O 00 N o U B W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Dynamic evolution of small signaling peptide compensation in plant

stem cell control

Choon-Tak Kwon'?, Lingli Tang*#, Xingang Wang!, Tacopo Gentile!, Anat Hendelman!, Gina
Robitaille!’, Joyce Van Eck>%, Cao Xu**", Zachary B. Lippman'-”-*

I'School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
11724, USA.

2 Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of
Korea

3 State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, CAS-JIC
Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and
Developmental Biology, Chinese Academy of Sciences, Beijing, China.

4 University of Chinese Academy of Sciences, Beijing, China.

> Boyce Thompson Institute, Ithaca, NY 14853, USA

¢ Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University,
Ithaca, NY 14853, USA

"Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
11724, USA

*e-mail: caoxu@genetics.ac.cn, lippman@cshl.edu

Keywords: Paralogs, Redundancy, Epistasis, Signaling Peptide, cis-regulatory, Meristem, Tomato,

Solanaceae, CRISPR



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Gene duplications are a hallmark of plant genome evolution and a foundation for
genetic interactions that shape phenotypic diversity! >. Compensation is a major form of
paralog interaction®®, but how compensation relationships change as allelic variation
accumulates is unknown. Here, we leveraged genomics and genome editing across the
Solanaceae family to capture the evolution of compensating paralogs. Mutations in the stem
cell regulator CLV3 cause floral organs to overproliferate in many plants®'!. In tomato, this
phenotype is partially suppressed by transcriptional upregulation of a closely related
paralog'?. Tobacco lost this paralog, resulting in no compensation and extreme clv3
phenotypes. Strikingly, the paralogs of petunia and groundcherry nearly completely
suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic
complementation analyses show this potent compensation partially degenerated in tomato
due to a single amino acid change in the paralog and cis-regulatory variation that limits its
transcriptional upregulation. Our findings show how genetic interactions are remodeled
following duplications, and suggest that dynamic paralog evolution is widespread over short
time scales and impacts phenotypic variation from natural and engineered mutations.

Gene duplications arise from whole genome and small-scale duplications and are pervasive

in plant genomes™>>-13:14

. Paralogs that emerge from duplications are completely redundant, which
allows genetic variation to accumulate under relaxed selection®®. This mutational drift can
diversify paralog relationships through gene loss (pseudogenization), partitioning of ancestral
functions (subfunctionalization), or gain of novel functions (neofunctionalization)!->!5. Another
prominent but less understood path of paralog evolution leads to “active compensation”, a form of
redundancy where one or more paralogs are transcriptionally upregulated to substitute for the
compromised activity of another®!®!7, Such relationships provide robustness against genetic or
environmental change and may be under selection!'®!°. However, an often underappreciated
paradox is that while duplications initially provide redundancy, they also promote new genetic

18,2021 " Such variation, which can accumulate across

variation through relaxed purifying selection
both coding and cis-regulatory sequences, is the foundation for the broadly studied end-points of
paralog diversification. What remains unclear is how such diversification modifies paralog
functional relationships as species diversify over shorter time frames. This is because functional

dissections of paralogs have been limited to within individual systems or between a few widely
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divergent species, and thus have failed to capture the trajectories and functional consequences of
evolving compensatory relationships following lineage-specific ancestral duplications®!214,
CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED (CLE) genes comprise an
important gene family in plants encoding small-signaling peptides with diverse roles in growth
and development®>?*. CLE peptides are 12- or 13-residue glycopeptides processed from pre-

2324 The number and functional relationships, including redundancy, of CLE family

propeptides
members, vary considerably between distantly related species, due to lineage-specific duplications
and variation in paralog retention and diversification?’. However, the founding member from
Arabidopsis thaliana (arabidopsis), CLAVATA3 (CLV3), is deeply conserved®?>. The CLV3
dodecapeptide is a ligand for the leucine-rich receptor kinase CLV1 and related receptors, and
functions in a negative feedback circuit with WUSCHEL (WUS), a homeobox transcription factor
that promotes stem cell production in shoot meristems!®!!, Mutations in CLV'3 and its orthologs in
many species cause meristem enlargement, which leads to tissue and organ overproliferation, or

fasciation, phenotypes, especially in flowers®!°

. We previously showed that ¢/v3 mutations in the
divergent species arabidopsis, Zea mays (maize), and Solanum lycopersicum (tomato) are buffered
through redundancy, but through different mechanisms!2. In arabidopsis, multiple CLE family
members partially suppress c/v3 without changing their expression'?. In contrast to this “passive
compensation”, a similar partial suppression of c/v3 mutations in maize (zmcle7) and tomato
(slclv3) is achieved by active compensation from closely related CLV3 paralogs'2. Though the
mechanism of compensation is shared between maize and tomato, the paralogs involved arose
through lineage-specific duplications, indicating independent evolution of active compensation.
Thus, it remains unclear how states of active compensation are achieved in any lineage and whether
they remain stable or continue to evolve as species diversify.

With several genetically tractable species, closely related Solanaceae family members
comprise a useful system to track the evolution of the compensation relationship between CLV3
and its paralog. The compensating paralog in tomato, SICLEY, originated from a duplication event
just prior to diversification of the Solanales'?. CRISPR-Cas9 engineered sicle9 mutations result in
normal plants, but strongly enhance slc/v3 due to loss of active compensation (Fig. 1a-c).
Interestingly, our synteny analysis of 29 Solanaceae genomes capturing ~30 million years of
evolution revealed several species that partially or completely lost their SICLE9 orthologs (Fig. 1d

and Supplementary Table 1)!2. For example, whereas Physalis grisea (groundcherry) and
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Petunia hybrida (petunia) have SICLE9 orthologs, Capsicum annuum (pepper) harbors only
fragments of an SICLEY ortholog, indicating pseudogenization (Fig. 1d and Supplementary
Table 1)'2. Both S. tuberosum (potato) and S. melongena (eggplant) lack SICLE9 orthologs
entirely, and this presence-absence variation extends to the genus level; in Nicotiana (tobacco),
the SICLEY orthologs in N. tabacum and N. benthamiana were retained or pseudogenized,
respectively (Fig. 1d and Supplementary Table 1).

Since active compensation is typically mediated by the existence of a close paralog®!6, we
predicted that species that lost their SICLE9 orthologs would lack active compensation. However,
in such species, compensation could also have evolved from one or more CLE homologs, which
could potentially compensate passively (i.e. without transcriptional upregulation), as found in the
Brassicaceae species Arabidopsis thaliana'?>. We tested compensation in the allotetraploid N.
benthamiana, where CRISPR-Cas9 genome editing is highly efficient, but brings an added layer
of genetic complexity from having two sub-genome copies (homeologs) of all genes, including
NbCLV3 (NbCLV3a and NbCLV3b)*. To test for loss of compensation in this species, we designed
a multiplex CRISPR-Cas9 construct with eight guide RNAs (gRNAs) designed to target NbCLV3a
and NbCLV'3b (four gRNAs each; Fig 1e). We obtained five first-generation transgenic (To) plants,
and unsurprisingly, all were chimeric (Extended Data Fig. 1a-c). Three of these plants exhibited
severe fasciation phenotypes like tomato s/c/v3 sicle9 double mutants, including thick stems and
extreme overproliferation of floral organs, whereas the other two plants were less fasciated
(Extended Data Fig. 1c-d). Though all plants were chimeric for mutations in NbCLV3a and
NbCLV3b, sequencing showed the three strongest mutants carried only mutated alleles of both
genes, suggesting a null-equivalent phenotype similar to tomato slc/v3 slcle9 double mutants (Fig.
1c and Extended Data Fig. 1a-c). Though the severity of the floral fasciation in the strongest To
plants precluded recovery of mutant seeds, these observations supported the absence of active
compensation in N. benthamiana. Importantly, we further validated these results in T segregating
lines derived from the weaker To plants, which fortuitously provided progeny populations that
carried null alleles of nbclv3b and segregated for a null allele of nbclv3a (Fig. 1e-i). We used these
populations to isolate nbclv3a/b allotetraploid mutants and showed that meristems were more than
twice as large in these plants compared to nbclv3b single mutants and wild-type controls (Fig. 1j,

k). Together, these results show that active compensation in the regulation of meristem
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maintenance was lost in N. benthamiana and also supports that conservation of active
compensation in the Solanaceae requires retention of SICLE9 orthologs.

We next asked if compensation varies in lineages that retained their SICLE9 orthologs, and
where allelic variation between these lineages could affect paralog function. Orthologous CLE
pre-propeptide sequences are highly variable between species, but their dodecapeptides are more

d?223, Indeed, while SICLV3 and SICLE9 ortholog dodecapeptide sequences were nearly

conserve
invariant in the Solanaceae, we found widespread variation in the coding and putative cis-
regulatory regions of both genes, the latter determined by conserved non-coding sequence (CNS)
analyses (Extended Data Fig. 2 and Supplementary Table 1). To assess active compensation in
other Solanaceae species carrying SICLE9 orthologs, we took advantage of established CRISPR-
Cas9 genome editing in petunia (Fig. 2a). Strikingly, the phenotypes of independently derived
phclv3 null mutants were both substantially weaker than tomato s/c/v3 mutants (Fig. 1b, 2b-d).
Although the primary shoot meristem was larger than wild-type meristems, 80% of phclv3 flowers
produced wild-type organ numbers (Fig. 2¢c-f). Given that multiple attempts to generate pgcle9
mutants were unsuccessful, we micro-dissected phclv3 meristems for RNA-sequencing to profile
differentially expressed genes due to mutation of PACLV3. Notably, out of all petunia CLE family
members only PACLE9 was dramatically upregulated (>15-fold) (Fig. 2g, h and Supplementary
Table 2), consistent with SICLE9 upregulation in tomato s/c/v3 mutants and suggesting active
compensation in petunia is mediated by PACLE9 and is stronger than in tomato.

Conservation of CLE dodecapeptide sequences is critical for proper ligand folding and
receptor binding?’?%, A single amino acid at position 6 distinguishes the petunia PhCLE9 and
tomato SICLE9 dodecapeptides, and a deeper analysis of conservation revealed that all species
from tomato and its wild relatives through Jaltomata sinuosa have a serine at this position, whereas
all other Solanaceae except for a subset of tobacco species have a glycine (Fig. 3a, Extended Data
Fig. 2¢ and Supplementary Table 1)!?22, Beyond the Solanaceae, this glycine is invariant in
angiosperm CLV3 orthologs, is highly conserved in other CLE peptides, and is essential in
Arabidopsis CLV3 and CLE41 peptides for precise binding to their receptors (Extended Data Fig.
2 and Supplementary Table 1)!2222730 These observations suggested that other Solanaceae
species with the conserved glycine in their SICLE9 orthologs might have more effective ligands,
and would also be more potent compensators than tomato SICLE9. We tested this using CRISPR-
Cas9 genome editing in groundcherry (Extended Data Fig. 3). Notably, null mutation of
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groundcherry pgclv3 resulted in only weak phenotypes similar to petunia phc/v3 mutants (Fig 3b-
e and Extended Data Fig. 3a, b). We also engineered homozygous pgcle9 null mutations, which
were nearly identical to wild-type (Fig. 3b-e and Extended Data Fig. 3¢), and consistent with
these weak effects, the sizes of primary shoot meristems in both mutants were largely unchanged
(Fig. 3f, g). Importantly, as in tomato and in petunia, the expression of both PgCLV'3 and PgCLE9
were upregulated in pgclv3 meristems (Fig. 3h, i and Supplementary Table 3), and pgc/v3 pgcle9
double null mutants were severely fasciated, similar to tomato slc/v3 slcle9 double mutants,
confirming conservation of active compensation (Fig. 3j, k and Extended Data Fig. 3d, e). Thus,
while active compensation is conserved between tomato, petunia, and groundcherry, compensation
from SICLEY orthologs in petunia and groundcherry is stronger than in tomato.

Our dissections of active compensation in tomato, petunia, and groundcherry suggested
that the conserved glycine of the dodecapeptide is necessary for potent compensation. In further
support, two conserved residues (Aspartic acid and Phenylalanine) in SICLV1, which is the
primary receptor of SICLV3 and SICLE9 ligands!?, are critical for interaction with the sixth
glycine of CLE peptides (Extended Data Fig. 4)*°2°. Solanaceae CLV 1 orthologs are invariant in
these ligand binding residues (Extended Data Fig. 4). To test if the groundcherry and petunia
orthologs of CLV1 (PgCLV1 and PhCLV1) are also the primary receptors for PgCLE9 and
PhCLED9 as in tomato, we made double mutants between the weakly fasciated groundcherry pgclvi
and pgclv3 and also the weakly fasciated petunia phclvl and phclv3 null mutants (Extended Data
Fig. 5)’!. Consistently, the double null mutants in both species matched the severe fasciation of
groundcherry pgclv3 pgcle9 double mutants, and importantly, also the tomato slclvI slclv3 and
slclv3 slcle9 double mutants (Fig. 1¢, 3j and Extended Data Fig. Sc-e). These results support the
hypothesis that the glycine to serine change in the tomato SICLE9 dodecapeptide could be
reducing binding affinity to SICLV1, thus explaining weaker compensation in this species.

To test the significance of the glycine, we asked if the genomic sequence of PgCLE9
(gPgCLE9"¢LE%) could complement siclv3 mutants (Fig. 4a). While slc/v3 fasciation is nearly
completely suppressed by the genomic sequence of SICLV3 (gSICLV35/CLY3), gPgCLE9"$CLE had
no effect (Fig. 4a, b and Extended Data Fig. 6a, b). Poor heterologous expression between
groundcherry and tomato could explain this result, so we transformed s/c/v3 mutants with a
construct expressing the groundcherry dodecapeptide from the genomic sequence of tomato

SICLEY (gSICLE9"¢“LE?) (Fig. 4a, b and Extended Data Fig. 6a, b). Surprisingly, this construct
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also failed to complement, leading us to ask if strong active compensation depended on the
conserved glycine as well as higher expression of dodecapeptides having the glycine. In support
of this, in contrast to tomato, the fold-change increases in expression of both groundcherry
PgCLE9 and petunia PACLE9 were higher relative to upregulation of CLV'3 in their respective c/v3
mutants (Fig. 2h, 3i). As the promoter of tomato S/CLV3 is more transcriptionally responsive than
the promoter of SICLE9Y to slclv3 mutations (Fig. 3h), we used a construct expressing the
groundcherry dodecapeptide from SICLV3 genomic sequence (gSICLV3P8CLE?) which strongly
suppressed slc/lv3 mutants. Notably, this complementation was slightly weaker than with
gSICLV35ICLY3  consistent with active compensation from PgCLE9 and PhCLE9 dodecapeptides
in groundcherry and petunia still permitting weak phenotypes of their respective c/v3 mutants (Fig.
4a, b and Extended Data Fig. 6a, b). A construct expressing the tomato SICLE9 dodecapeptide
from the same SICLV3 genomic sequence (gSICLV35/CLE%) failed to complement, indicating that
higher expression alone is insufficient (Fig. 4a, b and Extended Data Fig. 6a, b). Consistently, a
weaker expression of PgCLE9 dodecapeptide (gSICLE9SCLE?SSG) or a stronger expression of
SICLE9 dodecapeptide (gSICLV3SICLE_2) could only suppress slclv3 slcle9 double mutants to
slclv3 single mutant phenotypes (Extended Data Fig. 6c, d). Altogether, our results show that
changes in both the dodecapeptide and its expression explain evolutionary variation in the strength
of compensation between tomato and its relatives groundcherry and petunia (Fig. 4c).

Here, we uncovered a dynamic evolution of paralogs interacting in an active compensation
relationship. A first step of paralog diversification that can promote their preservation is
‘compensatory drift’, through which optimal levels of dosage-sensitive genes are maintained by
reducing the expression of one paralog and elevating the other*2?. CLV3 orthologs are dosage-

sensitive33 33

, and the consistently higher expression levels of Solanaceae CLV3 orthologs relative
to SICLE9 orthologs indicate that compensatory drift and active compensation emerged soon after
duplication (Fig. 2g, 3h). However, despite this expression rebalancing, we found that CLV3
compensation degraded multiple times during the Solanaceae family radiation over the last ~30
million years (Fig. 4d). At one extreme, N. benthamiana, and likely other species that lost their
SICLEY orthologs, completely lost active compensation and thus buffering of meristem
homeostasis. In tomato, both coding and cis-regulatory changes weakened S/ICLEY, and we

pinpointed a critical amino acid change that facilitated partial degradation of compensation from

the more potent ancestral state found in groundcherry and petunia (Fig. 4d). Thus, the differential
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accumulation of genetic variation between SICLE9Y orthologs in these four Solanaceae species
resulted in both qualitative and quantitative differences in compensation potencies. Our finding of
extensive coding and cis-regulatory variation between SICLE9 orthologs suggests a range of
potencies could exist in Solanaceae CLV3 compensation (Extended Data Fig. 2 and
Supplementary Table 1). For example, even among tobacco species, while N. benthamiana lost
compensation, N. obtusifolia likely has strong compensation due to retention of a glycine-
containing SICLE9 ortholog, and surprisingly, the sub-genome copies of SICLE9 orthologs in N.
attenuata, N. tabacum, and N. tomentosiformis each have a glycine and a serine (Extended Data
Fig. 2¢ and Supplementary Table 1).

Differences in transcriptional control may play a larger role. Widespread variation in cis-
regulatory regions among tomato species suggests even greater variation between species in the
Solanaceae family®¢. Such diversity, both within and between genera (Extended Data Fig. 2a),
could result in differences in upregulation of SICLE9 orthologs and phenotypes when CLV3
activity is compromised. Such a wide range of compensation strengths could be a foundation for
species-specific phenotypes. Notably, a structural variant that partially disrupts the promoter of
SICLV3 is a major tomato domestication fruit size QTL, and we found that its severity was
mitigated by active compensation from S/ICLEY, resulting in a more moderate effect that may have
facilitated selection'??’, The increase in fruit size from this variant may not have emerged if the
ancestral version of SICLEY was retained in tomato, and moreover, in groundcherry and other
Solanaceae orphan crops with potent SICLE9 orthologs, engineering mutations in CLV3 alone
would likely not benefit fruit size*!-*®. Beyond the Solanaceae, variation in meristem shape and
form is associated with morphological variation within and between species**~*!. Such differences
could in part be based on variation in compensation between meristem homeostasis genes, which
could also influence phenotypic outcomes from engineered variation in CLV network genes??-3342,

More broadly, our findings have important implications in understanding and exploiting
phenotypic changes caused by natural and engineered variation in other species and gene families.

43-46

The era of pan-genomes continues to uncover remarkable diversity in paralogs, including

presence-absence variation, as well as widespread coding and regulatory variation between

retained paralogs. Our findings show that such variation, much of which could be cryptic*’,

can
impact phenotypes in unpredictable and subtle ways when members of a gene family are mutated

within or between species. Revealing and dissecting diverse paralogous relationships can advance



240  our understanding of how dynamically evolving duplicated genes shape phenotypic variation
241  across short time scales, and improve predictability in trait engineering of both old and new crops.
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Methods

Plant materials and growth conditions.

Seeds of petunia (P. hybrida “W115°, Mitchel diploid) were provided by Prof. Yulong Guo,
Southwest University (Chongqing, China). Seeds of tobacco (N. benthamiana), groundcherry (P.
grisea) and tomato (S. lycopersicum, cultivar M82) were from Cold Spring Harbor Laboratory
(CSHL) seed stocks. All seeds were sown directly in soil and grown in growth chambers,
greenhouses or fields at CSHL, New York, USA (tomato, tobacco, groundcherry) and Institute of
Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (petunia).
Briefly, groundcherry and tomato seedlings were grown in the greenhouse or field at CSHL as
described previously>?. Tobacco plants were grown under long-day conditions (16 h light, 21°C/8
h dark, 20°C; 40-55% relative humidity; 75 pmol m~2 s7!) in the greenhouse at CSHL. Petunia
plants were grown under long-day conditions (16h light, 25°C/8h dark, 21°C; 50-60% relative
humidity; 75 pmol m2 s™!) in growth chambers and greenhouses at Institute of Genetics and
Developmental Biology, Chinese Academy of Sciences. All plants were grown under overhead
watering (tobacco) or drip irrigation (groundcherry, petunia and tomato), and standard fertilizer

regimes.

CRISPR-Cas9 genome editing and plant transformation.
Targeted mutagenesis using the CRISPR-Cas9 system for tobacco, groundcherry, and petunia were

performed as described previously®!1-%7

. Briefly, the binary vectors were constructed through
Golden Gate cloning as described®!-*8, and introduced into tobacco, groundcherry, and petunia by
Agrobacterium tumefaciens-mediated transformation as described>>33-7-%,  First-generation
transgenic plants were transplanted in soil and genotyped to validate CRISPR-generated mutations
by PCR and Sanger sequencing, as previously described?’. All primer and gRNA sequences are

included in Supplementary Table 4.

Plant phenotyping and meristem imaging.

All phenotypic quantification data on inflorescences and fruits were performed as previously
described!?*’. Briefly, the phenotypic characterization was performed with biallelic or chimeric
To plants (tobacco), and non-transgenic homozygous plants (tobacco, groundcherry, petunia, and

tomato) from backcrossing or selfing. CRISPR-generated null mutants of groundcherry and tomato
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were sprayed with 400 mgl™! kanamycin, and petunia were sprayed with 100mgl! kanamycin and
genotyped by PCR to verify the absence of the transgenes. We manually counted the floral organs
(petal and carpel/locule) from multiple inflorescence and plants. All the exact sample numbers of
individual transgenic plants and aggregated organ quantifications are marked in the figures and are
collated in the Supplementary Data. Meristem imaging and size quantification were conducted as
described previously*”%°. Briefly, the images of hand-dissected meristems were captured on a
Nikon SMZ1500 (tomato), Nikon SMZ25 (groundcherry and tomato). Dissection and
stereomicroscope imaging of petunia meristems were carried out under Olympus microscope

(SteREO Discovery, v.12).

RNA extraction.

RNA extraction for groundcherry and petunia were conducted as previously described with minor
modification!?°. Briefly, for total RNA of the groundcherry meristems, the hand-dissected shoot
apical meristems were extracted by the ARCTURUS PicoPure RNA Extraction Kit (Applied
Biosystems). Three biological replicates were analyzed for groundcherry RNA-seq. 30-35
meristems from groundcherry were collected for each replicate for wild-type and pgc/v3. Total
RNA of the petunia meristems was also extracted by the ARCTURUS PicoPure RNA Extraction
Kit (Applied Biosystems). Three biological replicates were examined for petunia RNA-seq. 50—

60 meristems from petunia were collected for each replicate for wild-type and phclv3.

Meristem transcriptome profiling.

The transcriptome data from tomato meristems were obtained from our previous RNA-seq data
deposited in the Sequence Read Archive project (SRP161864) and BioProject (PRINA491365)!2.
RNA-seq and differentially expressed genes (DEGs) analyses of groundcherry and petunia
meristems were performed as previously described with slight modification!2. Briefly, the libraries
for RNA-sequencing (RNA-seq) were prepared by the KAPA mRNA HyperPrep Kit (Roche). The
quality of each library was validated with a 2100 Bioanalyzer (Agilent Technologies). Paired-end
75-base sequencing was conducted on the Illumina sequencing platform (NextSeq, Mid-Output).
Reads for the wild-type (WT) groundcherry and pgc/v3 mutant were trimmed by quality using
Trimmomatic  (v.0.32, parameters: [LLUMINACLIP:TruSeq3-PE-2.fa:2:40:15:1:FALSE
LEADING:30 TRAILING:30 MINLEN:50)°! and aligned to the reference transcriptome assembly
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of groundcherry?! for quantification using ‘kallisto quant’ (v0.46.2, bootstrap: 100)2. Kallisto
quantification results were used as inputs for ‘sleuth’ (v0.30.0) in R (v3.5.2) to get normalized
estimated counts for each transcript®®. Expression unit is transcripts per million (TPM) for
groundcherry RNA-seq. For RNA-seq of petunia meristems, the libraries were prepared by
SMARTer Ultra Low Input RNA for Sequencing Kit (Clontech). The quality of each library was
validated with a 2100 Bioanalyzer (Agilent Technologies). Paired-end 150-base sequencing was
conducted on the Illumina NovaSeq 6000 sequencing platform (NextSeq, Mid-Output). Reads for

the WT petunia and phclv3 mutant were trimmed by quality using Trimmomatic (v0.36,

parameters: ILLUMINACLIP:adapter.fa:2:30:10 LEADING:20 TRAILING:20
SLIDINGWINDOW:4:15 MINLEN:36)°' and aligned to the reference genome sequence of
petunia® using hisat2 (v2.1.0) with default parameters®. Alignments were sorted with samtools
(v1.8)% and the RNA-seq reads were assembled using StringTie (v2.0.3) with default parameters®’.
To verify and annotate the transcript of petunia PACLEY (Peaxil62Sct00429:766800-783916),
orthologous Blast was performed using tomato SICLE9 as a bait and the resulting transcript was
confirmed by PCR amplification followed by Sanger sequencing (see Supplementary Data 9).
The expected read counts and fragments per kilobase of transcript per million mapped reads
(FPKM) were also calculated using SringTie (v2.0.3)%”. The statistical analyses for groundcherry
and petunia data were performed in R (v3.5.2) (RStudio (v.1.1.463)) and R (v4.0.3),
respectively®®°. Significant differential expression between groundcherry WT and pgelv3 mutant
was identified with sleuth (v0.30.0)% using g-value < 0.01 cut-offs. Significant differential
expression between petunia WT and phclv3 mutant was confirmed with DESeq2 (v1.30.1)%37°

using p-vadue adjusted (padj) < 0.05 and |log2 ratio| > 1.

Transgenic complementation of PgCLEY, SICLV3 and SICLE?Y.

The transgenic lines and genomic DNA sequence for gSICLV3S/CLV3 and gSICLV3SICLEY were
procured from our previous study'?. The genomic DNA sequences of PgCLE9 consisted of
gPgCLE9P8CLE? 4471 base pair (bp) in total with 3394 bp upstream, 548 bp of coding sequence
containing introns, and 529 bp downstream. The genomic DNA sequences of SICLEY consisted of
gSICLE9SICLE? 4140 bp in total with 3263 bp upstream, 403 bp of coding sequence containing
introns, and 474 bp downstream. Site-directed mutageneses were performed to substitute the

SICLE9 dodecapeptide into PgCLE9 within gSICLE9SCLE? (gSICLE9P¢CIE%) and the SICLV3



336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

dodecapeptide into PgCLE9 within gSICLV3S/CLV3 (gSICLV3P¢CLE?), The PCR products were
amplified from the vectors including the genomic region of SICLV3 (pICH47742-gSICLV35/CLV3)
and SICLE9 (pICH47742- gSICLE9SICLE?) with overlapping primers (Supplementary Table 4)
using KOD One™ PCR Master Mix (TOYOBO). Then, the amplified PCR products were digested
using Dpnl (New England Biolabs) and transformed into DH5a competent cells. The sequences of
the resulting plasmids were confirmed by Sanger sequencing with multiple primers
(Supplementary Table 4). The Level 1 vectors (pICH47742-gPgCLE9¢LE | gSICLE9¢LE? and
gSICLV3F8CLE?) were assembled with the construct pICH47732-NOSpro::NPTII into the binary
vector pICSL4723 through Golden Gate cloning as previously described>!*%7!. The binary vectors
were introduced into the tomato slc/v3d mutant by Agrobacterium tumefaciens-mediated
transformation as previously described>. The genomic DNA sequences of SICLV3 consisted of
gSICLV3SICLY3.2 3213 bp in total with 1995 bp upstream, 600 bp of coding sequence containing
introns, and 618 bp downstream. The genomic DNA sequences of SICLE9 consisted of
gSICLE9SICLES_2 2740 bp in total with 1996 bp upstream, 403 bp of coding sequence containing
introns, and 341 bp downstream. Site-directed mutagenesis was performed to substitute the
SICLV3 dodecapeptide into SICLE9 within gSICLV3SICLY3 (gSICLV3SICEE?.2) and the SICLE9
dodecapeptide into SICLE93¢ within gSICLE9S'IE? (gSICLE9SCLE956G). The PCR products were
amplified from the vectors including the genomic region of SICLV3 (pDONOR221-gSICLV35/CLV3.
2) and SICLE9 (pDONOR221- gSICLE9SICEES.2) with overlapping primers (Supplementary
Table 4) using KOD One™ PCR Master Mix (TOYOBO). Then, the amplified PCR products
were digested using Dpnl (New England Biolabs) and transformed into DH5a competent cells.
The sequences of the resulting plasmids were confirmed by Sanger sequencing with multiple
primers (Supplementary Table 4), and colonies were recombined into binary vector pPGWB40172
for transgenic complementation. The binary vectors were introduced into the tomato slclv3 sicle9
double mutant by Agrobacterium tumefaciens-mediated transformation as previously described?”.
Transgenic lines were confirmed by PCR and kanamycin resistance, and at least three independent

transgenic lines from each construct were used for data collection (see Supplementary Data).

Conserved noncoding sequence (CNS) analysis.
Analysis of conserved non-coding sequences (CNSs) is a common approach to identify putative

cis-regulatory sequences of genes (e.g. promoters, enhancers). Solanaceae orthologous genes of



367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

383

384
385
386
387
388

389

390
391
392
393
394
395
396
397

SICLV3 and SICLEY for synteny analysis and CNSs in the promoter regions surrounding the
orthologs of SICLV3 and SICLE9Y were identified using our previously developed Conservatory
algorithm (v1.0), using default parameters’®. In parallel, all of the genomes were scanned with
tBLASTn to find mis- or unannotated protein coding regions for each gene. CNSs in the promoter
regions were called by Conservatory using default parameters’. To calculate protein identity
percentages and dodecapeptide identity percentages, protein sequences were aligned by MAFFT

(v.7.45) using BLOSUMG62 matrix and ‘E-INS-i” and ‘G-INS-i’ algorithm respectively’.

Statistical analyses.

Statistical calculations were conducted using R(v3.5.2 and v4.0.3)%® and Microsoft Excel, as
previously described?. Statistical analyses were performed using a two-tailed, two-sample #-test
and a one-way analysis of variance (ANOV A) with Tukey test. The exact sample sizes (n) and all
raw data for each experimental group/condition are given as discrete numbers in each figure panel
and Supplementary Data. Additional information is available in the Nature Research Reporting

Summary, which includes statements on statistics, software used and data availability.

Data availability

Raw data and information for CRISPR-generated alleles, all quantifications, synteny analysis, and
exact P values (One-way ANOVA and Tukey test) are in Supplementary Data. The raw Sanger
sequence traces for edited sequences are in Supplementary Data 8. The groundcherry and petunia

BioProject accession numbers are PRINA704671 and PRINA750419, respectively.
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Figure legends

Fig. 1. Loss of the tobacco SICLEY ortholog abolished compensation.

a, Shoot and inflorescence of tomato wild-type (WT). White arrowheads, inflorescences. b, Shoot
and inflorescence of tomato s/c/v3. White arrowheads, inflorescences; red arrowheads, branches.
¢, Side and top-down view of tomato slclv3 sicle9 shoot, inflorescence/floral meristem, and
primary inflorescence. The red arrowhead indicates a fasciated shoot stem. d, Presence-absence
variation of S/ICLE9 orthologs in the Solanaceae. The blue checkmarks and the red Xs indicate
presence and absence of the orthologs, respectively. e, Gene structures, and CRISPR-generated
mutations of NbCLV3a and NbCLV3b. Orange rectangles indicate the CLE dodecapeptides regions.
Targeted gRNA and protospacer-adjacent motif (PAM) sequences are highlighted in red and bold
underlined, respectively. Blue letters and dashes indicate insertions and deletions, respectively.
Numbers in parentheses represent gap lengths. DNA sequences of gRNA target site 2 for both
NbCLV3a and NbCLV3b are identical. f, Shoot, flower, and fruit pod of tobacco WT. White
arrowheads, flowers. g, Side and top-down views of nbclv3a/b null mutants showing the shoot and
primary flower. Red arrowheads indicate fasciated primary shoot (left panel) and shoot branches
(right panel). h, Sepal number of primary flower from tobacco WT, WT sibling plants (WT sibs)
and nbclv3a/b plants. i, Branch number of WT, WT sibs and nbclv3a/b. j, Primary shoot apical
meristems from WT and nbclv3a/b. Red dotted lines mark width and height for meristem size
quantification. 7L, 7" leaf primordium. k, Quantification of meristem width and height from WT,
WT sibs and nbclv3a/b. Box plots, 25%-75" percentile; center line, median; whiskers, full data
range in h, i and k. Exact sample sizes (n) for replicate types are indicated in h, i and k. Letters
indicate significance groups at P < 0.01 (One-way ANOVA and Tukey test) in h, i and k. Different
letters between genotypes indicate significance in h, i and k (See Supplementary Data 7 for specific
P values). WT sibs are a mix of nbclv3b and nbclv3ia/+ nbclv3b genotypes, which show wild-type
phenotypes in h, i and k (See Supplementary Data 3). At least twice experiments were repeated

independently with similar results.

Fig. 2. Weak fasciation of phclv3 mutants in petunia indicates more potent compensation.
a, Gene structure and sequences of two phclv3 null alleles. Guide RNA and PAM sequences are

highlighted in red and bold underlined, respectively. The orange rectangles in the gene structures
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represent the regions for CLE dodecapeptides. Numbers in parentheses represent gap lengths. Blue
dashes indicate deletions. b, Shoot of petunia WT and phcl/v3 plants. White arrowheads, flowers.
¢, Representative flowers and fruit pods of petunia WT and phc/v3 plants. Red arrowheads mark
petals or carpels. Percentages indicate the proportions of flower and pod phenotypes. d,
Quantification of petal and carpel numbers of WT and phclv3. e, Primary shoot apical meristems
from petunia WT and phclv3. Red dotted lines mark width and height for meristem size
quantification. 22L, 22" leaf primordium. f, Quantification of meristem width and height from
petunia WT and phclv3. g, Normalized read counts of PACLV3 and PhCLE9 from WT and phclv3
meristems. h, Expression fold-change of PACLV3 and PhCLE9 relative to the normalized counts
of WT from phclv3. Box plots, 251-75" percentile; center line, median; whiskers, full data range
ind, f, g and h. P values (two-tailed, two-sample #-test) in d, f, g and h. Exact sample sizes (n) are
shown as discrete numbers in d, f, g and h. Each replicate (n) is from 50-60 meristems in g and h.

At least twice experiments were repeated independently with similar results.

Fig. 3. A highly conserved dodecapeptide amino acid is associated with potent compensation
in groundcherry.

a, CLE protein structure and dodecapeptide sequences of SICLE9 and SICLV3 orthologs in the
Solanaceae. b, Shoot and inflorescences of groundcherry WT, pgclv3 and pgcle9 plants. Red
arrowheads mark two side shoots that develop after single-flowered inflorescences. c,
Representative flowers and fruits from groundcherry WT, pgclv3, and pgcle9 plants. Scale bar, 1
cm. d, Representative flowers and fruits from tomato WT, slclv3, and sicle9 plants. White
arrowheads mark petals or locules. Scale bar, 1 cm. e, Quantification of petal and locule numbers
from groundcherry WT, pgclv3, pgcle9 and tomato WT, slclv3, and sicle9 plants. f, Primary shoot
apical meristems from groundcherry WT, pgclv3, pgcle9 and tomato WT, slclv3, and sicle9 plants.
7L, 8L: 7 and 8" leaf primordia, respectively. Red dotted lines indicate width and height for
meristem size measurements, Scale bar, 200 um. g, Quantification of meristem width and height
from groundcherry WT, pgclv3, pgcle9, tomato WT, slclv3, and sicle9 plants. h, Normalized RNA-
seq read counts of SICLV3, SICLE9, PgCLV3, and PgCLE9 from tomato WT, slc/v3, groundcherry
WT and pgclv3 meristems. i, Expression fold-change of SICLV3, SICLEY, PgCLV3, and PgCLE9
relative to the normalized counts of WT expression of these genes in the indicated genotypes. j,

Side and top-down views of a pgclv3 pgcle9 double mutant shoot, inflorescence/floral meristem,
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and primary flower. Red arrowheads indicate branches that emerged after the primary flower. k,
Branch number of WT, pgclv3, pgcle9, and pgclv3 pgcle9 plants. Box plots, 251-75" percentile;
center line, median; whiskers, full data range in e, g, h, i and k. The letters indicate the significance
groups at P < 0.01 (One-way ANOVA and Tukey test) in e, g and k. Different letters between
genotypes indicate significance in e, g and k (See Supplementary Data 7 for specific P values). P
values (two-tailed, two-sample #-test) in h and i. Exact sample sizes (n) are shown in e, g, h, i and
k. Each replicate (n) is from 30-35 meristems in h and i. At least twice experiments were repeated

independently with similar results.

Fig. 4. Variation in Solanaceae compensation is due to changes in both the SICLE9 ortholog
dodecapeptide and its expression.

a, Diagrams of constructs used for complementation tests. gPgCLE9"$LE? (PgCLEY genomic
DNA). gSICLE9¢LE? (SICLE9 genomic DNA including the sequence for PgCLE9 dodecapeptide).
gSICLV3PeCLEY (SICLV3 genomic DNA including the sequence for PgCLE9 dodecapeptide).
gSICLV35ICLE? (SICLV3 genomic DNA including the sequence for SICLE9 dodecapeptide). Black
and orange rectangles mark the coding sequences and the dodecapeptide sequences, respectively.
The numbers with minus (-) and plus (+) signs indicate the positions of the upstream sequences
and the downstream sequences from the adenines of start codons, respectively. b, Locule number
quantification from WT and s/c/v3 mutants compared to T; transgenic plants of gSICLV3S/CLV3,
gPgCLE9PSCLE | gSICLE9TECLEY | gSICLV3P2CLE?  and gSICLV3SICLE? Box plots, 25M-75™ percentile;
center line, median; whiskers, full data range. The letters indicate the significance groups at P <
0.01 (One-way ANOVA and Tukey test). Different letters between genotypes indicate significance
(See Supplementary Data 7 for specific P values). Exact sample sizes (n) are shown as discrete
numbers. Data are based on at least 10 independent transgenic lines for each construct. At least
twice experiments were repeated independently with similar results. ¢, A proposed model for
differences in active compensation between tomato and groundcherry. The more potent active
compensation in groundcherry compared to tomato is due to both the glycine-containing PgCLE9
dodecapeptide and its higher expression. d, Summary and model of the dynamic evolution of
SICLV3 and SICLE9 orthologs and their compensation relationships in the Solanaceae. Dark blue,
blue, and sky blue rectangles indicate the coding region of the genes. Arrows and their thickness

represent gene expression and their relative levels, respectively. Numbers above the arrows
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indicate hypothetical relative proportions of SICLV3 and SICLE9 ortholog expression levels. ‘G’
and ‘S’ within the rectangles denote the sixth amino acid of each CLE dodecapeptide. Dashed
rectangles mark deletions of the coding region, resulting in pseudogenes (pepper and tobacco) and
complete gene loss (eggplant, potato) in each genome. The red gradient bar reflects the loss of

active compensation and its degree, depending on the indicated genetic variation.
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Extended Data Figure legends

Extended Data Fig. 1. CRISPR-generated mutations of the tobacco NbCLV3a and NbCLV3b
genes.

a, CRISPR-generated sequences of nbc/v3a mutant alleles. b, CRISPR-generated sequences of
nbclv3b mutant alleles. Guide RNA and PAM sequences are highlighted in red and bold underlined,
respectively. Blue letters and dashes indicate insertions and deletions, respectively. Numbers in
parentheses represent gap lengths. ¢, Shoots and inflorescences of nbclv3ia/b To plants. Three
strong lines (nbclv3a/b®310) nbclv3a/b®*+1 and nbclv3a/b®>-1) show similar phenotypes
compared to null nbclv3a/b mutants in Fig. 1g. Weak (nbclv3a/b®51%) and moderate
(nbclv3a/b®7-1%) lines show regular shoot architecture but fasciated floral organs. White
arrowheads indicate flowers. d, Sepal number of weak and moderate nbclv3ia/b To plants. Box
plots, 25M-75% percentile; center line, median; whiskers, full data range. The letters indicate the
significance groups at P < 0.01 (One-way ANOVA and Tukey test). Different letters between
genotypes indicate significance (See Supplementary Data 7 for specific P values). The exact
sample sizes (n) are shown as discrete numbers. At least twice experiments were repeated

independently with similar results.

Extended Data Fig. 2. Conserved noncoding sequence (CNS) analysis of the promoter
regions of SICLV3 and SICLEY orthologs in the Solanaceae family.

a, Conservatory analysis of Solanaceae CLV3 and CLEY promoters. Purple boxes define highly
similar regions of each gene’s orthologs in the indicated species, and dark purple boxes define
highly similar regions of the paralogous gene (e.g. CLV3B or CLE9YB) in the indicated species.
Green boxes define Solanaceae CNSs. b, Multiple alignment and logo sequences of SICLV3
dodecapeptide orthologs in the Solanaceae family. ¢, Multiple alignment and logo sequences of

SICLE9 dodecapeptide orthologs in the Solanaceae family.

Extended Data Fig. 3. CRISPR-generated mutations of groundcherry PgCLV3 and PgCLE9.
a, Gene structure and sequences of pgc/v3 CRISPR mutants. b, Flowers and fruits of pgc/v3. White
arrowheads mark petals or locules. Percentages indicate the proportions of flower and fruit

phenotypes. Scale bar, 1 cm. ¢, Gene structure and sequences of pgcle9 CRISPR mutants. The
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orange rectangles in the gene structures indicate the regions of the CLE dodecapeptides in a and
¢. Guide RNA and PAM sequences are highlighted in red and bold underlined, respectively, in a
and c. Blue letters and dashes indicate insertions and deletions, respectively, in a and ¢. Numbers
in parentheses represent gap lengths in a and ¢. d, Shoot and an extremely fasciated primary flower
of the pgclv3 pgcle9 double mutant. e, Development of extra shoots (S) from the primary shoot
and apex of a pgclv3 pgcle9 double mutant. L, leaf petioles. At least twice experiments were

repeated independently with similar results.

Extended Data Fig. 4. Sequence alignments of CLV1 receptor homologs.

a, Alignment of the Solanaceae CLV1 protein sequences. Red letters indicate the two ultra-
conserved amino acids involved in the physical binding of CLE dodecapeptides. b, Alignment of
CLV1 homologs in angiosperms. All the sequences are from the Phytozome v12.1 database
(phytozome.jgi.doe.gov). Yellow highlights mark the conserved Asp and Phe. Detailed sequence

information is shown in Supplementary Data 10.

Extended Data Fig. 5. Groundcherry pgclvl pgclv3 and petunia phclvl phclv3 double mutants
are severely fasciated like tomato siclv! siclv3 double mutants.

a, Gene structure and sequences of two phclvi CRISPR mutants. Guide RNA and PAM sequences
are highlighted in red and bold underlined, respectively. Blue letters and dashes indicate insertions
and deletions, respectively. Numbers in parentheses represent gap lengths. b, Flowers, fruits/pods,
and meristems from pgclvi, phclvl, and slclvl single mutants. White arrowheads mark petals or
locules. 7L, 7" leaf primordium, 8L, 8" leaf primordium. 22L, 22% leaf primordium. C, Side and
top-down views of a pgclvl pgclv3 double mutant shoot, inflorescence/floral meristem, and
primary inflorescence. 6L, 6™ leaf primordium. D, Side and top-down views of a phclvl phclv3
double mutant shoot and primary flower. E, Side and top-down views of a slclvl slclv3 double
mutant shoot, flower, vegetative meristem and primary inflorescence. Fasciated flowers and
vegetative meristems are shown in insets of ¢ and e. f, g, Petal (f) and locule (g) numbers of
groundcherry WT, pgclvi, pgelvl pgelv3, pgelvl pgele9, and petunia WT, phclvi, and tomato WT,
slelvl, slclvl slclv3, and slclvi slcle9. Not that all three Solanaceae c/v/ single mutant fasciation
phenotypes are similarly weak. Box plots, 25"-75™ percentile; center line, median; whiskers, full

data range in d and e. The letters indicate the significance groups at P < 0.01 (One-way ANOVA
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and Tukey test) in f and g. Different letters between genotypes indicate significance in f and g (See
Supplementary Data 7 for specific P values). P values (two-tailed, two-sample #-test) in f and g.
Exact sample sizes (n) are shown in f and g. At least twice experiments were repeated

independently with similar results.

Extended Data Fig. 6. Transgenic complementation tests of tomato slcl/v3 single and slclv3
slcle9 double mutants.

a, b, Complementation tests of tomato s/c/v3 single mutants. Inflorescence images (a) and petal
number quantifications (b) of WT and slclv3 compared to the T; transgenic plants gSICLV35/CL3,
gPgCLE9P¢CLE | gSICLE9PECLEY | gSICLV3PECLE and gSICLV3SICLE? ¢, Diagrams of the constructs
used for complementation tests of slc/v3 sicle9 double mutants. gSICLV35CLV3 (SICLV3 genomic
DNA). gSICLV3S/CLE? (SICLV 3 genomic DNA including the sequence for SICLE9 dodecapeptide).
gSICLE9S'CLE? (SICLEY genomic DNA). gSICLE9SICLE?SSG (SICLE9 genomic DNA including the
sequence for PgCLE9 dodecapeptide). Black and orange rectangles mark the coding sequences
and the dodecapeptide sequences, respectively. The numbers with minus (-) and plus (+) signs
indicate the positions of the upstream sequences and the downstream sequences from the adenines
of start codons, respectively. d, Carpel number quantifications of WT, slc/v3, slclv3 slcle9 mutants
compared to the T transgenic plants gSICLV3SICLY3.2 gSICLV3SICLES. 2 gSICLE9SICLES. 2, and
gSICLE9SICLE9SSG  Data are based on at least three independent transgenic lines for each construct.
Box plots, 25%-75™ percentile; center line, median; whiskers, full data range in b and d. The letters
indicate the significance groups at P < 0.01 (One-way ANOVA and Tukey test) in b and d.
Different letters between genotypes indicate significance in b and d (See Supplementary Data 7
for specific P values). Exact sample sizes (n) are shown in b and d. At least twice experiments

were repeated independently with similar results.
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Supplementary Tables

Supplementary Table 1. CLE dodecapeptide sequences of SICLV3 and SICLE9 homologs
Supplementary Table 2. Differentially expressed genes between petunia WT and phclv3 from
mRNA-seq. For the statistical test, “Wald test” was performed, and adjustments were made for
multiple comparison. Significant differential expression was identified using padj < 0.05 cut-offs
and |log2 ratio| > 1 (See Methods).

Supplementary Table 3. Differentially expressed genes between groundcherry WT and pgc/v3

from mRNA-seq. For the statistical test, “Wald test” was performed, and adjustments were made

for multiple comparison. Significant differential expression was identified using g-value < 0.01

cut-offs (See Methods).
Supplementary Table 4. Primers used in this study.

Supplementary Data

Supplementary Data 1. CRISPR-generated mutations in this study

Supplementary Data 2. Quantification data for organ numbers in this study.

Supplementary Data 3. Quantification data for meristem size from Fig. 1, 2 and 3.
Supplementary Data 4. Normalized counts from mRNA-seq for Fig.2 and 3.

Supplementary Data 5. Syntenic region of SICLV3 homologs, defined by Conservatory
orthogroups.

Supplementary Data 6. Syntenic region of SICLE9 homologs, defined by Conservatory
orthogroups.

Supplementary Data 7. Exact P-values in this study (one-way ANOVA with Tukey test).
Supplementary Data 8. Sequencing trace files.

Supplementary Data 9. Petunia PACLE9 sequence.

Supplementary Data 10. CLV1 homolog sequences.
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Figure 3
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Figure 4
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Extended Data Fig. 1
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Extended Data Fig. 2
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Consensus RGXPAGPDPLHH Consensus REAPXXPDPLHH
5 i e )
Identity I Identity " e
S. lycopersicum RG 'PAGPDPLHH S. lycopersicum REAP 'SPDPLHH
S. pimpinellifolium RG''PAGPDPLHH S. pimpinellifolium REAP'SPDPLHH
S. arcanum RG PAGPDPLHH S. arcanum REAP/ 'SPDPLHH
S. chilense RG/'PAGPDPLHH S. chilense A REAP/SPDPLHH
S. habrochaites RG/PAGPDPLHH ) B REAP!/SPDPLHH
S. pennellii RG PAGPDPLHH S. habrochaites REA | 'SPDPLHH
S. lycopersicoides RG/PAGPDPLHH S. pennellii REAP ! SPDPLHH
S. appendiculatum RG/PAGPDPLHH S. lycopersicoides REAP/'SPDPLHH
S. pinnatisectum RG/PAGPDPLHH S. appendiculatum REAP ' SPDPLHH
S. tuberosum RGPAGPDPLHH J. sinuosa REAP/SPDPLHH
S. chacoense RG PAGPDPLHH P. grisea REAP!'GPDPLHH
S. melongena RG 'PAGPDPLHH N. tabacum A REAPMGPDPLHH
B REAP SPDPLHH
C. annuum RG /'PAGPDPLHH
. N. attenuata A REAP GPDPLHH
J. sinuosa RG 'PAGPDPLHH
P. grisea RG P GPDPLHH B REAP SPDPLHH
. : N. tomentosiformis A REAP'GPDPLHH
N. benthamiana A RG PAGPDPLHH
B RGIPAGPDPLHH B REAP SPDPLHH
N. tab A RO PAGPDPLHH N. obtusifolia A REAP/GPDPLHH
- tabacum 8 GIPAG P, inflata REAP' GPDPLHH
RGIPAGPDPLHH P. axillaris REAP GPDPLHH
N. attenuata RG PAGPDPLHH
N. tomentosiformis RG PAGPDPLHH
N. obtusifolia RG PAGPDPLHH
P. inflata RG 'PAGPDP HH

P. axillaris RG PAGPDP HH



Extended Data Fig. 3

a PgCLV3 PN
(Pg-t_111) &%
100 bp

WT  TGGGAGCTAAGAGGAGTTCCAGGIGGTCCTGATCCATTGCATCACAATGGTGTTAATCC
pgclv3®F! TGGGAGCTAAGAGGAGTTCCCAGGTGETCCTGATCCATTGCATCACAATGGTGTTAATCC
pgclv3F2 TGGGAGCTAAGAGGAG----AGGIGGTCCTGATCCATTGCATCACAATGGTGTTAATCC

c PgCLE9
(Pg-t_84762) 10060

Target 1 Target 2 Target 3 Target 4
— _— >

WT  ATAAC(30)GCTCCITTCACTAACAAGCAATACCCTTG(154)ATTGC(21)
GCAGAATGTGTTGATCATGTCCGTIGGATG (187 ) GTATTACCAGTTAGCTCAGAGAATGGGAA (19 ) GTAGAATTAAGGGAAGCACCAATGGGACC (20 ) GCAAT

A-1 ATAAC (30 ) GCTCCTTTCAAG-~—==mm===== == (154) === (21)
pgcleg® (187) (19) TGGGACC (20 ) GCAAT

., ATA--(30) (154) ————- (21)
pgclegeiz? (187) (19) GACC (20)GCAAT

pgclv3 pgcle9 pgclvdpgcle9

Primary flower Inflorescence/

floral .
meristem. g

Petal number
24.0+6.




a SlcLvl

Extended Data Fig. 4

StCLV1
SmCLV1
CaCLV1
PgCLV1
NbCLV1
PhCLV1

PSEFGNISTLKLLDLGNCNLDGEVPPSLGNLKKLHSLFLQVNRLTGHIPSELSGLESLMS 293
PSEFGNISTLKLLDLGNCNLDGEVPPSLGNLKKLHTLFLQVNRLTGRIPSELSGLESLMS 292
PSEFGSISTLKLLDLGNCNLEGEIPPSLGNLKKLHTLFLOMNRLTGHIPTELSGLESLMS 292
PPEFGNISTLKLLDLGSCNLDGEIPPSLANLKKLHSLFLOMNRLTGRIPSELSGLYSLMS 295
PPEFGSISTLKYLDLGSCNLDGEIPPSLGNLKKMHTLFLQVNRLTGRIPSELSGLESLMS 293
PTEFGSISTLKLLDLANCNLDGEIPPSLGNLKKLHSLFLHANRLTGHIPSELSGLESLMS 296
PPEFGSITTLKLLDLGSCNLDGEIPASLGNLKKLHSLFLOMNRLTGYIPPELSGLESLMS 290

* kkk | skkk khkk,  Kkkkgkkgk kk kkkkgkskkky kkkkk kk kkkkk kkkk

S0lyc04g081590.2 (S1CLV1)
AT1G75820
GSMUA_Achr3G26680_001
Bradilg30160
Brast07G235600
LOC_0s06950340
Sevir.4G294000
Seita.4G281800
Pahal.D00165
Pavir.Db00153
Sobic.010G267700
GRMZM2G300133
MDP0000280399
AHYPO_018678
Migut.N03171
Migut.C00856
DCAR_022991
PGSC0003DMG400009941
Eucgr.H00964
Eucgr.H00963
Phvul.011G042000
Glyma.11G114100
Glyma.12G040000
Aqcoe6G222600
Prupe.6G163000
Kaladp0068s0368
Kalax.0183s0036
Bol027692
Brara.G03381
Araha.9358s0001
AL2G35810
Thhalv10018069m.g
Bostr.20129s0016
Cagra.0799s0053
Carubv10019714m.g
MDP0000804929
gene(08548-v1.0-hybrid
Prupe.1G363300
GSVIVG01009941001
Potri.002G019900
SapurV1A.0025s0150
Potri.005G241500
SapurV1A.0384s0100
Manes.05G145600
30170.t000788
evm.TU.supercontig 26.309
Ciclev10000156m.g
orangel.1g002010m.g
Gorai.005G112100
ThecclEG034252
Medtr4g070970
Tp57577_TGAC_v2_gene30515
Lus10040592.g

D E
EELRLGYYNSYEGGIPSE-FGNISTLKLLDLGNCNLDGEVPPSLGNLKKLHSLFLQVNRL
REMYIGYYNSYTGGVPPE-FGGLTKLEILDMASCTLTGEIPTSLSNLKHLHTLFLHINNL
—————————— YEGGIPWE-FGRLSSLVRLDMAGCRLSGTLPASLGQLKRLDSLFLQINRL
EDLYLGYFNQYDGGVPPE-FGELASLVRLDMSSCNLTGPVPPELGKLSKLQTLFLLWNRL
ODLYLGYYNQYDGGVPPE-FGALGSLIRLDMSSCNLTGPIPPELGMLSNLETLFLOWNRL
REMYIGYYNQYDGGVPPE-FGDLGALLRLDMSSCNLTGPVPPELGRLOQRLDTLFLQWNRL
REMYIGYYNQYTGGVPPE-FGDLRSLVRLDISSCNLTGPVPPELARLTQLDTLFLSINQL
REMYIGYYNQYTGGVPPE-FGDLRSLVRLDISSCNLTGPVPPELARLTQLDTLFLSINQL
REMYIGYFNQYTGGVPPE-FGDLRSLVRLDMSSCNLTGPVPLELARLTQLDTLFLSINQL
REMYIGYFNQYTGGVPPE-FGDLRSLVRLDMSSCNLTGPVPPELARLTQLDTLFLSINQL
REMYVGYYNQYSGGVPPE-FGDLQSLVRLDMSSCTLTGPIPPELARLSRLDTLFLSMNQL
REMYVGYYNQYSGGVPRE-FGALQSLVRLDMSSCTLTGPIPPELARLSRLDTLFLALNQL
KELYLGYYNNYDGGIPPE-FGSLPLLKVLDMSSCNLIGKIPTSLSLLKNLHSLFLQVNRL
NMLFLGYYNTFSGGIPSE-FGSLSSLKLLDMASCNLSGEIPKTLGNLKNVHTLFLQRNQL
QELYLGYFNTYDGGIPPA-FGSISTLQLLDLAMCNLTGEIPASLGNLKHLHSLFLQVNNL
LELYLGYYNTYSGGIPPE-FGSISSLOLLDLGMCNLTGEIPATLGNLKHLHTLFLQVNNL
QILRLGYYNMYLGGIPSE-LGTLSDLRLLDLGGCNLTGEIPASLGNLKLLHTLFLQYNNL
EELRLGYYNSYEGGIPSE-FGNISTLKLLDLGNCNLDGEVPPSLGNLKKLHTLFLQVNRL
RGLYLGYFNAFDGGIPAE-FGSLKELRILDMASCGLSGEIPASLGELKKLDSLFLHLNKL
OWLYLGYFNTYDGEIPAE-FGSMKELRRLDLASCGLSGEIPVSLSELKKLDSLFLOQWNNL
KYLKLGYNNAYEGGIPPE-FGAMKSLIYLDLSSCNLSGEIPPSLSSLKKLDTLFLQMNNL
RILKLGYNNAYEGGIPPE-FGTMESLKYLDLSSCNLSGEIPPSLANMRNLDTLFLOMNNL
RYLKLGYNNAYEGGIPPE-FGSMKSLRYLDLSSCNLSGEIPPSLANLTNLDTLFLQINNL
QQLYLGYYNAYEGGIPPE-FGSFESLRLLDLGSCNLSGEIPASLGGLKLLDTLFLQFNHL
KELYVGYFNSFDGGIPPE-LGSLTWLQVLDLASCNLSGSIPRSLGLLKHLRSLFLQVNCL
EQMYVGYFNVYSSGIPPE-FGSIISLRILDMASCNLSGEIPATLGKLKNLDTLFLQVNNF
EQMYVGYFNVYSSGIPPE-FGSITSLRILDMASCNLSGEIPATLGKLKNLDTLFLQVNNF
KEMYVGYFNSYTGGVPPE-FGELTNLEVLDMASCTLTGEIPTTLSNLKHLHTLFLHINNL
KEMYVGYFNSYTGGVPPE-FGELSNLEVLDMASCTLTGEIPTTLSNLKHLHTLFLHINNL
KEMYIGYYNSYTGGVPPE-FGGLTKLEILDMASCTLTGEIPTSLSNLKHLHTLFLHINNL
KEMYIGYYNSYTGGIPPE-FGGLTKLEILDMASCTLTGEIPTSLSNLKHLHTLFLHVNNL
REMYVGYYNSYTGGVPPE-FGGLTKLEVLDMASCTLTGEIPTTLSNLKHLHTLFLHINNL
REMYVGYYNSYTGGVPPE-FGGLTKLEILDMASCTLTGEIPTSLSNLKHLNTLFLHINNL
REMYVGYFNSYTGGVPPE-FGGLTKLQILDMASCTLTGEIPTSLSNLKHLHTLFLHINNL
REMYVGYFNSYTGGVPPE-FGGLTKLQILDMASCTLTGEIPTSLSNLKHLHTLFLHINNL
RELYVGYYNSYSGGIPPE-LGSLSSLQILDMGSCNLVGPIPTTLSLLKHLHTLFLQVNRL
KEMYVGYFNSYDGGIPPE-LGSLSSLRVLDMASCNLTGTIPISLSNLKHLHSLFLOINQL
KEMYVGYFNSYDGGIPPE-LGSLSSLQVLDMASCNLSGTIPTNLSLLKNLNSLFLQVNRL
QGLFLGYFNIYEGGIPPE-LGLLSSLRVLDLGSCNLTGEIPPSLGRLKMLHSLFLQLNQL
KSLCIGYYNHYEGGIPPE-FGSLSNLELLDMGSCNLNGEIPSTLGQLTHLHSLFLQFNNL
KSLSIGYFNHYEGGIPPE-FGSLSSLELLDMGSCNLNGEIPSTLGQLTRLOSLFLQFNNL
KSLCVGYFNRYEGSIPPE-FGSLSNLELLDMASCNLDGEIPSALSQLTHLHSLFLQVNNL
KSLCVGYFNHYEGIIPPE-FGSLVNLELLDMASCNLNGEIPATLGQLTRLHSLFLQVNNL
RSLYLGYYSSYEGGIPPE-FGFLSSLEVLDMAFCNLTGEIPSTLGLLKRLHTLFLQMNNL
RKLYLGYFNSWEGGIPPE-FGSLSSLEILDMAQSNLSGEIPPSLGQLKNLNSLFLQMNRL
KALFIGYSNLYNGGVPRE-FGDLSELQILDMSSCNITGEIPTSLSNLKHLHSLFLOMNNL
REMYIGYFNTYTGGISPE-FGALTQLQVLDMASCNISGEIPTSLSRLKLLHSLFLQMNKL
REMYIGYFNTYTGGIPPG-FGALTQLQVLDMASCNISGEIPTSLSRLKLLHSLFLOMNKL
KYLVIGYFNAYDGGIPPE-YGSLSQLELLDMASCNITGEIPSSLSNLKHLHSLFLQLNRL
KEMYIGYFNAYVGEIPPE-FGTLSQLQVLDMASCNLTGEIPVSLSNLKHLHTLFLOQLNRL
KELQLGYENAYSGGIPPE-LGSIKSLRYLEISNANLTGEIPPSLGNLENLDSLFLQMNNL
KELRLGYNNAYEGGVPPE-FGSMKYLRYLEMPSCNLTGEIPPSLGNLENLDSLFLOGNNL
KELYLGYFNSFSGGIPSGMFQGLTSLRVLDMASCNLSGEIPPSLGQLKNLRACYLQLNHF
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281
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278
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282
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296
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275
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278
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288
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274
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274
275
278
276
277
277
277
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241
275
281



Extended Data Fig. 5

a

PhCLV1
(Peaxi162Scf00553g00620)

Target 1 Target 2
—» —>

100 bp
H

Target 1 Target 2
WT ACACTTATGAAACTTAAAGAATCCATGGTT(115) TATTTGGTACCATACCACCAGAAATTGGTT
phclv1®F!  ACACTTATGAAACTTAAAGAATTCCATGGTT (115 )TATTTGGTACCATACCACCAGAAATTGGTT

phclv1°F2  ACACTTATGAAACTTA------—-—- GGTT (115) TATTTGGTACCATACCACCAGAAATTGGTT

Groundcherry pgclv1 pgciv3

Inflorescence/
floral'meristem

Primary flower
with side shoots
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Extended Data Fig. 6

SICLV3 genomic region
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