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Abstract. We consider an ergodic harvesting problem with model ambiguity that arises from
biology. To account for the ambiguity, the problem is constructed as a stochastic game with two
players: the decision maker (DM) chooses the “best” harvesting policy, and an adverse player chooses
the “worst” probability measure. The main result is establishing an optimal strategy (also referred
to as a control) of the DM and showing that it is a threshold policy. The optimal threshold and
the optimal payoff are obtained by solving a free-boundary problem emerging from the Hamilton—
Jacobi-Bellman (HJB) equation. As part of the proof, we fix a gap that appeared in the HJB
analysis of [Alvarez and Hening, Stochastic Process. Appl., 2019, in press|, a paper that analyzed
the risk-neutral version of the ergodic harvesting problem. Finally, we study the dependence of the
optimal threshold and the optimal payoff on the ambiguity parameter and show that if the ambiguity
goes to 0, the problem converges to the risk-neutral problem.
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1. Introduction.

1.1. The stochastic model and the main results. We consider the ergodic
harvesting problem of a population that lives in a random environment when there is
uncertainty about the underlying model. For this, we assume that there is a reference
filtered probability space (2, F,{F:}+,P) supporting a Wiener process (W;);er, such
that the dynamics of the harvested population satisfies

i t
XtZ:er/ XSZ,u(XSZ)der/ o(XZ)dW, — Z;, teRy,
0 0

where (Z;)icr, is a singular control (nondecreasing and nonnegative) under which
X7 > 0. To account for the uncertainty, the decision maker (DM) considers a large
set of measures, which are equivalent to P. The DM then incorporates these measures
into the payoff she aims to maximize as follows:

1 1
. Q ({39003 & Q — nKL
%fE [thBo%f T {E [Z7r] + EDT (QHP)}] :

The infimum, which represents an adverse player, is taken over the set of the equiv-
alent measures under consideration; € > 0 is a parameter that measures the level of
ambiguity the DM is facing, and the Kullback-Leibler divergence DXL(Q||P) measures
how much the measure Q deviates from the reference measure P.
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Using differential equations techniques and probabilistic methods we show that,
for any level of ambiguity ¢, there is an optimal control for the DM. This control is of
a threshold form, in the sense that there is a level 8¢ > 0, such that the control uses
a minimal amount of harvesting in order to maintain the dynamics in the interval
[0, 3¢]. These properties are summarized in the main theorem of the paper, Theorem
2.1. The proof relies on finding lower and upper bounds for the optimal payoff. The
second main contribution of the paper is fixing a gap that appears in the upper bound
part considered in another related ergodic harvesting model (without ambiguity), [5].
Our upper bound result, Proposition 4, is valid with or without ambiguity. Further-
more, we prove that the optimal control’s threshold-levels and the optimal payoffs are
continuous and decreasing with respect to the ambiguity parameter and find their lim-
iting behavior as the ambiguity parameter goes to the extremes € — 0o, 0+. Finally,
when & — 0+ we obtain convergence to the risk-neutral problem studied by [5].

This is one of the first models that incorporates ambiguity in ergodic singular
control problems as well as in harvesting models. In the setting of ergodic control
there are some results for controls that are not singular [10]. The ambiguity models
that appear in the harvesting literature are extremely simple, and mostly look at
linear SDE models [41].

1.2. Review of the literature. In (stochastic) ergodic control problems the
goal of the DM is to optimize a time-averaged criterion over an infinite horizon. This
theory was first developed for discrete-time and discrete-space Markov chains; see
the survey [7]. The ideas and intuition carried out to continuous-time problems (see
[8]), where due to the stability of the solution, it became popular in the analysis of
stochastic networks; see, e.g., [31] and the references therein. More recently, Alvarez
and Hening [5] took advantage of the stability properties of the state dynamics to
study sustainable harvesting. We discuss this model as well as other biological models
in what follows.

Singular control problems have been studied in various fields such as biology,
queueing systems, mathematical finance, manufacturing systems, etc. The Hamilton—
Jacobi-Bellman (HJB) equations associated with these models are often reduced to
free-boundary condition problems with Neumann boundary conditions. Menaldi,
Robin, and Taksar [37] characterize the value of a singular control problem with
ergodic cost (and constant diffusion coefficient) via the HJB in case the latter has a
smooth solution. The smoothness of the HJB is not obvious in general, in which case,
viscosity solutions are considered; see, e.g., [9]. Budhiraja and Ross used probabilistic
methods and time-transformations techniques to establish the existence of an optimal
singular control in [6]. Recently, Cohen [18] showed that the time-transformations are
embedded within the weak-M1 topology.

One of the fundamental problems of conservation biology is finding the optimal
ways of harvesting species which are influenced by stochastic environmental fluctua-
tions. If one overharvests, this can lead to extinctions, while if one underharvests this
leads to an economic loss. There has been significant work on harvesting problems
when the payoff function involves the discounted gain

o0
]E/ e~ dZ,,
0

where ¢ > 0 is the discount rate. Multiple studies have shown that the optimal control
is of threshold or bang-bang type. These types of singular stochastic control problems
have been investigated in [35, 4, 1, 2] in the single species case, in [39] when there
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is switching, and in [34, 3, 26, 25] in the multispecies setting. In [24] the authors
considered the framework of singular ergodic control for the first time for harvesting
problems. This is a very natural setting because it implies that it is never optimal
to harvest a species to extinction, as it would yield a zero asymptotic yield. This is
therefore a realistic setting if one cares about the preservation of natural species. One
other problem with discounted models is that it is very hard to estimate the discount
rate p; the ergodic framework needs fewer parameters and is superior in this respect.
One limitation of [24] is that the harvesting rate is assumed to be bounded; i.e., the
controls are not singular. This limitation was removed in [5]. However, as we explain
in Remark 5 below, there is a gap that is present in the proof of [5].

As mentioned earlier, the ergodic harvesting problem without ambiguity was stud-
ied in [5]. It was also studied in [33], where a running nonsingular payoff is incorpo-
rated. In these models it is assumed that the DM is certain about the evolution of
the system, which, moreover, does not change in time. Such an assumption is not re-
alistic, and we consider a robust analysis. When one is interested in the conservation
and harvesting of a species there are certain obstacles which have to be overcome.
One is the complexity of the biology, which has to be simplified in order to model the
dynamics mathematically. A second difficulty is due to a number of uncertainties: the
structure of environmental fluctuations and the fact that one never has a complete
knowledge of the various population sizes. These uncertainties make it difficult to
associate probabilities with certain events involving the population. This is related
to an economic framework due to Knight, where there is incomplete or insufficient
information in order to assign probabilities to events. We bypass these problems by
adding the ambiguity, also called Knightian uncertainty, to our model. The introduc-
tion of the ambiguity makes it possible to associate probabilities to events by looking
at a set of multiple possible measures that control the population dynamics. Our ro-
bust framework will be helpful when one is interested in the conservation of a species
because it allows us to explore the least favorable outcomes by looking at the infimum
over all the possible measures (or priors) of the payoff. For further research that
involves Knightian uncertainty we refer to [36, 23, 22, 11, 38, 15] and in the context
of queueing systems to [28, 12, 32, 17, 16, 20].

1.3. Challenges and proof techniques. The structure of the Kullback—Leibler
divergence leads to a linear-quadratic (standard) control problem from the side of the
adverse player; that is, using Girsanov’s theorem, the measure Q can be replaced by a
process (¢y)¢er, , and the divergence-penalization term is replaced by an integral over
the square of ;. This representation makes it possible to describe the unharvested
population process by the nonlinear operator

£ 50) = i { 5o o) + (anlo) + @) o) + 507
= L2 @) @)+ o) (@) — So2@)(7 (@)
The HJB associated with this model is given by
(1.1) max {£0(z) — 6,0/ () — 1} =0,  z € (0,00),

where, upon sufficient smoothness of the solution, £ > 0 is the optimal function,
and f is referred to as the potential function. Our first challenge is to show that
this equation admits a C? solution. In Proposition 1 we establish a stronger re-
sult and show that, for any ¢ > 0, there are 8¢ > 0, ¢ > 0, and v*() such that
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max {L5v¢(x) — €2, (v¥) (x) — 1} = L5v®(x)—¢° = 0 on [0, 5°] and max {LZv®(x) — ¢,
(v¥)(x) — 1} = (v¥)(x)—1 = 0 on (B¢, 00). This is translated to the stochastic model
as a threshold-control with level 4¢. The main difficulties here stem from the nonlin-
ear structure of the operator £5. To tackle these issues we use the shooting method,
a tool for solving boundary value problems using initial value problems (see [40, sec-
tion 7.3]). We take it one step forward in our free-boundary setup. The analysis
requires a sequence of preliminary results (Lemmas 1-9) that evolve around an ODE
that is derived from the HJB and our educated guess that the optimal policy is of
threshold type. The method was used in [17, 15]. While in these two references,
one of the initial conditions of the HJB equation is being shot; in the current paper,
we shoot the parameter that will eventually be the threshold point. The advan-
tage of this method is that it enables us to bypass lengthly arguments that include
showing that the HJB equation admits a viscosity solution and then establishing its
regularity; see, e.g., [11]. Furthermore, it gives us a numerical way of finding the
solution.

Given a smooth solution v¢ to (1.1), with associated parameters 8¢, (¢, we show
in Proposition 3 that the threshold control with level 5° attains the payoff ¢. This
establishes a lower bound. The next step is to show that by using any other control,
the DM cannot attain more than £°. This in turn shows that ¢¢ is an upper bound for
the optimal payoff. We accomplish this in Proposition 4. In the next few paragraphs,
we detail the difficulties in establishing this bound and the solution we propose.

In the proof of the upper bound, we consider an arbitrary admissible control Z
and fix the candidate for the optimal control for the adverse player. Then, applying
Itd’s lemma to v¥(X7) and using the properties that (v¢)'(z) > 1 and L5v¢(z) < ¢2,
one obtains that, for any Z admissible,

12 (E@[ZT] T iDI;L(@HP)) < () — B (XA + £

Clearly, the first term vanishes as 7' — oo. The proof of [5] assumes that v¢ is
bounded below, hence deducing that the second term also vanishes, and the proof is
complete. However, as we show in Remark 5 the function v* is unbounded below in
the Verhulst—Pear] diffusion case given in [5, section 4.1], which is the most celebrated
example in population dynamics. The explosion of the potential function at = = 0+
stems from the fact that (in a consistent way with the population dynamics literature)
the diffusion term vanishes as © — 04. Moreover, recall that our arbitrary control is
singular; hence it can push the process XZ very close to zero instantly, which leads
to exploding values of v*® (qu ). To bypass this issue, one may be tempted to truncate
the potential function v® (or its derivatives). However, this leads to a nonnegligible
violation of the HJB equation (in the sense that as the truncation level goes to infinity,
the violation of HJB does not go to zero). We take advantage of the preliminary results
established for the existence of a smooth solution to the HJB via the shooting method.
Specifically, we consider a truncated version of a perturbed version of v¢ by considering
a sequence of solutions to ODEs that are associated with threshold controls whose
threshold-levels converge from below to the candidate level 5°. For this sequence, the
violation of the HJB vanishes as the threshold converges to 5. The proof ends by
taking first liminf7_, . for each function in the sequence and then the limit through
the sequence of functions.

1.4. Summary and main contributions. In summary, our main contributions
are as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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e We provide and solve an ergodic and singular control problem with ambiguity
that arises naturally in the harvesting literature. This problem is formulated
as a game between a DM and an adverse player.

e We solve a relevant free-boundary problem and use it to characterize the
optimal policy for the DM, which has a natural and simple form.

e We correct a gap that appeared in the upper bound argument of a previ-
ous harvesting paper [5] that looked at the ergodic risk-neutral setting. We
establish the upper bound for both the risk-neutral and the ambiguity case.

e We analyze the dependency of the optimal payoff and optimal policy for the
DM on the parameters of the problem.

1.5. Organization. The rest of the paper is organized as follows. In section 2
we set up the stochastic model and provide the underlying assumptions and Theorem
2.1, which is the main result of the paper. The proof of the theorem relies on the four
propositions given in section 3. Section 4 is devoted to the proofs of the previously
mentioned propositions. It includes some preliminary ODE results which are summa-
rized in several lemmas. Finally, section 5 provides comparative statics with respect
to the ambiguity parameter ¢.

1.6. Notation. We use the following notation: For a,b € R, we define a A b :=
min{a, b} and a Vb := max{a,b}. We use R, to denote [0, 00). We denote by C! or C?
the sets of functions with continuous first derivatives or continuous second derivatives.
By RCLL we mean right-continuous with finite left limits. For any Borel set A, 14 is
the indicator function of A: 14(x) =1if z € A and 14(z) =0if z ¢ A. Throughout
the paper, increasing and decreasing are in the strict sense.

2. The stochastic model and the main result. In this section we describe
the ergodic harvesting problem with ambiguity. We start with a rigorous definition
of the control problem as a two-player game, setting up the set of admissible controls
for the players. Then, we introduce the payoff function and a set of candidate optimal
controls for the DM. A relevant free-boundary problem is provided. We intuitively
explain how it is associated with the optimal control and the value. Finally, we
introduce the assumptions on the model and state the main result of the paper.

2.1. Dynamics and controls. The rigorous definition of the control problem
with ambiguity is now given. Consider a filtered probability space (2, F,{F:},P)
that supports a one-dimensional Wiener process W adapted to the filtration {F;}
(satisfying the usual conditions) and the process

¢ ¢
(2.1) X == +/ Xspu(Xs)ds Jr/ o(Xs)dWs, teRy,
0 0

which represents the population size in the absence of harvesting. The functions p
and o satisfy some conditions given in Assumptions 1 and 2 below. The value p(X})
stands for the per capita growth rate, and 0%(X;)/X? is the infinitesimal variance of
fluctuations in the per capita growth rate.

A fundamental assumption that is in force throughout the paper is that the pop-
ulation size does not explode and does not go extinct in a finite time. For this we need
the following definitions: Fix an arbitrary ¢ > 0. The density of the scale function of
the unharvested process X from (2.1) under the probability measure P is given by

(2.2) Sh(z) = exp <— / ’ 2”(y)ydy> .z e (0,00).
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Assumption 1. The following hold:
A0)

(&
. o . / _ . _
i So(y) = lim Se((y0) = / S(e)dr = —oo,  lim Sply) = cx.

This assumption ensures that the SDE (2.1) does not explode, that it has a
pathwise unique solution, and that in many examples the unharvested process is
positive recurrent and converges to its unique invariant probability measure. It is
necessary to assume that 0 is a boundary that cannot be attained in finite time by the
unharvested diffusion. Moreover, it also natural to assume that P(lim;—,, X; =0) =0
since otherwise the harvest yield might be zero. This implies that, following the
boundary classification due to Feller [29], 0 has to be either an entrance or a natural
nonattracting boundary. This happens if and only if Sp(0) = —oo (see Table 6.2 from
[29]).

Remark 1. We note that the related work of [5] has an additional condition that
ensures the speed measure is finite. This is done in order to make sure that the
unharvested diffusion has a stationary distribution. We do not require this condition
as our method of proof does not require ergodicity—we focus on ODE methods to
explore the control problem.

DEFINITION 1 (admissible controls).
1. An admissible control for the DM for any initial state x > 0 is a nondecreasing
process Z = (Zy)ier, taking values in Ry with RCLL sample paths adapted
to the filtration {F} such that the dynamics (X7 )ier, satisfies

t t
(2.3) X7 :x+/ XSZ;L(XSZ)der/ o(XZ)dW, — Z;, teR,,
0 0

with X7 > 0, t € Ry, P-almost surely (a.s.). The functions p and o are
measurable and satisfy some conditions, which are provided in Assumption 2
in what follows.

2. An admissible control for the adverse player is a measure Q defined on

(Q7f7 {]:t});

CO R [ occtya, - /Otw(XsZ))?ds}, LRy,

for a function 6 : Ry — R, satisfying

(2.5) E? {e% fot(a(xf))%s} < oo, teRy,
such that the conditions in (A0) hold for S{(x) := exp(— [ %Wdy).
In what follows, we refer to 1, = 0(XZ),t € Ry, as the Girsanov kernel of

Q.
We denote by Z(x) the set of all admissible controls for the DM, given the initial
condition x. The set of all admissible controls for the adverse player is denoted by

Q(x).
Remark 2. One can write the dynamics from (2.3) in the alternative form

(2.6)

t t t
XZ =z + XSZ[L(XSZ)dS—F/ G(st)q/zsds—l-/ o(XZ)awl - z,, teR,,
0 0 0
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where WtQ = Wy — fot Ysds, t € Ry, is an {F;}-one-dimensional Q-Wiener process.
Under (AO0) it follows that P(X; > 0,t > 0|Xo = z) = 1,2 > 0. By the definition
of admissible controls Q € Q(z), this condition is in force also under Q; it implies
that the adverse player cannot change the measure in a way that would lead to a
finite-time extinction. The player has the strong belief that the population should
not go extinct in a finite time. From a biological standpoint this restriction on the
measures Q is very natural—we restrict ourselves to a reasonable neighborhood of the
measure P, one where there are no extinctions.

2.2. The payoff function. Fix a parameter ¢ > 0 which we refer to as the
ambiguity parameter. The ergodic expected payoff associated with the initial condition
z and the controls Z and Q is given by

1 1
Je(z,Z,Q) := liminf — {IEQ[ZT] + D%L(QHP)} ,
T—oo 1 g
where

DEL(Q|P) := E® [/OT In (‘ﬁ(t)) dt}

is the Kullback—Leibler divergence. The payoff function can be reformulated in the
technically more convenient form
T 1,
dZ, + —idt
/0 ( t + % wt ) ’
where 9 is the Girsanov kernel of Q.
The risk-neutral (no ambiguity) payoff is given by

T
/ dZ,
0

For comparison reasons we place the risk-neutral and the ambiguity models under the
same umbrella. So, in our general setting, the risk-neutral payoff is associated with
¢ = 0 (we justify this in Remark 3 below). For any € > 0, we define the value function
by

1
. T Q
(2.7) J(x, Z,Q) hTHifiéf TIE

(2.8) J(z, Z) := lim inf %]EP

T—o0

(2.9) V‘E(a: _ SUPzc z(x) iIlOfQEQ(w) Js(LE, Z, Q), e >0,
SUPze z(x) J (l‘, Z)v e=0.

An admissible control Z is called an optimal control if it attains the value function,
that is, V*(z) = infgeo(z) J(2,Z,Q), and in case e = 0, VO(z) = J°(, Z).

Remark 3. Here we explain some of the intuition behind the game structure and

explain it from a biological point of view.

(i) In the natural world we do not know the true model so we do not know the
measure P. We therefore use a measure Q that we hope is close to P. The
closeness of the measures is given by DEY(Q||P). The intuition behind the
payoff J¢(z, Z,Q) is the following. The term E®[Z7] is the expected value
under the measure QQ of the total harvest between 0 and T. The second term
e~ 1 DEL(QJIP) is the penalization due to using the measure Q instead of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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real measure P. Informally, note that, for large (small) values of €, the penalty
term (1/¢) DXL (Q||P) allows for large (small) values of the divergence. This
means that the adverse player is more (less) likely to choose Q’s that are
farther away from P. In other words, larger (smaller) values of e correspond
to larger (smaller) levels of ambiguity. As we show in section 5, as ¢ — 0+, the
penalty term averages out to zero, and the problem convergence to the risk-
neutral one. ' We divide the sum of the two payoff components by the time
horizon T and let T' — oo to get the penalized asymptotic yield J*(z, Z,Q).
The optimization problem becomes the following: The DM chooses a control
Z, and the adverse player picks an (open loop) control Q in response, which
is adapted to the same underlying filtration F;. This control aims to be the
worst possible measure for the DM, while the adverse player’s hands are tied
due to the divergence penalty term, and he is forced to choose a measure in
an “g-neighborhood” of P.

(ii) We study the lower value of the game; that is, we use the formulation sup inf.
This formulation is consistent with the traditional setup of the Knightian
uncertainty; see, e.g., [36, 23, 22, 11, 38, 28, 12, 32, 17, 20]. Heuristically, this
structure emerges from the theory of risk-sensitive control (see Fleming and
Soner [21, Theorem XI.7.2], with the difference that they work with a cost
rather than a reward) and the variational representation due to Boué and
Dupuis [14], which is also known by the duality presentation; see, e.g., [19].
The current paper follows the above references and analyzes the harvesting
problem, formulated as the lower value of the game. We do not address here
the game theoretical question of whether the upper value and the lower value
coincide. In our case, this is a merely technical problem.

2.3. Candidate controls for the DM: Threshold controls. The ergodic
control problem without ambiguity (2.8) was studied by Alvarez and Hening in [5].
They proved that the optimal control for the DM is one that uses minimal effort to
keep the population in a given interval of the form [0, 8], where 8 depends on the
parameters of the problem. Our main result shows that these types of controls are
also optimal in the more general setting that includes an ambiguity.

To rigorously define such a control we make use of the Skorokhod map on an
interval. Fix 8 > 0. For any n € D(R4,R) there exists a unique couple of functions
(x, ) € D(R4,R?) that satisfies the following properties:

(i) for every ¢ € Ry, x(t) =n(t) — ¢(t);

(ii) ¢ is nondecreasing, p(0—) = 0, and

/O 1y (X(0)diolt) = 0.

We define Tgn] = (T'},T3)[n] := (x,¢). See [30] for the existence and uniqueness of
solutions, as well as the continuity and further properties of the map. In what follows,
we will use the Skorokhod mapping for n > 0, in which case, x > 0.

DEFINITION 2. Fiz x,3 € [0,b]. The control Z = Z®) is called a B-threshold
control if for every n € C(R4,R) one has (X%, Z)(n) = Tsn].

1Yet, it is not so obvious that e~ DXL (Q||P) — 0 as e — 0+. Indeed, the first term converges to
oo, while the second converges to 0. One needs to show that the rate of convergence of the second
term is faster. This is done in Theorem 5.2.
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One can easily verify that any S-threshold control is admissible in the sense of
Definition 1.

2.4. The free-boundary problem. We show that, for any ¢ > 0, there are
positive constants £¢ and ¢ such that, for any initial state x > 0,

Ve(z)= sup J(z,Z¥) Q) =¢°incase e >0 and
QeQ(x)

VO(x) = JO(:E,Z(ﬁO)) = (% in case £ = 0.
As in [5], this suggests that the value ¢¢ and the threshold level 5¢ can be char-
acterized by an HJB equation that has the form of a free-boundary problem with two

parts. Motivated by the game structure, together with the dynamics and payoff forms
given in (2.6) and (2.7), for any € > 0, let £ be the operator which acts on f € C? as

£450) o= int { 300" 0) + oute) + oI ) + 507

(2.10) fe 2 ) 2
= 502(96)1"”(90) + zp(x) f(z) — gﬂz(x)(f/(x))2~

While the representation on the first line is not valid for € = 0, the second one is valid
for any € > 0 and coincides with the operator in the risk-neutral case; see [5, equation
(4)).

The relevant HJB equation is given in (1.1). However, following our educated
guess that the optimal control for the DM is a threshold control, we choose to work
with the following more explicit free-boundary ODE. Namely, we are looking for the
maximal ¢ for which there exists f € C?> and a number & > 0 such that

(2 11) ‘Csf(x) ={, f’(l’) >1, ze€ (Oai']a
. Lof(x) <L, fl(x)=1, =€ (& 00),

as well as f”(2) =0 and f'(Z) = 1. In particular,

(2.12) A (&) = ¢,
where
(2.13) A5 (z) = zu(x) — 202(30), x € (0,00).

DEFINITION 3. We denote by (&,4z, f) a solution of (2.11)—(2.12), where £z :=
A%(%). A solution (Z,4z, f) is called an optimal solution of (2.11)—(2.12) if for any
other solution of (2.11)~(2.12), say (§,¢y, h), one has by < ;. We refer to f as the
potential function.

The rationale behind this is as follows: when the initial population size is X =
x € (&,00), then in order to keep the process XZ between 0 and #, there is an
instantaneous harvesting of size x — Z. When = € (0,%) no action is being taken
by the DM. When XZ hits the boundary Z, the threshold policy is taking action,
leading to the Neumann boundary condition at . The population size will be kept
in (0, %), with an initial harvest 0V (XZ — x) and then with harvesting only when the
population size XZ is at level &.

2.5. Further assumptions and the main result. We now present the second
set of assumptions that hold throughout the paper.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/14/22 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1048 ASAF COHEN, ALEXANDRU HENING, AND CHUHAO SUN

Assumption 2. The following hold:

(A1) The function o : (0,00) — (0, 00) is increasing and continuously differentiable
on (0, 00). Moreover, o’ is nondecreasing and bounded by a constant og. The
function u : [0,00) — (0, 00) is continuously differentiable on (0, 00), and the
function p’ is bounded as x — 0+. The function x +— %(f)) is decreasing and
bounded as * — 0+. We also assume that there exist numbers 7,c,z > 0
such that, for sufficiently small z, |o(z) — 52| < cx?, and |u(z) — ji| < cx.

(A2) There exists ¢ € (0,00) such that the function \¢ defined in (2.13) is in-
creasing on (0,z°) and decreasing on (z°,00). Also, assume Z° := inf{zx >
x€ 1 X*(x) = 0} is finite.

Before discussing the assumption, we show that it will hold in the most celebrated
example from population dynamics, also referred to as the Verhulst—Pearl diffusion or
the logistic diffusion model. We note that we wrote this paper with this application in
view—other biological models, like the ones from [35, 33], will not satisfy Assumption
2. Nevertheless, the Verhulst—Pearl diffusion is by far the most used, and therefore
Assumption 2 should be seen in this light as a generalization of the Verhulst—Pearl
model.

Ezample 1 (Verhulst—Pearl] diffusion). In this setting, the dynamics (2.1) of the
unharvested population is given by

dXy = pX (1 — 3X3)dt + 5 X dWy, t e Ry,

where ji > 0 is the per capita growth rate, 1/5 > 0 is the carrying capacity, and 52
is the infinitesimal variance of fluctuations in the per capita growth rate. One can
easily verify that assumptions (A0)—(A2) hold in this example for any € € [0,00). In
this case,

€ H

=Yt =2

In [5], where a finite speed measure is required, it is also necessary that the long-term
behavior of the unharvested system, which is characterized by the stochastic growth

— 2 . o, .
rate r := i — %-, is positive.
We now comment on the assumptions.

Remark 4. Part (A1) tells us that the functions ¢ and yp are well behaved and the
diffusion coefficient o is nondegenerate (¢ > 0). In addition, there are some technical
assumptions on the regularity, boundedness, and monotonicity of the coefficients p
and 0. We note that these assumptions are similar to those from [5] and [27]. The
extra second order bounds around z = 0+ compared to [5] ensure that we can sidestep
the gap from the proof in [5]—see Remark 5. Part (A2) here is the generalization of
Assumption 2.2(A2) from [5] to the setting that includes ambiguity. In particular,
this is natural in ecological applications: Initially, at low densities the competition
for resources is weak so the growth rate grows from 0 at 0 up to a maximal value,
after which, due to competition, the growth rate decreases to 0 and finally becomes
negative.

In all biological applications we will have ¢(0) = lim,_,o4 o(z) = 0 because
the population cannot escape 0 if it starts at 0—an extinct population will not get
“resurrected.” Moreover, for most applications the natural choice is o(z) = gz for
some & > 0. In a biological setting it will also be natural to have that the unharvested
population X given by (2.1) has a stationary distribution.
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We next present our main result. We prove that an optimal control for the DM ex-
ists and that it is a threshold control. Moreover, we show that the threshold level and
the value function V¢ are characterized by the free-boundary problem (2.11)-(2.12).
Finally, we show that the population dynamics are stationary under the measure cho-
sen by the adverse player. Even though our main interest is when there is ambiguity,
i.e., when £ > 0, we consider also the risk-neutral case € = 0 since there is a gap in the
analysis from [5], which is filled in Proposition 4 below; see also Remark 5 below. The
proof of the Theorem is given in the next section. Recall that, for any ¢ > 0, V¢(z)
is the value functions given in (2.9). This shall not be confused with our notation for
the potential function v©.

THEOREM 2.1 (main theorem). For any e > 0, the following hold:

(1) There exists an optimal solution to (2.11)—(2.12): (8%, £¢,v°) and 3¢ € (2°,ZF).

(2) The (°-threshold control, denoted by Z° := ZB°) is optimal.

(3) For any initial state x > 0, the value of the problem is £=. In other words, if
e >0, then

VE(z) = sup inf J(z,Z,Q)=¢° for any z € (0,00),
zeZ(z) QEQ(2)

and if e =0, then

VOox) = sup Jx,Z)=J%2,2°) =¢° for any x € (0, 00).
ZeZ(x)

3. Proof of Theorem 2.1. The proof of the main theorem relies on Propositions
1-4 given below. For completeness, we provide the derivation of Theorem 2.1 at the
end of this section. The proofs of the four propositions are given in section 4.

The main component in characterizing the value and the optimal control for the
adverse player is via an optimal solution (5, £¢,v°) to (2.11)—(2.12). The next propo-
sition establishes the existence of such an optimal triplet. Note that the quantities
2%,z were defined in Assumption 2(A2).

PROPOSITION 1. For any € > 0 there exists an optimal solution to (2.11)—(2.12)
with B° € (z°,%°).

Let (8%, £%,v%) be the optimal solution of (2.11)—(2.12) given in Proposition 1.
The next proposition is needed for technical reasons in order to prove Proposition 3
below and to obtain comparative statics (see section 5).

PROPOSITION 2. For any € > 0, the function o(-)(v®)'(:) is bounded above by

a(B%) on (0, 5°].

The next proposition states that by using the 5-threshold control, Z¢ := Z(%),
the DM attains at least the value ¢¢. In particular, it provides a lower bound for the
value.

PROPOSITION 3. For the optimal solution of (2.11)—(2.12) (5%, £, v%), one has

< inf J%(x,Z°,Q), x € (0,00),
< bt J(,25,0) (0,00)
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fore >0 and
0 < J%z, 2%, z € (0, 00),

fore=0.
Finally, the next proposition provides an upper bound for the value.

PROPOSITION 4. For the optimal solution of (2.11)—(2.12) (5%, ¢, v%), one has

sup inf J%(x,Z,Q) < £°, z € (0,00),

ZeZ(z) QEQ(2)
fore >0 and
(3.1) sup JO(z,Z) </, x € (0,00),
ZeZ(x)
fore=0.

Remark 5. We note here that the proof in the ¢ = 0 case appearing in [5] has a
gap. This is because in [5] the authors assumed that v = v*=% is bounded below,
something which is not always true. Take, for example, the Verhulst—Pearl diffusion
from Example 1 with parameters = o = v = 1. Then, one can show that (v°)(x) =
c(e?® — 1)/2?, which behaves like 7! in the neighborhood of # = 0+. As a result,
v(z) — —oo as x — 0+. Specifically, in Lemma 2.1 from [5], where the authors
aimed at showing an upper bound as in (3.1), they applied It6’s rule to test functions
(candidates for v?), and in the proof they assumed that these functions are bounded
from below. Then, they applied it in their Theorem 2.1 for v° (which is not always
bounded below). We on the other hand consider bounded from below test functions,
yet we allow them to slightly violate the second part of (2.11). The main difficulty is
to choose a proper sequence of functions such that in the limit the violation vanishes.

Proof of Theorem 2.1. The case € = 0 is complete by replacing [5, Lemma 2.1]
with Proposition 4. Hence, in the rest of the proof we fix an arbitrary € > 0.
Proposition 1 establishes bullet (1). From Proposition 4, we know

5> sup inf  J%(x,Z,Q).

ZeZ(z) Q€Q(x)

On the other hand, from Proposition 3, if we take the °-threshold control, Z¢, we
get

< inf J(z,Z2%,Q) < sup inf  J%(z,Z,Q).

QeQ(x) ZeZ(z) QeQ(z)

As a consequence, Ve (z) = £ (establishing (3)), and Z¢ is an optimal control (estab-
lishing (2)).

4. Proof of Propositions 1, 2, 3, and 4. The proofs of Proposition 1 and
2 require some preliminary ODE results, provided in a sequence of lemmas below.
On the other hand, the proof of Proposition 3 merely requires the existence of a C?
solution to (2.11), which we get thanks to Proposition 1. For readability reasons we
start with the proof of Proposition 3.
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4.1. Proof of Proposition 3. We provide the proof for the case € > 0. The
case £ = 0 is handled similarly and is simpler. Therefore, it is omitted. Fix € (0, c0).
Denote by Z = Z(%) the 3°-threshold control. Choose an arbitrary admissible control
Q with Girsanov kernel 1. For every n € N, set 7" =T Ainf{t > 0: X7 ¢ [1/n,n]}.
By Itd’s lemma,

T'n, "
(1a2<xf><v€> (X7) + [XZu(X7) + o(X7 )] <v6>’<Xf>) ds

v (X7 ) = vs(x)+/ 5

0
T Tn
[ oxderxhaws - [y iz,
0 0
The function v° solves (2.11). From (2.10) (which is valid for « > 0) it follows that
1

S XA (XE) + [XEW(XE) + o (XD)l0F) (X2) + o =

Hence,
an an 1
[ erxhazs [ getds 2 o) - v (X 4 €T
0 0
T"L
v [ ex®eryed)aws,
0
Since Z is a B°-threshold control, [ 1o g:)(XZ)dZ, = 0, so v*'(XZ) = 1 when

XZ = j* gives fOT" v (XZ)dZ, = fOT” dZ,. Taking expectation with respect to Q and
noting that by Proposition 2

Tn
E [ / a<Xf><v8>’<Xf>de@] ~0
0
imply that

1
_—_EQ
T,

Y

(ve(x) — EQ[UE(X%l)]) + ¢

T, T, q
/ dZs+/ —wgds
0 o 2

>

1
T,
1

= (v (z) =7 (8%)) + &,

T,

where the last inequality follows by the monotonicity of v¢. Letting first n — oo then
by the admissibility of Q and the fact that Z is a threshold policy, it follows that
Q(XZ >0, s€[0,T]) =1 (see, e.g., [13, section 2.6]), which implies that T" — T,
Q@-a.s. Then take T'— oo, and get J¢(x, Z, Q) > ¢¢. Since Q is arbitrary admissible,
one has

¢ < inf J(z,Z,Q).
QeQ(x)

|

4.2. Proof of Proposition 1. The proof uses the shooting method. This is a
method that allows to solve boundary value problems by reducing them to initial value
problems; see [40] for further reading. We adapt it to our free-boundary problem. In
our case, we set up as a parameter the boundary point & = 8¢ such that (2.11) holds
true with it and such that it gives the maximal value /£¢.
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We start by setting up an ODE that stems from (2.11). Its role is described in
two paragraphs ahead. Fix b > 0, and recall the function A° from (2.13). Denote by
b, the C1((0,b) U (b,00)) N C(0, 00) solution of the following ODE:

wy (@) (@) - 5@ = X0+, o€ 0.)
g(b) =1.

If v = 0, we use the notation g, for g5 o. Notice that g, is continuously differentiable
at £ = b. In the rest of the section we will make several uses of this ODE, which
originates from (2.11). The existence and uniqueness of a solution to (4.1) follows by
the Cole-Hopf transformation. Indeed, the following ODE is linear; hence, it admits
a unique solution on any interval of the form [a1, as] with a1 < b < as:

Lo2(2)¢" (&) + ap(e)d (x) = —(A () +)ed(a),
o(b) =1, ¢/(b) = —=.

Set f:= —1In(¢)/e. Then, f’ solves (4.1). Uniqueness holds since the transformation
is one to one.

We now motivate the analysis of the system (4.1). Targeting at proving Propo-
sition 1, we aim at showing that there is ¢ € ( z¢) for which (2.11) holds. There
are four conditions embedded in (2.11). Set f(z fb g(y)dy (so f'(z) = gp(z)) on
(0,b). At this point the reader may see that the ODE for f satisfies L°f(z) = A°(b)
to the left of b. By Assumption 2, for b > ¢, A\°(z) < A°(b). Setting up f/'(z) =1
on (b,00) and the second line of (2.11) holds for any b > 2. This suggests that most
of the effort should be invested in choosing a point 8 = b for which the challenging
bound gp(z) > 1 holds on (0,b). Of course, one also needs to choose the b leading to
the maximal payoff. Using the fact that \® is decreasing to the right of z¢, we are
looking for a minimal b with the property mentioned above. Finally, some effort is
required to show that the infimum over a relevant collection of functions {gy(x)}yeca
satisfies (4.1).

The following elementary lemma will be used several times in what followsl.

LEMMA 1. Let f be aC' function defined on (a,b). Suppose at x € (a,b), f(x) > c
(resp., < c) for some ¢ € R. Then upon ezistence of y1 := sup{y € (a,z) : f(y) = ¢}
and yo = inf{y € (z,b) : f(y) =c}, f'(y1) >0 (resp., <0), f'(y2) <0 (resp., > 0).

As a corollary, let f be a C' function defined on (a,b). Fiz x € (a,b), and let
y1 :=sup{y € (a,z) : f(y) = f(2)} and yp := inf{y € (z,0) : fy) = f(z )} if they
exist. If f'(x) > 0 (resp., < 0) then, f'(y1) <0 (resp., > 0), and f'(y2) < 0 (resp.,
>0).

The following lemma is a perturbation result; we use it to get estimations for g via
estimates of g, ,, which are often easier to achieve.

LEMMA 2. For any b > 0 and any y € (0,b), we have
sup |gp5(2) = go(x)| = O(7) as v —=0.
x€[y,b]
Proof of Lemma 2. Fixb > 0. Set H : (0,00)xR — Rby H(z,y) := a2(x) (A\e(b)—
zp(z)y + 50%(x)y?), and notice that in the case v = 0, the ODE (4.1) can be rewrit-
ten as g,(z) = H(z,gs(z)). Had H been Lipschitz-continuous in its second argu-

ment, standard perturbation theory implies that the solutions to the perturbed ODEs,
9~ (®) = H(z,gp4()) + U%(x), converge to g, uniformly on sets of the form [y, b],
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y € (0,b). To this end, fix y € (0,b). Notice that, for fixed b € (0,00), g is bounded
on [y,b], say by K = K(y,b). Define k(z) = (—K V) A K. Then gy(z) = k(gp(z))
for z € (y,b]. Hence, in case v = 0, (4.1) is equivalent to g (z) = Hi(z, g»(z)), where
Hy(xz,y) = H(x,k(y)). The function H}, is Lipschitz-continuous in its second argu-
ment. Then, since we have g; _ (z) = Hy(z, gy, (7)) + U%(w), by [42, Theorem 9.1] we

get SUDge[y,b) |gb,7($) —agv(z)| = O(7). 0
Set

(4.2) B :={b>0:gy(x) > 1,2 € (0,b]}, and define B¢ :=inf B°.

The following lemma implies that the infimum is taken over a nonempty set. It also
provides a region for 5¢.

LEMMA 3. The following relations hold: (0,z°] N B® = (), but z°¢ € B°. As a
conclusion, 5% is well-defined, and x¢ < 3¢ < Z°.

Proof of Lemma 3. First, fix b < 2 and v > 0. Recall the definition of gy -, given
n (4.1). Plug « = b into the ODE for g, and use gy~ (b) = 1 and the value of A\°(b);
note that %UQ(w)gl’,y,y(b) = 7. Therefore g;, . (b) > 0. We show that for any z € (0,0)
one has ¢ (z) < 1. Arguing by contradiction, assume it does not hold; then together
with gy, (b) = 1, the following supremum is attained: z; := sup{z € (0,b) : gp ,(x) =
1}. Then,

577 @0)gh (01) = X5(0) — (mplmn) — S0%(@) +7 = A (D) — A5(ar) 47> 0.
The second equality follows by the definition of A%, and the inequality follows by
Assumption 2(A2) together with 1 < b < z€ and v > 0. Hence, gl'm(acl) > 0, which
contradicts Lemma 1.

What we have got so far is that in the case b < 2, for any v > 0 one has
gb~(x) < 1for z € (0,b). Then by Lemma 2, g, (z) — gp(z) as v — 0+ for fixed
x € (0,b); therefore, gy(z) < 1 for € (0,b). However, the structure of the ODE tells
us that it cannot be the case gy(z) =1 for all = € (0,b), therefore, b ¢ B°.

The case b = Z° is similar (we pick v < 0 instead of v > 0) and is therefore
omitted. O

Now if the point (3¢ is isolated in the set B¢, the proof of Proposition 1 is done
since the result holds with 8¢. In case 8¢ is an accumulation point, we show the
pointwise convergence of gy, (x) for any fixed x € (0,b) as b; — S°+, which in turn
implies that 5° € B¢. The following four lemmas mainly serve this role.

LEMMA 4. For any b > x° and x > b we have gp(z) > 1.

Proof of Lemma 4. As in the previous proof, plug = b into the ODE for gy .,
and use gp~(b) = 1 and the value of A°(b) to get %Uz(b)gl’m(b) = ~. Therefore
9(b) > 0. We show that for any = € (b,00) one has gy~(x) > 1. Lemma 2
implies that gp(x) > 1. Arguing by contradiction, assume it does not hold. Set

x5 := inf{z € (b,00) : gpy(x) = 1}. Then
1
502(1‘5)9{7,7(335) = A(b) — A°(w5) +v >0,

where the inequality follows since v > 0 and A°(b) — A°(z5) > 0 because 2° < b < x5—
see Assumption 2 (A2). This implies g; - (z5) > 0, which contradicts Lemma 1. d

LEMMA 5. For any b > zf, there exists yo € (0,2%) such that gy(z) > 1 for
x € (y2,b)].
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Proof of Lemma 5. Fix b > 2° and v < 0. The definition of A°(b) implies
9y, (b) < 0. Let y2 < 2° be such that A*(y2) = A°(b). Such ys exists by Assumption
2(A2). We show that, for any = € (y2,b), g»,(x) > 1. Arguing by contradiction,
assume it does not hold. Set z3 = sup{z € (y2,b) : g»4(x) = 1}. Then,

1
502(353)9{;,7(553) = X°(b) = A°(x3) +v <0,

where the inequality follows since v < 0 and A°(b) < A°(x3) because y3 < z3 < b
and by Assumption 2(A2). That is, gl’m (z3) < 0, which contradicts Lemma 1. Hence
gb~(x) > 1 for x € (y2,b).

By Lemma 2, taking v — 0—, we get for « € (ya,b), gp(x) > 1. 0
LEMMA 6. Let b > a > z°. For z € (0,a), one has go(x) < go(x), and for
x € (b,00) one has gq(x) > gp(x).

Proof of Lemma 6. Fix 2° < a < b. Set § := A*(a) —A°(b) > 0 (for the inequality,
recall (A2)), and define the function G : (0,a] — R by

G(z) == 6 (ga(z) — gb(2)).

Notice that gy(a) > 1. Otherwise, by Lemma 5 and since a > z¢, gy(a) = 1. However,
o?(a)gy(a)/2 = —6 < 0, and as a consequence gy is below 1 in a right neighborhood
at a, which contradicts the fact ° < a < b. The function G(z) satisfies

30°(2)G (x) + zp(2)G (x) — e0®(2)gy(2)G(x) — §60°(2)(G(2))* =1, @€ (0,d],
G(a) = 71795"(‘1).

From the previous argument we have G(a) < 0. We show that for any =z € (0,a)

one has G(z) < 0. Arguing by contradiction, suppose this does not hold. Set z, =

sup{z € (0,a) : G(z) = 0}. Then G'(z,) = 2/0?(a) > 0, in contradiction to Lemma

1. Therefore, for any = € (0, a) one has

9a(2) = gv(x) + 0G(x) < gp ().
The part of the reversed inequality for « € (b, c0) is similar and uses Lemma 4 instead
of Lemma 5 to get that G(b) > 0 and is therefore omitted. |

The following lemma establishes the pointwise convergence as the boundary con-
verges. Therefore, we can use properties of g5, along a converging sequence b; — b to
establish properties of gp.

LEMMA 7. For any b > x° and y < b, we have

lgpes(y) —ap(y)| =0 as &6 —0.

Moreovoer, the above holds also for b = x¢ when § — 0+.

Proof of Lemma 7. The proof in the case § — 0— is similar to the proof in the
case 6 — 0+. We therefore omit it.
Fix y € (0,b). By definition, for any w € [y, b] we have

Gots(w) — go(w) = go15(b) — g (b)
2

B /yb o?(x

+ (50%@)(9(@) + go45(2)) = 21(2) ) (90+5(x) = gu(x))| da.

(A (b +6) = A°(b))

~
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Without loss of generality assume § € (0,1). By Lemma 6, mingep, 5 gs(7) <
9 < gors < gor1 < Cy on [y,b], for some Cp, independent of §. Since o and u are
bounded on [y, b], Gronwall’s inequality implies that there is a constant C; > 0 such
that for any ¢ € (0,1) we have

|9p+5(y) = 9o (¥)| < C1lgo15(b) — gp(D)]-

The following sequence of relations show that the right-hand side is of order O(9).
We have

96(b) = go+5(0)] = gv+5(b+ 6) — Gor5(b)]

<. sup |gpys()

xz€[b,b+4]
2z p(x) eX(b+0)
<d- +2e+ —5 | sup |gpys(2)
wvelbpro) | 02(T) o2(x) | wepbiol
S 025,

where Cy > 0 is independent of §. The equality follows since gpt5(b+ ) = gp(b) = 1.
The first inequality follows by the mean-value theorem. The second inequality follows
by the ODE that g, satisfies. Finally, the last inequality follows since all the terms
involved are bounded in [b,b + §], uniformly in §, where for the last term, we used
that 1 < gy1s < gpt1, where the first inequality follows by Lemma 5 and b+ > b
> xc. 0

Set v¢ as follows:

(4.3) v (2) = {f; gs=(y)dy, z € (0,5,

x —gp(0%), z€ (B, 00).
We are now ready to prove Proposition 1.

Proof of Proposition 1. Lemmas 3 and 7 give that ¢ < 3¢ < z° and ¢ € B°.
By setting (v°)" = gg= on (0,0%], we get that the triplet (8°,¢°,v°) satisfies the
first line of (2.11) by definition of gg- and A°. For the second line of (2.11), we
set (v°) = 1 on (B%,00); then by Assumption 2, A\ is decreasing in [z¢,00), so
LEvE(x) = A°(x) < A°(B°) = £¢; the second line is satisfied as well. The optimality of
£ follows by the definition of 8¢ as the infimum of B¢ and the fact that A decreases
on [z¢,Z°]. 0

4.3. Proof of Proposition 2. Notice that since 5 € B (see the proof of
Proposition 1), then by Lemma 3, strict inequality holds, that is, 8¢ > x°. Now we
aim to prove Proposition 2, where we need to bound o(z)gy(x). The next lemma
bounds gp(x) near 0 for b < ¢ first.

LEMMA 8. For any b € (2%, %), there exists y1 € (0,2°) such that gp(x) < 1 for
T € (O,yﬂ

Proof of Lemma 8. Fix b € (z°,8%). Since we take b < 3%, the definition of 3¢
implies the existence of y; with g(y1) < 1, and by Lemma 5, y; < y2, where \°(y3) =
A%(b). We show that, for any = € (0,41), gs(x) < 1. Arguing by contradiction, assume
it does not hold. Let x4 := sup{z € (0,41) : g»(z) = 1}. Then,

L o2 (wa) g (4) = Xo(B) — A (24) > 0,

2
where inequality follows since A®(b) > A\°(z4), because x4 < y; < y2 and by Assump-
tion 2(A2). This implies gj(z4) > 0, which contradicts Lemma 1. ad
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In order to prove Proposition 2, we need to analyze hy := og,. We do it for
boundary points b in a left neighborhood of 3¢, establishing a bound and an ODE
for h,. Eventually, the continuity for the boundary b = 8¢ will be derived using the
previous Lemma 7.

LEMMA 9. For any b € (a2, 5%), hy := ogp satisfies

Lo(@)hl(z) - 3o’ (@)hole) + S by (2) — $h2(x) = A, x € (0,0),
hy(b) = o (b).

Moreover, hy(z) < o(B%) for x € (0,b).

Proof of Lemma 9. Fix b € (2¢,8%). From the ODE for g,, it follows that h
satisfies the ODE above. Plugging x = b in the ODE above and using the boundary
condition hy(b) = o(b), we get by Assumption 2(A1) that 20(b)hj(b) = 30’ (b)hy(b) =
10/(b)o(b) > 0. As a result, there exists & > 0 such that, for z € [b — &,b),
hp(z) < hp(b) = o(b). By Lemma 8, there is a point y; € (0,b) such that, for
x € (0,y1], ho(x) < o(x) < o(b). We now show that for any = € (y1,b — &) we have

hy(z) < o(b).
Arguing by contradiction, suppose it does not hold. Then there exists y3 € (y1,b—dp)
such that hy(ys) > o(b). Let yq := inf{x € (y3,b— ) : go(z) = 1} and ys5 := sup{x €
(y1,y3) : gp(x) = 1} be the first times to the right and left of y3, where h; attains
the value o(b). We have y5 < y3 < y4, and by Lemma 1 we have 0(y4)h(ys) <
0 < L0(ys)hy(ys). However, since zu(z)/o(z) is decreasing, we have %@S‘qﬁ)a(b) >

yap(ya)

o) o(b), and since o’ is nondecreasing, we have

L o (us) = X 0) + 50 ) (B) + S0%(0) — L) o)

2 2 o(ys)
<X+ 50 olt) + 50°(0) — L) = St ),

which is a contradiction.
We have shown that for all € (0,b) one has hy(z) < o(b). Since b < ¢ and
o(z) is increasing the proof is complete. ]

Proof of Proposition 2. Fix any point x € (0, 5¢), and take an increasing sequence
{bi}i C (z, 5°) that converges to 5°. From Lemma 9 we have that for each b; it is true
that hp, (z) < o(5°). Then, by Lemma 7 as b; T 8¢ we have that hy, (x) = o(x)gs, ()
converges to o(x)gg=(z). Hence, o(x)gg-(x) < o(8%), and o(8%)gp-(8°) = o(B°).
Combining the above and recalling the definition of v° from (4.3), we get that that
for any x € (0, 3°] one has o(z)(v®) (x) < o(5°). |

4.4. Proof of Proposition 4. In this part we fix the gap from [5]. The crux of
the matter is that the function v* may be unbounded from below; hence E?" [v°(X%)]
may be equal to —oco. To overcome this challenge, we work with a truncated version
of a function that is associated with a threshold that is arbitrarily close to ¢ from
below.

Fix T,z > 0,e > 0, and b € [z¢, 3°). Recall the definition of the function g from
(4.1). Set ap :=inf{u > 0: g(y) > 1,y € [u,b]}. From Lemmas 4 and 8 it follows
that ap € (0,b) and moreover that g,(z) < 1 (resp., g»(z) > 1) for = € (0, o) (resp.,
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x € [ap,00)). Note that (v¥)'(x) = gge(x) > 1 for all z € (0,5%] (in fact, it cannot
equal to 1 all the way, which makes it a constant function, and then £5vg-(z) = A°(z)
for all z, contradicting (2.11)). Thus, from Lemma 7, we have the convergence

ap — 0+ as b— 5 —.

Define the function vy, via vy(z) = vp(ap) + f;b vy (y)dy, = € (0,00), where

/( ) — {gb(x)a MS [abaoo)a

V(T
’ gp(ap)x — gplap)oy + 1, € (0,ap).

As mentioned above, gy(z) > 1 for © € [ap,00). Together with the construction we
have v;(x) > 1 for any = € (0,00). Another key relation that we show in what follows
is that v, satisfies L%v,(x) < € + 6, for some 0 — 0 as b — 3°—. To make the proof
more fluent, we assume for now that it holds.

Set an arbitrary admissible control Z, and set the stopping times T}, := T'Ainf{t >
X7 ¢ [1/n,n]}. Recall the structure of the operator £° from (2.10), and define the
measure Q" with the Girsanov kernel ¢ given by

1 1
Vo = argerﬂlgin {QUQ(XtZ)Ué/(XtZ) + (XtZM(XtZ) + U(th)p) Ul/;(XtZ) + 2€p2}
P

— —eo(X7)op(X7).

Note that, for any b > 0, the drift term under the measure Q" is zu(x) —eo?(x)v} (),
which behaves near = = 0+ as zu(z) — O(z?) (see (2.6)). Therefore, by setting up
Sgvs as in (2.2) with the drift and variance from (2.6), one gets that (A0) holds under
the measure QU as well, which means that the process X does not get absorbed at 0
in a finite time.

By It6’s lemma and the definition of 1;* ,we get that

Ty Tn
vb(XTZn) = vp(z) + | E‘Evb(XSZ)ds —/O 302(XSZ)(vl’7(XSZ))2ds

Tn
[ o zyawe”
0

Ty
- / WXE)iZ,+ 3 W (XZ)AZ, + 0y (XZ) — u(XZ).

s<T,

Since vy, € C?, its derivative is bounded on [1/n,n]. This, together with the bounded
variation of Z, gives us

Ty Ty
Ub(XYan) = () +/0 Eavb(XSZ)ds - /0 %UQ(Xf)(vé(XSZ))st
Tn v
+ [ o ez)awe”
0

- / C(X2)aze+ Y (0(X7) - u(X2)),

SST’VL
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where Z€ is the continuous part of Z and in the case that ¢ = 0, Q"> = P. Rearranging
the equation and taking expectation with respect to Q" , one gets

T, T,
Qv n ni o o
E l /0 iz, + /0 (" (x7)) ds]

Tn
59" ) - w(XF) — [ 2 - Uaz;
0

xZ T,
-3/ )~y + | ernxias

s<Tp,
<BY" [u(2) — 00(XE ) Lixz <pey — (B Lixz 50y ] + (5 + 8)Ton
The equality follows by the identity (¢ (z))?/(2¢) = (¢/2)0?(z)(vj(x))?; the in-

equality follows since vj(z) > 1 and by our assumption (to be proved below) that
Levp(xz) < ¢ + 5. Taking n — oo, then by the monotone convergence theorem,

R

T T
/ dZs + / — (™ (XSZ))st <wp(x)+ sup |op(y)| + (€5 + 0p)T.
0 0o 2¢ y€(0,5°]

Recall that given b, the function v, is bounded on (0, 8]. Dividing both sides by T
and taking liminfp_, ., one gets

inf J(x,Z,Q) < J(x,Z,Q%) < L5 + 0p.
QeQ(x)

Finally, recall that Z was an arbitrary control, so by taking supremum over Z on both
sides and then by b — 85—, we get the result.

The rest of the proof is dedicated to showing that L5v,(x) < €548 for z € (0, 00).
By the construction of vy, LS, (x) = ¢¢ for any x € [ay, 00). Hence, it is only left to
show that L£v,(x) < €° 4§, for any x € (0, «p). From the definition of g;, we have at
ap that

507 (a)gh () + applan) — So%(a) = A°(h).
Then,
(4.4) dh () = 207 (D) — A (a))fo(on).

Let us write

(4.5) Livy(x) = LY (x) + L*(x) + L3(x) + L (x),

where
Li(z) := %gz’y(ab)c‘r%ﬂ2 + fz(gy(aw)(z — ap) + 1) — %623:2(9@(%)@ —ap) +1)%,
L2(s) i= 5(0%(x) % )gh(cw),

L3 () = (zp(x) — wf1)(gh(aw)(z — ap) + 1),
(0*(x) — 7°2%)(gh () (@ — o) +1)*.
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The function L!(z) is a fourth order polynomial in z. Differentiate it:

(LY (@) = gy(ow)o®x + fi(gy(aw) (@ — aw) + 1) + fizgy (o)
—ea’w(gh(ow)(x — a) +1)* — ea*w? g () (gp (o) (v — ) +1).

By our assumptions on the parameters, this is a cubic polynomial with a negative
leading coefficient (consider its domain to be R), and hence it goes to —oco (resp.,
~+00) for sufficient large (resp., small) . Now plug in a3 and 0 to get

(LYY (o) = gp(cw)o?on, + i + figy(cw) o — €62y, — €62 gy (),
(L") (0) = (1 — gp(aw)aw).

By the quadratic bound for o in Assumption 2(A1), there exist ¢1,co > 0, independent
of b, such that ciaf < o?(ap) < caai. Moreover, b — A°(b) — A\*(ap) is bounded.
Thus, from (4.4), g (ap)ap — o0, and gj(ap)a? is bounded as ap — 0+. Therefore,
(LYY (ap) > 0 and (L')'(0) < 0 for sufficiently small a;. By some basic knowledge
about the shape of cubic functions, this indicates that the function (L!')’ has three
zeros, one in each of the intervals: (—o0,0), (0, ap), (o, 00). This means that on the
interval [0, o], the function L' first decreases and then increases. That is, it obtains
its maximum on this interval at one of the endpoints: 0, . By substitution, we get
that, for any z € [0, ap),

LY(z) < max{L'(ap), L}(0)} = max{\(b) — L*(a}) — L*(ay) — L*(w),0}.

Again, the quadratic bounds in Assumption 2(A1) imply |o?(z) — 622?%| <
2cz? max{o(z),5x} and, for any = € (0, oy,

|L? ()| < cop max{o(ap), 5 }gp(aw),
|L?(2)] < caj max{1, |1 — gy(cw)ow|},

|L*(2)| < ecai max{o(ay), day} max{1, |1 — g} (ap)ap|}.

Since o} /0?(ay) is bounded as a, — 0+ and max{c(ap), a5} — 0 as o — 0+, the
three right-hand sides converge to 0. In particular this implies L?%(a3) converge to 0.
But since A°(b) is bounded away from 0, for sufficiently small cvy,, max{\*(b)— L?(cv) —
L3(ap) — L* (), 0} = A% (b) — L*(aw) — L3(ap) — L*(cwp). Finally, use the last bounds
together with the continuity of A (at 8°) and (4.5) to get that Lfvy(xz) < €5 + 0y,
where 6, — 0 as b — p¢—. 0

5. Comparative statics. In this section we analyze the monotonicity of the
parameters ¢ and 3¢ with respect to € and their limiting behavior as ¢ — 0+ and
€ — oo. In this way, we show the convergence of our model to the risk-neutral model
studied by [5]. Recall that at least for the Verhulst—Pearl model given in Example 1,
assumptions (A0)—(A2) hold for any € > 0, and therefore, in this example Theorem
2.1 is valid on the entire region [0,00) for . As the uncertainty becomes high, the
dynamics under the measure Q" is pushed strongly toward 0 due to a term that looks
like —eo?(x)(v?)'(z). This makes the process visit high population values with very
low probability, and therefore the increase in uncertainty implies that lim._,,, 55 =0
and lim._, o ¢ = 0.

THEOREM 5.1. The mapping [0,00) 3 € — ¢ is nonincreasing and limg_,g4 5 =
BY, and lim,_, o, 35 = 0.
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Proof of Theorem 5.1. We first prove monotonicity. Fix 0 < g9 < €;. For every
v >0, let f1 be the solution of the following ODE:

307 (@) fl (@) + ap(@) fry(2) — Fo(2) f7,(x) = A1(B%2) —v,  z€(0,57],
fl;y(,BEZ) =1

Set fo = (v°2) = gp= (see (4.3)):
)+

(
302 (2)¢' (2) + zp(@)p(z) + 25702 (2) 3 (2)
—e10% () fa(2)p(z) — Fo?(2)p?(x) = A (B72) — L2 =, @€ (0,57,

p(B%2) = 0.

The identities fo(5%2) = 1, p(5%2) = 0, and Xt (5%2) — (2 = 2258002 (552) f2(5°2)
yield the equality 102(3°2)¢’(8°2) = —y < 0. We show that for any z € (0, 5°2)
we have ¢(z) > 0. Arguing by contradiction, suppose it does not hold. Set zg :=
sup{z € (0, 8°2) : p(z) = 0}. Then,
1
507 ()@ (x6) = A7 (5°2) — £°2 —
o9 — €1

= (02(B%2) —02(1‘6)f22(1'6)) -7

ﬂaz(xfs)fzz(x(a) -7

<0,

where the inequality follows since by Proposition 2, o(zg)fa(z6) < 0(82), and €5 <
1. But this contradicts Lemma 1. Therefore ¢ > 0 on (0, 5°2).

The last conclusion together with fo = (v°2)" gives fi1,(z) > fa(z) > 1 for
x € (0,5%2). Since v > 0 is arbitrary, taking v — 0+ and using Lemma 2 in case
v =0, we have fi ,(x) > 1 for = € (0,8°2). This together with the definition of 5!
implies 51 < g°2.

We now turn to proving continuity at ¢ = 0. First notice the limit of 3¢ as
e — 0+ exists. It simply follows since 3 is nonincreasing and bounded above by V.
We denote the limit by A. Trivially, we have B < B°, so it is sufficient to show 3 > 3°.
For this, let § be the solution to the ODE

o*(@)g'(x) + zp(z)g(x) = M), we (0.5,
(B) = 1.

For any y € (0, 8) choose ¢ sufficiently close to 0 such that 5° > y. For any w € [y, 8°]
we have

Q> =

72 (2) ((AO(B) —0%) + ap(x) ((vF) () — §(x))

9

— S(o(@)(v") (2))?) da.

Note that o, u, and o(v®)’ are bounded on [y, °], and the bounds can be made
independent of ¢ because 8¢ < °. Without loss of generality we can also make &
bounded by 1 since ¢ — 04. Gronwall’s inequality implies that there is a constant
C3 > 0 independent of € and y such that

() () = §()] < Cal(v%)'(5°) = 3(5°)| = Call = 3(5°)| = C39(8) — §(5°)].
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This term converges to 0 since 35 — 3. This implies §(y) > 1 because (v°)(y) > 1.
Since y is arbitrary, it follows that for all y € (0, 5] we have §(y) > 1. This in turn
implies 8 > B°.

Finally, 0 < lim._, o, 8¢ < lim. oo € = 0. 0

THEOREM 5.2. The mapping [0,00) 3 € — {° is nonincreasing, and moreover,
lim. 04 ¢ = £°, and lim,_,o /¢ = 0.

Proof of Theorem 5.2. Fix 0 < €3 < €1 and § > 0. For any admissible control
Z € Z(x) for g4 consider a §-optimal control Q%2 € Q(z), so that SUPze 2 (x) /2 (z,Z,

QZ,EZ)
< ¢%2 4+ §. Let %22 be its Girsanov’s kernel. Then,

Ft = su inf J(x,Z,Q
ZGZI:()x) QeQ(w) ( )
< sup J9(z,Z,Q%%)
ZeZ(x)

1/1 1 1 e
= sup |J%%(z,Z,Q%%2)4 = < — ) lim inf —E@
ZeZ(x) ( ) 2\e1 e3) T—oo T

X f“)ZdtH

< sup J%(x,Z,Q%%2)
ZeZ(x)

= /(2 4.

Sending § — 0+, this establishes the monotonicity of ¢ +— ¢¢ for € > 0. The mono-
tonicity at € = 0 follows by

1= sup inf J(z,Z,Q
ZeZ(z) REQ() ( )

< sup J(z,Z,P)
ZeZ(x)

1
= sup liminf —EF
zeZ(z) T—o0

=,

T
| az
0

We now turn to proving the continuity at € = 0. We have

65 = €] = [X(8°) = L") < |8°n(8°) = B°u(8)| + 510(5°)|
< |B7u(5) = B°u(8)| + S1o*(8)],

where the first inequality follows by the triangle inequality and the second inequality
follows since o is increasing and 8¢ < B°. Since % is continuous at € = 0 and
x — zu(x) is continuous, we have that

185 (B°) — Bu(B)] + §|U2(30)| -0 as e—=0+.

We now turn to proving that lim._,, £ = 0. For this, first note that z° — 0 as
e — 00 because for any fixed x > 0, for sufficiently large e, A\*(z) = zu(z) — §0°(x) <
0. As a consequence we get that 3¢, which is bounded above by z¢, also converges to
0 as € — oo. Finally £¢ = \¢(8°) < Bu(B°) — 0 as € — oo. d
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