
 1 

High-Throughput Screening of Tribological Properties of Monolayer Films using 
Molecular Dynamics and Machine Learning 

 
Co D. Quach,1,3 Justin B. Gilmer,2,3 Daniel Pert,1,3 Akanke Mason-Hogans1,3, Christopher R. 

Iacovella,1,3 Peter T. Cummings,1,3 and Clare McCabe1,3,4, * 

 
1Department of Chemical and Biomolecular Engineering, 2Multiscale Modeling and Simulation 

Center, 3Interdiscplinary Materials Science, and 4Department of Chemistry, Vanderbilt 
University, Nashville, TN, 37235, USA 

 
* Author to whom corresponding should be addressed: c.mccabe@vanderbilt.edu 
 
 
Abstract 

Monolayer films have shown promise as a lubricating layer to reduce friction and wear of 

mechanical devices with separations on the nanoscale. These films have a vast design space with 

many tunable properties that can affect their tribological effectiveness. For example, terminal 

group chemistry, film composition, and backbone chemistry can all lead to films with significantly 

different tribological properties. This design space, however, is very difficult to explore without a 

combinatorial approach and an automatable, reproducible and extensible workflow to screen for 

promising candidate films. Using the Molecular Simulation Design Framework (MoSDeF), a 

combinatorial screening study was performed to explore 9747 unique monolayer films (116,964 

total simulations) and a machine learning model using a random forest regressor, an ensemble 

learning technique, to explore the role of terminal group chemistry and its effect on tribological 

effectiveness. The most promising films were found to contain small terminal groups like cyano 

and ethylene. The machine learning model was subsequently applied to screen terminal group 

candidates identified from the ChEMBL small molecule library. Approximately 193,131 unique 

film candidates were screened, with approximately a 5 order of magnitude speed-up in analysis 

compared to simulation alone. The machine learning model was thus able to be used as a predictive 

tool to greatly speed up the initial screening of promising candidate films for future simulation 
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single terminal group chemistry but instead multiple chemistries. For example, experiments by 

Brewer et al.5 demonstrated that a methyl-functionalized microscope tip in contact with either 

hydroxyl or carboxyl terminated monolayers results in a lower coefficient of friction (COF) 

compared to the same tip in contact with a methyl terminated monolayer. Monolayers composed 

of two or more terminal group chemistries within the same layer, at varied relative compositions, 

may also provide a means to further tune and improve performance. For example, computational 

studies by Lewis et al.11 for monolayers composed of methyl terminated alkanes mixed with 

perfluoroalkanes showed a regime where the COF was reduced compared to either pure component 

system. There are a multitude of complex relationships between these various chemical/molecular 

descriptors when translated to monolayer polymer systems as hinted at by Le et al.6 

MD simulations are a useful tool to perform large-scale sweeps of the accessible parameter 

space to create an in silico self-consistent data set.  Computational examination avoids the need to 

develop experimental synthesis techniques, which may be non-trivial and time intensive. 

Simulations can also more effectively reveal the intrinsic properties associated with defect-free 

films on pristine contaminant-free surfaces. This approach has been utilized to study and optimize 

various parameters describing the monolayer, such as backbone chain length and chain densities.8 

Our recent development of the Molecular Simulation and Design Framework  (MoSDeF12) and 

the development of the Signac Framework13,14 by Glotzer et al., enables the large-scale screening 

of soft matter systems, allowing the reproducible initialization and parameterization of systems, 

and the management of large dataspaces. These tools have been used to perform large scale 

screening studies of soft matter systems in several recent papers8,15 as well as used to fully capture 

the provenance of simulation workflows for increased reproducibility in other work.16,17 

 However, the vast parameter space to be explored for monolayer films would still make 
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mimic surface oxidation. Of the two surfaces in the dual monolayer systems, the bottom surface is 

homogeneous (singular terminal group), while the top surface contains a mixture of two types of 

alkylsilane chains, differing by their terminal groups. The mixing ratios for the top monolayers 

considered in this study are 25:75 and 50:50. The pool of 19 different terminal group chemistries 

investigated are shown in Fig. 1b; this adds 3 additional terminal group chemistries to those 

considered by Summers et al.8 The uniform bottom monolayer and the mixed top monolayer can 

be composed of any combination of groups from Fig. 1b, with the constraint that the two groups 

in the mixed monolayer must be different. In total 12,996 combinations ([19 terminal groups in 

uniform layer] * [19 * 18 terminal group combinations in mixed layer] * [2 composition ratios]) 

were considered; this translates to a total of 116,964 simulations (12,996 * 3 * 3) when factoring 

in the composition ratios studied, the 3 normal loads, and 3 replicates considered for each system. 

Of the 12,996 systems considered, 3249 systems with the mixing ratio in the top monolayer of 

50:50 were duplicated during the screening and thus such combinations had 3 additional replicates; 

in total 9747 unique combinations (19 * 19 * 18 of 25:75 systems + ½ * 19 * 19 * 18 of 50:50 

systems) were considered. We also note that a small subset of simulations (less than 1% of the 

total) failed to complete due to unstable initial configurations, but in all cases, each unique system 

composition reported includes at least 3 replicates.  
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Each monolayer system was prepared using the MoSDeF software suite12,44,45 (see the 

Supplemental Information section for additional information). The initialization of the monolayer 

structure is encapsulated as an mBuild recipe,44,46 which preserves the entire process used to 

construct the monolayer structure. The foyer library45,47 was used to atom type and parameterize 

each system with the Optimized Potential for Liquid Simulation - All Atoms (OPLS-AA) 

forcefield.48 Parameters for the alkylsilane chains were taken from GROMACS 5.149,50 and those 

for the silica surface from Lorenz et al.51 The force field XML file used by foyer is provided in the 

Supplemental Information section and can be accessed from the Supplemental Repository.39 The 

project workflow as a whole was managed using the Signac Framework.14,52 The use of the 

MoSDeF framework in addition to the Signac Framework, ensures that all scripts and input 

parameters used to initialize the systems, submit the systems for simulation, and analyze the 

systems are captured and preserved, ensuring the simulations are TRUE (Transparent, 

Reproducible, Usable by Others, and Extensible).16 All scripts and parameter files are available in 

the associated GitHub repository (see the Supplemental Information).39  

 

Figure 1. a) Simplified schematic of the systems studied. The top monolayer is a mixture of two types of terminal 
groups chemistries (A and B), studied at two different mixing ratios (25:75, 50:50), while the bottom monolayer 
is homogeneous (chemistry C). b) Depiction of the 19 different chemistries considered. From top to bottom, left 
to right, the terminal groups are amino, hydroxyl, methyl, acetyl, carboxyl, isopropyl, cyano, ethylene, methoxy, 
nitro, difluoromethyl, perfluoromethyl, cyclopropyl, pyrrole, phenyl, fluorophenyl, nitrophenyl, toluene, phenol. 
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allowing for direct comparison between these studies, focusing on the accuracy of the models and 

feature importance ranking determined from the two sets of data.  An effort to optimize the 

parameters resulted in insignificant improvement in model accuracy and thus the original values 

were retained for better comparability with prior work; further details can be found in the SI section 

(see Figs. S1-S3).  

The chemical and physical input parameters for the ML model are supplied by the RDKit 

cheminformatics library.61 The COF and F0 calculated from the simulations are the expected 

outputs (i.e., targeted properties) for the random forest ensemble to predict. The training procedure 

of these predictive models is adapted from that described in previous work.8 Briefly, each of the 

systems in the training set can be represented by a set of SMILES strings,62 describing the terminal 

group chemistry. Each terminal group is represented by two SMILES strings: one of a hydrogen 

capped structure and one of a methyl capped structure. The SMILES strings are used to calculate 

molecular descriptors that characterize the chemical and physical properties of chemical structures, 

via the RDKit cheminformatics library.61 These descriptors fit into four categories: size (e.g., 

molecular weight), shape (e.g., inertial shape factor), complexity (e.g., degree of branching), and 

charge distribution (e.g., topological polar surface area). The SMILES string of the hydrogen-

capped terminal group is used to calculate descriptors relating to shape, while the SMILES string 

of the methyl-capped terminal group is used to calculate the remaining descriptors. While shape 

characteristics can be sufficiently modeled with a hydrogen-capped structure, properties that 

involve charge distribution among others are better represented if they mimic the actual structure 

the terminal groups are attached to; a methyl terminus was found to be a sufficient approximation 

of the alkyl chain for these measurements.8 Through this process, each chemical structure is 

represented by 53 descriptors, summarized in the Supplemental Information section (see Table S1). 
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Results and Discussion 

Considering first the results of the high throughput screening MD simulations, including those 

performed in the current study and in Summers et al.,8 we identify 22 monolayer designs that 

provide favorable frictional properties, e.g., those that have low simulated COF and F0 values (see 

Table 1 and Fig. 5). This list was created by the intersection of the best 500 systems ranked from 

lowest to highest COF (values ranging from 0.074 to 0.114) with the best 500 systems ranked from 

lowest to highest F0 (values ranging from 0.007 nN to 0.541 nN). We first note that, in general, 

these designs are in agreement with the conclusion obtained by Summers et al. from a study of a 

considerably smaller dataset where it was noted that the COF of monolayers is primarily affected 

by the shape and size of the terminal group, with chemistries of small sizes and simple shapes (e.g., 

sp hybridization) exhibiting the lowest COF.8 Summers et al. also noted that the F0 is most strongly 

affected by charge distribution, with polarity and hydrogen bonding both increasing the F0.8 In 

agreement with these findings, we observe that a majority of the systems identified (19 out of 22) 

consists of a cyano homogeneous monolayer. The cyano group is small in size, has sp hybridization 

 

Figure 4. Distribution of a) COF and b) F0 for systems considered in this study, obtained from MD simulations. 
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and does not readily form hydrogen bonds, characteristics that fit with previous work to identify 

chemistries that can lower the COF and F0 of monolayers. We also note most systems in Table 1 

are made up of 3 components and only one system that consists of two homogeneous monolayers 

(System 1 in Table 1), which was simulated in the Summers et al. work.8 This result suggests a 

slight advantage to having mixed monolayer designs. However, we also recognize that the data set 

is dominated with mixed monolayers compared to homogeneous monolayers, therefore the best 

performing systems are likely the result of the much larger representation of mixed monolayer 

systems compared to the homogeneous systems. Nonetheless, mixed monolayer systems could 

provide extra flexibility during the design process and allow for the optimization of other 

properties, such as thermal stability or environmental interactions, depending on the specific 

application, giving these designs advantages over homogeneous monolayers.  
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 Using the simulation data, we now explore combining ML techniques with MD simulations 

to perform high-throughput screening of monolayer systems. In Summers et al., the random forest 

regressor algorithm was applied to create predictive ML models to estimate the frictional 

properties of alkylsilane monolayers capped with different terminal group chemistries.8 The ML 

models were trained on simulation data for homogeneous monolayers with 16 distinct terminal 

groups, resulting in a relatively small data set, containing only 100 data points. The models were 

then applied to a test set and compared to the COF and F0 results obtained for the same systems 

directly from MD simulation to determine the accuracy of the ML models. This comparison can 

be readily visualized by plotting the tribological properties obtained from the ML models against 

the values calculated from the MD simulations; the coefficient of determination (R2) and the mean 

absolute percentage error (MAPE) of the plots are used to quantitatively measure the accuracy of 

the ML predictions. The R2 is commonly used/reported to quantify the correlation between the 

  

Figure 5. Distribution of simulated systems based on their COF and F0 values. The 22 most-favorable systems, 
listed in Table 1, corresponds to data points confined within the red dashed box in the lower left quadrant of the 
figure. 
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simulated and predicted values, and MAPE provides error metrics that scale by the prediction 

values.65 Using the additional simulation data generated herein, we can now better assess the 

feasibility of using ML to predict tribological properties and determine the amount of data 

necessary to create models that can make sufficiently precise estimations, as described below. 

 

 

Figure 6. Predicted-versus-simulated plots for COF and F0 for models trained with 100 simulation data points for uniform 
monolayers from Summers et al. [8] data set (a and b) and trained with 1000 data points randomly chosen from the 5050-train 
set (c and d). The dotted line in the middle represents perfect prediction (y = x). The outer two lines represents the 15% variation 
from a perfect prediction (y = 1.15x and y = 0.85x). The coefficient of determination (R2) and mean absolute percentage error 
(MAPE) are included. For each system (data point), the predicted properties are averaged from the 5 predictions made by the 5 
ML models replicate, and the simulated properties are averaged from at least 3 simulations replicate. 
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We first train a new set of ML models using 1000 data points from the 5050-train set. The 

models are then applied to the 5050-test set and, as described in the Methods section, compared to 

the COF and F0 results obtained directly from the MD simulations in order to determine the 

accuracy of the ML models (see Fig. 6). Results for the ML models trained with the Summers et 

al.8 data set applied to the 5050-test set are also shown for comparison. When applied to the same 

testing set, the Summers et al. models provide R2 values of 0.472 and 0.657 for COF and F0 

respectively, compared to 0.822 and 0.899 for COF and F0 from the 5050-train set. While the R2 

values are lower for the Summers et al. ML models, it is worth noting that the training data set did 

not include any information regarding mixed monolayer compositions; as such, the Summers et al. 

ML models still demonstrate impressive efficacy. This point is further demonstrated by their 

MAPE, where the Summers et al. models could predict COF of system with 0.056 (5.6%)                                                                                                                                                                                                                                                                                                                                                           

 

Figure 7. Deviations in predictions of COF and F0 from ML models trained with 100 simulation data points for 
uniform monolayers from Summers et al. [8] (a and b) and trained with 1000 simulation data points randomly 
chosen from the 5050-train set (c and d).  
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error and predict F0 with 0.266 (26.6%) error. These MAPE values are higher but are still 

comparable with those produced by the new set of models, trained with 10-fold amount of data. 

Clearly our prediction of F0 is less accurate in the higher adhesion regime than the lower adhesion 

regime, as seen in Fig. 6b and 6d, as was also observed in the prior work of Summers et al.8 This 

is likely related to the challenges associated with capturing the ability of systems to form hydrogen 

bonds between contacting layers, although, since our primary goal in this work is to identify 

systems with low adhesion values, quantitative agreement in the higher adhesion regime is not 

required, as previously discussed in Summers et al.8 Nonetheless, this result suggests that ML 

models trained with limited data could still provide meaningful estimation, and that the use of the 

random forest regressor may lead to models that are predictive for chemistries and compositions 

outside of the training set. It should be noted, however, that this relationship could be solely related 

to these monolayer systems and specifically to non-equilibrium shearing and may not be applicable 

to other non-equilibrium studies. The prediction deviation plots for these models are shown in Fig. 

7. In general, we see that for lower values of COF or F0, both models deviate slightly in the positive 

direction, meaning they predict a slightly higher value compared to simulation; as the value of 

either COF or F0 increases, a negative deviation is observed with the ML models predicting slightly 

better performance than is observed in the MD simulations (see Fig. 7a, b). This skew in the 

predictions suggests that for favorable tribological conditions (i.e., low COF and low F0), the 

model will tend to overestimate the values, thus reducing the likelihood of incorrectly identifying 

poor performing films as viable options. This trend appears to be correlated to the size and 

distribution of the training set provided, with the trend becoming less apparent as the size of the 

training data set is increased (see Fig. 7c, d). Given that this behavior of the model minimizes the 

chances of exaggerating the performance of high performing systems (i.e., those with low COF 
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and F0), this suggests the predictive ML models can be more confidently used to screen over 

potential film candidates for possible applications. We also note that while the R2 values for COF 

models are substantially smaller than those of F0 models, which might suggest the latter models 

outperform their COF counterparts, their MAPE values indicate the opposite, where the F0 models 

exhibit significantly greater percentage errors. This disparity could be attributed to the difference 

in the range of these two properties; while COF values span a small range of values from roughly 

0.085 to 0.2, F0 can take values from ~ 0 nN to 8 nN (see Fig. 4), which may affect how these 

metrics are calculated. Hence, it is important to recognize that that neither R2 or MAPE values can 

directly relate to the predictive ability of the COF and F0 models, though they can still be used to 

compare the performance of ML models of a similar type. Comparison of the feature importance 

of the two models at this point can be misleading, since the two set of models are trained with 

feature vectors of various size and components, as discussed in the Methods section. An extensive 

comparison feature importance of different models in this study is further discussed in the 

Supplemental Section (see Figs. S4-S7). 
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We further examine the quality of the ML model estimations as a function of training set 

size by gradually increasing the amount of data used to train the ML models. We start with only 

using data from the 5050-train set; by doing so, we can later evaluate the transferability of the 

model to the 25:75 systems, i.e., can these predictive models provide similarly precise estimation 

of the frictional properties of systems with different designs. The R2 and MAPE values for models 

trained on data sets of increasing size from the 5050-train set are reported in Fig. 8. The results for 

each data set size are calculated from 5 models, each differing by the random seeds used when 

sampling from the 5050-train set, and the standard deviation of the predictions of the 5 models are 

represented as error bars. The R2 and MAPE of estimations made by the Summers et al. models 

are also shown in dotted lines for reference. From Fig. 8a, we can see that the accuracy of the ML 

model predictions improves rapidly as the training set size is increased, with the ML predictions 

roughly plateauing between 1000 and 1500 data points for which the R2 values for COF are 0.799 

± 0.007 and 0.835 ± 0.011 and for F0 are 0.885 ± 0.001 and 0.907 ± 0.007, respectively. Similarly, 

 

Figure 8. Correlation between the amount of data in the training data set (N) and the predictive ability of the models 
trained using the 5050-train sets when applied to the 5050-test set to predict the COF (blue, circle) and F0 (red, 
square) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond to its respective 
property in the key, show the predictive ability of the models trained using the Summers et al. [8] data set. For each 
data point, the metric (R2/MAPE) are averaged from metric of individual ML models (5 replicates) when applied 
to the test set. The error bar of each point represents the standard deviation of the 5 ML models, each trained with 
different combinations of data. 
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in Fig. 8b, the MAPE of both COF and F0 models also decrease gradually from 0.0546 ± 0.003 

(5.46% ± 0.3%) for COF and 0.259 ± 0.016 (25.9% ± 1.6%) for F0 at 100 data points, and level-

off near 1000 data points, at 0.0339 ± 0.001 (3.39% ± 0.01%) for COF and 0.175 ± 0.003 (17.5% 

± 0.3%) for F0. While the predictive ability of the models does increase with the size of the training 

set beyond 1000 datapoints, the gains in accuracy are much less significant, suggesting one could 

achieve sufficiently accurate ML models even with a modest amount of data.  

 

We now examine the transferability of the ML algorithms in terms of their ability to predict 

the frictional properties of systems with different designs, i.e., systems with a different mixing 

ratio on the top monolayer in the testing set than in the training set. Results from applying the ML 

models described above, trained solely with data from the 5050-train set and the Summers et al. 

data set, on the 2575-test set are reported in Fig. 9. From Fig. 9a, we observe that the R2 values for 

COF and F0 increase rapidly before plateauing, again at a training set size of approximately 1000 

points, with values of 0.647 ± 0.001 and 0.848 ± 0.007 for COF and F0, respectively. Similar trends 

are observed in Fig. 9b, where the MAPE of both COF and F0 models rapidly decrease up until 

 

Figure 9. Correlation between the amount of data in the training data set (N) and the predictive ability of the 
models trained using the 5050-train sets when applied to the 2575-test set to predict the COF (blue, circle) and F0 
(red, square) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond to its 
respective property in the key, show the predictive ability of the models trained using the Summers et al. [8] data 
set. For each data point, the metric (R2/MAPE) are averaged from metric of individual ML models (5 replicates) 
when applied to the test set. The error bar of each point represents the standard deviation of the 5 ML models, each 
trained with different combinations of data. 
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1000 data points before leveling-off, with an error of 0.0521 ± 0.0 (5.21% ± 0.0%) for COF and 

0.26 ± 0.003 (26.0% ± 0.3%) for F0. While the accuracy is lower, i.e., lower R2 and higher MAPE, 

than that observed for the 5050-test set (see Fig. 8), the agreement is promising, considering the 

ML models were not trained with data at these composition ratios. The plateau of the accuracy of 

the models is important, as it shows that improvements in accuracy of the models with larger data 

sets (as seen in Fig. 9) do not necessarily manifest themselves when the model is transferred to 

compositions outside of the original training set. Moreover, from Figs. 8 and 9, we notice the 5050-

train models trained with 100 data points also exhibit slightly better accuracy than the model 

trained with Summers et al.8 data set, likely due to the inclusion of mixed-monolayer systems in 

their training sets. We note, for random forest regressors, the variety of data is more important in 

determining the quality of the predictions compared to the amount of data beyond a certain point, 

which is dependent on the complexity of the systems of interest; this point will be further examined 

for our specific systems in the Supplemental Information (see Fig. S8-S10). That is, there may be 

limited utility of using large training sets when trying to develop ML models to prescreen systems 

outside of the design space of the original training set. However, generating a set of systems with 

well distributed properties can be challenging and hard to estimate a priori, and hence may require 

more thoughtful design of the initial screening space as well as a more active learning approach to 

direct the screening space as the initial data is used to train the models. 

The results in Fig. 9 suggest that the ML models are likely effective in predicting frictional 

properties of systems with design variations, i.e., despite the noticeable decline in performance the 

models could likely be used as a high-level screen to sieve the parameter space. To further examine 

the capability of ML models in shortening the list of potential candidates to be 

simulated/synthesized, we examine the ability of the models to identify systems that exhibit 
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favorable tribological performance (i.e., low COF or F0).  To quantify the ability of the model to 

predict favorable solutions, we calculate the intersection of the top performing systems predicted 

by the ML model and those via simulation; an ideally performing ML model would be able to 

identify all of, or a majority of, the best performing systems determined through simulation The 

ability of the ML model to accurately predict the systems with the favorable properties can be 

considered to be proportional to the percentage of the overlapping systems compiled from MD 

simulation and ML prediction. An overlap of 100% indicates complete agreement between the two 

methods, i.e., ML and MD, while a low overlap value indicates lower agreement, and by extension, 

poorer predictive ability of the ML models. We note that this metric describes the ability of the 

ML model to accurately capture relative differences between systems of interest and does not 

necessarily require quantitative agreement between the ML model and corresponding MD 

simulations.  

 

 First, we first consider the ability of 5050-train models in determining the best performing 

systems in the 5050-test set in Fig. 10a. Systems in the set are first sorted separately, by the 

  

Figure 10. Intersection between the top 15% performing systems predicted by ML models, at various training set 
size, and top 15% performing systems calculated by MD simulations (in silico data) of the 5050-test set (a) and 
the 2575-test set (b). The systems are ranked by COF (blue, circle) or F0 (red, square). The dashed, horizontal 
lines, colored to correspond with its respective property, show the predictive ability of the models trained using 
the Summers et al. [8] data set. 
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numerical value of their COF and F0 calculated from the simulations; the top 15% of these systems 

(i.e., systems with the lowest COF or F0 values) of each set are considered, corresponding to 100 

chemistries for 5050-test and 193 for 2575-test. These lists are then compared to the top 15% of 

systems predicted by the ML models, as a function of training set size, and the overlapping 

percentages are calculated. For COF, as the training set size of the model increases, so too does 

the fraction of top performing solutions predicted, achieving 74.4% ± 0.8% accuracy for models 

trained using 1000 data points and 83.0 ± 0.9% accuracy for models trained with 2500 systems; 

adhesion shows a weaker dependence on training set size, reaching 67.6% ± 1.1% at 1000 data 

points and 71.2% ± 1.2% at 2500 data points (see Fig. 10a). Putting these results into perspective, 

if we had utilized the 5050-train model of 1000 data points to predict systems with the best 

performing properties from the 5050-test set and only simulated those in the top 15%, we would 

have reduced the total number of additional screening simulations by 85%, while still identifying 

74.4% of the best performing systems as ranked by COF, or 83% of the best performing systems 

ranked by F0. On the other hand, if we reduced the number of systems to be simulated at random, 

we would only expect to detect 15% of the best performing systems, ranked by COF or F0. In other 

words, this approach can significantly increase the odds of finding systems with the top performing 

tribological properties. We conduct the same analysis of the ability of the ML models to identify 

the best performing systems in the 2575-test set, i.e., focusing on the transferability of the models, 

and show the results in Fig. 10b. We observe predictions with an accuracy of roughly 61% for both 

the best performing systems ranked by COF or by F0, almost independent of training set size (see 

Fig. 10b). Even though these accuracies are not as high as the models used on the 5050-test set, 

they are still considerably higher than the 15% accuracy we would have expected if selecting 

systems at random. This suggests reasonable efficacy of using this approach to prescreen design 
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space. Even for models trained with limited amounts of data, i.e., models trained with 500 data 

points whose accuracies are 61.3% ± 1.3% for COF models and 62.3% ± 2.0% for F0, the 

predictions made should still be useful enough for prescreening and provide focused guidance to 

perform the next round of simulations, while reducing the computational costs substantially. 

 

In Fig. 10 we have compared an equipercentile of the top performers determined through 

different techniques, i.e., MD and ML. This approach, however, can potentially result in missing 

out in potential candidates, e.g., a model that has an accuracy of 60% in determining the true best 

15% systems will miss potentially 40% of the candidates. In practice, considering a larger list of 

top performing systems proposed by the ML models is likely to increase the number of top 

performers identified in the given parameter space; this is especially relevant for a quantity such 

as COF, where the overall numerical range is relatively small, e.g., for 5050-test the top 15% of 

systems range from 0.0972 ± 0.016 to 0.121 ± 0.010 and the top 30% only increases the upper 

bound very modestly to 0.129 ± 0.008 especially in context of the accuracy of the ML previously 

discussed; for F0 the range for the top 15% is 0.216 ± 0.377 nN to 0.779 ± 0.135 nN, with the 

 

Figure 11. Intersection between the top 15% performing systems predicted by ML models, at various training set 
size, and top 30% performing systems calculated by MD simulations (in silico data) of the 5050-test set (a) and 
the 2575-test set (b). The systems are ranked by COF (blue, circle) or F0 (red, square). The dashed, horizontal 
lines, colored to correspond with its respective property, show the predictive ability of the models trained using 
the Summers et al. [8] data set. 
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upper bound increase to 1.002 ± 0.171 for the top 30%. For 2575-test the values are similar where 

the top 15% for COF ranges from 0.090 ± 0.012 to 0.122 ± 0.014, with the upper bound increasing 

to 0.130 ± 0.011 for the top 30%, and for F0, 0.085 ± 0.462 nN to 0.706 ± 0.410 for 15%, with the 

upper bound increasing to 0.951 ± 0.436 when considering the top 30%. Fig 11 plots the overlap 

between the top 15% systems (MD data), ranked by their simulated tribological properties and the 

top 30% performing systems predicted by the 5050-train models. This set up demonstrates a 

significant increase in accuracy in predicting the best performing systems in both test sets. 

Specifically, in Fig. 11a, the accuracy of predicting top performing systems starts at 78.0% ± 7.5% 

and 92.4% ± 2.1% (for models trained with only 100 data points) to 91.6% ± 2.1% and 97.0% ± 

0.6% (for models trained with 1000 data points) when predicting top systems ranked by COF and 

F0, respectively. In Fig. 11b, the overlap percentages start at 72.8% ± 6.7% and 85.1% ± 2.1% (for 

models trained with 100 data points) to 84.1% ± 1.6% and 88.5% ± 1.1% (for models trained with 

1000 data points). In other words, by considering the top 30%, the ML models can reduce the 

number of additional systems to be considered by 70%, while being able to accurately predict the 

bulk of the best performing systems, regardless of the mixing ratio and even for very small training 

set sizes. These results also present other criteria to consider in terms model accuracy and 

computational cost in terms of using ML models to prescreen a dataspace, as these results show 

that it may be more efficient to train a model with fewer datapoints but consider a larger range of 

predictions from the ML model (e.g., simulating the top 30% predicted by the ML model). These 

results suggest a general approach to combine ML techniques with MD simulations, namely 

simulating a small set of systems, e.g., about 5-10% of systems in the design space, using the 

simulation results to train predictive ML models, and then utilizing the ML models to screen over 

a wider range of potential systems, determining systems worthy of further investigation. Such an 
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approach could drastically minimize the number of total simulations needed, decrease the 

throughput time to scan the parameter space, enabling higher quality candidates to be screened 

much faster.   

 

 Thus far we have considered models trained only using the 5050-train data. One would 

assume that accuracy could be improved by training the models on a data set that also included 

those systems in the 2575-train data set (i.e., using the total-train set). Fig. 12 plots the scaling for 

R2 (Fig. 12a) and MAPE (Fig. 12b) as a function of training set size when sampled from the total-

train set and applied to the total-test set. As seen earlier, the rapid increase in accuracy occurs as 

the training set size is increased to 1000 data points; the improvements in adhesion are relatively 

minimal beyond that point, although considerable gains are observed for COF, with both measures 

attaining an R2 value of >0.9 for a training set of size 7816 (see Fig. 12a). We also observe similar 

trends for MAPE in Fig. 12b, where the error quickly drops from 0.0593 ± 0.001 (5.93% ± 0.1%), 

for COF predictions, and 0.324 ± 0.033 (32.4% ± 3.3%), for F0 predictions, at 100 data points to 

 

 

Figure 12. Correlation between the amount of data in the training data set (N) and the predictive ability of the 
models trained using the total-train sets when applied to the total-test set to predict the COF (blue, circle) and F0 
(red, square) quantified by R2 (a) and MAPE (b). The dashed, horizontal lines, colored to correspond to its 
respective property in the key, show the predictive ability of the models trained using the Summers et al. [8] data 
set. For each data point, the metric (R2/MAPE) are averaged from metric of individual ML models (5 replicates) 
when applied to the test set. The error bar of each point represents the standard deviation of the 5 ML models, each 
trained with different combinations of data. 
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0.023 ± 0.0 (2.30% ± 0.0%) for COF predictions, and 0.179 ± 0.0 (17.9% ± 0.0%) for F0 predictions, 

at the maximum number of training data (7816). Focusing on the models trained with 1000 data 

points, predictions from the total-train set ML models applied to the total-test set achieve R2 values 

of 0.701 ± 0.005 for COF and 0.888 ± 0.005 for F0, which are slightly lower than the values 

obtained for the models trained with the 5050-train set when applied on the 5050-test set (see Fig. 

8). This may appear to indicate that this set of ML models require more data to attain a similar 

level of predictive ability, especially for COF models. However, it is worth noting that these 

evaluations are done on two test sets of differing size and composition. Moreover, the 5050-test 

set is a strict subset of the total-test set, so the latter includes a wider range of systems, and hence 

is deemed more challenging for the ML models. Thus, the relative performance of these models 

could not be directly compared at this point. 

 

To evaluate the accuracy of using the total-train models for prescreening parameter space, 

i.e., their ability to determine best performing systems, we again calculate the agreement between 

the top 15% performing systems (398 total systems) from the total-test set as determined by the 

  

Figure 13. Intersection between the (a) top 15% performing systems, ranked by COF (blue, circle) or F0 (red, 
square) or combined (purple, cross), of the total-test set determined from MD simulations and predicted by ML 
models trained with the total-train sets. The overlapped fraction of most-favorable systems is determined by 
comparing those predicted by ML models against those listed in Table 1. The error bar of each point represents the 
standard deviation of the 5 ML models, each trained with different combination of data. The dashed, horizontal 
lines, colored to correspond with its respective property, show the predictive ability of the models trained using the 
Summers et al. [8] data set. 



 32 

MD simulations and the top 15% and 30% top performing systems predicted by our ML models, 

plotted in Fig. 13a and 13b. In Fig. 13a, we see a steady improvement in the accuracy of the COF 

predictions as nearly 8000 data points in the training set are used, achieving an overlapping of 

84.2% ± 0.3%; F0, exhibits a similar trend observed previously in Fig. 9b, with little dependence 

on training set size beyond 1000 points, maintaining an overlapping value of approximately 63%. 

Hence, increasing the number of data points to train the ML models can have a positive effect on 

the predictive ability for some properties, but the large amount of training data needed to improve 

accuracy may ultimately negate potential performance gains in terms of screening. Recall that for 

a training set size of 1000 data points, the 5050-train model could predict >65% of high-

performing 50:50 systems and >60% of high-performing 25:75 systems, ranked by either COF or 

F0 when conducting similar analyses (see Fig. 10). In Fig 13b, we perform similar overlap analyses 

with an extended list of top performing systems predicted by ML models (top 30%). When 

determining top COF/F0 systems, we observe that the overlapping fraction rapidly increases to 

above 80% at N=500, and subsequently plateaus, displaying minimal increase in their accuracy 

past this point, similar to what was previous observed in Fig. 10.  

In addition, we introduce a new category, most-favorable systems, defined as those with 

both low COF and F0. This list of favorable systems is generated from the intersection of the top 

15% (Fig. 13a) or 30% (Fig. 13b) systems ranked by their predicted COF and F0 values. This list 

is compared directly to those in Table 1 to determine their overlapping fraction, which indicates 

the ability of our ML models to identify most-favorable systems. Using this metric, we can see 

that the accuracy of the prediction of these ML models as a function of training points used. In Fig. 

13a, we can see that the overlapping percentage rapidly increases until around 1000 training data 

points, at which point the overlapping fraction values are maintained at ~65%. Meanwhile, if we 
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increase the intersection to 30%, we can see that the overlapping fraction can surpass 80% with as 

few as N=500 data points and reach as high as 90.9% when N increases. These results reassert the 

feasibility of the combinatorial approach described earlier, where users can use MD to generate 

small sets of data necessary to build a minimally functional baseline ML model to screen over a 

wider set of potential candidates. The results from such baseline models, can be utilized for various 

efforts, such as focusing on only simulating systems with the most favorable properties as 

predicted from the model or building more varied and evenly sampled data sets based on the 

predictive deficiencies from the baseline model to further improve its robustness. Either approach 

can improve the quality of results obtained with finite computing resources. Depending on the 

specific application, complexity of the systems of interest, and computing power, one can choose 

an optimal strategy to employ, e.g., how many data should be collected to train ML models, and 

how much of the dataspace to be truncated based on suggestions by the models. However, it is 

worth recalling that the performance of the random forest regressor algorithm is dependent on the 

distribution of properties in the training data, and identifying a priori which systems to simulation 

to ensure appropriate distribution may be challenging. Solving this issue may require additional 

iterations of training ML models, where we create multiple predictive models as simulation data 

become available, using these ML models to suggest additional systems to ensure appropriate 

sampling, rather than identifying favorable candidates at this stage. Although such intermediate 

ML models, may not have high accuracy, they can provide valuable information needed to improve 

the performance of the subsequent ML models.  

In Table 2 and 3 we summarize the outcome, R2 and MAPE, of applying all of the ML 

models, i.e., Summers et al., 5050-train, and total-train models, on all available test sets, i.e., 

5050-test, 2575-test, and total-test; summary of other common metrics, i.e., mean absolute error 
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(MAE) and mean squared error (MSE) is also included in the Supplemental Section (see Table S2 

and S3).65 Table 2 directly compares of the performance of the different ML models. We note, of 

all models trained with 100 data points, the performance of the total-train models exhibits the 

highest accuracy, followed by the 5050-train, and finally models trained by Summers et al. data. 

The difference in performance likely results from the inclusion of mixed-monolayer systems, 

resulting in better distributed training sets provided by total-train. However, this trend does not 

persist for models trained with more data. Interestingly, we note that the models trained on the 

5050-train data appear to have better performance compared to the total-train models when 

predicting the 5050-test set, since they require less data to acquire similar predictive ability. 

Focusing on the performance of the different models on the total-test set, which is expected to be 

more difficult to predict, the 5050-train models show comparable accuracy to the total-train 

models. These observations trends are also confirmed by the MAPE values in Table 3. This result 

suggests that as long as the models are trained on a sufficiently large data set that captures the 

distribution of the population well, the models are extensible to untested regimes. That is, for 

significant variations, in our case composition, it may be more computationally efficient and 

accurate to train models with different compositions separately, rather than aggregating data into 

a large training set. Furthermore, all models trained on a relatively small amount of data, e.g., 1000 

data points, exhibit similar performance across all test sets. This reaffirms the transferability of 

these ML models from a more general perspective and highlights the feasibility of utilizing ML 

algorithms to estimate properties of systems whose designs may be dissimilar to the training data 

used. Expectedly, the ML models trained with 7816 data points from the total-train data set (80% 

of the total data set) demonstrate the best performance across all test sets, but of course, require 

the highest computational in terms of gathering training data. 
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amu; this list of chemistries (981) underwent further filtering to remove those containing metallic 

elements and those that cannot be processed by the RDKit library, e.g., chiral or charged molecules, 

resulting in 621 unique terminal group chemistries (provided in the Supplemental Repository39). 

With these 621 chemistries, 193,131 unique systems can be created in which each monolayer is 

homogeneous (i.e., containing only one type of terminal group); mixed monolayer chemistries 

were not considered at the moment due to the vast amount of data that would be generated, a 

dynamically pruning approach to help drive the screening towards a smaller subset of the mixed 

monolayer systems is necessary to explore this space in any feasible time and memory 

requirements. This simple system design (dual homogeneous monolayers) was chosen to allow 

more unique chemistries to be considered in a reasonable time frame, since introduction of mixed 

monolayers would scale up the number of systems to be considered by several orders of magnitude. 

Descriptors for the 621 terminal groups were determined using the SMILES strings for each 

chemistry (as described in the Method section); these descriptors were then provided as input to 

the ML models which in turn predicted tribological properties for the 193,131 unique systems. 

This screening process, which evaluated 385,641 systems since duplicate systems (i.e., systems in 

which chemistry A was the top monolayer and chemistry B on the bottom monolayer and vice 

versa) were not removed, took approximately 24 hours to predict the COF and F0 values on a 

standard desktop computer (~ 0.22 seconds per system), which is orders of magnitudes faster than 

the time required to perform a single MD simulation and without the need for expansive 

computational resources. 
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Figure 14. Distribution of (a) COF and (b) F0 predicted by the ML models for 193,131 unique systems created 
with molecules from ChEMBL small molecules library.  

Table 4. 20 best performing systems determined by the intersection of the top 2000 systems ranked by their 

COF and the top 2000 systems ranked by their F0. The properties were predicted using one of the total-train 

models (model-0). 

 Terminal Group A Terminal Group B COF F0, nN 

1 cyano propyl 0.1144 0.7257 

2 cyano cyclopropyl 0.1151 0.4631 

3 methyl cyano 0.1153 0.5532 

4 acetylene 1,1-difluoroethyl 0.118 0.7699 

5 cyano ethyl 0.1206 0.649 

6 fulminic acid cyclopropyl 0.1236 0.7117 

7 ethylene 1,1-difluoroethyl 0.1244 0.7341 

8 bromoethyl 1,2-diformylhydrazine 0.125 0.7695 

9 methyl fulminic acid 0.126 0.7704 

10 cyano difluoroethyl 0.1265 0.7279 

11 bromoethyl malononitrile 0.1269 0.7098 

12 acetylene ethyl 0.127 0.7254 

13 1,1-difluoroethane propene 0.1271 0.729 

14 propyl 2,2-difluoroacetamide 0.128 0.7423 

15 acetylene propyl 0.1281 0.7777 

16 methyl acetylene 0.1281 0.7405 

17 bromoethyl 1,2-dicyanoethyl 0.1282 0.7737 

18 fulminic acid ethyl 0.1283 0.7725 

19 cyclopropyl acrylonitrile 0.1283 0.7152 

20 allyl but-2-yne 0.1283 0.7546 
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The distribution of COF and F0 of the systems predicted by the ML model are shown in 

Figure 13. We note the distributions differ from that of the data set screened using MD simulations 

(see Figs. 3 and 7), which is expected given the vastly expanded chemical design space. Using the 

first quartile of the COF distribution (0.1280) and F0 distribution (0.8966 nN) obtained from MD 

as a reference, the data set contains 5121 systems that can be considered to have good COF values 

and 10,598 systems with good F0 values. To further reduce the number of systems of interest, a 

list of 2000 best performing systems ranked by their COF values and a list of the 2000 best systems 

ranked by their F0 are compiled, with the top 20 systems at the intersection of these lists reported 

in Table 3. We note that many of the same chemistries that were identified by our initial MD 

simulations (see Table 1) are also observed in this list; specifically, Systems 2, 3, and 16 have been 

considered in Summer et al.8; along with several other chemistries that may be worth future 

consideration, such as various alkenes (allyl, propene), alkynes (acetylene, but-2-yne), halocarbons 

(1,1-difluoroethyl, bromoethyl, vinyl chloride), and nitriles (cyano, malononitrile, acrylonitrile). 

We note that none of the systems reported in Table 3 outperform those previously identified in 

Table 1 from the MD simulations (in terms of COF and F0), although this might be expected since 

the systems in Table 3 consist of 2 homogeneous monolayers, and hence, do not include the 

benefits offered by the mixed monolayers, as we discussed earlier. Nonetheless, this highlights the 

feasibility of combining ML with MD screening to reduce computational cost and identify 

favorable candidates for further study, in particular for reducing the vast design space of mixed 

monolayer systems using such a database for screening. 

 

Conclusion 
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in accuracy seen for larger training sets often do not necessarily equate to improved performance 

when models are transferred to systems outside of the training set. These findings suggest a 

synergistic approach of using MD simulations and machine learning to build high quality 

predictive models and minimize computing resources needed: MD can be used to generate a small 

set of data to train baseline ML models, which can then be utilized to quickly evaluate possible 

candidates and narrow the parameter space. The performance of the baseline model is dependent 

on the distribution of training data provided; however, the accuracy of the model can be improved 

via a few iterations of training, using earlier, less accurate, models to guide simulations toward 

creating well distributed training data. In addition, the baseline model could help confirm/provide 

insight about the connection between chemical intuition with properties of interest. We also note, 

that care must be taken to ensure that the data set is not overtly biased and that the further trained 

models are not overfit to the provided data. This work follows guidelines suggested by the TRUE 

standard, emphasizing the reproducibility and extensibility of the study; accordingly, the 

Supplementary Information contains all the information needed to reproduce the simulations and 

machine learning models described in this work. The code and data are distributed via GitHub.  

 

Supplemental Information  

See supplemental material for instructions to access the supplemental GitHub Repository 

containing data and analysis codes, additional forcefield details, and further discussion regarding 

the ML models utilized in this work. 
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