥ �=, |S0,B+1 | ∼ Binomial(=−1, 1−(1−?̃) |S0,B |). As 1−?̃ < 1 and |S0,B | = l (1),
then 1 − (1 − ?̃) |S0,B | → 1. By Chernoff’s bound, it holds that for � = (1 − X)?̃ = Θ(1),

P
(
|S0,B+1 | ≥ �=

�� |S0,B | ≥ �=
)
≥ 1 − exp

(
− (1 −�)2=

3

)
.

For X ∈ (0, 1), we can verify that (1 −�)2 ≥ X .
We next address the ultra-sparse setting where ? = =−(C−1)+^ for ^ ∈ (0, 1), such that ?̃ =

1 − (1 − ?)=C−2 = Θ(=^−1) = > (1). Recall that our graph is bipartite between vertex sets V1 = [=]
andV2 = [=]. Without loss of generality, assume that 0 ∈ V1. Let F0,ℎ denote the sigma-algebra
containing information about the latent parameters, edges and the values associated with vertices
in the bipartite graph up to distance ℎ from 0, i.e. the depth ℎ radius neighborhood of 0.

Let ?0,ℓ = 1 − (1 − ?̃) |S0,ℓ−1 | , and let

=0,ℓ =

{
|V2 \ ∪ ⌊ℓ/2⌋−1

8=0 S0,28+1 | if ℓ is odd

|V1 \ ∪ℓ/2−1
8=0 S0,28 | if ℓ is even.

For depth ℓ , conditioned on Fℓ−1, |S0,ℓ | is distributed according to a Binomial with parameters
(=0,ℓ , ?0,n ). It follows by Chernoff’s bound that

P( |S0,ℓ | ∉ (1 ± X)=0,ℓ?0,ℓ | F0,ℓ−1) ≤ 2 exp

(
−X

2=0,ℓ?0,ℓ

3

)
.

Let us define the following event Ã0,ℎ ,

Ã0,ℎ = ∩ℎ
ℓ=1{|S0,ℓ | ∉ (1 ± X)=0,ℓ?0,ℓ }.

Next we argue that for B = ⌈ 1
^
⌉, event Ã0,B implies that for all ℓ ∈ [B − 1],

{|S0,ℓ | ∈ [((1 − X)=?̃)ℓ (1 − > (1)), ((1 + X)=?̃)ℓ ]},

|S0,B | = Θ(=), and |S0,B+1 | = Θ(=).
We first prove the upper bounds on |S0,ℓ |. Naively, |S0,ℓ | ≤ =. Conditioned on Ã0,B ,

|S0,ℓ | ≤ (1 + X)=0,ℓ?0,ℓ

≤ (1 + X)=
(
1 − (1 − ?̃) |S0,ℓ−1 |

)
≤ (1 + X)=?̃ |S0,ℓ−1 |.

By inductively repeating this argument and using the fact that |S0,0 | = 1, it follow that

|S0,ℓ | ≤ ((1 + X)=?̃)ℓ .

For ℓ < 1
^
, (=?̃)ℓ = > (=).
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Next we prove the lower bounds on |S0,ℓ | for ℓ ∈ [B + 1]. Let us assume without loss of generality

that ℓ is even (same argument holds for ℓ odd). Conditioned on Ã0,B ,

=0,ℓ ≥ = −
ℓ/2−1∑
8=0

|S0,28 |

≥ = −
ℓ/2−1∑
8=0

((1 + X)=?̃)28

= =(1 − > (1))

The last step follows from the fact that 28 ≤ ℓ − 2 ≤ ⌈ 1
^
⌉ − 1 <

1
^
, such that ((1 + X)=?̃)28 = > (1).

Furthermore our choice of B guarantees it to be a constant (as ^ is constant). Next we want to lower

bound ?0,ℓ . Conditioned on Ã0,B ,

?0,ℓ = 1 − (1 − ?̃) |S0,ℓ−1 | ≥ ?̃ |S0,ℓ−1 | (1 − ?̃ |S0,ℓ−1 |)
This lower bound is only useful when ?̃ |S0,ℓ−1 | = > (1), otherwise the bound could be negative. By
the upper bound on |S0,ℓ−1 |, for ℓ < B , it holds that ?̃ |S0,ℓ−1 | ≤ 1

=
(?̃=)ℓ = > (1). Therefore, for ℓ < B ,

|S0,ℓ | ≥ (1 − X)=0,ℓ?0,ℓ
≥ (1 − X)=(1 − > (1))?̃ |S0,ℓ−1 | (1 − ?̃ |S0,ℓ−1 |)
≥ (1 − X)=(1 − > (1))?̃ |S0,ℓ−1 | (1 − > (1)) .

By inductively repeating this argument and using the fact that |S0,0 | = 1, it follow that for ℓ < B ,

|S0,ℓ | ≥ ((1 + X)=?̃)ℓ (1 − > (1)).
Next we prove that |S0,ℓ | = Ω(=) for ℓ ∈ {B, B + 1}. Recall that 4−G = lim=→∞ (1 + −G

=
)= . For

ℓ ≥ B ≥ 1
^
, using the fact that ?̃ = Θ(=^−1),

?̃ |S0,ℓ−1 | ≥ ?̃ ((1 + X)=?̃) 1−^
^ = Θ(=^−1 ((1 + X)=^) 1−^

^ ) = Θ(1), for some constant > 0.

As a result,

lim
=→∞

(
1 − ?̃ |S0,ℓ−1 |

|S0,ℓ−1 |

) |S0,ℓ−1 |
≤ 4−?̃ |S0,ℓ−1 |

< 1,

which implies that for ℓ ∈ {B, B + 1}, ?0,ℓ ≥ � for some constant � > 0. Therefore, for ℓ < B ,

|S0,ℓ | ≥ (1 − X)=0,ℓ?0,ℓ
≥ (1 − X)=(1 − > (1))�
= Ω(=).

To complete the proof, we use the lower bounds on |S0,ℓ | to reduce the probability bounds.

P(¬Ã0,B+1) = P
(
∪B+1
ℓ=1{|S0,ℓ | ∉ (1 ± X)=0,ℓ?0,ℓ }

)
≤

B+1∑
ℓ=1

P

(
|S0,ℓ | ∉ (1 ± X)=0,ℓ?0,ℓ | Ã0,ℓ−1

)

≤
B+1∑
ℓ=1

2 exp

(
−X

2=0,ℓ?0,ℓ

3

)

≤
B−1∑
ℓ=1

2 exp

(
−X

2 (=?̃)ℓ (1 − > (1))
3

)
+ 4 exp

(
−X

2=�

3

)
.
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Note that the first term significantly dominates the remaining terms, as =?̃ is asymptotically smaller
than = and (=?̃)ℓ for any ℓ > 1. Therefore, the remaining terms get absorbed by the > (1) in the
exponent, leading to

P(¬Ã0,B+1) ≤ 2 exp

(
−X

2 (=?̃) (1 − > (1))
3

)
.

�

7.5 Martingale Concentration of Neighborhood Statistics

Proof of Lemma 4: Assume without loss of generality that 0 ∈ V1. Let us define

.0,ℎ =

{
4)
:
Σ̂
B+1−ℎ&̃)

~ #̃0,ℎ if ℎ is even

4)
:
Σ̂
B+1−ℎ&̃)

I #̃0,ℎ if ℎ is odd

�0,ℎ = .0,ℎ − .0,ℎ−1

so that
∑9

ℎ=1
�0,ℎ = .0,9 − 4): Σ̂

B+1&̃)
~40 . Conditioned on S0,ℓ for all ℓ ∈ [B + 1] and conditioned on all{

{Gℓ (8)}8∈[=]
}
ℓ∈[C ]\{~,I } , let F0,ℎ denote the sigma-algebra containing information about the latent

parameters, edges and the values associated with vertices in the bipartite graph up to distance ℎ
from 0, i.e. the depth ℎ radius neighborhood of 0. This includes G~ (8) and GI (8) for all 8 ∈ ∪ℎ

ℓ=0S0,ℎ ,

as well as ">1B
~I (8, 9) for any edge 8, 9 such that 8 or 9 is at distance at most ℎ − 1 from vertex 0.

Conditioned on F0,ℎ , the BFS tree rooted at vertex 0 up to depth ℎ is measurable, as are quantities

#̃0,ℓ for any ℓ ≤ ℎ.
Wewill show that conditioned onS0,ℓ for all ℓ ∈ [B+1] and conditioned on all

{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I } ,

{(�0,ℎ, Fℎ)} is a martingale difference sequence with controlled conditional variances such that
martingale concentration holds.
Without loss of generality, let’s assume that ℎ is even (the below argument will also follow for

odd ℎ)

�0,ℎ = 4): Σ̂
B+1−ℎ&̃)

~ #̃0,ℎ − 4): Σ̂
B−ℎ&̃)

I #̃0,ℎ−1

= f̂B+1−ℎ: (4): &̃
)
~ #̃0,ℎ − 4): Σ̂&̃

)
I #̃0,ℎ−1)

=
f̂B+1−ℎ
:

|S0,ℎ |
∑

8∈S0,ℎ

(#0,ℎ (8)@̃~: (G~ (8)) − 4): Σ̂&̃
)
I #̃0,ℎ−1).

�0,ℎ can be written as a sum of independent terms -8 for 8 ∈ S0,ℎ ,

-8 =
f̂B+1−ℎ
:

|S0,ℎ |
(
#0,ℎ (8)@̃~: (G~ (8)) − 4): Σ̂&̃

)
I #̃0,ℎ−1

)

=
f̂B+1−ℎ
:

|S0,ℎ |
©­«

∑
1∈S0,ℎ−1

#0,ℎ−1 (1)1[1=c (8) ]"
>1B
~I (8, 1)@̃~: (G~ (8)) − 4): Σ̂&̃

)
I #̃0,ℎ−1

ª®¬
,

where c (8) denote the parent of 8 in the BFS tree. Conditioned on FD,ℎ−1, for any 8 ∈ S0,ℎ , any coordi-
nate 1 ∈ S0,ℎ−1 is equally likely to be the parent of 8 in the BFS tree due to the symmetry/uniformity
of the sampling process. As a result, conditioned on FD,ℎ−1 and 8 ∈ S0,ℎ ,

E [-8 ] =
f̂B+1−ℎ
:

|S0,ℎ | |S0,ℎ−1 |
∑

1∈S0,ℎ−1

#0,ℎ−1 (1)
(
E

[
">1B

~I (8, 1)@̃~: (G~ (8)) | (8, 1) ∈ Ω̃~I

]
− @̃I: (GI (1))f̂:

)
.
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First we verify that

E

[
1[h∈Ω1 ]

|Ω1 ∩ I~I (8, 1) |

���� (8, 1) ∈ Ω̃~I

]

=

=C−2−1∑
6=0

1

1 + 6P
(
h ∈ Ω1, |Ω1 ∩ I~I (8, 1) | = 6 + 1

�� |Ω1 ∩ I~I (8, 1) | ≥ 1
)

=

=C−2−1∑
~=0

1

1 + ~
?
(=C−2−1

6

)
?6 (1 − ?)=C−2−1−6

1 − (1 − ?)=C−2

=
?

1 − (1 − ?)=C−2
=C−2−1∑
6=0

1

?=C−2

(
=C−2

6 + 1

)
?6+1 (1 − ?)=C−2−(6+1)

=
?

1 − (1 − ?)=C−2
1 − (1 − ?)=C−2

?=C−2

=
1

=C−2
.

Conditioned on
{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I } , i.e. all latent variables in modes 3, 4, . . . C , by (23),

E

[
">1B

~I (8, 1)@̃~: (G~ (8)) | (8, 1) ∈ Ω̃~I

]
=

∑
ℎ∈[A ]

f̂ℎ@̃~ℎ (G~ (8))@̃~: (G~ (8))@̃Iℎ (GI (1))

= f̂:@̃I: (GI (1)),

implying that E [-8 ] = 0. Furthermore, as ‖#0,ℎ ‖∞ ≤ 1,

|-8 | ≤
�̃f̂B+1−ℎ

:
(1 + |f̂: |)

|S0,ℎ |
.

Therefore {(�0,ℎ, Fℎ)} is a martingale difference sequence with uniformly bounded differences.

Next we want to establish concentration. Using the model assumptions that |)>1B (i) | ≤ 1 such that
|">1B

~I (8, 1) | ≤ 1 and ‖#0,ℎ ‖∞ ≤ 1, it follows that

Var[-8 | 8 ∈ S0,ℎ] =
f̂
2(B+1−ℎ)
:

|S0,ℎ |2
Var


∑

1∈S0,ℎ−1

#0,ℎ−1 (1)1[1=c (8) ]"
>1B
~I (8, 1)@̃~: (G~ (8))


≤
f̂
2(B+1−ℎ)
:

|S0,ℎ |2
E


∑

1∈S0,ℎ−1

1[1=c (8) ]#
2
0,ℎ−1 (1) ("

>1B
~I (8, 1))2 (@̃~: (G~ (8)))2


≤
f̂
2(B+1−ℎ)
:

|S0,ℎ |2
E


∑

1∈S0,ℎ−1

1

|S0,ℎ−1 |


=
f̂
2(B+1−ℎ)
:

|S0,ℎ |2
.
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Conditioned on {S0,ℓ }ℓ∈[B+1] and
{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I } , it follows that�D,ℎ conditioned on FD,ℎ−1

is sub-exponential with parameters

(
f̂
(B+1−ℎ)
:√
|S0,ℎ |

,
�̃f̂B+1−ℎ

:
(1 + |f̂: |)

|S0,ℎ |

)
.

Conditioned on the event A1
0,B (X,�), the quantity |S0,ℎ | can be lower bounded so that the sub-

exponential parameters are bounded above by

(
f̂
(B+1−ℎ)
:√

((1 − X)=?̃)ℎ (1 − > (1))
,

�̃f̂B+1−ℎ
:

(1 + |f̂: |)
((1 − X)=?̃)ℎ (1 − > (1))

)

for ℎ ∈ [B − 1], and (
f̂
(B+1−ℎ)
:√
�=

,
�̃f̂B+1−ℎ

:
(1 + |f̂: |)
�=

)

for ℎ ∈ {B, B + 1}.
By the Bernstein style bound for martingale concentration, it holds that

∑9

ℎ=1
�0,9 is sub-

exponential with parameters a∗ and U∗ for

a∗ =

√√√min(B−1, 9)∑
ℎ=1

f̂
2(B+1−ℎ)
:

((1 − X)=?̃)ℎ (1 − > (1))
+
f̂2
:
1[B≤ 9 ]

�=
+
1[B+1≤ 9 ]
�=

=
f̂B
:
(1 + > (1))

((1 − X)=?̃)1/2

U∗ = max

(
max

ℎ∈[B−1]

�̃f̂B+1−ℎ
:

(1 + |f̂: |)
((1 − X)=?̃)ℎ (1 − > (1))

,
�̃f̂: (1 + |f̂: |)

�=
,
�̃(1 + |f̂: |)

�=

)

=
�̃f̂B

:
(1 + |f̂: |) (1 + > (1))

(1 − X)=?̃

where we use the fact that for sufficiently large =, ((1 − X)=?̃)−1 asymptotically dominates ((1 −
X)=?̃)−ℎ for any ℎ > 1. For the setting where ^ ≥ 1 and B = 1, we choose constant � = (1 − X)?̃
such that a∗ and U∗ also scale as the expressions above. It follows by Bernstein’s inequality that for

0 < I <
f̂B
:
(1−> (1))

�̃ (1+|f̂: |)
,

P

(
|.0,9 − 4): Σ̂

B+1&̃)
~40 | ≥ \ | A1

0,B (X,�),
{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I }

)
≤ 2 exp

(
− (1 − X)=?̃\ 2 (1 − > (1))

2f̂2B
:

)
.

We will choose \ = f̂B
:
((1 − X)=?̃)−1/2 log1/2 (CA=2), such that with probability 1 − 2(1+> (1))

CA=2 ,

|.0,9 − 4): Σ̂
B+1&̃)

~40 | ≤
f̂B
:
log1/2 (CA=2)

((1 − X)=?̃)1/2
,

which implies event A2
0,9 (X) holds. �
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7.6 Concentration of Inner Product Statistic

Proof of Lemma 5: Recall that we assume)>1B
2 is a fresh data sample (alternatively this assumption

can be removed by sample splitting instead). Let us define the shrinkq operator to be

shrinkq (G) =


q if G > q

G if G ∈ [−q, q]
−q if G < −q

.

Without loss of generality assume B is even (the same argument follows for odd B). Let us define

-8 9 = #0,B (8)#0′,B+1 ( 9)
©­«

∑
h∈I~I (8, 9)

)>1B
2 (h)

∏
ℓ∈[C ]\{~,I }

,ℓ (ℎℓ )
ª®¬

-̃8 9 = #0,B (8)#0′,B+1 ( 9) shrinkq
©­«

∑
h∈I~I (8, 9)

)>1B
2 (8, 9, ℎ)

∏
ℓ∈[C ]\{~,I }

,ℓ (ℎℓ )
ª®¬
.

The statistic � (0, 0′) as defined in (9) can be constructed as sums of -8 9 . We will show that

with high probability -8 9 = -̃8 9 , and additionally
��E [

-8 9

]
− E

[
-̃8 9

] �� is small. As |)>1B (h) | ≤ 1 and

|,ℓ (ℎℓ ) | ≤ 1 by our model assumptions, |∑h∈I~I (8, 9) )
>1B
2 (h)∏ℓ∈[C ]\{~,I },ℓ (ℎℓ ) | ≤ |Ω2 ∩I~I (8, 9) |.

It follows that -8 9 = -̃8 9 whenever |Ω2 ∩ I~I (8, 9) | ≤ q . The difference between their expected
values can be expressed as

��E [
-8 9

]
− E

[
-̃8 9

] �� ≤ 1[8∈S0,B , 9 ∈S0′,B+1]E
[
1[ |Ω2∩I~I (8, 9) |>q] ( |Ω2 ∩ I~I (8, 9) | − q)

]
,

where |Ω2 ∩ I~I (8, 9) | is distributed as Bernoulli(=C−2, ?).
For the setting where ^ ≥ 1, by Chernoff’s bound,

P( |Ω2 ∩ I~I (8, 9) | > q) ≤ exp

(
−q − ?=C−2

3

)

and

E

[
1[ |Ω2∩I~I (8, 9) |>q] ( |Ω2 ∩ I~I (8, 9) | − q)

]
=

∞∑
6=1

P( |Ω2 ∩ I~I (8, 9) | ≥ q + 6)

≤
∞∑
6=1

exp

(
−q + 6 − ?=C−2

3

)

≤ 3 exp

(
−q − ?=C−2

3

)
.

If ^ = 1, we choose q = 24 log(=) such that P( |Ω2 ∩ I~I (8, 9) | > q) and
��E [

-8 9

]
− E

[
-̃8 9

] �� are
bounded by $ (=−8). If ^ > 1, then we choose q = 2?=C−2 such that the P( |Ω2 ∩ I~I (8, 9) | > q) and��E [

-8 9

]
− E

[
-̃8 9

] �� decays exponentially in =, i.e. bounded by exp(−=^−1).
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For the ultra-sparse setting where ^ ∈ (0, 1), we use a different argument as Chernoff’s bound is
not strong enough.

P( |Ω2 ∩ I~I (8, 9) | > q) =
=C−2∑
6=q+1

(
=C−2

6

)
?6 (1 − ?)=C−2−6

< (1 − ?)=C−2
=C−2∑
6=q+1

(
?=C−2

1 − ?

)6

< (1 − ?)=C−2
(
?=C−2

1 − ?

)q+1 (
1 − ?=C−2

1 − ?

)−1

<

(1 − ?)=C−2+1
1 − ? (=C−2 + 1)

(
?=C−2

1 − ?

)q+1
= (?=C−2)q+1 (1 + > (1)) = =−(1−^) (q+1) (1 + > (1)).

Similarly,

E

[
1[ |Ω2∩I~I (8, 9) |>q] ( |Ω2 ∩ I~I (8, 9) | − q)

]
=

=C−2∑
6=q+1

(6 − q)
(
=C−2

6

)
?6 (1 − ?)=C−2−6

≤ (1 − ?)=C−2
=C−2−q∑
6=1

6

(
?=C−2

1 − ?

)6+q

≤ (1 − ?)=C−2
(
?=C−2

1 − ?

)q+1 (
1 − ?=C−2

1 − ?

)−2

=
(1 − ?)=C−2+2

(1 − ? (=C−2 + 1))2

(
?=C−2

1 − ?

)q+1
.

We choose q = ⌈8 ln(=)/ln((?=C−2)−1)⌉ = ⌈8/(1 − ^)⌉, so that P( |Ω2 ∩ I~I (8, 9) | > q) and��E [
-8 9

]
− E

[
-̃8 9

] �� are bounded by $ (=−8). Therefore, by union bound, P(∪8 9 {-8 9 ≠ -̃8 9 }) ≤∑
8 9 P( |Ω2 ∩ I~I (8, 9) | ≥ q) ≤ =−6.
Next, we show that -̃8 9 concentrates around E

[
-̃8 9

]
. As -̃8 9 results from shrinking values of -8 9

towards zero, the variance of -̃8 9 is bounded by the variance of -8 9 . Conditioned on F0,B , F0′,B+1
and

{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I } , i.e. the latent variables for modes C \ {~, I},

Var[-8 9 | F0,B , F0′,B+1,
{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I }]

= # 2
0,B (8)# 2

0′,B+1 ( 9)
∑

h∈I~I (8, 9)

∑
h′∈I~I (8, 9)

Cov[)>1B
2 (h),)>1B

2 (h′)]

= # 2
0,B (8)# 2

0′,B+1 ( 9)
∑

h∈I~I (8, 9)
Var[)>1B

2 (h)]

≤ ?=C−2# 2
0,B (8)# 2

0′,B+1 ( 9).

By independence of -̃8 9 and given that ‖#0,B ‖∞ ≤ 1 and ‖#0′,B+1‖∞ ≤ 1,

Var

[∑
8, 9

-̃8 9

]
≤ ?=C−2 |S0,B | |S0′,B+1 |.
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By construction of the shrink operator, |-̃8 9 | ≤ q . As a result, it follows by Bernstein’s inequality
that

P

( ���∑
8, 9

(-̃8 9 − E
[
-̃8 9

]
)
��� ≥ \

����� F0,B , F0′,B+1,
{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I }

)

≤ 2 exp

(
− 3\ 2

6?=C−2 |S0,B | |S0′,B+1 | + 2q\

)

We choose \ = max
(
2 log1/2 (C=3) (?=C−2 |S0,B | |S0′,B+1 |)1/2, 4q log(C=3)

3

)
, such that the above probabil-

ity is bounded above by 2/C=3. Conditioned onA1
0,B (X,�),A1

0′,B (X,�), it follows that |S0,B | |S0′,B+1 | =
Θ(=) such that ?=C−2 |S0,B | |S0′,B+1 | = Θ(=1+^).
Conditioned on F0,B , F0′,B+1 and

{
{Gℓ (8)}8∈[=]

}
ℓ∈[C ]\{~,I } ,

E

[
-8 9

��� F0,B , F0′,B+1, {{Gℓ (8)}8∈[=]}ℓ∈[C ]\{~,I }
]

= #0,B (8)#0′,B+1 ( 9)
©­«

∑
h∈I~I (8, 9)

E

[
)>1B
2 (h)

] ∏
ℓ∈[C ]\{~,I }

,ℓ (ℎℓ )
ª®¬

= #0,B (8)#0′,B+1 ( 9)?
∑
k

Λ(k)@~:~ (G~ (8))@I:I (GI ( 9))
∏

ℓ∈[C ]\{~,I }

∑
ℎ∈[=]

@ℓ:ℓ (Gℓ (ℎ)),ℓ (ℎ)

= ?#0,B (8)#0′,B+1 ( 9)
∑

0,1∈[A ]2
@~0 (G~ (8))@I1 (GI ( 9))Λ̂(0, 1)=C−2

= ?=C−2#0,B (8)#0′,B+1 ( 9)4)8 &~Λ̂&
)
I 4 9

= ?=C−2#0,B (8)#0′,B+1 ( 9)4)8 &̃~ Σ̂&̃
)
I 4 9

such that
1

?=C−2 |S0,B | |S0′,B+1 |
∑
8, 9

E

[
-8 9

��� F0,B , F0′,B+1, {{Gℓ (8)}8∈[=]}ℓ∈[C ]\{~,I }
]
= #̃)

0,B&̃~ Σ̂&̃
)
I #̃0′,B+1.

For sufficiently large =, conditioned on A1
0,B (X,�),A1

0′,B (X,�),A2
0,B (X),A2

0′,B+1 (X) for constants
X and � , it holds that with probability 1 − 2

C=3 − 1
=6 ,��� (0, 0′) − #̃)

0,B&̃~ Σ̂&̃
)
I #̃0′,B+1

��
≤ max

(
2 log1/2 (C=3)

(?=C−2 |S0,B | |S0′,B+1 |)1/2
,

4q log(C=3)
3?=C−2 |S0,B | |S0′,B+1 |

)
(1 + > (1))

= Θ

(
max

(
log1/2 (C=3)
= (1+^)/2

,
log(C=3)
=2

))
,

where the last equality comes from plugging in the choice of q as

q =



⌈8 ln(=)/ln((?=C−2)−1)⌉ if ?=C−2 = =^−1 for ^ ∈ (0, 1)
24 log(=) if ?=C−2 = Θ(1)
2?=C−2 if ?=C−2 = =^−1 for ^ > 1,

and verifying the above holds for each case of ^ < 1, ^ = 1, and ^ > 1.
�
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