ORSuite: Benchmarking Suite for Sequential Operations
Models

Christopher Archert

Carrie Ruckert
Qiaomin Xiet

ABSTRACT

Reinforcement learning (RL) has received widespread atten-
tion across multiple communities, but the experiments have
focused primarily on large-scale game playing and robotics
tasks. In this paper we introduce ORSuite, an open-source
library containing environments, algorithms, and instrumen-
tation for operational problems. Our package is designed to
motivate researchers in the reinforcement learning commu-
nity to develop and evaluate algorithms on operational tasks,
and to consider the true multi-objective nature of these prob-
lems by considering metrics beyond cumulative reward.

1. INTRODUCTION

Reinforcement learning (RL) is a natural model for prob-
lems involving real-time sequential decision making, includ-
ing inventory control, resource allocation, ridesharing sys-
tems, and ambulance routing [17, 2, 27, 19, 30]. In these
models, an agent interacts with a system that has stochastic
transitions and rewards, and aims to control the system by
maximizing their cumulative rewards across the trajectory.
Reinforcement learning has been shown in practice to be an
effective technique for learning complex control policies [21].

These sequential decision making problems have been con-
sidered across multiple communities: machine learning, com-
puter science, statistics, economics, and operations research.
These fields are converging recently, primarily because as
data becomes more readily available and computing power
improves, it allows for customizing domain-specific algo-
rithms. As a result, the new zeitgeist for the field is de-
veloping data-driven decision algorithms: algorithms which
adapt to the structure of information, constraints, and ob-
jectives in any given domain. This paradigm highlights the
importance of taking advantage of domain knowledge to help
design algorithms that scale to real-world problem instances.

In addition, many of the problems arising in operations re-
search are naturally multi-objective. Any algorithm should
compete on the trifecta for RL in operations: large av-
erage rewards with mild storage and computational com-
plexity. Each model itself also has additional metrics which
algorithms should compete for, whether that be minimizing
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the mean response time in an ambulance dispatch system
or the efficacy in a resource allocation problem. Moreover,
many of the problems naturally have continuous or combi-
natorial state and action spaces, which makes designing RL
algorithms for these domains an important direction for the
research community.

1.1 Our Contributions

In this note we outline the structure and purpose of the
ORSuite package [22]. Our goal is to provide a standard-
ized library for the reinforcement learning community to
explore applying algorithms to problems arising in opera-
tions research. The package is aimed at modeling common
operational problems, providing implementation of existing
heuristic approaches to these problems, and optional in-
strumentation to benchmark the performance of algorithms
across a variety of metrics. To this end, we include three
main components:

OpenAlI Gym Environments for OR Models: We pro-
vide robust OPENAI GYM [7] environment implementations
for several problems arising in operations research, including
ambulance routing, resource allocation, vaccine allotment,
and ridesharing systems (as outlined in Section 2).
OR-Based Heuristic Algorithms: For each of the in-
cluded environments, we complement them by providing
implementation of existing heuristic algorithms to better
benchmark the performance of reinforcement learning al-
gorithms. We additionally include implementation for dis-
cretization based algorithms for settings when the state-
action space are continuous [24, 23, 28].

Optional Instrumentation: We have optional instrumen-
tation for running simulations in the episodic finite horizon
setting. Our instrumentation collects trajectory information
for calculating domain-specific metrics, along with average
rewards, storage, and computational complexity. In addi-
tion, we provide automatically generated plots which pro-
vide a comparison between algorithms on each of the met-
rics. We also include a wrapper to run experiments with the
stable baselines package, which provides implementation for
state of the art neural-network based reinforcement learning
algorithms [10].

Our package complements existing environment imple-
mentations [11, 18, 14] by including additional instrumen-
tation and metrics beyond average or cumulative rewards.
The ORSwuite package is designed for developing and testing
RL algorithms applied to operational problems, and we will
discuss a case study in Section 3. We welcome any feedback
and collaborations as we continue to iterate and develop the
package.
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2. ENVIRONMENTS INCLUDED

Due to space considerations we discuss four environments
currently implemented in the package: ambulance routing,
resource allocation, vaccine allotment, and ridesharing sys-
tem models. However, this is an incomplete list as we are
also working on incorporating inventory control with lead
times and multiple suppliers, queuing networks, and airline
revenue management. Our environments serve as an addi-
tion to those developed in [11, 18], focusing more on stochas-
tic problems and scenarios which are not currently solved by
existing theory in operations research. Our models extract
out the essential features from the problem to highlight op-
erational considerations, and in principal it is easy to modify
to make them more realistic [20].

2.1 Ambulance Routing

This is as a stochastic variant of the popular grid-world
or metrical task-system problem. A fleet of £ € N ambu-
lances try to dynamically re-position themselves in a region
to minimize travel time to arriving service requests. The al-
gorithm receives ambulance positions from the environment,
and chooses locations to station each ambulance, paying
a cost for relocation. Next a request is drawn from some
underlying distribution, after which the closest ambulance
travels to the demand location [15, 8, 5].

We provide two underlying state-action spaces: the unit
interval X = [0,1]* (each ambulance can be anywhere on
the unit interval); and a graph environment where the user
defines an undirected weighted graph G = (V, E), and the
space is X = V¥ (each ambulance can be at any node).
The goal of the agent is to minimize the weighted costs of
traveling to the action chosen and responding to a call. In
addition to allowing users to specify the arrival distribution
and the graph for ambulance requests, we also include a
graph and dataset representing requests from the Ithaca,
New York community.

Additional Metrics: The default rewards are calculated
via a convex combination of the cost to travel and service a
request and the cost to re-station the ambulance. We also
include the mean response time and the variance in mean
response time to the requests as additional metrics.
Heuristic Algorithms: For the line environment we in-
clude two heuristic algorithms.

Static Agent: This algorithm never moves the ambulances
at the beginning of the iteration.

Median Agent: This uses the collected dataset of past ar-
rivals sorted by the arrival location, partitions it into £ quan-
tiles, and selects the middle data point in each quantile as
the location to station the ambulances.

For the graph environment we include Static Agent and
Median-Like Agent: Stations ambulances at the nodes that
would have minimized the distance traveled to respond to
all calls that have arrived in the past.

Mode Agent: Stations ambulances at the nodes where calls
have most frequently occurred in the past.

2.2 Fair Resource Allocation

This environment is motivated by a problem faced by a
collaborating food-bank (Food Bank for the Southern Tier of
New York (FBST) [9]) in operating their mobile food pantry
program [26]. In these systems, the mobile food-bank must
decide on how much food to allocate to a distribution cen-
ter on arrival, and without knowledge of demands in future
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locations. This model also extends to broader stockpile al-
location problems (such as vaccine and medical supply allo-
cation) and reservation mechanisms.

We consider a principal tasked with fairly dividing K re-
sources among 1" rounds. Each person arriving has a type
and utility function, characterizing how satisfied they are
with respect to the allocation given to them. Over each
round ¢ € [T], the number of individuals of each type is
drawn from a (known) distribution and observed by the
principal. The principal then decides an allocation for in-
dividuals of each type before proceeding to the next round.
Allocation decisions are irreversible, and must obey the over-
all budget constraints. The goal of the agent is to design an
online allocation strategy which minimizes various fairness
metrics.

Additional Metrics: In allocation problems, the offline so-
lution which optimizes the Nash Social Welfare (defined as
the product of utilities for individuals of each type for the
allocation received) can be shown to satisfy three Varian-
fairness criteria: pareto-efficiency (for any individual to ben-
efit, another must be hurt), proportionality (each individ-
ual prefers their own allocation to an equal allocation), and
envy-freeness (no individual prefers another’s allocation to
their own) [31, 32, 29]. In the online setting, due to un-
certainty in demand, achieving an exactly fair allocation is
impossible. The default rewards for the environment are
chosen to be the per-round Nash Social Welfare. We also in-
clude additional measures of hindsight proportionality and
envy-freeness as outlined in [26], excess resources, and the
ex-post distance to the optimal fair allocation in hindsight.
Heuristic Algorithms: We include [26, 25]:

FEqual Allocation: uses the equal allocation solution replac-
ing unknown quantities with their expectation.

Fized Threshold: uses concentration to generate a lower
bound on the optimal solution in hindsight and allocates
according to that at every round.

Hope-Guardrail: uses both a lower and upper bound on the
optimal allocation in hindsight and greedily allocates ac-
cording to the upper bound to minimize waste while simul-
taneously ensuring enough resources are saved to allocate at
least the lower solution to everyone in the future.

2.3 Vaccine Allocation

This environment seeks to understand the design of op-
timal allocation policies of vaccines to a population mod-
eled with the SIR epidemic model [1, 12, 13] for the spread
of disease. We look at a population of size K partitioned
into four risk classes: medical workers, non-medical essential
workers, high-risk individuals and low-risk individuals. Each
risk class is further divided into two groups: susceptible and
infected but asymptomatic. Additionally, we consider vac-
cinated people to be part of a recovered group.

We consider the scenario where an agent chooses a prior-
ity order of the four risk classes to vaccinate the population.
For example, if the priority order is {3, 2, 1,4}, vaccines are
administered to susceptible individuals in risk class 3 until
there are no vaccines left or there are no more susceptible
people in risk class 3. If the latter happens, vaccines are
administered to susceptible individuals in risk class 2, then
1 and finally to 4. This directly mimics the phased approach
seen in the COVID-19 vaccine roll-out in New York [16]. The
goal for this environment is to decide a vaccination alloca-
tion strategy which minimizes the time until the epidemic is
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Comparison of Performance Metrics
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Figure 1: Left: Sample line plots for the ambulance routing environment. Right: Sample radar plots with the additional
metrics for the resource allocation problem. Legends are omitted due to space constraints as the plots serve to highlight the

instrumentation provided.

eliminated.

Heuristic Algorithms: We include a fixed-priority algo-
rithm which administers vaccines according to a fixed prior-
ity order across the whole time horizon.

Additional Metrics: The metric included in the environ-
ment measures the number of new infections that occurred
during the transition. As such, the metric calculates the to-
tal number of infections that occur throughout the horizon.

2.4 Ridesharing Systems

This environment studies the design of assignment con-
trols in networks with a fixed number of circulating re-
sources. Each time a demand arises, the algorithm chooses
a supply node which can service the request. If the demand
is served, the supply unit then relocates to the “destination”
of the demand. We frame this as a model of ridesharing sys-
tems, but the environment can be used more generally for
closed-loop control [4, 3, 6].

This environment can be thought of as a discrete version
of the rideshare dispatch problem with instantaneous travel
times in which we have supply units (cars) spread across a
graph that attempt to satisfy demand units (ride requests)
that arrive at each time step. We work with a bipartite
compatibility graph G = (Vs U Vp, E) such that K supply
units (cars) are distributed over the supply nodes Vs and
demand units (ride requests) arrive at the demand nodes
Vb. At every timestep, a request (i,7) is observed from a
node in Vp to Vs. The algorithm then decides a valid supply
node to service the demand request.

Heuristic Algorithms: We will implement Scaled Maz
Weight policies which dynamically manage the distribution
of supply in the network. These policies are parameterized
by a vector of scaling factors for each supply node, and de-
mand is serviced by assigning a supply from a compatible
node with the largest scaled supply units. The policies are
simple and have been shown to perform well in realistic sim-
ulations.

Additional Metrics: We incorporate the ability for a user-
defined reward function. Typical models of rideshare dis-
patch systems focus on minimizing unmet rides. However,
other possible options would be to incorporate the distance
traveled to meet the demands (incorporating wait times that
individuals experience while waiting for their request to be
fulfilled).
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3. OPTIONAL INSTRUMENTATION

Included in ORSwite is optional instrumentation aimed
at providing performance metrics for an algorithm when ap-
plied to an environment. We include four main features:
Episodic Finite Horizon Instrumentation: Runs sim-
ulations in the finite horizon setting between an arbitrary
agent and environment, collecting trajectory information
and performance metrics.

Wrapper for Stable Baseline: Runs simulations in the
finite horizon setting between agents from the stable baseline
package and an environment, collecting trajectory informa-
tion and performance metrics [10].

Plot Generation: Generates figures (similar to Fig. 1)
comparing the performance of different algorithms on a spe-
cific environment on the basis of chosen metrics.

Teaching Interface: A command-line interface with visu-
alizations where you are the agent, which can be used as a
teaching tool for describing the reinforcement learning prob-
lem set-up.

These tools are designed for developing and testing new
RL algorithms applied to our operations research environ-
ments as highlighted in Section 2. The wrappers for sta-
ble baselines allows for testing and developing new neural-
network based RL algorithms for these settings, and the
instrumentation and automatically-generated plots provide
performance benchmarks across a variety of metrics.

As an example, in Fig. 1 on the left hand side we ran
a sample simulation on the ambulance routing problem on
the line as outlined in Section 2.1. We compared the perfor-
mance of the heursistic algorithms described in Section 2.1
with discretization-based algorithms from [24, 23, 28] and
the proximal policy optimization algorithm from [10]. These
plots help to highlight the true multi-objective nature of
many of these operations research problems. While neu-
ral network algorithms can often be shown to achieve great
performance in reinforcement learning, they require hyper-
parameter tuning and increased costs with respect to time
complexity and space complexity. Similarly in Fig. 1 on the
right we ran a sample simulation on the resource allocation
problem as outlined in Section 2.2. These radar plots help
highlight the need for incorporating domain-specific knowl-
edge when developing an algorithm to achieve good guaran-
tees with respect to a specific metric.
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