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Abstract
Take S to be a 4-dimensional Sklyanin (elliptic) algebra that is module-finite over its
center Z ; thus, S is PI. Our first result is the construction of a Poisson Z -order structure
on S such that the induced Poisson bracket on Z is non-vanishing. We also provide the
explicit Jacobian structure of this bracket, leading to a description of the symplectic
core decomposition of the maximal spectrum Y of Z . We then classify the irreducible
representations of S by combining (1) the geometry of the Poisson order structures,
with (2) algebro-geometric methods for the elliptic curve attached to S, along with
(3) representation-theoretic methods using line and fat point modules of S. Along the
way, we improve results of Smith and Tate obtaining a description the singular locus
of Y for such S. The classification results for irreducible representations are in turn
used to determine the zero sets of the discriminants ideals of these algebras S.
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1 Introduction

1.1 Overview of Sklyanin algebras and results in the paper

Sklyanin algebras are quadratic algebras that play a major role in the Artin-Schelter-
Tate-van den Bergh’s classification of noncommutative projective spaces [2–5] and
the Feigin-Odeskii’s investigation of elliptic algebras [23,24]. These directions were
motivated by Sklyanin’s work [35] on quantum integrable systems, in which he intro-
duced the algebras now known as 4-dimensional Sklyanin algebras and studied their
representations with applications to the quantum inverse problem method in quantum
and statistical mechanics. Since then, n-dimensional versions of Sklyanin’s algebras
were introduced for n ≥ 3 and have arisen in numerous areas including: deformation-
quantization, non-commutative geometry, and quantum groups and R-matrices; see,
for instance, the reviews [8,30,41] and the references within.

In terms of their representation theory, Sklyanin algebras fall into one of two
classes– those that are module-finite over their center so that they satisfy a polynomial
identity (or, are PI), or otherwise.

(A) In the generic (non-PI) case, a Sklyanin algebra is not finite-module over its cen-
ter. Its representation theory can be viewed in parallel with the representations of
quantum groups at non-roots of unity and Lie algebras over fields of characteristic
0. Sklyanin algebras are more complicated than the other two classes because they
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do not have PBW bases in the usual sense and thus one cannot use the classical
methods of standard modules (for instance Verma modules in the case of the cate-
goriesO). However, Artin-Schelter-Tate-van den Bergh have developed powerful
projective algebro-geometric methods that can be applied to analyze the represen-
tations of these algebras via algebraic geometry of elliptic curves. Such methods
were further developed in works of Levasseur–Smith [29], Smith–Staniszkis [38],
and Staniszkis [42], to achieve results on the noncommutative projective alge-
braic geometry of irreducible representations of generic 4-dimensional Sklyanin
algebras.

(B) Representations of PI Sklyanin algebras can be viewed in parallel with repre-
sentations of quantum groups at roots of unity and modular representations of
Lie algebras. This case is substantially harder than setting (A). In this paper we
unify the algebro-geometric methods for Sklyanin algebras with Poisson geometric
methods for quantum groups at roots of unity, to

(1) construct nontrivial structures of Poisson orders on all PI 4-dimensional
Sklyanin algebras, and

(2) explicitly classify their irreducible representations and describe their dimen-
sions.

Smith [36] has obtained a number of important results in the direction (2) by
exclusively using algebro-geometric methods. Pertaining to direction (1), De Concini-
Kac-Procesi [19,20] pioneered the applications of Poisson geometry in representation
theory of PI algebras, for the cases of quantized universal enveloping algebras and
quantum function algebras at roots of unity. This approachwas axiomatized byBrown-
Gordon [13] in the theory of Poisson orders, and was applied to other families of
algebraswith PBWbases, such as the symplectic reflection algebras.APoisson order is
an algebra Awhich is module-finite over its center Z , and such that Z admits a Poisson
structure for which all Hamiltonian derivations of Z can be extended to derivations
of A. The punchline of the construction is that Brown and Gordon used the latter
extension to construct an isomorphism A/(mA) ∼= A/(nA) for m, n ∈ maxSpec(Z)

in the same symplectic core, [13,19,20]. This provides general Poisson geometric tools
to organize the irreducible representations of A into families that behave in similar
ways (e.g., that have the same dimension).

We use previous algebro-geometric results on the PI 4-dimensional Sklyanin alge-
bras S, [2–5,37,39,40], to prove that every such algebra has a nontrivial structure of
Poisson order. We classify the symplectic cores of Z(S) and obtain from it a concrete
description of the Azumaya locus of S. We then link the developed Poisson geometry
back to the algebro-geometric approach to the representation theory of S, [27,29,36],
to classify the irreducible representations of S and to describe their dimensions. See
Sects. 1.2 and 1.3 for more details.

Poisson structures on commutative algebras which arise as semiclassical limits
of elliptic algebras were studied by Odesskiı̆-Feı̆gin [23], Pym-Schedler [31], and
others. The novelty in our work is the noncommutative extension of Poisson algebras
to Poisson orders for all PI 4-dimensional Sklyanin algebras S, which is the key feature
that is needed to approach the representation theory of S.
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In our previous work [43], we have obtained similar results for the PI 3-dimensional
Sklyanin algebras. The 4-dimensional case turns out to be substantially more chal-
lenging, and requires new approaches at various steps. We indicate those throughout
the paper. On the other hand, we develop methods that can be applied in far greater
generality than 4-dimensional Sklyanin algebras, for instance, connected N-graded
algebras T containing a regular sequence of central elements �1, . . . , �m such that
T /(T�1 + · · · + T�m) is isomorphic to a twisted homogeneous coordinate ring of
an elliptic curve; such results are highlighted throughout our work.

We use the solution of the classification problem (2) for irreducible representations
of the algebras S to fully determine the zero sets of all of their discriminant ideals.
This will likely have further applications in relation to recent work of Bell-Zhang [7],
Ceken-Palmieri-Wang-Zhang [16], and Brown-Yakimov [15].

1.2 Poisson orders, classification of symplectic cores and Azumaya loci

We work over an algebraically closed base field k of characteristic 0. The projective
algebro-geometric data attached to a 4-dimensional Sklyanin algebra S are as follows:
an elliptic curve E in P

3, an invertible sheaf L on E and an automorphism of σ E
given by a translation of a point τ ∈ E . See Sect. 2.1 for details.

One useful fact we have is that S is module-finite over its center, if and only if the
automorphism σ attached to S has finite order. In this case, S is PI and the PI degree of
S (which is a sharp upper bound on the dimension of irreducible representations of S)
is equal to |σ |; see Proposition 2.12. So, consider the following standing hypothesis
and notation used throughout this work.

Hypothesis 1.1 (S, Z , n, s) Let S be a 4-dimensional Sklyanin algebra, and (with the
exception of Sects. 2 and 5) assume that S is module-finite over its center Z so that
S is PI. For the geometric data (E,L, σ ) attached to S mentioned above, let n denote
|σ |, which is equal to the PI degree of S when |σ | is finite. Also, let s := n/(n, 2).

In this work, we do not consider the cases when n divides 4, as done typically
in works on 4-dimensional Sklyanin algebras [29,38,42]. (See, e.g., [42, proof of
Lemma 2.1].)

Smith and Tate [39] proved that the center Z(S) of every PI 4-dimensional Sklyanin
algebra S is generated by four elements z0, . . . , z3 of degree n and two elements g1, g2
of degree 2, subject to two relations F1 and F2 of degree 2n. Set

Y := maxSpec(Z(S)) and Yγ1,γ2 := Y ∩ V(g1 − γ1, g2 − γ2), for γ1, γ2 ∈ k.

Denote by Y sing the singular locus of Y . Further, (Yγ1,γ2)
sing denotes the singular

locus of the subvariety Yγ1,γ2 and

(Y sing)γ1,γ2 := Y sing ∩ Yγ1,γ2 .
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Here, Y sing = ⋃
γ1,γ2∈k(Y sing)γ1,γ2 , which is contained in but not necessarily equal

to
⋃

γ1,γ2∈k(Yγ1,γ2)
sing . Moreover, consider the following notation for γ1, γ2 ∈ k:

(Yγ1,γ2)
smooth := Yγ1,γ2 \ (Yγ1,γ2)

sing, Y symp
0 := ⋃

γ1,γ2∈k(Yγ1,γ2)
sing.

Our first main result constructs a nontrivial Poisson order on S, classifies the
symplectic cores of its center Z(S) = k[z0, z1, z2, z3, g1, g2]/(F1, F2), and fully
determines the Azumaya locus of S.

Theorem 1.2 (Corollaries 7.5 and 7.8, Theorem 8.1, and Proposition 8.8) For all 4-
dimensional Sklyanin algebras S satisfying Hypothesis 1.1, the following hold:

(1) S admits a nontrivial structure of Poisson order for which

(a) the induced Poisson structure on the center Z(S) is of Jacobian form in the
sense of (7.4) in terms of two potentials taken to be F1 and F2, while

(b) g1, g2 lie in the Poisson center of Z(S).

(2) The corresponding symplectic core stratification of the Poisson variety Y are

(a) 2-dimensional cores: (Yγ1,γ2)
smooth for γ1, γ2 ∈ k;

(b) 0-dimensional cores: points in Y symp
0 ; these are the points onwhich the Poisson

bracket on Y in part (1) vanishes.

(3) Y sing ⊆ Y symp
0 , with strict containment when n is odd, and they both have codi-

mension ≥ 2 in Y ;
(4) The Azumaya locus of S coincides with the smooth locus Y \ Y sing in Y .

The above result can be thought of as a generalization of the previous work done for
PI 3-dimensional Sklyanin algebras. There are a number of complications that arise
in the 4-dimensional case compared to the 3-dimensional one. The first one is that
in the 4-dimensional case we have Y sing

� Y symp
0 when the order n of σ is odd; in

other words the set of symplectic points Y symp
0 of the Poisson variety Y is larger than

its singular locus. Indeed in that case Y symp
0 is the union of Y sing plus four cuspidal

curves meeting at the origin; this is proved in Theorem 3.13.
See Fig. 1 in Sect. 3 for an illustration of the n odd case, where Y sing

� Y symp
0 as

discussed above. On the other hand, Fig. 2 in Sect. 3 illustrates the n even case, when
Y sing and Y symp

0 coincide.
As mentioned in Sect. 1.1, the proof of the existence of nontrivial Poisson order

structure on S relies on the previous algebro-geometric results for S and a method
of higher order specialization developed in [43]. The precise (Jacobian) form of the
Poisson structure on Z(S) is derived from the property that g1, g2 are in the Poisson
center of Z(S) and from Stafford’s result [40] that S is a maximal order.

The proof of Theorem 1.2(4) faces a second major difficulty compared to the 3-
dimensional case. In the latter case, the symplectic cores of Z(S)ofmaximal dimension
have codimension 1, which was used to show that all of them are in the Azumaya
locus of S by incorporating the automorphism group of S. This strategy fails in the
4-dimensional case since the leaves have codimension 2, while the automorphism
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group of S is still 1-dimensional. Our strategy for the proof of part (4) is summarized
as follows. Firstly, we consider the factors

S[κ1:κ2] := S/(κ1g1 − κ2g2)S, for [κ1 : κ2] ∈ P
1
k

which all turn out to beNoetherian PI domains of the samePI degree as S.We show that
themaximal spectra of their centers are canonically isomorphic to Poisson subvarieties
of Y with the property that the symplectic leaves in them of maximal dimension have
codimension 1 in Y . Now, by applying Brown and Gordon’s Poisson order result [13]
(as discussed in Sect. 4.2) to the symplectic core stratification of the centers of the
algebras S[κ1:κ2] and using the density of their Azumaya loci, we conclude that all the
points in the 2-dimensional cores (Yγ1,γ2)

smooth lie in the Azumaya locus of S. Then
the coincidence of the Azumaya and smooth locus of S follows from a general result
of Brown andGoodearl [11] since the non-Azumaya locus of S contained in Y symp

0 has
codimension ≥ 2 in Y . Thus, Poisson geometry was employed primarily to establish
the codimension ≥ 2 fact, for which there are no other known methods.

The novelty of the 4-dimensional Sklyanin algebras of odd PI degree is that their
Azumaya loci intersects nontrivially the varieties of symplectic points Y symp

0 of Y .

1.3 On irreducible representations of PI 4-dimensional Sklyanin algebras

Recall that n denotes the order of the automorphism σ of the elliptic curve attached to
S; it equals the PI degree of S. For y ∈ Y , denote by my the corresponding maximal
ideal of Z(S). It follows from Theorem 1.2(4) that

• For y ∈ Y\Y sing , S/my S ∼= Mn(k), and thus, up to isomorphism, there is pre-
cisely one irreducible representation of S with central annihilator my and this
representation has dimension n.

It is a simple fact that

• For y = 0, S/my S is a local algebra, and thus, up to isomorphism, S has precisely
one irreducible representation with central annihilator m0 and this representation
is the trivial representation of dimension 1.

To achieve results on irreducible representations of intermediate dimension, we
first use the explicit structure of the center Z(S) and its link with the geometry of the
elliptic curve E to describe the singular locus Y sing of S.

Theorem 1.3 (Theorems 3.13 and 3.16) Let S be a 4-dimensional Sklyanin algebra
satisfying Hypothesis 1.1. Denote by E2 the subgroup of 2-torsion points of E.

(1) If n is odd, then the singular locus of Y is the union of 2(n − 1) cuspidal curves
C(ω + kτ),

Y sing =
⋃

ω∈E2
0≤k≤n−2

C(ω + kτ),

defined in Lemma 3.12, which only meet at the origin, as depicted in Fig. 1.
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(2) If n = 2s is even, then Y sing is the union of two explicitly defined subvarieties
Y sing
1 and Y sing

2 in Theorem 3.16, which only meet at the origin, as depicted in
Fig. 2. When k = C, they contain the cuspidal curves

C(ω + kτ) for ω ∈ E2, 0 ≤ k ≤ s − 1

described in Notation 8.27.

The proof of Theorem 1.3 relies on the geometry of line modules and fat point
modules of S, extending results of [29,39].

Next, we fully classify the irreducible representations of S of intermediate dimen-
sion and describe their dimensions. Along the way, using the action of Heisenberg
group H4 of order 64 on S, we determine the exact form of the Smith–Tate defining
relations F1 and F2 of the center Z(S)when n is even, which is of independent interest
(see Proposition 2.23 below).

Theorem 1.4 (Theorems 8.29 and 8.30) Let S be a complex 4-dimensional Sklyanin
algebra satisfying Hypothesis 1.1. Denote by Irrd S the isomorphism classes of all
d-dimensional irreducible representations of S. Recall the notation above.

(1) If PIdeg(S) = n is odd, then we have the following maps via central annihilators.

Irrn S
1:1 �� �� Y smooth = (Y \ Y sing)

Irrk+1 S � Irrn−1−k S
2:1 �� �� (C(ω + kτ) = C(ω + (n − 2 − k)τ )) \ {0}, 0 ≤ k ≤ n − 2

Irr1 S
1:1 �� �� {0}

(2) If PIdeg(S) = n = 2s is even, then we have the following maps via central anni-
hilators.

Irrn S
1:1 �� �� Y smooth = (Y \ Y sing)

Irrs S
2:1 �� �� Y sing \ ⋃

ω∈E2,0≤k≤s−2 C(ω + kτ)

Irrk+1 S� Irrs−1−k S
4:1 �� �� (C(ω + kτ) = C(ω + sτ + (s − 2 − k)τ )) \ {0}, 0 ≤ k ≤ s − 2;

Irr1 S
1:1 �� �� {0}
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Over complex numbers k = C, Sklyanin constructed in [35] for each ω ∈ E2 and
k ∈ N∪{0}, a representationV (ω+kτ)over S in a certain (k+1)-dimensional subspace
of theta functions of order 2k; see [38, Section 3] for details. These representations
were proved later by Smith and Staniszkis to be irreducible whenever k < s [38,
Theorem 3.6]. Our next result shows that every irreducible representation of S of
intermediate dimension < s is a scalar twist of V (ω + kτ)λ for some λ ∈ k such
that V (ω + kτ)λ equals V (ω + kτ) as vector spaces and si ·λ v = λi siv for any
homogeneous element si in S of degree i and v ∈ V (ω + kτ)λ.

Theorem 1.5 (Theorems 8.29 and 8.30) Let S be a complex 4-dimensional Sklyanin
algebra satisfying Hypothesis 1.1. Then S has irreducible representations of each
dimension 1, 2, 3, . . . , n (= s) if n is odd, and of each dimension 1, 2, 3, . . . , n

2 (=
s), n if n is even. Moreover, the nontrivial irreducible representations of intermediate
dimension< s are givenby scalar twists of V (ω+kτ) for allω ∈ E2 and0 ≤ k ≤ s−2.

To prove Theorems 1.4 and 1.5, we use the classification of fat points of S by
Smith in [36], a number of other representation-theoretic results of Levasseur [29],
Le Bruyn [27], Smith [36] and Staniszkis [38], and part (4) of Theorem 1.2 that the
non-Azumaya part of Z(S) is Y sing . In particular, we apply the deep connections
between fat point modules, C× ×PGLd -stabilizers of irreducible representations, and
C

∗-families of irreducible representations of a graded algebra within the framework
of the noncommutative projective algebraic geometry of S.

Finally, Theorem 8.31 in Sect. 8.3 contains the aforementioned results on the
description of the discriminant ideals of the algebras S.

Remark 1.6 Note that Theorem 1.4makes precise the representation-theoretic connec-
tion between the PI 4-dimensional Sklyanin algebras and the quantized enveloping
algebra Uq(SU (2)) at q a root of unity, as introduced initially in the physics liter-
ature. Namely, the main result of Roche-Arnaudon [33] is that when q is a root of
unity of order m, then Uq(SU (2)) has d-dimensional irreducible representations for
all 1 ≤ d ≤ m when m is odd, and has d-dimensional irreducible representations for
all 1 ≤ d ≤ m

2 and d = m whenm is even. They also show thatUq(SU (2)) arises as a
‘trigonometric limit’ of a 4-dimensional Sklyanin algebra S. Connections between S
and Uq(SU (2)) (or rather, Uq(sl2)) are also discussed in work of Smith and Stafford
[37, Section 1].

2 Preliminary results on 4-dimensional Sklyanin algebras S

We provide in this section background material on (the noncommutative projective
algebraic geometry of) 4-dimensional Sklyanin algebras. This includes a discussion
of various ring-theoretic and homological properties of these algebras, which were
established by Smith–Stafford [37]. We also provide a detailed analysis of the center
and symmetries of 4-dimensional Sklyanin algebras, which will play a key role in the
rest of the paper. This analysis extends results of Smith–Tate [39], Smith–Staniszkis
[38], and Chirvasitu–Smith [17].

In this section, we do not assume that the 4-dimensional Sklyanin algebras S are PI.
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2.1 Noncommutative geometry of S

Here, we recall the definition and properties of the 4-dimensional Sklyanin algebras
and the corresponding twisted homogeneous coordinate rings.

Definition 2.1 (S, S(α, β, γ ), xi ) [37] Take α, β, γ ∈ k so that

α + β + γ + αβγ = 0 [⇔ (1 + α)(1 + β)(1 + γ ) = (1 − α)(1 − β)(1 − γ )],
(2.2)

(α, β, γ ) /∈ {(−1, 1, γ ), (α,−1, 1), (1, β,−1)}. (2.3)

Then the (regular) 4-dimensional Sklyanin algebra S := S(α, β, γ ) are k-algebras,
generated by noncommuting variables x0, x1, x2, x3 of degree one, subject to the
following relations

x0x1 − x1x0 = α(x2x3 + x3x2), x0x1 + x1x0 = x2x3 − x3x2,
x0x2 − x2x0 = β(x3x1 + x1x3), x0x2 + x2x0 = x3x1 − x1x3,
x0x3 − x3x0 = γ (x1x2 + x2x1), x0x3 + x3x0 = x1x2 − x2x1.

These algebras come equipped with geometric data that is used to establish many
of their ring-theoretic, homological, and representation-theoretic properties. To start,
take a N-graded algebra A = A0 ⊕ A1 ⊕ A2 ⊕ · · · with A0 = k, and recall that an
A-point module is a cyclic, graded left A-module with Hilbert series (1− t)−1. These
modules play the role of points in noncommutative projective algebraic geometry and
the parameterization of A-point modules is referred to as the point scheme of A. See
[8, Chapter I, Section 3] for more details.

Definition-Lemma 2.4 (Ê , E , φ1, φ2, vi , ei , σ , τ ) [37, Section 2] The point scheme
of the 4-dimensional Sklyanin algebra S = S(α, β, γ ) is given by the union Ê of an
elliptic curve E := V (φ1, φ2) ⊆ P

3[v0:v1:v2:v3], where

φ1 = v20 + v21 + v22 + v23 and φ2 = 1−γ
1+α

v21 + 1+γ
1−β

v22 + v23,

and the four points

{e0 := [1 : 0 : 0 : 0], e1 := [0 : 1 : 0 : 0], e2 := [0 : 0 : 1 : 0], e3 := [0 : 0 : 0 : 1]}.

The automorphism σ = σαβγ of Ê attached to S fixes each of the four points ei ,
and on E it is defined on a dense open subset by

σ :

⎡

⎢
⎢
⎣

v0
v1
v2
v3

⎤

⎥
⎥
⎦ 
→

⎡

⎢
⎢
⎣

−2αβγ v1v2v3 − v0(−v20 + βγ v21 + αγ v22 + αβv23)

2αv0v2v3 + v1(v
2
0 − βγ v21 + αγ v22 + αβv23)

2βv0v1v3 + v2(v
2
0 + βγ v21 − αγ v22 + αβv23)

2γ v0v1v2 + v3(v
2
0 + βγ v21 + αγ v22 − αβv23)

⎤

⎥
⎥
⎦ · (2.5)

The automorphism σ of E is given by translation by a point of E; call this point τ .
The triple

(
E, OP3(1)|E , σ

)
is referred to as the geometric data of S. ��



   99 Page 10 of 60 C. Walton et al.

Using this data, we consider a noncommutative coordinate ring of E ; its generators
are sections of the invertible sheaf OP3(1)|E and its multiplication depends on the
automorphism σ . The general construction is given as follows.

Definition 2.6 (Li ) [6] Given a projective scheme X , an invertible sheaf L on X , and
an automorphism σ of X , the twisted homogeneous coordinate ring attached to this
geometric data is a graded k-algebra

B(X ,L, σ ) = ⊕
i≥0 Bi , where Bi := H0(X ,Li )

withL0 = OX ,L1 = L, andLi = L⊗Lσ ⊗· · ·⊗Lσ i−1
for i ≥ 2. The multiplication

map Bi ⊗ Bj → Bi+ j is defined by bi ⊗ b j 
→ bibσ i

j using Li ⊗ Lσ i

j = Li+ j .

Notation 2.7 (B, L) Let B denote the twisted homogeneous coordinate ring attached
to the geometric data (E,L, σ ) from Definition-Lemma 2.4, where L := OP3(1)|E .

It is often useful to employ the following embedding of B into a skew-Laurent
extension of the function field of E .

Lemma 2.8 [2] Given (E,L, σ ) from Definition-Lemma 2.4, extend σ to an automor-
phism of the field k(E) of rational functions on E by νσ (p) = ν(σ−1 p) for ν ∈ k(E)

and p ∈ E. For any nonzero section w of L, that is, any degree 1 element of B, take
D to be the divisor of zeros of w, and let V denote H0(E,OE (D)) ⊂ k(E).

Then, the vector space isomorphism νw 
→ νt for ν ∈ V extends to an embedding
of B in k(E)[t±1; σ ]. Here, tν = νσ t for ν ∈ k(E). ��

Now the first step in obtaining useful properties of 4-dimensional Sklyanin algebras
is to use the result below.

Lemma 2.9 (g1, g2) [37, Lemma 3.3, Corollary 3.9, Theorem 5.4] The degree 1 spaces
of S and of B are equal and there is a surjective map from S to B, whose kernel is
generated by the two central degree 2 elements below

g1 := −x20 + x21 + x22 + x23 and g2 := x21 + 1+α
1−β

x22 + 1−α
1+γ

x23 . (2.10)

Moreover, {g1, g2} is a central regular sequence in S. ��
Many good ring-theoretic and homological properties of S are obtained by lifting

such properties from the factor B, some of which are listed in the following result.

Proposition 2.11 [37, Theorem 5.5] [28, Corollary 6.7] The 4-dimensional Sklyanin
algebras are Noetherian domains of global dimension 4, they satisfy the Artin-Schelter
Gorenstein condition, along with the Auslander-regular and Cohen-Macaulay condi-
tions, and they have Hilbert series (1 − t)−4. ��

The representation theory of both S and B depend on the geometric data (E,L, σ ),
as illustrated by the following result.
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Proposition 2.12 (n) Both of the algebras S and B = B(E,L, σ ) ∼= S/(Sg1 + Sg2)
are module-finite over their center, if and only if the automorphism σ has finite order.
In this case, both S and B satisfy a polynomial identity (i.e., are PI) and are of PI
degree n := |σ | < ∞. ��

Proof Suppose that the automorphism σ has finite order. Since L is ample and σ -
ample, the algebra B is module-finite over its center by [39, Corollary 2.3]. Moreover,
so is S by [39, Theorem 3.7(c)].

On the other hand, suppose that the automorphism σ has infinite order. Now the
center of S is the polynomial ring k[g1, g2] by [29, Proposition 6.12]. By comparing
the Hilbert series of S to that of k[g1, g2], we get S cannot be module-finite over its
center k[g1, g2]. As a consequence, B is not module-finite over its center as B is a
quotient ring of S by a regular sequence of homogenous central elements of degree
two by [39, Lemma 3.6(b)].

To verify the last statement, note that B has PI degree n since it has a localization
isomorphic to k(E)[t±1; σ ] (see Lemma 2.9), which in turn also has PI degree n. We
will also see later in Corollary 8.16 that all nontrivial irreducible representations of B
have dimension n, which provides another proof that B has PI degree n.

Finally, we see that the PI degree of S is also n as follows. First, PIdeg(S) ≥
PIdeg(B) since B is a homomorphic image of S, and recall that PIdeg(B) = n from
above. So, it suffices to show that PIdeg(S) ≤ n. Take the central element defined in
[36, (4-2)], which is denoted by g later in Notation 3.9. (It is denoted by “c” in [36,
Theorem 7.7].) Let M be an irreducible representation of S that is g-torsionfree. By
[12, Theorem III.1.7], we know the Azumaya locus of S is dense in maxSpec(Z). So,
we only need to show dim M ≤ n. Recall s = n/(n, 2) and note that M is the quotient
of a g-torsionfree fat point module F of multiplicity s > 1 by [38, Lemma 4.1] and
[36, Theorem 7.7(c)]. Fat point modules will be discussed in detail in Sect. 8.2; they
serve as representatives of the simple objects of the quotient category S-qgr which
is the category of graded S-modules modulo those that are bounded above (Mn = 0
for all n � 0). Now if n is odd, then F and its shift F[1] are equivalent in S-qgr
by [36, Corollary 8.7]. So, dim(M) ≤ mult(F) = s = n by [36, discussion after
Proposition 3.19]. On the other hand, if n is even, then F and F[2] are equivalent in
S-qgr by [36, Proposition 5.4], and hence, dim(M) ≤ 2mult(F) = 2s = n by [36,
discussion after Proposition 3.19]. Thus, dim(M) ≤ n, as desired. ��

Remark 2.13 The claim that the PIdeg(S) = n first appeared in [36, Theorem 8.8(2)],
but the stronger statement that the algebra S[c−1] in [36, Theorem 8.8(1)] is Azumaya
(which is used to prove [36, Theorem 8.8(2)]) is incorrect; there, “c" is our “g" in
Notation 3.9. We establish later in Theorems 8.1 and 3.16 that the Azumaya locus of
S is equal to the smooth locus of Y := maxSpec(Z(S)), and in the case when n is
even, the singular locus of Y does not lie in the hypersurface V(g). That is, there exist
g-torsionfree irreducible representations of S of dimension < n when n is even.
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2.2 Center of S

As mentioned in the proof of Proposition 2.12, the center of a 4-dimensional Sklyanin
algebra S is equal to k[g1, g2] when n := |σ |=PIdeg(S) is infinite. On the other hand,
one expects that both S and B have a large center when the PI degree of S is finite. We
record here several results of Smith–Tate [39] pertaining to the center Z of S when
PIdeg(S) = n < ∞.

Lemma 2.14 (E ′′) [39, Corollary 2.8] Given the geometric data (E,L, σ ) from
Definition-Lemma 2.4, suppose that |σ | =: n < ∞. Take E ′′ := E/〈σ 〉 so that
E → E ′′ is a cyclic étale cover of degree n. Recall Lemma 2.8 and let D′′ be the
image of D on E ′′ and let V ′′ denote H0(E ′′,OE ′′(D′′)).

Then, the center of B is the intersection of B with k(E ′′)[t±n], which is equal
to k[V ′′tn], and this is also a twisted homogeneous coordinate ring of E ′′ for an
embedding of E ′′ ⊆ P

3. ��
Central elements of B lift to central elements of S as described below. We will

identify S1 ∼= B1 via the canonical projection mentioned in Lemma 2.9.

Definition 2.15 (s) [39] Take |σ | =: n < ∞ and let s be the value n/(n, 2). A section
of B1 := H0(E,L) is called good if its divisor of zeros is invariant under σ s and
consists of distinct points, whose orbits under the group 〈σ 〉 do not intersect. A good
basis of B1 is a basis that consists of good elements so that the s-th powers of these
elements generate Bn if n is odd or generate (B〈σ 2〉)n/2 if n is even.

Notation 2.16 (ρ) Take |σ | =: n < ∞. As mentioned at [39, top of page 31], σ s fixes
the class [L] in Pic E . So the automorphism σ s of E induces an automorphism of B1
via the identification Lσ s ∼= L. This automorphism of B will be denoted by ρ.

By [39, Lemma 3.4 and its proof], there is a unique lifting of ρ to a graded auto-
morphism of S and ρ2 is the identity. Further, the elements x2i and the central elements
g1 and g2 are all ρ-invariant.

Lemma 2.17 [39, proof of Lemma 3.4, page 46] When |σ | =: n < ∞, we can take
as a good basis of B1 the set of generators x0, x1, x2, x3 of S where each xi is a ρ-
eigenvector. If n is odd, then ρ is the identity. If n is even, then ρ = σ n/2 of order 2 and
each ρ-eigenspace of B1 is two-dimensional eigenspace with one having eigenvalue
1 and the other having eigenvalue −1. ��
Proposition 2.18 (Z , zi , Fi , ui , �i , �i , hi , fi , E ′) [39, Theorems 3.7, 4.6, 4.9, 4.10].
The center Z of S, of PI degree n < ∞, is given as follows.

(1) The center Z is generated by four algebraically independent elements z0, z1, z2, z3
of degree n along with g1, g2 in (2.10), subject to two relations F1, F2 of degree
2n. In fact, there is a choice of generators zi of the form

zi = xni + ∑
1≤ j<n/2 ci j x

n−2 j
i

where {x0, x1, x2, x3} is any good basis of B1 and ci j ∈ k[g1, g2]2 j .
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(2) If n is even, then there exist elements u0, u1, u2, u3 of degree n/2 whose image in
the Veronese subalgebra, B(n/2), of B generate the center. Here, zi = u2i .

(3) If n is odd, then for i = 1, 2,

Fi = �i (z0, z1, z2, z3) + hi (g1, g2),

where �1,�2 are the quadratic homogeneous defining polynomials of the elliptic
curve

E ′′ = E/〈σ 〉 ⊂ P
3 = P(H0(E ′′,L′′)∗)

with L′′ the descent of Ln to E ′′, and where h1, h2 are homogeneous degree s
forms in variables g1, g2 having no common factor.

(4) If n is even, then for i = 1, 2,

Fi = �i (z0, z1, z2, z3) + �i (z0, z1, z2, z3)hi (g1, g2) + hi (g1, g2)
2, and

fi (u0, u1, u2, u3) + hi (g1, g2) = 0 in Z(S(2)).

Here, E ′′ = E/〈σ 〉 = V(�1,�2), �1, �2 are linear forms and f1, f2 are linearly
independent quadratic forms in the variables ui defining the elliptic curve

E ′ := E/〈σ 2〉 ⊂ P
3 = P(H0(E ′,L′)∗),

where L′ is the descent of Ls to E ′, and h1, h2 are homogeneous degree s forms
in variables g1, g2 having no common factor. ��
We will use the defining relations of the center Z of PI Sklyanin algebras S men-

tioned abovemore extensively in Sect. 3 to figure out the singular locus ofmaxSpec(Z ).

2.3 Symmetries of S and of their centers

Nowwe turn our attention to symmetries of 4-dimensional Sklyanin algebras S and of
their respective centers Z . Recall that we do not assume that S satisfies a polynomial
identity in this section.

Proposition 2.19 (H4, ε1, ε2, ε, a, b, c, ξ ) [38, Section 2] [17, Section 2.7] The group
of graded automorphisms of S contains the Heisenberg group H4 of order 64 which
is presented as

H4 = 〈ε1, ε2, ε : ε41 = ε42 = ε4 = 1, εε1 = ε1ε, εε2 = ε2ε, ε1ε2 = εε2ε1〉.

Here, ε scales the generators of S by −i and

ε1 : (x0, x1, x2, x3) 
→ (b
1
2 c

1
2 ξ−1 x1, b

−1
2 c

−1
2 ξ x0, b

1
2 c

−1
2 ξ x3, −b

−1
2 c

1
2 ξ−1 x2),

ε2 : (x0, x1, x2, x3) 
→ (a
1
2 c

1
2 ξ−1 x2, −a

1
2 c

−1
2 ξ−1 x3, a

−1
2 c

−1
2 ξ x0, a

−1
2 c

1
2 ξ x1)
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for a2 = α, b2 = β, c2 = γ , i := √−1 = e
π i
2 , and ξ = e

3π i
4 . In particular, ε2

scales the generators of S by −1 and

ε21 : (x0, x1, x2, x3) 
→ (x0, x1,−x2,−x3)

ε22 : (x0, x1, x2, x3) 
→ (x0,−x1, x2,−x3).

��
The following consequences hold mostly by direct computation. First, consider the

following notation.

Notation 2.20 (E2, ω) Let E2 be the set of the (four) 2-torsion points of E , and let a
point of E2 be denoted by ω.

Corollary 2.21 (N4) Let N4 be the subgroup of H4 generated by ε2, ε21 , ε22 , which is
normal and is isomorphic to Z2 × Z2 × Z2. We have the statements below.

(1) The element ε has four 1-dimensional eigenspaces each with eigenvalue −i .
(2) The element ε21 has two2-dimensional eigenspaces 〈x0, x1〉and 〈x2, x3〉with eigen-

value 1 and −1, respectively; the element ε22 has two 2-dimensional eigenspaces
〈x0, x2〉 and 〈x1, x3〉with eigenvalue 1 and−1, respectively; and the element ε21ε

2
2

has two 2-dimensional eigenspaces 〈x0, x3〉 and 〈x1, x2〉 with eigenvalue 1 and
−1, respectively.

(3) The element ρ from Notation 2.16 is an element of the quotient group N4/〈ε2〉.
(4) The subspace kg1 + kg2 ⊂ Z(S)2 is a 2-dimensional irreducible representation

of H4. In the basis {g1, g2}, the H4-action is given by ε 
→ diag(−1,−1), and

ε1 
→ i

bc

(
1 1

−1 − βγ −1

)

, ε2 
→ i

ac

(
1 1+α

1−β

−1 − γ −1

)

;

this implies that the subgroup N4 fixes g1, g2.
(5) The group of graded automorphisms of B contains H4.
(6) The subspace kz0 +kz1 +kz2 +kz3 ⊂ Z(S)n is a 4-dimensional representation

of H4. In the basis {z0, z1, z2, z3}, the H4-action is given by

ε1 
→

⎛

⎜
⎜
⎝

0 b− n
2 c− n

2 ξn 0 0
b

n
2 c

n
2 ξ−n 0 0 0
0 0 0 (−1)nb− n

2 c
n
2 ξ−n

0 0 b
n
2 c− n

2 ξn 0

⎞

⎟
⎟
⎠ ,

ε2 
→

⎛

⎜
⎜
⎝

0 0 a− n
2 c− n

2 ξn 0
0 0 0 a− n

2 c
n
2 ξn

a
n
2 c

n
2 ξ−n 0 0 0
0 (−1)na

n
2 c− n

2 ξ−n 0 0

⎞

⎟
⎟
⎠ ,

and ε 
→ diag((−i)n, (−i)n, (−i)n, (−i)n); this implies that N4 fixes z0, z1, z2, z3
when n is even.
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Proof The first statement about N4 is clear.
(1) and (2) are clear.
(3) By Lemma 2.17, we only treat the case when n := |σ | is even. Here, ρ = σ n/2

is given by translation by a point ω of E of order 2. We aim to pick off the graded
automorphism of S1 = B1 to which ρ corresponds. To do this, first identify the
generators xi of S with the coordinates vi of E . Then, take k = C and write E as
C/(Z + Z�) for some � ∈ C with Im(�)> 0 as in [37, Sections 2.9–2.13]. Now ρ

corresponds to a translation by a nontrivial 2-torsion point ω of C/(Z + Z�), that is

ω ∈ { 1
2 ,

�
2 , 1+�

2

}
.

Using the notation of [37], note that

j : C/(Z + Z�) → E, z 
→ [g11(z) : g00(z) : g01(z) : g10(z)]

is an isomorphism where

gpq(z) = θpq(2z)θpq(ω)γpq

are holomorphic functions on C so that the theta functions satisfy the conditions

θpq(z + 1) = (−1)pθpq(z) and θpq(z + �) = −exp(� + 2z + q)θpq(z)

for p, q = 0, 1, and γ00 = γ11 = i , γ01 = γ10 = 1. In particular, ρ( j(z)) = j(z+ω).
Now take ω = 1

2 . Then,

gpq(z + 1
2 ) = θpq(2z + 1)θpq( 12 )γpq = (−1)pθpq(2z)θpq( 12 )γpq = (−1)pgpq(z).

Therefore, we get that

ρ([g11(z) : g00(z) : g01(z) : g10(z)]) = [−g11(z) : g00(z) : g01(z) : −g10(z)],

which is realized as the coset of ε21ε
2
2 in N4/〈ε2〉 by Proposition 2.19.

For ω = �
2 , we have that

gpq(z + �
2 ) = θpq(2z + �)θpq(

�

2
)γpq

= exp(−4π i z)exp(−π i�)exp(−π iq)gpq(z).

So,

ρ([g11(z) : g00(z) : g01(z) : g10(z)]) = [−g11(z) : g00(z) : −g01(z) : g10(z)],

which is realized as the coset of ε22 in N4/〈ε2〉 by Proposition 2.19.
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For ω = 1+�
2 , we have that

gpq(z + 1+�
2 ) = θpq(2z + 1 + �)θpq(

1 + �

2
)γpq

= (−1)pexp(−4π i z)exp(−π i�)exp(−π iq)gpq(z).

So, ρ is realized as the coset of ε21 in N4/〈ε2〉 by Proposition 2.19.
Finally, collect all of the structure constants to define the automorphism ρ = σ n/2

in Aut(S1) in an algebraically closed field k′ over Q. Then a standard base change
argument shows that ρ is realized as the graded automorphisms ±ε21ε

2
2 , ±ε22 , ±ε21 of

the k′-algebra S and of the k-algebra S, respectively, for ω = 1
2 ,

�
2 , 1+�

2 .
(4) This is a direct calculation using (2.10), (2.2), and Proposition 2.19.
(5) This follows from part (4) and Lemma 2.9.
(6) By part (5) and Proposition 2.18(1), we can consider the action of H4 on xn0 ,

xn1 , x
n
2 , x

n
3 . Now this part follows from Proposition 2.19. ��

Note that the subgroup 〈ε21 , ε22〉 plays a crucial role in constructing Chirvasitu–
Smith’s exotic elliptic algebras of dimension 4 [17]; see also the work of Davies [18]
where these algebras appeared independently.On the other hand, similarly toCorollary
2.21(4), the space kg1 ⊕kg2 was realized as a representation of H4 in work of Kevin
DeLaet [21] in the case when S is generic.

Notation 2.22 (ρ1, ρ2, ρ3) Recall from the proof of Corollary 2.21(3) that if n = |σ |
is even, then ρ is identified with a nontrivial element of N4/〈ε2〉 via an identification
with { 12 , �

2 , 1+�
2 }, the set of nontrivial 2-torsion points ω of C/(Z + Z�) ∼= E .

We takeρ1 (respectively, ρ2, ρ3) to be the automorphismρ ∈Aut(E) corresponding
to ω = 1

2 (respectively, ω = �
2 ,

1+�
2 ), which in turn is identified with the coset of

ε21ε
2
2 (respectively, of ε22 , ε

2
1 ) in N4/〈ε2〉.

Proposition 2.23 (ai ) Let n < ∞ be even and recall s = n/2. Retain the notation
above and recall the notation in Proposition 2.18, namely:

Z(S) = k[z0, z1, z2, z3, g1, g2]/(F1, F2),
with deg(zi ) = n, deg(gi ) = 2, deg(Fi ) = 2n,

and for i = 1, 2,

Fi = �i (z0, z1, z2, z3) + �i (z0, z1, z2, z3)hi (g1, g2) + hi (g1, g2)
2.

We obtain the precise description of both �i and ai := −�i/2, as given below. Here,
λ,μ ∈ k and μ �= 0.

(1) If ρ = ρ1, then

�1 = a21 − z0z3, �2 = a22 − z1z2, with
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a1 = λ(z0 + asbsξ3nz3) + μ(z1 + asb−sξnz2),

a2 = μ(b−sc−nξ2nz0 + asc−nξ3nz3) + λ(bsz1 + asξ3nz2).

(2) If ρ = ρ2, then 4|n and

�1 = a21 − z0z2, �2 = a22 − z1z3, with

a1 = λ(z0 + ascsξnz2) + μ(z1 + asc−sξnz3),

a2 = μ(b−nc−sξnz0 + asb−nz2) + λ(csξnz1 + asz3).

(3) If ρ = ρ3, then 4|n and

�1 = a21 − z0z1, �2 = a22 − z2z3, with

a1 = λ(z0 + bscsξnz1) + μ(z2 + bsc−sξnz3),

a2 = μ(a−nc−s z0 + a−nbsξnz1) + λ(csz2 + bsξnz3).

Proof We only show the details for the case (1) and the remaining cases can be verified
in a similar fashion. We follow the proof in [39, Theorem 4.10] to get the forms of �1
and �2; namely, ρ1 has eigenspaces 〈x0, x3〉 and 〈x1, x2〉 by Corollary 2.21(2). Using
Corollary 2.21(6), observe that

ε1(z0z3) = cnξ−2nz1z2, ε2(z0z3) = cnz1z2, ε1ε2(z0z3) = ξ2nz0z3,
ε1(z1z2) = c−nξ2nz0z3, ε2(z1z2) = c−nz0z3, ε1ε2(z1z2) = ξ−2nz1z2.

Working in B via Proposition 2.18(3,4) and Corollary 2.21(5), we can take a21 = z0z3
and a22 = z1z2, so

z0z3 = a21 = cnξ−2nε1(a2)2 = cnε2(a2)2 = ξ−2nε1ε2(a1)2,
z1z2 = a22 = c−nξ2nε1(a1)2 = c−nε2(a1)2 = ξ2nε1ε2(a2)2.

If ai = ηi0z0 + ηi1z1 + ηi2z2 + ηi3z3 for ηi j ∈ k, for i = 1, 2, then by comparing
coefficients of zk in the equations above we get a1 and a2 as claimed. For instance,

η10 = ±η13a
−sb−sξn, η11 = ±η12a

−sbsξ−n, η12 = ±η11a
sb−sξn, η13 = ±η10a

sbsξ−n,

η10 = ±η21b
−s , η11 = ±η20b

scnξ−2n, η12 = ±η23b
−scnξ−2n, η13 = ±η22b

s ,

amongst other conditions on ηi j that imply that the ±s are unnecessary.
Finally, we need to show that μ �= 0 in each case. Suppose μ = 0, then �1 =

a21 − z0z3 becomes a quadratic equation in terms of z0, z3. Since k is algebraically
closed, V(�1) is an union of two planes, one of which contains E ′′ since E ′′ is
irreducible and E ′′ ⊂ V(�1). But E ′′ is not contained in a hyperplane, so we have a
contradiction. ��

Now the result below follows immediately from Corollary 2.21(6) and Proposi-
tion 2.23.
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Corollary 2.24 When n is even, the vector spaces ka1 +ka2 and kh1 +kh2 admit the
structure of a 2-dimensional irreducible representation of H4 both via the following
actions.

(1) If ρ = ρ1, then ε acts by (−1)s and the action of ε1 and ε2 are given by

ε1 
→
(

0 c−sξn

csξ−n 0

)

and ε2 
→
(
0 c−s

cs 0

)

.

(2) If ρ = ρ2, then ε acts by (−1)s and the action of ε1 and ε2 are given by

ε1 
→
(
0 b−s

bs 0

)

and ε2 
→
(
1 0
0 1

)

.

(3) If ρ = ρ3, then ε acts by (−1)s and the action of ε1 and ε2 are given by

ε1 
→
(
1 0
0 1

)

and ε2 
→
(

0 a−sξ−n

asξn 0

)

.

��

3 Singular loci of themaximal spectra of the centers of the PI
4-dimensional Sklyanin algebras S

As in Hypothesis 1.1, let S be a 4-dimensional Sklyanin algebra that satisfies a poly-
nomial identity (i.e., is PI) of PI degree n. Recall that n = |σ |, where σ ∈ Aut(E)
and

(
E, OP3(1)|E , σ

)
is the projective algebro-geometric data attached to S. The

purpose of this section is to provide a detailed description of maxSpec of the center
Z := Z(S), and this study depends on the parity of n. The main results are given in
Theorems 3.13 and 3.16 below for the cases when n is odd and even, respectively.

Let us set some notation that will be used throughout this section and establish a
couple of preliminary results.

Notation 3.1 (Y , Y sing , Yγ1,γ2 , (Yγ1,γ2)
sing , (Y sing)γ1,γ2 , Y

symp
0 ) Let Y denote the

affine variety maxSpec(Z(S)), let Y sing denote the singular locus of Y , and let

Yγ1,γ2 := Y ∩ V(g1 − γ1, g2 − γ2), for γ1, γ2 ∈ k.

We denote by (Yγ1,γ2)
sing the singular locus of the subvariety Yγ1,γ2 and denote

(Y sing)γ1,γ2 := Y sing ∩ Yγ1,γ2 .

Note that Y sing = ⋃
γ1,γ2∈k(Y sing)γ1,γ2 . On the other hand, denote

Y symp
0 :=

⋃

γ1,γ2∈k
(Yγ1,γ2)

sing.
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This will be the variety of symplectic points of the Poisson bracket on Y that we con-
struct in Sects. 6 and 7 (i.e., where the Poisson structure vanishes, or equivalently the
variety of 0-dimensional symplectic cores of the Poisson structure), see Corollary 7.6
for more details. We will also have that (Yγ1,γ2)

sing ⊇ (Y sing)γ1,γ2 , so Y
symp
0 ⊇ Y sing ,

but these containments could be strict (see, Theorem 3.13(3)).

Before proceedingwith the studyofY sing , we recall some results about linemodules
of S from Levasseur–Smith [29]. A line module of S is a graded cyclic module of S
of Hilbert series (1 − t)−2; such modules are in correspondence with secant lines of
the elliptic curve E of the point scheme of S [29, Theorem 4.5].

Notation 3.2 [M(p, q), �p,q , �(z)] For each z ∈ E , let

{M(p, q) | p, q ∈ E, p + q = z}

denote the family of linemodules of S corresponding to the secant line �p,q to E at z.All
such linemodules have a commoncentral annihilator of degree 2 by [29,Corollary 6.6].
Denote the central degree 2 annihilator of M(p, q), with p + q = z ∈ E , by

�(z) ∈ kg1 + kg2.

By [29, Corollary 6.9], the only equalities among these annihilators are

�(z) = �(−z − 2τ), for z ∈ E . (3.3)

Recall that τ is the point in E such that the automorphism σ ∈ Aut(E) is given by
σ(p) = p + τ for any p ∈ E .

Nowwe recall some facts on the geometry of line modules from both [29] and [39].

Notation 3.4 (E , P, z, ri ) Let E denote E ′′ = E/〈σ 〉 when n is odd, or denote
E ′ = E/〈σ 2〉 when n is even. Likewise, take P to be P(H0(E ′′,L′′)∗) when n is odd,
or P(H0(E ′,L′)∗) when n is even. Take z to be the image of the point z ∈ E in E .

Recall that s = n/(n, 2). By Proposition 2.18, the subalgebra k[u0, u1, u2, u3, g1,
g2] of S is subject to degree 2s relations

ri := fi (u0, u1, u2, u3) + hi (g1, g2),

for i = 1, 2, where f1, f2 are linearly independent quadratic forms in u0, u1, u2, u3
defining the elliptic curve E ⊂ P. (We get that ui = zi , ri = Fi , and fi = �i in
Proposition 2.18(3), when n is odd.)

By [39, Theorems 3.7 and 4.9], the center of the Veronese subalgebra S(n/s) of S
is

Z(S(n/s)) = k[u0, u1, u2, u3](n)[g1, g2], subject to relations r1, r2. (3.5)
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Notation 3.6 (Q(z), E2, ωi , ei ) For z ∈ E , let

Q(z) =
⋃

{�p,q | p, q ∈ E, p + q = ±z}

denote the quadric in P containing E . By [29, Section 3] and [39, paragraph before
Theorem 5.9], we know Q(z) is singular, if and only if z ∈ E2, where E2 is the 2-
torsion subgroup of E , and each singular quadric has rank 3 and has only one singular
point.

Label the four 2-torsion points on E as E2 = {ωi }0≤i≤3. For each corresponding
singular quadric Q(ωi ), denote its unique singularity by ei . We choose representatives
for all {ei }0≤i≤3 as points in the affine space maxSpec(k[u0, u1, u2, u3, g1, g2]) as

e0 = (1, 0, 0, 0, 0, 0), e1 = (0, 1, 0, 0, 0, 0),

e2 = (0, 0, 1, 0, 0, 0), e3 = (0, 0, 0, 1, 0, 0), (3.7)

which correspond to the four points {ei }0≤i≤3 in the point scheme of S in Definition-
Lemma 2.4.

This brings us to the first preliminary result, from Smith–Tate [39].

Lemma 3.8 (π , fz , hz) [39, Lemma 5.7] There is a morphism

π : E → P(kr1 + kr2)

such that π(z) = fz + hz, where fz ∈ k[u0, u1, u3, u4]2s vanishes on the quadric
Q(z), and hz ∈ k[g1, g2]2s is a nonzero scalar multiple of

∏

z∈E, preimage of z

�(z) =
s−1∏

i=0

�(z + i(n/s)τ ).

The morphism π is of degree 2 and π(p) = π(q), if and only if p = ±q, for p, q ∈ E.
��

Finally, we highlight two central elements of S that will play a key role in the
description of Y sing in Theorems 3.13 and 3.16 below.

Notation 3.9 [g, G] Consider the elements of k[g1, g2]:

g :=
∏

ω∈E2,
0≤k≤s−2

�(ω + kτ) and G :=
∏

ω∈E2

hω = g
∏

ω∈E2

�(ω + (s − 1)τ ),

which are both central in S of degree 8(s−1) and 8s, respectively (since deg(gi ) = 2).

Lemma 3.10 Retain the notation of Lemma 3.8. Let p, q ∈ E such that p �= ±q.
Then, the following sets are the same in Proj(k[g1, g2]):
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(a) The zero locus V(g) of g;
(b) The ramification locus of the map Proj(k[g1, g2]) → Proj(k[h p, hq ]) induced by

the natural embedding k[h p, hq ] ↪→ k[g1, g2];
(c) The zero locus of the determinant of the Jacobian matrix

∂(h p,hq )

∂(g1,g2)
.

Proof By Lemma 3.8 and (3.5), we know π(p) and π(q) can be realized as two
defining relations of Z(S(n/s)). Note that the ramification locus in (b) and the zero
locus in (c) do not depend on the choice of h p and hq as long as they are linearly
independent, namely as long as p �= ±q .

(a)⇔(b) follows from [39, Lemma 5.8(c)] and the definition of g in Notation 3.9.
(b)⇔(c) This is a standard algebro-geometric fact; see [34, Section 6.3]. ��

3.1 For PIdeg(S) odd

We assume that the PI degree n of S is odd in this section, so that n = s and ui = zi for
all 0 ≤ i ≤ 3. Fix any p, q ∈ E = E/〈σ 〉 with p �= ±q , and recall by Notation 3.4,
(3.5), and Lemma 3.8 that

Y := maxSpec(Z(S)) = V(π(p), π(q)).

We first establish that Y is smooth outside of the variety V(G); see Notation 3.9.

Lemma 3.11 The subvariety Yγ1,γ2 of Y is smooth of dimension 2 if (γ1, γ2) /∈ V(G).

Proof The defining ideal of Yγ1,γ2 ⊆ A
4
(z0,z1,z2,z3)

is generated by elements f p +
h p(γ1, γ2) and fq + hq(γ1, γ2) in k[z0, z1, z2, z3]. Recall that Yγ1,γ2 is nonsingular at
a point P ∈ Yγ1,γ2 if the rank of the Jacobianmatrix J evaluated at P is 4−dim(Yγ1,γ2);
here,

J =
⎡

⎢
⎣

∂ f p
∂z0

∂ f p
∂z1

∂ f p
∂z2

∂ f p
∂z3

∂ fq
∂z0

∂ fq
∂z1

∂ fq
∂z2

∂ fq
∂z3

⎤

⎥
⎦ .

Moreover, Yγ1,γ2 is singular at a point P if the rank of J evaluated at P is less than
4−dim(Yγ1,γ2). Hence, it suffices to show that J evaluated at any P ∈ Yγ1,γ2 has rank
2 if (γ1, γ2) /∈ V(G).

Suppose that the rank of J evaluated at some point P ∈ Yγ1,γ2 is less than 2.Wewill
then show that the pair (γ1, γ2) lies in V(G). We can choose p, q ∈ E so that h p and
hq have no common factors (see Lemma 3.8 and (3.3)). Hence V(h p, hq) = (0, 0).

Suppose that P = (0, 0, 0, 0), then f p(0, 0, 0, 0) + h p(γ1, γ2) = h p(γ1, γ2) = 0
and fq(0, 0, 0, 0) + hq(γ1, γ2) = hq(γ1, γ2) = 0. So, (γ1, γ2) ∈ V(h p, hq). Hence,
(γ1, γ2) = (0, 0) ∈ V(G), and we are done.

Next, take P �= (0, 0, 0, 0) and we will show that P is the singularity of the
following quadric containing E defined by

f := hq(γ1, γ2) f p − h p(γ1, γ2) fq = 0.
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Consider P̃ = (P, γ1, γ2) ∈ Y . We only need to check that ∂ f
∂zi

(P) = 0 for all
0 ≤ i ≤ 3. We have that:

∂ f
∂zi

(P) =
(
hq(γ1, γ2)

∂ f p
∂zi

− h p(γ1, γ2)
∂ fq
∂zi

)
(P)

=
(
hq

∂ f p
∂zi

− h p
∂ fq
∂zi

)
(P̃)

=
(
− fq

∂ f p
∂zi

+ f p
∂ fq
∂zi

)
(P)

= 2
(
−∑

0≤ j≤3 z j
∂ fq
∂z j

∂ f p
∂zi

+ ∑
0≤ j≤3 z j

∂ f p
∂z j

∂ fq
∂zi

)
(P)

= 2
∑

0≤ j≤3 z j
(

∂ f p
∂z j

∂ fq
∂zi

− ∂ fq
∂z j

∂ f p
∂zi

)
(P)

= 0.

We use the identity f p = 2
∑

0≤ j≤3 z j
∂ f p
∂z j

since f p is homogenous of degree two,
and the similar identity for fq . Also, the last equality above comes from the Jacobian
matrix J has rank ≤ 1 at P . Therefore we can set P = λek for some λ ∈ k×, where
ek is the singularity of the corresponding quadric Q(ωk) containing E according to
Notation 3.6. Since P̃ ∈ Y , we then get by Lemma 3.8 that

0 = π(ωk)(P̃) = ( fωk + hωk )(P̃) = fωk (P) + hωk (γ1, γ2)

= λ2 fωk (ek) + hωk (γ1, γ2) = hωk (γ1, γ2).

By Notation 3.9, we conclude that (γ1, γ2) ∈ V(hωk ) ⊂ V(G), as desired. ��
Next, we show that the union of singular loci of the subvarieties Yγ1,γ2 for certain

points (γ1, γ2) ∈ V(G) is equal to a cuspidal curve, denoted by C(ω + kτ) below.

Lemma 3.12 (C(ω + kτ)) For any ω ∈ E2 and 0 ≤ k ≤ n − 1, there exists a nonzero
point pω,k ∈ V(�(ω + kτ)) ∩ V(z0, z1, z2, z3) such that

⋃

(γ1,γ2)∈V(�(ω+kτ))

(Yγ1,γ2)
sing = {tneω + t2 pω,k | t ∈ k} =: C(ω + kτ),

where ω ∈ E2 is the image of ω under the isogeny E � E = E/〈σ 〉, and eω is the
singularity of the quadric Q(ω). Moreover, we can take pω,k = pω,n−2−k with the
second index modulo n.

Proof Wecanchoose thegenerators of the defining ideal ofY = V(π(p), π(q)),where
p = ω ∈ E2 and q generic, so that π(p) = fω +hω with hω = ∏n−1

k=0 �(ω+kτ), and
π(q) = fq + hq . Let P ∈ (Yγ1,γ2)

sing and take P̃ = (P, γ1, γ2) ∈ Y . Since (γ1, γ2)

is in V(�(ω + kτ)) ⊂ V(hω), we have that

0 = π(ω)(P̃) = fω(P) + hω(γ1, γ2) = fω(P).

By a similar argument in Lemma 3.11, one can further show that P is the singularity
of the quadric Q(ω) = V( fω) containing E . Hence P = λeω for some λ ∈ k. Pick
some nonzero point pω,k ∈ V(�(ω+kτ))∩V(z0, z1, z2, z3). Since q ∈ E is generic,
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by a possible rescaling of pω,k , we can assume that fq(eω) = −hq(pω,k) �= 0. Then
P̃ is contained in the following subset of Y :

{αeω + β pω,k | α, β ∈ k} ∩ Y = {αeω + β pω,k | α, β ∈ k} ∩ V( fq + hq)
= {αeω + β pω,k | α2 fq(eω) + βnhq(pω,k) = 0}
= {tneω + t2 pω,k | t ∈ k}.

Therefore, we have obtained that

⋃

(γ1,γ2)∈V(�(ω+kτ))

(Yγ1,γ2)
sing ⊂ {tneω + t2 pω,k | t ∈ k}.

Conversely, take P = tneω and P̃ = tneω + t2 pω,k for any t ∈ k. It is straight-
forward to check that P ∈ (Yγ1,γ2)

sing with (γ1, γ2) = t2 pω,k since the the first row
of the Jacobian matrix vanishes at P:

[ ∂ fω
∂z0

∂ fω
∂z1

∂ fω
∂z2

∂ fω
∂z3

∂ fq
∂z0

∂ fq
∂z1

∂ fq
∂z2

∂ fq
∂z3

]

.

Finally, we can set pω,k = pω,n−2−k since �(ω + kτ) = �(ω + (n − 2− k)τ ) by
(3.3). ��

Now we show that Y sing ⊂ V(g) and we can use the lemma above to get a detailed
description of Y sing .

Theorem 3.13 For n odd, we have

Y sing = Y sing ∩ V(g) =
⋃

ω∈E2
0≤k≤n−2

C(ω + kτ),

where C(ω+kτ) is the cuspidal curve
{
tneω + t2 pωk | t ∈ k

}
defined in Lemma 3.12.

As a consequence, Y sing is a union of 2(n− 1) cuspidal curves in V(g) meeting at the
origin as depicted in Fig. 1.
We also have the following results on the subvarieties (Yγ1,γ2)

sing, (Y sing)γ1,γ2 of Y :

(1) If (γ1, γ2) /∈ V(G), then (Yγ1,γ2)
sing = (Y sing)γ1,γ2 = ∅.

(2) If (γ1, γ2) ∈ V(g), then (Yγ1,γ2)
sing = (Y sing)γ1,γ2 , which consists of 1 point if

(γ1, γ2) = (0, 0), and consists of 2 points otherwise.
(3) If (0, 0) �= (γ1, γ2) ∈ V(G/g), then (Yγ1,γ2)

sing has 2 points while (Y sing)γ1,γ2 is
empty.

(4) The group H4 in Proposition 2.19 fixes Y sing and Y symp
0 and

ε1 : C(ω + kτ) 
→ C(ω + ξ1 + kτ), ε2 : C(ω + kτ) 
→ C(ω + ξ2 + kτ),

ε1ε2 : C(ω + kτ) 
→ C(ω + ξ3 + kτ), ε : C(ω + kτ) 
→ C(ω + kτ),

where {0, ξ1, ξ2, ξ3} is the 2-torsion subgroupof E as described in [17, Section2.6].
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V(Ω(ω + (n − 1)τ ))

C(ω + (n − 1)τ)

V(Ω(ω))

V(G) ⊂ A
6
(z0,...,z3,g1,g2)

V(g)
∩
V(G)

V(Ω(ω + (n − 3)τ ))
V(Ω(ω

+ (n
− 2)τ

))

C(ω
+ (n

− 2)τ
)

V(G)
g1

g2

A
4
(z0,...,z3)

Fig. 1 For n odd: Y sing = ⋃
γ1,γ2∈k(Y sing)γ1,γ2 = ⋃

ω∈E2, 0≤k≤n−2 C(ω + kτ), and

Y symp
0 = ⋃

γ1,γ2∈k(Yγ1,γ2 )
sing = ⋃

ω∈E2, 0≤k≤n−1 C(ω + kτ), union of 2n − 2 (resp., 2n) cuspidal

curves meeting at {0}, each with multiplicity 2

As a consequence, (Yγ1,γ2)
sing consists of only finitely many points, and

Y symp
0 =

⋃

ω∈E2

C(ω + (n − 1)τ ) ∪ Y sing.

Proof of Theorem 3.13 The Jacobian matrix of Y = V(π(p), π(q)) is

⎡

⎣

∂ f p
∂z0

∂ f p
∂z1

∂ f p
∂z2

∂ f p
∂z3

∂h p
∂g1

∂h p
∂g2

∂ fq
∂z0

∂ fq
∂z1

∂ fq
∂z2

∂ fq
∂z3

∂hq
∂g1

∂hq
∂g2

⎤

⎦ .

It is clear that if it has rank ≤ 1 at some point P̃ = (P, γ1, γ2) ∈ Y , then the Jacobian
matrix of Yγ1,γ2 , which is one of its 2× 4 minors containing all the partial derivatives
of zi , also has rank ≤ 1 at P . So

(Y sing)γ1,γ2 ⊆ (Yγ1,γ2)
sing. (3.14)

Now if P̃ ∈ Y sing then each 2 × 2 minors of the matrix above vanishes at P̃ . In
particular, we have that

det

⎛

⎝

∂h p̄
∂g1

∂h p̄
∂g2

∂hq̄
∂g1

∂hq̄
∂g2

⎞

⎠ (P̃) = det

(
∂(h p̄, hq̄)

∂(g1, g2)

)

(γ1, γ2) = 0.



Representations of PI 4-dimensional Sklyanin algebras Page 25 of 60    99 

Hence Y sing ⊂ V(g) by Lemma 3.10 and

Y sing =
⋃

(γ1,γ2)∈V(g)

(Y sing)γ1,γ2 ⊆
⋃

(γ1,γ2)∈V(g)

(Yγ1,γ2)
sing =

⋃

ω∈E2
0≤k≤n−2

C(ω + kτ)

by Lemma 3.12.
Conversely, we verify that C(ω + kτ) ⊂ Y sing for all ω ∈ E2 and 0 ≤ k ≤ n − 2

as follows. Let π(ω) and π(q) be the two defining relations of Y with q ∈ E generic.
It suffices to show that the first row of the Jacobian matrix of Y above vanishes, i.e.,
we want to show that

[
∂ fω
∂z0

,
∂ fω
∂z1

,
∂ fω
∂z2

,
∂ fω
∂z3

,
∂hω

∂g1
,

∂hω

∂g2

]
(tneω + t2 pω,k)

= t2n
[

∂ fω
∂z0

(eω),
∂ fω
∂z1

(eω),
∂ fω
∂z2

(eω),
∂ fω
∂z3

(eω), 0, 0
]

+ t2n
[

0, 0, 0, 0,
∂hω

∂g1
(pωk),

∂hω

∂g2
(pωk)

]

vanishes. Since eω is the singularity of Q(ω), the first summand vanishes. Note that
when 0 ≤ k ≤ n−2 we have pω,k ∈ �(ω+ kτ) = �(ω+ (n−2− k)τ ) is a multiple

root of hω = ∏n−1
k=0 �(ω + kτ). So, the second summand vanishes as well. Thus, the

first part of the result holds.

(1) This follows from Lemma 3.11.
(2) Suppose (γ1, γ2) ∈ V(g). By Lemma 3.12 and the beginning of the result, we

have that

(Y sing)γ1,γ2 = (Yγ1,γ2)
sing = C(ω + kτ) ∩ V(g1 − γ1, g2 − γ2)

for some (γ1, γ2) ∈ V(�(ω + kτ)) with 0 ≤ k ≤ n−2. If (γ1, γ2) = (0, 0), then
(Y sing)γ1,γ2 = (Yγ1,γ2)

sing = (0, 0, 0, 0). If (γ1, γ2) �= (0, 0), then since n is odd
there are two choices of t satisfying the defining equation of C(ω + kτ) yielding
two different points in (Y sing)γ1,γ2 = (Yγ1,γ2)

sing .
(3) The argument for (Yγ1,γ2)

sing is similar as in (2) noting that

⋃

(γ1,γ2)∈V(�(ω+(n−1)τ ))

(Yγ1,γ2)
sing = {tneω + t2 pω,n−1 | t ∈ k}

for any ω ∈ E2 by Lemma 3.12.
For (Y sing)γ1,γ2 , recall from Notation 3.9 that G/g = ∏

ω∈E2
�(ω + (n − 1)τ ).

Since g = ∏
ω∈E2,0≤k≤n−2 �(ω+kτ), we can see thatG/g and g as polynomials

in k[g1, g2] have no common factors by using the only non-trivial identity (3.3)
between these central annihilators �(ω + kτ). By the argument in the beginning
of the proof of this theorem, we know Y sing ⊆ V(g). This implies that

(Y sing)γ1,γ2 = Y sing ∩ V(g1 − γ1, g2 − γ2) ⊂ V(g) ∩ V(g1 − γ1, g2 − γ2).
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By the assumption on (γ1, γ2), we get V(g) ∩ V(g1 − γ1, g2 − γ2) = ∅ as
gcd(G/g, g) = 1 in k[g1, g2]. Therefore, we have (Y sing)γ1,γ2 = ∅ if (0, 0) �=
(γ1, γ2) ∈ V(G/g).

(4) By Corollary 2.21(4), the group H4 ⊂ Autgr (S) fixes Y sing and Y symp
0 . By [17,

Corollary 2.10], we know εi (�(ω + kτ)) = �(ω + ξi + kτ) for i = 1, 2. Note
that C(ω+ kτ) ⊂ V(�(ω+ kτ)). So we have εi (C(ω+ kτ)) and C(ω+ ξi + kτ)

are included in V(�(ω+ ξi +kτ)). By Lemma 3.12, V(�(ω+ ξi +kτ))∩Y symp
0

contains only one cuspidal curve, namely {tneω+ξi + t2 pω+ξi ,k | t ∈ k}. So all
three cuspidal curves are the same. Finally, ε is just a rescaling of the variables
of S. So it will fix all the cuspidal curves C(ω + kτ). This proves part (4).

Finally, we have

Y symp
0 = Y symp

0 ∩ V(G)

= (Y symp
0 ∩ V(G/g)) ∪ (Y symp

0 ∩ V(g))
= ⋃

ω∈E2
C(ω + (n − 1)τ ) ∪ Y sing.

So, the result follows. ��

3.2 For PIdeg(S) even

We now assume in this part that the PI degree n of S is even; here, s = n/2 and ui = z2i
with deg ui = s for all 0 ≤ i ≤ 3. Recall that the center of the Veronese subalgebra
S(2) is

Z(S(2)) = k[u0, u1, u2, u3](n)[g1, g2]

subject to two defining relations π(p) = f p + h p and π(q) = fq + hq , where the
points p, q ∈ E = E/〈σ 2〉 satisfy p �= ±q . Note that f p and fq are two linearly
independent quadrics in terms of u0, u1, u2, u3 defining the elliptic curve E ⊂ P. The
center Z of S isomorphic to k[z0, z1, z2, z3, g1, g2] subject to two defining relations
F1, F2 of degree 2n. Moreover, we can write the two defining relations of Z as

F1 = (a1 − h1)
2 − zi z j , F2 = (a2 − h2)

2 − zk zl , {i, j, k, l} = {0, 1, 2, 3},

where h1, h2 ∈ k[g1, g2]n have no common factors and a1, a2 are linear forms in
terms of z0, z1, z2, z3 given in Proposition 2.23.

Lemma 3.15 For each pair (γ1, γ2) ∈ k2, we have that
(
Yγ1,γ2

)sing ⊂ V(z0z1z2z3).

Proof By way of contradiction, suppose there exists a point

P̃ = (P, γ1, γ2) ∈ (Yγ1,γ2)
sing \ V(z0z1z2z3)

for some γ1, γ2 ∈ k. Let mP̃ be the maximal ideal of Z(S) corresponding to P̃ . Then
by the Lying Over Theorem (for the integral extension Z(S) ⊂ Z(S(2))), there exists
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a maximal ideal n of Z(S(2)) so that n ∩ Z(S) = mP̃ . Moreover, V(n) is a point
Q̃ = (Q, γ1, γ2) of maxSpec(Z(S(2))).

Using the fact that zi = u2i for all 0 ≤ i ≤ 3, we get Q /∈ V(u0u1u2u3) since P is
not in V(z0z1z2z3). In particular, we have Q �= 0. Moreover, since P ∈ (Yγ1,γ2)

sing ,
we have that Q is a singular point of maxSpec(Z(S(2))) ∩ V(g1 − γ1, g2 − γ2) via
the Implicit Function Theorem. Note that the defining relations of Z(S(2)) are of the
same form as the defining relations of Z(S) in the case when n is odd, we obtain
by the argument in the proof of Lemma 3.11 that the point Q is the singular point
of some quadric containing E , namely ek for some k = 0, . . . , 3. This contradicts
Q /∈ V(u0u1u2u3); see (3.7). ��

Theorem 3.16 (Y sing
1 , Y sing

2 ) Take n even and recall the notation of Proposition 2.23.
Then, we obtain that the singular locus Y sing of Y = V(F1, F2) ⊂ A

6
(z0,z1,z2,z3,g1,g2)

is the union of subvarieties Y sing
1 and Y sing

2 of Y defined by

(i) Y sing
1 = V(a1−h1, z0, z3)∩Y and Y sing

2 = V(a2−h2, z1, z2)∩Y , when ρ = ρ1,

(ii) Y sing
1 = V(a1−h1, z0, z2)∩Y and Y sing

2 = V(a2−h2, z1, z3)∩Y , when ρ = ρ2,

(iii) Y sing
1 = V(a1−h1, z0, z1)∩Y and Y sing

2 = V(a2−h2, z2, z3)∩Y , when ρ = ρ3.

Moreover, we have Y sing
1 ∩ Y sing

2 = {0}.
We also have the following results on the subvarieties (Yγ1,γ2)

sing, (Y sing)γ1,γ2 of
Y :

(1) The varieties Y sing
1 and Y sing

2 from Theorem 3.16 are

permuted by

⎧
⎪⎨

⎪⎩

ε1 and ε2,

ε1 and ε1ε2,

ε2 and ε1ε2,

and fixed by

⎧
⎪⎨

⎪⎩

ε1ε2, when ρ = ρ1,

ε2, when ρ = ρ2,

ε1, when ρ = ρ3.

where εi are the group actions in Proposition 2.19.
(2) (Y sing)γ1,γ2 has 4 points generically (counting multiplicity), and 1 point, if and

only if (γ1, γ2) = (0, 0).
(3) (Yγ1,γ2)

sing = (Y sing)γ1,γ2 = (Y1)
sing
γ1,γ2 ∪ (Y2)

sing
γ1,γ2 , where

(Yi )
sing
γ1,γ2

:= Y sing
i ∩ V(g1 − γ1, g2 − γ2)

for i = 1, 2.

Proof of Theorem 3.16 We will only treat the case for ρ = ρ1, and other cases are
similar. We use the presentation of Z in Proposition 2.23, where we can write the two
defining relations of Y as

F1 = (a1 − h1)
2 − z0z3, F2 = (a2 − h2)

2 − z1z2.
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g1

g2

At (γ1, γ2) = (0, 0)

At (γ1, γ2) = (0, 0)

A
2
(z1,z2,γ1,γ2)

Y sing
1

A
2
(z0,z3,γ1,γ2)

Y sing
2

At (γ1, γ2) = (γ1, γ2)

A
2
(z1,z2,γ1,γ2)

Y sing
1

A
2
(z0,z3,γ1,γ2)

Y sing
2

Fig. 2 For n even with ρ = ρ1: Y sing = Y symp
0 , union of surfaces Y sing

1 and Y sing
2

Moreover, we can assume that h1, h2 ∈ k[g1, g2]n have no common factors and

a1 = λ(z0 + asbsξ3nz3) + μ(z1 + asb−sξnz2),

a2 = μ(b−sc−nξ2nz0 + asc−nξ3nz3) + λ(bsz1 + asξ3nz2),

where λ,μ ∈ k with μ �= 0 by Proposition 2.23.
Next, it is clear that (Y sing)γ1,γ2 ⊆ (Yγ1,γ2)

sing ⊂ V(z0z1z2z3) using Lemma 3.15

for the latter. We now show that Y sing is contained in the union of Y sing
1 and Y sing

2 .
Take a point P̃ = (P, γ1, γ2) ∈ (Y sing)γ1,γ2 , where P = (p0, . . . , p3). Then without
loss of generality, we can take p0 = 0 and hence a1 − h1 = 0 at P̃ in Y sing . Now, let

A := a2 − h2

and consider the following Jacobian matrix (it has rank ≤ 1 at P̃)

∂(F1, F2)

∂(z0, . . . , z3, g1, g2)

∣
∣
∣
a1=h1

=
[ −z3 0 0 −z0 0 0
2A ∂a2

∂z0
2A ∂a2

∂z1
− z2 2A ∂a2

∂z2
− z1 2A ∂a2

∂z3
−2A ∂h2

∂g1
−2A ∂h2

∂g2

]

.

Recall that p0 = 0. Now if p3 = 0, then P̃ is contained in Y sing
1 . On the other

hand, suppose p3 �= 0. Then the determinant of the first two columns of the matrix
above, evaluated at P̃ and set equal to 0, implies that

p2 = 2A
∂a2
∂z1

(P̃).
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Likewise, using the first and third columns, and also the first and fourth columns,
respectively, we get

p1 = 2A
∂a2
∂z2

(P̃) and 2A
∂a2
∂z3

(P̃) = 0.

Since ∂a2
∂z3

�= 0, we have that A = 0 and thus p1 = p2 = 0. Therefore, P̃ ∈ Y sing
2 .

Conversely, it is straight-forward to check that Y sing
1 and Y sing

2 are contained in

Y sing . So, Y sing = Y sing
1 ∪ Y sing

2 .

Finally, let P̃ = (p0, p1, p2, p3, γ1, γ2) ∈ Y sing
1 ∩ Y sing

2 . Then we have pk = 0
for all k (by Lemma 3.15) and (γ1, γ2) ∈ V(h1, h2). Since h1, h2 have no common
factors, we get γ1 = γ2 = 0 and P̃ = 0, as desired.

(1) follows from Corollary 2.24.
(2) First, assume that (γ1, γ2) = (0, 0). Then (Y sing)0,0 ⊆ (Y0,0)sing , where

Y0,0 = k[z0, z1, z2, z3]/(�1,�2) is the affine cone of the smooth elliptic curve
E ′′ = E/〈σ 〉 (see Lemma 2.14). So we get (Y sing)0,0 = (Y0,0)sing = {0}.
Now suppose (γ1, γ2) �= (0, 0) and ρ = ρ1. By the beginning of the statement,
we have Y sing

1 = V(a1 − h1, z0, z3, (a2 − h2)2 − z1z2). So (Y sing
1 )γ1,γ2 is the

intersection points of a line a1 = h1 with a conic (a2 − h2)2 = z1z2 in the affine
space A

2
(z1,z2,g1=γ1,g2=γ2)

, which has two points (counting multiplicity). The same

argument applies to (Y sing
2 )γ1,γ2 as well. Since Y

sing
1 ∩ Y sing

2 = {0} by the begin-
ning of the statement, we get that (Y sing)γ1,γ2 = (Y sing

1 )γ1,γ2 ∪ (Y sing
2 )γ1,γ2 has 4

points generically.
The argument for ρ = ρ2, ρ3 follows similarly.

(3) Recall that (Yγ1,γ2)
sing ⊂ V(z0z1z2z3) by Lemma 3.15. Then, without loss of

generality take ρ = ρ1, and take z0 = 0 so that a1 = h1(γ ), and consider the
Jacobian matrix of Yγ1,γ2

∂(F1(z, γ ), F2(z, γ ))

∂(z0, z1, z2, z3)

∣
∣
∣
z0=0,a1=h1

=
[ −z3 0 0 0
2A ∂a2

∂z0
2A ∂a2

∂z1
− z2 2A ∂a2

∂z2
− z1 2A ∂a2

∂z3

]

,

where A = a2 − h2(γ ). With this matrix, we can show
(Yγ1,γ2)

sing ⊆ (Y1)
sing
γ1,γ2 ∪ (Y2)

sing
γ1,γ2 . Moreover, we can conclude that

(Y1)
sing
γ1,γ2

∪ (Y2)
sing
γ1,γ2

= (Y sing)γ1,γ2 ⊆ (Yγ1,γ2)
sing ⊆ (Y1)

sing
γ1,γ2

∪ (Y2)
sing
γ1,γ2

.

This proves the result. ��

4 Backgroundmaterial on Poisson orders and specialization

We discuss briefly in this section background material on Poisson orders, including
the process of specialization mentioned in the introduction, as well as material on
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symplectic cores. More details can be found in [43, Sections 2.1 and 2.2] and the
references therein.

4.1 Poisson orders and specialization

Here we collect some definitions and facts about Poisson orders and describe an
extension of the specialization technique for obtaining such structures. The following
definition is due to Brown and Gordon [13].

Definition 4.1 (Der(A/C), ∂ , ∂z)
Let A be a k-algebra which is module-finite over a central subalgebra C . Denote

by Der(A/C) the algebra of k-derivations of A that preserve C .
The algebra A is called a Poisson C-order if there exists a k-linear map

∂ : C → Der(A/C)

such that the induced bracket {., .} on C , given by

{z, z′} := ∂z(z
′), z, z′ ∈ C, (4.2)

makes C a Poisson algebra. The triple (A,C, ∂ : C → Der(A/C)) will be also called
a Poisson order in places where the role of ∂ needs to be emphasized.

As discussed in [13, Section 2.2], specializations of families of algebras give rise to
Poisson orders. In our previous work [43] we generalized this construction to obtain
Poisson orders fromhigher degree terms in the derivation ∂; this is reviewed as follows.

Definition 4.3 Let R be an algebra over k and � be a central element of R which is
regular, i.e., not a zero-divisor of R. We refer to the k-algebra R0 := R/�R as the
specialization of R at � ∈ Z(R).

Notation 4.4 (θ , ι, N ) Retain the notation of Definition 4.3. Let [-, -] denote the com-
mutator of elements of R. Let θ : R � R0 be the canonical projection; so, ker θ = �R.
Fix a linear map ι : Z(R0) ↪→ R such that θ ◦ ι = idZ(R0). Let N ∈ Z+ be such that

[ι(z), y] ∈ �
N R for all z ∈ Z(R0), y ∈ R. (4.5)

Note that (4.5) holds for N = 1: take ỹ ∈ θ−1(y) for y ∈ R0 and we get
θ([ι(z), ỹ]) = [z, y] = 0.

Definition 4.6 Retain the notation above. For y ∈ R0 and z ∈ Z(R0), the special
derivation of level N is defined (in fact, well-defined) as

∂z(y) := θ

( [ι(z), ỹ]
�N

)

, where ỹ ∈ θ−1(y). (4.7)

The next result states that ∂z is indeed a derivation, and thus specializations yield
Poisson orders.
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Proposition 4.8 [43, Proposition 2.7 and Corollary 2.8] Let R be a k-algebra and
� ∈ Z(R) be a regular element. Assume that ι : R0 := R/(�R) ↪→ R is a linear
section of the specialization map θ : R � R0 such that (4.5) holds for some N ∈ Z+.
Assume that R0 is module-finite over Z(R0).

(1) If, for all z ∈ Z(R0), ∂z is a special derivation of level N , then

(R0, Z(R0), ∂ : Z(R0) → Der(R0/Z(R0)))

is a Poisson order and the map ∂ is a homomorphism of Lie algebras.
(2) If C ⊂ Z(R0) is a Poisson subalgebra of Z(R0) with respect to the Poisson

structure (4.2) and R0 is module-finite over C, then R0 is a Poisson C-order via
the restriction of ∂ to C.

(3) If, in addition to (2), the restricted section ι : C ↪→ R is an algebra homomor-
phism, then

∂zz′(y) = z∂z′(y) + z′∂z(y) for z, z′ ∈ C, y ∈ R0.

We coined such a construction with the following terminology.

Definition 4.9 [43, Definition 2.9] The Poisson order produced in Proposition 4.8
is a Poisson order of level N when the level of the special derivation needs to be
emphasized.

4.2 Symplectic cores and the Brown–Gordon theorem

Poisson orders can be used to establish isomorphisms for different central quotients of
a PI algebra via the result of Brown and Gordon [13] provided below. The result relies
on the notion of symplectic core, introduced in [13]. We recall some terminology from
[13, Section 3.2].

Definition 4.10 (P(I )) Let (C, {., .}) be an affine Poisson algebra over a field k of
characteristic 0. For every ideal I of C , there exists a unique maximal Poisson ideal
contained in I , to be denoted by P(I ). If I is prime, then P(I ) is Poisson prime, [25,
Lemma 6.2].

(1) We refer to P(I ) above as the Poisson core of I .
(2) We say that two maximal ideals m, n ∈ maxSpecC of an affine Poisson algebra

(C, {., .}) are equivalent if P(m) = P(n).
(3) The equivalence class of m ∈ maxSpecC is referred to as the symplectic core of

m. The corresponding partition of maxSpecC is called symplectic core partition.

Onemain benefit of using the symplectic core partition is the powerful result below.

Theorem 4.11 [13, Theorem 4.2] Assume that k = C and that A is a Poisson C-
order which is an affine C-algebra. If m, n ∈ maxSpecC are in the same symplectic
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core, then there is an isomorphism between the corresponding finite-dimensional C-
algebras

A/(mA) ∼= A/(nA).

��

5 A specialization setting for 4-dimensional Sklyanin algebras

The goal of this section is to produce a setting so that the PI 4-dimensional Sklyanin
algebras arise as Poisson orders via specialization; see Sect. 4.1. The section also sets
up some of the notation regarding Poisson orders that we will use throughout this
work.

Recall that S := S(α, β, γ ) is a 4-dimensional Sklyanin algebra and we do not
necessarily need that S is module-finite over its center Z . In any case, recall that
B (∼= S/(Sg1 + Sg2)) is the corresponding twisted homogeneous coordinate ring.

The reader may wish to view Fig. 3 at this point for a preview of the setting that we
will construct for S. Our objective is to produce a degree 0 deformation S� of S using
a formal parameter �. The specialization map for S will be realized via a canonical
projection θS : S� → S given by � 
→ 0. Moreover, S� will have the structure of a
k[[�]]-algebra.

Notation 5.1 (�, α̃, β̃, γ̃ ) To begin, we fix a formal parameter � and let

α̃ := α + α1� + α2�
2 + · · · , β̃ := β + β1� + β2�

2 + · · · , γ̃ := γ + γ1� + γ2�
2 + · · · ,

in k[[�]] satisfying α̃ + β̃ + γ̃ + α̃β̃γ̃ = 0 (a version of (2.2)).

By our choice (2.3), we know (α, β, γ ) /∈ {(−1, 1, γ ), (α,−1, 1), (1, β,−1)}.
Hence, it is clear that

(̃α, β̃, γ̃ ) /∈ {(−1, 1, γ̃ ), (̃α,−1, 1), (1, β̃,−1)}.

Definition 5.2 (Ŝ�, S�) Denote by Ŝ� the 4-dimensional Sklyanin algebra over k((�))

with parameters (̃α, β̃, γ̃ ). Define the formal Sklyanin algebra to be the k[[�]]-
subalgebra S� of Ŝ� generated by x0, x1, x2, x3, that is,

S� := k[[�]]〈x0, x1, x2, x3〉 ⊂ Ŝ�.

It is important to point out that S� is a graded k[[�]]-algebra with the grading
inherited from Ŝ�, such that deg(�) = 0 and deg(xi ) = 1 for 0 ≤ i ≤ 3. Notice that
by our choice, 1 ± α̃, 1 ± β̃, 1 ± γ̃ /∈ (�). So, these elements are all invertible in the
formal power series k[[�]]. Recall by Lemma 2.9, we obtain the following result.
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Lemma 5.3 (g̃1, g̃2) The elements

g̃1 = −x20 + x21 + x22 + x23 and g̃2 = x21 + (1 + α̃)(1 − β̃)−1x22
+(1 − α̃)(1 + γ̃ )−1x23

form a central regular sequence in Ŝ�. ��
Lemma 5.4 The following statements hold for the formal Sklyanin algebra S�.

(1) Ŝ�
∼= k((�)) ⊗k[[�]] S�.

(2) At each degree d of S�, we get that (S�)d is a free k[�]]-module of rank (d+3
3

)
.

(3) The elements g̃1, g̃2 belong to the center of S�.
(4) There is a natural surjection from S� � S via � 
→ 0 with kernel equal to �S�.

Proof (1) This is clear from the definitions of Ŝ� and S�.
(2) Since Ŝ� is a domain, each graded piece (S�)d ⊂ (Ŝ�)d is a finitely generated

torsion-free module over k[[�]]. Because k[[�]] is a PID, this implies that (S�)d
is a free k[[�]]-module. By (1), (S�)d has rank equal to dim(Ŝ�)d , which in turn
is equal to

(d+3
3

)
for Ŝ� has Hilbert series 1/(1 − t)4.

(3) It is easy to check that g̃1, g̃2 ∈ Z(Ŝ�) ∩ S� ⊂ Z(S�).
(4) It suffices to show that S�/�S�

∼= S. Clearly there is a surjection S �
S�/�S�. Moreover, it is an isomorphism since on each degree dim Sd =
dim(S�)d/�(S�)d = (d+3

3

)
by (2). The kernel part follows directly. ��

Notation 5.5 (θS) Denote by θS the corresponding specialization map for the formal
Sklyanin algebra S�, namely

θS : S� → S given by � 
→ 0.

So, the first column in Fig. 3 below is established and we now turn our attention to
the second column of that figure.

Definition 5.6 (E�, L�, σ�, B̂�, B�) Denote by E� the elliptic curve over k((�)), by
L� = OP3(1)|E�

the invertible sheaf over E�, and by σ� the automorphism of E�

corresponding to Ŝ� as in Definition-Lemma 2.4 with (α, β, γ ) replaced by (̃α, β̃, γ̃ )
from Notation 5.1. Let

B̂� := B(E�,L�, σ�)

be the corresponding twisted homogeneous coordinate ring. Its k[[�]]-subalgebra

B� := k[[�]]〈x0, x1, x2, x3〉 ⊂ B̂�,

generated by x0, x1, x2, x3, will be called formal twisted homogeneous coordinate
ring.
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Lemma 5.7 (ψ�) The canonical projection Ŝ� � B̂� induces a surjection ψ� : S� �
B�, whose kernel is generated by g̃1, g̃2. As a consequence, the composition S�

θS�
S � B factors through the map ψ�.

Proof Note that ψ� is the composition S� ↪→ Ŝ� � B̂�, whose image is B� by
definition. So it remains to show

ker(ψ�) = (g̃1 Ŝ� + g̃2 Ŝ�) ∩ S� = g̃1S� + g̃2S�.

For simplicity, wewriteM := g̃1S� and N := g̃1 Ŝ�∩S�. It is clear thatM ⊆ N , which
are both graded ideals in S�. ByLemma 5.4(1), we haveM⊗k[[�]]k((�)) = N . Hence,
as finitely generated free modules over k[[�]], we get that rank(Md) = rank(Nd) in
each degree d. So (N/M)d is a torsion module over k[[�]]. Then for any r ∈ Nd ,
there exists an integer m such that �

mr = yg̃1 for some y ∈ (S�)d−2. Since � � g̃1,
we get that �

d | y and r ∈ Md . This implies Md = Nd for every d, and M = N . By
a similar argument, we can then conclude that (g̃1 Ŝ� + g̃2 Ŝ�) ∩ S� = g̃1S� + g̃2S�

where the left-hand side is equal to ker(ψ�). Finally, the factorization through ψ� is
straight-forward. ��

Definition 5.8 (θB) Let θB : B� � B be the map induced by Lemma 5.7, which we
call the specialization map for the formal twisted homogeneous coordinate ring B�.

Now we complete the verification of Fig. 3 as follows.

Definition 5.9 (w, L�, v′
0, v′

1, v′
2, v′

3, R�) Fix a nonzero section w ∈ H0(E,L),
which is also realized as an element of H0(E�,L�) via the vector space isomorphism
H0(E�,L�) ∼= k((�)) ⊗k H0(E,L). Denote by L� the k[[�]]-subalgebra of the
function field k((�))(E�) generated by v′

0 := v0/w, v′
1 := v1/w, v′

2 := v2/w and
v′
3 = v3/w satisfying the dehomogenized relations:

φ1(v
′
0, v

′
1, v

′
2, v

′
3) = v′2

0 + v′2
1 + v′2

2 + v′2
3 = 0,

φ2(v
′
0, v

′
1, v

′
2, v

′
3) = (1 − γ̃ )(1 + α̃)−1v′2

1 + (1 + γ̃ )(1 − β̃)−1v′2
2 + v′2

3 = 0.

We call R� := (L�)(�) the integral form of the field k((�))(E�).

Note that the quotient field of L� is Q(L�) ∼= k((�))(E�). Using (2.5) with replac-

ing (α, β, γ ) by (̃α, β̃, γ̃ ), one sees that the automorphism σ� ∈ Aut
(
k((�))(E�)

)

restricts to an automorphism of R�, given by

σ�(v′
i ) = σ�(vi/w) = σ�(vi )/w

2

σ�(w)/w2 , for all 0 ≤ i ≤ 3.
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Let D and D� be the divisors of zeros of w for E and E�, respectively. In view of
Lemma 2.8, we have the following commutative diagram:

(B̂�)1 = H0(E�,L�)
∼= �� H0(E�,O(D�))t

� � �� k((�))(E�)[t±1; σ�]

(B�)1 = k[[�]] ⊗k H0(E,L)
∼= ��

��

��

� 
→0
����

k[[�]] ⊗k H0(E,O(D�))t
� � ��

��

��

� 
→0
����

R�[t±1; σ�]
��

��

� 
→0
����

B1 = H0(E,L)
∼= �� H0(E,O(D))t

� � �� k(E)[t±1; σ ]

Moreover, we have the canonical embeddings

B� ↪→ R�[t±1; σ�] ↪→ k((�))(E�)[t±1; σ�]. (5.10)

The ring R�[t±1; σ�] is a graded localization of B� by an Ore set which does not
intersect the kernel ker θB = �B�. Therefore, the following map is well-defined.

Definition 5.11 (θR) Let θR : R�[t±1; σ�] � k(E)[t±1, σ ] be defined by

θR(v′
i ) = v′

i , for all 0 ≤ i ≤ 3, θR(t) = t, θR(�) = 0,

which is the extension of θB via localization. We also denote by θR its restriction to
the specialization map R� � k(E). These maps are referred to as the specialization
maps for the integral form of the formal twisted homogeneous coordinate B.

The commutativity of the cells in Fig. 3 between the second and third column
follows directly from the definitions of the maps within this part of the diagram and
from the previous commutative diagram.

Fig. 3 Specialization setting for Sklyanin algebras: integral forms, Poisson orders, and centers are respec-
tively in the last three rows
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6 Poisson orders on PI 4-dimensional Sklyanin algebras S

This section establishes a construction of Poisson orders on PI 4-dimensional Sklyanin
algebras with the property that the induced Poisson structure on its center is nontrivial.

Recall that S is a PI 4-dimensional Sklyanin algebra of PI degree n = |σ | cor-
responding to the parameters α, β, γ ∈ k satisfying (2.2) and (2.3). Let the scalars
αi , βi , γi defining α̃, β̃, γ̃ in Notation 5.1, for i ≥ 1, be such that

α̃ + β̃ + γ̃ + α̃β̃γ̃ = 0 and |σ�| = ∞. (6.1)

Such scalars exist because {(α, β, γ ) ∈ A
3 | |σαβγ | = n} is a closed subset of the

surface V(α + β + γ + αβγ ) ⊂ A
3.

6.1 Construction of Poisson orders

Throughout the section we will identify the first graded pieces S1 of S and B1 of
B with each other through vector space isomorphism (Lemma 2.9). In particular,
{x0, x1, x2, x3} is a good basis of B1 as in Lemma 2.17.

Notation 6.2 (̃xi , z̃i ) Denote by x̃i the preimage of xi under the specialization map
θS : S� � Swhich is given by the same linear combinations of the standard generators
of S� as is xi given in terms of the standard generators of S. Moreover, set

z̃i := x̃ni + ∑
1≤ j<n/2 ci j g̃

j x̃n−2 j
i ∈ S�, 0 ≤ i ≤ 3

for the polynomials ci j ∈ k[g1, g2]2 j from Proposition 2.18(1).

Definition 6.3 Consider the terminology below.

(1) A degree 0 section ι : Z ↪→ S� of the map θS : S� � S will be called good if

(i) ι(zi ) − z̃i ∈ g̃1k[̃xi , g̃1, g̃2, �] + g̃2k[̃xi , g̃1, g̃2, �], and
(ii) ι(g1) = g̃1 and ι(g2) = g̃2.

(2) A specialization map θS : S� → S will be called a good specialization of S of
level N if there exists a good section ι : Z ↪→ S� such that

[ι(z), y] ∈ �
N S� for all z ∈ Z , y ∈ S�. (6.4)

Given any section ι : Z ↪→ S� of θS ,

[ι(z), y] ∈ �S� for all z ∈ Z , y ∈ S�.

Therefore, N ≥ 1.Next,weprove that for a givenPI 4-dimensional Sklyanin algebra S,
the levels N of good specializations for S are bounded from above.

Lemma 6.5 Let S be a PI Sklyanin algebra corresponding to the parameters α, β, γ ∈
k satisfying (2.2) and (2.3), and choose any formal parameters α̃, β̃, γ̃ satisfying (6.1).
Then, the set of levels N for good sections of θS has an upper bound.
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Proof Consider the algebras L� and R� := (L�)(�) from Definition 5.9 for w = x̃0,
identified as the preimage of v′

0 under θB . Since the condition (6.1) is satisfied, the
automorphism σ� of R� has infinite order. This gives

R
σ n

�

�
� R�. (6.6)

On the other hand, � ∈ R� is a regular element, from which one gets

⋂
l∈Z+ �

l R� = 0. (6.7)

Combining (6.6) and (6.7), we obtain that there exists a positive integer M such that

rσ n
� − r /∈ �

M R� for some r ∈ R�. (6.8)

Denote by Mmin the least such positive integer, and by rmin ∈ R� an element satisfy-
ing (6.8) for this integer Mmin. Although, it will not play a role in the proof, we note
that Mmin ≥ 2 because rσ n

� − r ∈ �R� for all r ∈ R�.
In the remainder of the proof, we will show that

N < Mmin

which gives the stated upper bound for levels of good sections. Let ι : Z ↪→ S� be
one such good section of θS , with respect to which the specialization map θS has level
N . Recall the map ψ� : S� � B� from Lemma 5.7. Then, the condition (6.4) implies
that

[ψ�ι(z), y] ∈ �
N B�, ∀ z ∈ Z , y ∈ B�.

From (5.10), we have B� ↪→ R�[t±1; σ�] with respect to which R�[t±1; σ�] is a
localization of B�. Hence,

[ψ�ι(z), y] ∈ �
N R�[t±1; σ�], ∀ z ∈ Z , y ∈ R�[t±1; σ�]. (6.9)

Proposition 2.18, combined with the facts that kerψ� = g̃1S� + g̃2S� (from
Lemma 5.7) and that ι is a good section, leads to ψ�ι(z1) = tn ∈ R�[t±1; σ�].
By applying (6.9) to z = z1 and y = rmin ∈ R�, we obtain that

[tn, rmin] = (r
σ n

�

min − rmin)t
n ∈ �

N R�[t±1; σh].

Since t is a unit of R�[t±1; σh],

r
σ n

�

min − rmin ∈ �
N R�.

The last equation implies that N < Mmin because r
σ n

�

min − rmin /∈ �
Mmin R�. ��
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The main theorem of this section establishes the structure of Poisson order on each
PI 4-dimensional Sklyanin algebra S for which the Poisson structure on the center of
S is nontrivial.

Theorem 6.10 Let S be a PI 4-dimensional Sklyanin algebra satisfying (2.2)–(2.3) as
above. Each Poisson order (S, Z , ∂ : Z → Der(S/Z)) of level N , coming from a
good specialization of maximum level N , has the property that the induced Poisson
structure on Z is non-zero.

One interesting direction for further investigation is as follows.

Question 6.11 Given PI 4-dimensional Sklyanin algebra S as used in Theorem 6.10,
what is the maximal level N of a good specialization for S?

One approach to this question is to determine the minimal positive integer Mmin
from the proof of Lemma 6.5 which is explicitly defined in (6.8) and then to use the
upper bound N ≤ Mmin.

6.2 Derivations of PI S

We classify a certain type of derivations of S which will play a role in the proof of
Theorem 6.10. This description will be obtained in three stages where similar types
of derivations of the algebras in Notation 6.12 are classified.

In fact, the techniques below can be generalized easily to obtain similar results for
PI algebras T , where some factor of T by a regular central sequence is the twisted
homogeneous coordinate ring of an elliptic curve; see Theorem 6.19.

Notation 6.12 (S′,ψ ,ψ1,ψ2) For S a PI 4-dimensional Sklyanin algebra of PI degree
n < ∞with center Z := Z(S). Recall B = S/(g1S+g2S) and denote S′ := S/(g1S).
Moreover, denote the canonical projections

ψ1 : S → S′, ψ2 : S′ → B, and ψ := ψ2ψ1 : S → B.

So,

kerψ1 = g1S, kerψ2 = g2S
′, and kerψ = g1S + g2S.

Lemma 6.13 In the notation above, we have

ψ1(Z) = Z(S′) and ψ2(Z(S′)) = Z(B).

Proof Since ψ(Z) = Z(B),

ψ2(Z(S′)) = Z(B).

The map ψ1 is surjective, thus

ψ1(Z) ⊆ Z(S′). (6.14)
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Both sides of the inclusion are N-graded algebras with

ψ1(Z) = ⊕
k∈N

ψ1(Zk), Z(S′) = ⊕
k∈N

Z(S′)k .

To prove that (6.14) is an equality, one needs to prove that

ψ1(Zk) = Z(S′)k, (6.15)

which we show by induction on k.
The equality is obvious for k = 0. Let k be a positive integer. Assume that (6.15)

holds for indices less than k. It follows from the equality ψ(Z) = Z(B) that for each
z′ ∈ Z(S′)k , there exists z ∈ Zk such that

z′ − ψ1(z) ∈ kerψ2 = g2S
′.

Write z′ − ψ1(z) = g2u′ for some u′ ∈ S′
k−2. The assumptions on z and z′ imply that

g2u′ ∈ Z(S′)k . Therefore, u′ ∈ Z(S′)k−2 because g2 is a regular central element of
S′ of degree 2. It follows from the induction assumption that u′ = ψ1(u) for some
u ∈ Zk−2. Finally, using that g2 ∈ Z2, we obtain

z + g2u ∈ Z(S)k and z′ = ψ1(z + g2u) ∈ ψ1(Zk),

which completes the induction and the proof of the lemma. ��
Notation 6.16 (adr ) As usual, for an algebra R and r ∈ R, adr will denote the inner
derivation of R given by adr (r ′) := [r , r ′] = rr ′ − r ′r .

Proposition 6.17 (x , δ) Assume that S is a PI 4-dimensional Sklyanin algebra of PI
degree n = |σ | < ∞. Let x ∈ S1 ∼= B1 be a good element.

(1) If δ ∈ Der B is such that

(i) δ|Z(B) = 0, (ii) δ(x) = 0, (iii) deg δ = l with l ≤ n,

then

δ =
{
0, if l ≤ 0 or l = n

λ adxl , if 0 < l < n.

for some λ ∈ k.
(2) If δ ∈ Der S′ is such that

(i) δ|Z(S′) = 0, (ii) δ(x) = 0, (iii) deg δ = l with l ≤ n,

then δ = adp′ for some p′ ∈ k[x, g2]l such that degx p′ < n.
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(3) If δ ∈ Der S is such that

(i) δ|Z = 0, (ii) δ(x) = 0, (iii) deg δ = l with l ≤ n,

then δ = adp for some p ∈ k[x, g1, g2]l such that degx p < n.

Proof (1) For l < n, the statement of this part of the proposition (even without the
assumption that δ|Z(B) = 0) was proved by Smith and Tate in [39, Theorem 3.3].
Suppose that l = n. Recall that the graded quotient ring of B is identified with
k(E)[t±1; σ ] by sending x 
→ t . The derivation δ ∈ Der(B) can be extended
to a derivation of k(E)[t; σ ], to be denoted by the same symbol. The conditions
(i)–(ii) give that

δ(t) = 0 and δ(k(E)σ ) = 0.

Choose y ∈ k(E) and let q(t) ∈ k(E)σ be its minimal polynomial over k(E)σ .
Since the extension k(E)/k(E)σ is separable, q ′(y) �= 0. The assumption that
deg δ = n implies that δ(y) ∈ k(E)xn commuteswith y. Therefore 0 = δ(q(y)) =
δ(y)q ′(y) and, hence, δ(y) = 0.We have that δ(k(E)) = 0 and δ(t) = 0, so δ = 0.

(2) Since δ(g2) = 0, ψδ : S′ → B descends to a derivation of B, which will be
denoted by the same symbol.
We prove part (2) by induction on l. If l ≤ 0, thenψ2δ is a homogeneous derivation
of B such that

ψ2δ|Z(B) = 0, ψ2δ(x) = 0, and degψ2δ ≤ 0

because ψ2(Z(S′)) = Z(B) (see Lemma 2.14). Part (1) implies that ψ2δ = 0.
Thus, δ(S′

1) ⊆ kerψ2 = g2S′ ⊆ S′≥2. On the other hand, it follows from deg δ ≤ 0
that

δ(S′
1) ⊆ S′≤1.

This implies that δ(S′
1) = 0 and, consequently that δ = 0 because S′ is generated

in degree 1.
Let 1 ≤ l ≤ n. Assume by way of induction that the statement of part (2) holds

for derivations of degree less than l. Let δ be a derivation of S′ of degree l ∈ [1, n]
such that δ|Z(S′) = 0 and δ(x) = 0. As explained earlier, ψ2δ : S′ → B descends to
a derivation of B which satisfies

ψ2δ|Z(B) = 0, ψ2δ(x) = 0, and degψ2δ = l ∈ [1, n]

because ψ2(Z(S′)) = Z(B). It follows from part (1) that

ψ2δ = λ adxl
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for some λ ∈ k such that λ = 0 if l = n. Therefore,

im(δ − λ adxl ) ⊆ S′g2.

Using that g2 is a regular element of S′, we define

δ− := 1
g2

(δ − λ adxl ) ∈ Der(S′).

The assumptions on δ imply at once that

δ−|Z(S′) = 0, δ−(x) = 0, and deg δ− = l − 2.

By the inductive assumption there exists h′ ∈ k[x, g2]l−2 such that δ− = adh′ , and
degx h

′ < n. Therefore,

δ = adp′ for p′ := g2h
′ + λxl ∈ k[x, g2]l .

Since λ = 0 if l = n, we have degx p′ < n. This completes the proof of part (2).
Part (3) is derived from part (2) in the same fashion as (2) is derived from (1)making

use of the fact that g1 is a regular element of S. ��
Now the techniques above yield the general statements about derivations of certain

PI algebras as follows.

Notation 6.18 (T , �k , T [k], ψk) Let T be a connected N-graded algebra, and
�1, . . . , �m a regular central sequence of elements of T of positive degree. Let

T [k] := T /(�1T + · · · + �kT )

for all 1 ≤ k ≤ m so that T [0] := T . Note that T [k] ∼= T [k−1]/(�kT [k−1]) and let
ψk : T [k−1] � T [k] be the canonical projection.

Observe that if T [k] is module-finite over its center, then so is T [i] for all i < k by
[39, Lemma 3.6].

Theorem 6.19 Retain the notation above. Then the following statements hold.

(1) ψk(Z(T [k−1])) = Z(T [k]) for all 1 ≤ k ≤ m.
(2) Suppose that T [m] is isomorphic to BT := B(ET ,LT , σT ), a twisted homogeneous

coordinate ring of an elliptic curve ET ⊂ P
d with LT = OPd (1)|ET and σT in

Aut(ET ) given by translation. Assume, further, that BT is module-finite over its
center so that |σT | < ∞. Let xT be a good element of BT of degree 1.
If δ is a derivation of T [k] such that

(i) δ|Z(T [k]) = 0, (ii) δ(xT ) = 0, (iii) deg δ = l with l ≤ |σT |,

then δ = adp for some p ∈ k[xT ,�k+1, . . . , �m]l such that degxT p < |σT |. ��
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6.3 Proof of Theorem 6.10, nontriviality of Poisson order structure on S

Let ι : Z → S� be a good section of maximal level N . Let ∂ : Z → Der(S/Z) be
the corresponding Poisson order. We need to prove that the induced Poisson structure
on Z is nontrivial. By way of contradiction, assume that this is not the case. Then, for
0 ≤ i ≤ 3, we have

(i) ∂zi |Z = 0, (ii) ∂zi (xi ) = 0, (iii) deg ∂zi = n.

Property (i) is a restatement of the vanishing of the Poisson structure. Property (ii)
follows from the definition of good section, and more precisely the condition in Defi-
nition 6.3(1.i) and Notation 6.2. Namely, we have [ι(zi ), x̃i ] = 0 and thus,

∂zi (xi ) = θ([ι(zi ), x̃i ]/�
N ) = 0.

The third condition is a consequence of the fact that ι(zi ) ∈ (S�)n . It follows from
Proposition 6.17(3) that there exist polynomials pi for 0 ≤ i ≤ 3

pi (xi , g1, g2) ∈ k[xi , g1, g2]n and degxi pi (xi , g1, g2) < n, (6.20)

such that ∂zi = adpi (xi ,g1,g2). We modify the section ι : Z ↪→ S� to form a new good
section ι∨ : Z ↪→ S� by first setting

ι∨(g1) := g̃1, ι∨(g2) := g̃2 and ι∨(zi ) := ι(zi ) − �
N pi (̃xi , g̃1, g̃2)

for 0 ≤ i ≤ 3. Then we choose a k-basis of Z of the form

B := {gm1
1 gm2

2 zl00 z
l1
1 z

l2
2 z

l3
3 | (m1,m2, l0, l1, l2, l3) ∈ L}

for some L ⊂ N
6 and complete the definition of ι∨ by setting

ι∨
(
gm1
1 gm2

2 zl00 z
l1
1 z

l2
2 z

l3
3

)
= ι∨(g1)

m1 ι∨(g2)
m2 ι∨(z0)

l0 ι∨(z1)
l1 ι∨(z2)

l2 ι∨(z3)
l3

(6.21)

for all (m1,m2, l0, l1, l2, l3) ∈ L .
The two properties of the polynomials pi in (6.20) imply that ι∨ : Z ↪→ S� is a

good section of θS . Furthermore, we have that

[ι∨(zi ), y] ∈ �
N+1S�, ∀ 0 ≤ i ≤ 3, y ∈ S�. (6.22)
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This follows from the equalities

[ι∨(zi ), y] = �
N
( [ι(zi ), y]

�N
+ [pi (x̃i , g̃1, g̃2), y]

)

,

θS

( [ι(zi ), y]
�N

+ [pi (x̃i , g̃1, g̃2), y]
)

= ∂zi (θ(y)) − ∂zi (θ(y)) = 0

and the fact that ker θS = �S�, proved in Lemma 5.4(4).
Combining (6.21) and (6.22), we obtain that

[ι∨(z), y] ∈ �
N+1S�, ∀z ∈ B, 0 ≤ i ≤ 3, y ∈ S�.

This is a contradiction, since N equals the maximum level of a good section of the
projection θS : S� → S. The contradiction implies that the induced Poisson structure
on Z from the Poisson order ∂ is nontrivial. ��

7 The Jacobian structure of Poisson orders on PI 4-dimensional
Sklyanin algebras

The goal of this part is to describe the Jacobian structure of the (nontrivial) Poisson
bracket on the center of the PI 4-dimensional Sklyanin algebras that arise as a Poisson
order via good specialization of maximal level. We begin this section with a straight-
forward result about PI algebras that are Poisson orders via specialization.

Proposition 7.1 Recall Notation 6.18. For a formal parameter �, suppose that there
exists an k[[�]]-algebra T� which is an k[[�]]-torsionfree degree 0 deformation of
T so that T�/(�T�) ∼= T . Take θT : T� � T , the canonical projection, and let
�̃k ∈ Z(T�) be a lift of �k ∈ Z(T ) via θT for all 1 ≤ k ≤ m.

Then, for every specialization of T of level N equipped with a section
ι : Z(T ) ↪→ T� with ι(�k) = �̃k for all 1 ≤ k ≤ m, we have that ∂�k = 0
for the corresponding Poisson order on T . In particular, �1, . . . , �m are in the
Poisson center of Z(T ).

Proof For y ∈ T and ỹ ∈ θ−1
T (y), we get that ∂�k (y) = θT

([�̃k, y]/�
N
)
, which is

equal to 0. Therefore, ∂�k = 0, and the second statement holds by the definition of a
Poisson order. ��

Applying this to the PI 4-dimensional Sklyanin algebras S, we have the statement
below.

Corollary 7.2 The central elements g1, g2 lie in the Poisson center of Z = Z(S) when
S arises as a Poisson Z-order of level N via specialization.

Proof Apply Proposition 7.1 by taking T = S, T� = S�, {�1, . . . , �m} = {g1, g2}
and by using Lemma 5.4(3). ��
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Next, we have a general result pertaining to the Poisson structure of the PI algebras
T from above. In the following proposition, we use notation J (F)k,l to denote the
determinant of the Jacobian matrix by taking all zi derivatives except with respect to
variables zk and zl up to a sign (−1)k+l .

Proposition 7.3 (J (F)k,l ) Recall Notation 6.18 and we abuse some notation utilized
above as follows. Suppose that T is module-finite over its center with Z(T ) generated
by algebraically independent homogeneous elements z1, . . . , zd , along with homoge-
nous elements �1, . . . , �m, subject to d − 2 homogeneous relations F1, . . . , Fd−2.

Suppose that Y := V(F1, . . . , Fd−2) ⊂ A
d+m is an irreducible affine variety and

define the Jacobian matrix to be

J (F)k,l := (−1)k+ldet

(
∂(F1, F2, . . . , Fd−3, Fd−2)

∂(z1, . . . , ẑk, . . . , ẑl , . . . , zd)

)

, for k < l

and J (F)l,k = −J (F)k,l . Moreover, suppose that Z(T ) = k[Y ] admits a (homoge-
neous) Poisson structure of degree 0 so that

(i) �1, . . . , �m are in the Poisson center,
(ii) J (F)k,l �= 0 for some 1 ≤ k, l ≤ d,
(iii)

⋂
1≤k,l≤d k[Y ][(J (F)k,l)

−1] = k[Y ], where the intersection is taken over
J (F)k,l �= 0.

Then, the Poisson bracket on Z(T ) is determined by Jacobian matrices above as
follows:

{zk, zl} = ηJ (F)k,l , for all 1 ≤ k, l ≤ d, and for some η ∈ k[Y ]. (7.4)

If, further, η has degree 0, then η ∈ k[Y ]0 = k.

Proof By condition (i) we have that

{zk, Fi } =
d∑

l=1

{zk, zl}∂Fi/∂zl +
m∑

l=1

{zk,�l}∂Fi/∂�l =
d∑

l=1

{zk, zl}∂Fi/∂zl = 0.

Now consider the vector space of all (d − 1)-tuples over the base field k(Y ), which is
the fraction field of the domain k[Y ]. Note that the vector

V = ({zk, z1}, . . . , ̂{zk, zk}, . . . , {zk, zd})

is perpendicular to vectors (∂Fi/∂z1, . . . , ̂∂Fi/∂zk, . . . , ∂Fi/∂zd) for all 1 ≤ i ≤
d − 2. By condition (ii) and Cramer’s rule, we know V has to be proportional to the
vector

(
J (F)k,1, . . . , J (F)k,k−1, J (F)k,k+1, . . . , J (F)k,d

)
.
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So we can write

{zk, zl} = ηkl J (F)k,l , for some ηkl ∈ k(Y ).

By construction, we get ηkl = ηkl ′ and ηkl = ηlk . Hence, ηkl = η ∈ k(Y ) for all
1 ≤ k, l ≤ d. Finally, the condition (iii) implies that η ∈ k[Y ]. ��

Now we arrive at the result below.

Corollary 7.5 Recall the notation of Sect. 2 and set {0, 1, 2, 3} = {i, j, k, l} with
i < j and k < l. Then, the Poisson structure of the center Z of S obtained via good
specialization is given by

{zk, zl} = (−1)k+lηJ (F1, F2)i, j

=
⎧
⎨

⎩

(−1)k+lη det
(

∂�p
∂zq

)

p=1,2; q=i, j
, for |σ | =: n is odd

(−1)k+lη det
(

∂�p
∂zq

+ h p
∂�p
∂zq

)

p=1,2; q=i, j
, for |σ | =: n is even

for some η ∈ k×, with g1, g2 in the Poisson center of the Poisson algebra Z.

Proof. We apply Proposition 7.3 for T = S module-finite over its center Z . In this
case, {�1, . . . , �m} = {g1, g2} and Y = V(F1, F2) ⊂ A

6 from Proposition 2.18.
The affine variety Y is irreducible because S is a domain (see Proposition 2.11). First,
the degree of η is 0 since the degree of det(J (F1, F2)i, j ) is 2n, which is equal to
the degree of {zk, zl}. Moreover, Theorem 6.10 yields the nontriviality of the Poisson
structure on Z(S) via good specialization. So it suffices to verify conditions (i)-(iii) in
Proposition 7.3. First, Corollary 7.2 yields condition (i). Next, for condition (ii), note
that

Y symp
0 ∩ V(g1 − γ1, g2 − γ2) = (Yγ1,γ2)

sing.

It follows from Theorem 3.13 (n odd) and Theorem 3.16 (n even) that (Yγ1,γ2)
sing

only consists of finitely many points. The second equality in (7.7) implies that there
exist indices 0 ≤ k �= l ≤ 3 such that J (F1, F2)k,l does not vanish identically on Y .

Finally, condition (iii) of Proposition 7.3 depends on the singular locus on each
slice Yγ1,γ2 as follows. We employ work of Stafford [40] to understand the structures
of Y and its coordinate ring Z ; namely, S is a maximal order, so Z is integrally closed
and Y is a normal affine variety. So, to get condition (iii), it remains to show that
Y symp
0 = ⋃

γ1,γ2∈k(Yγ1,γ2)
sing has codimension ≥ 2 in Y due to [22, discussion after

proof of Corollary 11.4]. Indeed, we have that Y symp
0 is a union of 2n cuspidal curves

for n odd by Lemma 3.12 and Theorem 3.13 (see Fig. 1); thus Y symp
0 has codimension

≥ 2 in Y . For n even, condition (iii) of Proposition 7.3 follows from Theorem 3.16
since Y symp

0 = Y sing is a union of two rational surfaces Y sing
1 and Y sing

2 , which have
codimension ≥ 2 in Y . ��

Recall that one says that a Poisson structure on an affine variety vanishes at a point
y ∈ Y if the maximal ideal my of y is a Poisson ideal of k[Y ].
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Corollary 7.6 The variety Y symp
0 from Notation 3.1 is precisely the subvariety of Y =

maxSpec(Z(S)) consisting of points on which the Poisson bracket of Corollary 7.5
vanishes.

Proof By definition,

Y symp
0 =

⋃

γ1,γ2∈k
(Yγ1,γ2)

sing = (⋂
1≤k,l≤4 V(J (F1, F2)k,l)

) ∩ Y . (7.7)

Corollary 7.5 implies that the right hand side is precisely the subset of points of Y on
which the Poisson bracket of Corollary 7.5 vanishes. ��

The following result directly follows from the proof of Corollary 7.5, which will
be useful in Sect. 8 for determining the Azumaya locus of S. ��
Corollary 7.8 Let Y = maxSpec(Z(S)) be the Poisson variety with the Poisson bracket
given in Corollary 7.5. Then, for (γ1, γ2) ∈ k2, we have that Y symp

0 ∩ Yγ1,γ2 =
(Yγ1,γ2)

sing, which consists of finitely many points, and that Y symp
0 has codimension

≥ 2 in Y . ��

8 On the representation theory of PI 4-dimensional Sklyanin
algebras S

The goal of this section is to use the algebro- and Poisson-geometric results presented
in the previous sections to study the irreducible representations of PI 4-dimensional
Sklyanin algebras S of PI degree n < ∞. Recall that such representations are
finite-dimensional and their maximum dimension is equal to n [11, Proposition 3.1].
Moreover, the isomorphism classes of irreducible representations (or, simplemodules)
of S are governedby their central annihilators.We refer the reader toBrown-Goodearl’s
text [12, Chapter III] for details. In summary, there exists a finite-to-1 map on iso-
morphism classes of simple S-modules [M] to the vanishing of annS(M) ∩ Z(S) in
maxSpec(Z(S)) =: Y . The Azumaya locus of S consists of maximal ideals m ∈ Y
that annihilate irreducible representations of maximum dimension (= n). To study the
representation theory of S geometrically, it is advantageous to have that the Azumaya
locus of S and the smooth part ofY coincide– this is established in Sect. 8.1. In Sect. 8.2
we will then use the singular locus of Y to investigate the irreducible representations
of S of intermediate dimension. In Sect. 8.3 we apply these representation theoretic
results to describe the zero sets of the discriminant ideals of the PI 4-dimensional
Sklyanin algebras.

8.1 Irreducible representations of PI S of maximum dimension

We will verify the following result, with the proof presented at the end of this section.

Theorem 8.1 The Azumaya locus of each PI 4-dimensional Sklyanin algebra S is the
smooth part of Y = maxSpec(Z(S)).
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Notation 8.2 ([κ1 : κ2], S[κ1:κ2], g′, ψ ′, ψ ′′) For [κ1 : κ2] ∈ P
1, consider the factors

S[κ1:κ2] := S/(κ1g1 − κ2g2)S.

Set

g′ :=
{
g1, κ2 �= 0

g2, otherwise.

The images of g1, g2, g′ in S[κ1:κ2] will be denoted by the same symbols. Denote the
projections

ψ ′ : S � S[κ1:κ2] and ψ ′′ : S[κ1:κ2] � S/(g1S + g2S) ∼= B.

Note that the kernel of ψ ′ is g′S[κ1:κ2]. Moreover, the composition ψ ′′ψ ′ equals the
projectionψ : S � B fromNotation 6.12 because g1S+g2S = g′S+(κ1g1−κ2g2)S.

Our first preliminary result is given below.

Proposition 8.3 For every [κ1 : κ2] ∈ P
1, the factor S[κ1:κ2] of S is a PI domain of PI

degree n = |σ | and its center is given by Z(S[κ1:κ2]) = ψ ′(Z(S)).

Proof First, S[κ1:κ2] is a domain by [29, Proposition 6.2]. Since the algebra S[κ1:κ2] is
a homomorphic image of S, we obtain that the PI degree of S[κ1:κ2] is less or equal
to n. From the isomorphism S[κ1:κ2]/(g′S[κ1:κ2]) ∼= B, we obtain that the PI degree of
S[κ1:κ2] is greater or equal than that of B which equals n by Proposition 2.12. Thus,
S[κ1:κ2] is a PI domain of PI degree n. The result on the center of Sκ1:κ2] follows from
a proof similar to that of Lemma 6.13. ��

We turn our attention to maxSpec of the center of S[κ1:κ2] next.

Notation 8.4 (Y[κ1:κ2])Denote byY[κ1:κ2] the subvarietyY∩V(κ1g1−κ2g2)ofY ,which
is the disjoint union of subvarieties {Yγ1,γ2 | γ1, γ2 ∈ k, κ1γ1 − κ2γ2 = 0} of Y .

It also follows from Proposition 8.3 that

Y[κ1:κ2] ∼= maxSpec(Z(S[κ1:κ2])). (8.5)

Corollary 8.6 The varieties Y[κ1:κ2] and Yγ1,γ2 are irreducible for all [κ1 : κ2] ∈ P
1

and γ1, γ2 ∈ k.

Proof The first fact follows from the isomorphism (8.5) and the fact that S[κ1:κ2] is a
domain (see Proposition 8.3). The set

Y ∗[κ1:κ2] := Y[κ1:κ2]\V(g′) = Y[κ1:κ2]\V(g1, g2)

is dense in Y[κ1:κ2]. Thus, it is irreducible too. The N-grading of S gives rise to a
k×-action on Y that preserves Y[κ1:κ2]. It is easy to see that

Y ∗[κ1:κ2] ∼= k× × Yγ1,γ2
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for γ1, γ2 ∈ k such that κ1γ1 − κ2γ2 = 0. This implies that the varieties Yγ1,γ2 are
irreducible for all γ1, γ2 ∈ k. ��

Next, we study the symplectic cores of Y in terms of the varieties Yγ1,γ2 . Recall the
notation from Sect. 4 and consider the following notation.

Notation 8.7 (my) For y ∈ Y , denote bymy the correspondingmaximal ideal of Z(S).

Proposition 8.8 Consider a Poisson structure on the algebra Z coming from a Poisson
Z-order on S of level N via a good specialization, as in Theorem 6.10.

(1) For all γ1, γ2 ∈ k, Yγ1,γ2 is a Poisson subvariety of Y = maxSpec(Z).
(2) The symplectic cores of Y are

(a) The points in (Yγ1,γ2)
sing for γ1, γ2 ∈ k (0-dimensional symplectic cores);

(b) The sets Yγ1,γ2\(Yγ1,γ2)
sing for γ1, γ2 ∈ k (2-dimensional symplectic cores).

Proof (1) The ideal (g1−γ1, g2−γ2) is a Poisson ideal of Z for all γ1, γ2 ∈ k because
g1 and g2 are in the Poisson center of Z(S) by Corollary 7.2. This implies that
Yγ1,γ2 is a Poisson subvariety of Y .

(2) It follows from Corollary 7.8 that for y ∈ Y the ideal my is Poisson, if and only
if y ∈ (Yγ1,γ2)

sing for some γ1, γ2 ∈ k.
Let y ∈ Yγ1,γ2\(Yγ1,γ2)

sing for some γ1, γ2 ∈ k. It remains to show that the
symplectic core containing y is all of Yγ1,γ2\(Yγ1,γ2)

sing , i.e., that

V(P(my)) = Yγ1,γ2 for such y. (8.9)

Now [25, Lemma 6.2] implies that the Poisson core P(my) is a Poisson prime
ideal of Z(S). We have

{y} � V(P(my)) ⊆ Yγ1,γ2

The second inclusion follows from part (1) and the first inclusion follows from
the fact that my is not a Poisson ideal for y /∈ (Yγ1,γ2)

sing . On the one hand,
V(P(my)) is an irreducible Poisson subvariety of Yγ1,γ2 , and on the other hand
Yγ1,γ2\(Yγ1,γ2)

sing is a smooth irreducible symplectic variety. This implies that

V(P(my))\(Yγ1,γ2)
sing = Yγ1,γ2\(Yγ1,γ2)

sing

because a smooth irreducible symplectic variety has no nonempty Poisson sub-
varieties. Since (Yγ1,γ2)

sing consists of finitely many points (see Corollary 7.8)
and V(P(my)) is an irreducible variety properly containing {y}, we obtain that
V(P(my)) �⊂ (Yγ1,γ2)

sing . Therefore, V(P(my)) = Yγ1,γ2 for the element
y ∈ Yγ1,γ2\(Yγ1,γ2)

sing fixed above. So, (8.9) holds as desired.
The dimensions of the symplectic cores follow fromCorollary 7.8 and Lemma 3.11.

��
Before giving a complete description of the Azumaya locus of S, we prove that it

is sufficiently big in the sense that its complement in Y is of codimension ≥ 2; see
Corollary 8.15 below.
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Proposition 8.10 The Azumaya locus of S contains the union of

Yγ1,γ2\(Yγ1,γ2)
sing

for γ1, γ2 ∈ k.

We first prove the proposition for k = C using Poisson geometry, and then extend it
to arbitrary algebraically closed base fields k of characteristic 0.

Proof (Proof of Proposition 8.10 fork = C) Consider first a pair (γ1, γ2) ∈ C
2\(0, 0).

Fix

[κ1 : κ2] ∈ P
1 such that κ1γ1 − κ2γ2 = 0.

For y ∈ Y[κ1:κ2], denote by my the corresponding maximal ideal of Z(S[κ1:κ2]). It
follows from Proposition 8.3 that

S/my S ∼= S[κ1:κ2]/my S[κ1:κ2] for y ∈ Y[κ1:κ2]. (8.11)

Proposition 8.8 implies that the set

Y ∗∗[κ1:κ2] :=
⊔

{Yγ ′
1,γ

′
2
\(Yγ ′

1,γ
′
2
)sing | (γ ′

1, γ
′
2) ∈ C

2\(0, 0)}
= C

× · (Yγ1,γ2\(Yγ1,γ2)
sing)

is a single C
×-orbit of symplectic cores of Y[κ1:κ2] ∼= maxSpec(Z(S[κ1:κ2])). By the

Brown–Gordon theorem, Theorem 4.11, we obtain that

S[κ1:κ2]/my S[κ1:κ2] ∼= S[κ1:κ2]/my′ S[κ1:κ2] (8.12)

for all y, y′ ∈ Y ∗∗[κ1:κ2]. The Azumaya locus of S[κ1:κ2] and Y ∗∗[κ1:κ2] are both dense
subsets of the irreducible variety Y[κ1:κ2]. Hence, Y ∗∗[κ1:κ2] intersects nontrivially the
Azumaya locus of S[κ1:κ2]. Since the PI degree of S[κ1:κ2] equals n by Proposition 8.3,
it follows from (8.12) that S[κ1:κ2]/my S[κ1:κ2] ∼= Mn(C) for all y ∈ Yγ1,γ2\(Yγ1,γ2)

sing .
Finally, (8.11) implies that the Azumaya locus of S contains Yγ1,γ2\(Yγ1,γ2)

sing for
(γ1, γ2) ∈ C

2\(0, 0).
Next, let (γ1, γ2) = (0, 0). It follows from Proposition 2.18 that Y0,0 ∼=

maxSpec(Z(B)). For y ∈ Y0,0, denote by my the corresponding maximal ideal of
Z(B). Applying Proposition 2.18, gives that

S/my S ∼= B/my B for y ∈ Y0,0. (8.13)

The set Y0,0\(Y0,0)sing is a single symplectic core of Y0,0 and thus

B/my B ∼= B/my′ B for y, y′ ∈ Y0,0\(Y0,0)sing.
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On the other hand, Y0,0\(Y0,0)sing is a dense subset of the irreducible variety Y0,0;
hence, Y0,0\(Y0,0)sing intersects the Azumaya locus of B nontrivially. Since the PI
degree of B equals n, by Proposition 2.12, B/my B ∼= Mn(C) for y ∈ Y0,0\(Y0,0)sing .
By (8.13),

S/my S ∼= Mn(C) for y ∈ Y0,0\(Y0,0)sing

Therefore, the Azumaya locus of S contains Y0,0\(Y0,0)sing . ��
Proof (Proof of Proposition 8.10 for k) Fix y ∈ Yγ1,γ2\(Yγ1,γ2)

sing for some γ1, γ2 ∈
k. Denote by k′ the algebraically closed subfield of k generated by the coordinates of
y and α, β, γ ∈ k. In particular, γ1, γ2 ∈ k′. Choose a field embedding k′ ↪→ C.

Let Sk = S, Sk′ , and SC be the corresponding Sklyanin algebras over k, k′, and C,
respectively. Let Yk = Y , Yk′ , and YC be themax-spectra of their centers, respectively.
Denote by my,k = my , mk′,y and mC,y , the maximal ideals of Z(Sk), Z(Sk′), and
Z(SC), corresponding to y considered as a point on Yk = Y , Yk′ , and YC, respectively.
We have

(Sk′/mk′,y Sk′) ⊗k′ k ∼= Sk/mk,y Sk and (Sk′/mk′,y Sk′) ⊗k′ C ∼= SC/mC,y SC.

(8.14)

Since y ∈ Yγ1,γ2\(Yγ1,γ2)
sing , we get that y /∈ (Yk′,γ1,γ2)

sing . So, y /∈ (YC,γ1,γ2)
sing .

Applying the proposition for k = C established above, we obtain that

SC/mC,y SC
∼= Mn(C)

since all three algebras Sk = S, Sk′ , and SC have PI degree n. Now it follows
from (8.14) that Sk′/mk′,y Sk′ ∼= Mn(k

′) because k′ is algebraically closed. Apply-
ing (8.14) again gives S/my S = Sk/mk,y Sk ∼= Mn(k), which completes the proof
of the proposition for the field k. ��

Now it follows from Proposition 8.10 and Corollary 7.8 that:

Corollary 8.15 The complement of the Azumaya locus A of S in Y is of codimension
≥ 2, that is, Ap is Azumaya over Zp for all height 1 primes p of Z. ��

Finally, the proof of the main result of this section is brief, due to the work above.

Proof of Theorem 8.1 This holds by applying a result of Brown-Goodearl [11, The-
orem 3.8]; namely, the hypotheses of that result follow from Proposition 2.11 and
Corollary 8.15. Alternatively, we can apply the improvement of the theorem obtained
by Brown-MacLeod [14, Theorem 3.13]. ��

Now the consequence of Theorem 8.1 below follows from Theorem 3.13(2) and
Theorem 3.16(2); namely, the slice Y0,0 = Y ∩ V(g1, g2) has singular locus {0}.
Corollary 8.16 All nontrivial irreducible representations of the twisted homogeneous
coordinate ring B of PI degree n have dimension n. ��
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8.2 Irreducible representations of PI S of intermediate dimension

Throughout this subsection, we work over complex numbers k = C (as mentioned in
Remark 8.19). The goal of this part is to use the geometry of fat points of S to classify
irreducible representations of S of intermediate dimension. Recall that fat points of S
are simple objects in the quotient category S-qgr. A fat point over S can be represented
by a 1-critical graded S-module (called fat point module) of Hilbert series d(1− t)−1

with multiplicity d ≥ 1. In particular, when a fat point has multiplicity 1, we usually
call it a point which is represented by a point module of S. We employ work of Smith
[36] on the geometry of fat points of S to achieve our goal.

Theorem 8.17 (M(p), F(ω + kτ)) [36] All fat points of S have been classified and
they come in one of 3-parametric families:

(1) for each p ∈ E, there is a point module M(p);
(2) for any ω ∈ E2 and 0 ≤ k ≤ s − 1, there is a fat point module denoted by

F(ω + kτ) of multiplicity k + 1;
(3) all other fat point modules over S have multiplicity s = n/(n, 2).

In particular, the fat point F(ω + kτ) lies on all the secant lines �pq of E such that
p + q = ω + kτ ; namely, there exists a short exact sequence of graded S-modules

0−→M(p − (k + 1)τ, q − (k + 1)τ )[−k − 1]−→M(p, q)−→F(ω + kτ)−→0.
(8.18)

��
Note that when k = 0, the four point modules F(ω) correspond to the four points

{ei }0≤i≤3 in the point scheme of S.
Next, we recall some facts about the relationship between fat points and irreducible

representations of S.

Remark 8.19 (V (ω+kτ)) Constructed originally by Sklyanin in [35] for each ω ∈ E2
and k ∈ N ∪ {0}, there exists a representation V (ω + kτ) over S in a certain (k + 1)-
dimensional subspace of theta functions of order 2k. (We require k = C here.) These
representations were proved later by Smith and Staniszkis to be irreducible whenever
k < s [38, Theorem 3.6]. According to [36, Proposition 3.3 and Section 6], all fat
point modules F(ω + kτ) of S of multiplicity < s arise as

F(ω + kτ) = ⊕
i≥0 V (ω + kτ)t i , (8.20)

where the graded S-action on the right side is given by si · v j t j = (siv j )t i+ j for all
si ∈ Si and v j ∈ V (ω + kτ). Here, the multiplicity of F(ω + kτ) is equal to the
dimension of V (ω + kτ) which is equal to k + 1.

Question 8.21 We can extend (8.20) for k = s−1, where F(ω+(s−1)τ ) is a fat point
module of multiplicity s. This yields 4 irreducible representations V (ω + (s − 1)τ ) of
dimension s for ω ∈ E2. What are the forms of the other irreducible representations
of S of dimension s?
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Moreover, we have the following fact. Recall that S is assumed to be module-finite
over its center, so all of its irreducible representations are finite-dimensional.

Lemma 8.22 [38, Lemma 4.1] [36, Sectiosn 3.3 and 5] Every irreducible represen-
tation V of S is the quotient of some fat point module F of S. Here, dimk(V ) ≥
mult(F). Moreover, if F is isomorphic to a shift F[e] for some e ≥ 1, then
dimk(V ) ≤ e · mult(F). ��
Notation 8.23 [V λ] Let Modd(S) be the variety of all d-dimensional representations
of S. The algebraic group PGLd(k) × k× acts on Modd(S) via

((T , λ).ϕV )(a) := λi TϕV (a)T−1

for any V ∈ Modd(S) with corresponding map ϕV : S → End(V ) and a ∈ Si . For
any V ∈ Modd(S) and λ ∈ k×, we define the twisted representation

V λ := (1, λ).V .

It is important to point out that V ∼= V λ, if and only if there is some T ∈ PGLd(k)

such that (T , λ).V = V .

Proposition 8.24 Let F be a fat point module over S of multiplicity d, and V be a
nontrivial simple quotient of F. Then we have

(1) dim V = de, where e is the period of F such that F ∼= F[e] and F � F[i] for
1 ≤ i ≤ e − 1 in S-qgr;

(2) the stabilizer of V in PGLde(k) × k× is conjugate to the subgroup generated
by (gζ , ζ ) with gζ = diag(1, . . . , 1

︸ ︷︷ ︸
d

, ζ, . . . , ζ
︸ ︷︷ ︸

d

, . . . , ζ e−1, . . . , ζ e−1
︸ ︷︷ ︸

d

) and ζ is a

primitive e-th root of unity;
(3) all nontrivial simple quotients of F are in the form of V λ, for some irreducible

representation V of S and for some λ ∈ k×. ��
Proof Part (1) follows from [27, Proposition 6 and its proof]. Part (2) comes from [9,
Lemma 4]. Part (3) holds by the proof of [36, Theorem 3.13]. ��

We now turn our attention to the relationship between fat points and Azumaya locus
of S, and for this we need some results from noncommutative projective algebraic
geometry; see [1] [39, Section 5] for further details. Let

R := Proj(Z(S)).

We consider the sheaf S of OR-algebras defined by S(R(z)) = S[z−1]0 for any non-
zero homogeneous element z ∈ Z(S). Denote by Z the central Proj of S, which
satisfies Z(R(z)) = Z(S[z−1]0) for any non-zero homogeneous element z ∈ Z(S).
Consider the commutative scheme Spec(Z) defined in [26, Chapter II, Exercise 5.17],
and we get by [39, Theorem 5.2] that it is isomorphic to Proj(Z(S(n/s))). Now fat
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point modules of S have support in Spec(Z); indeed, a fat point module F of S gives
rise to a sheaf F of S-modules such that F(R(z)) = F[z−1]0.

We get that there is a quotient morphism

Spec(Z) � R, (8.25)

induced by the embedding Z(S) ↪→ Z(S(n/s)) via zi = u(n/s)
i and g j = g j . We

obtain that the support of a fat point module F inR is the image of the support of the
corresponding sheaf of S-modules F in Spec(Z) via (8.25).

Now, with (3.3) and a result in [39], we obtain the following results on the fat point
modules of S of multiplicity < s.

Proposition 8.26 [39, Theorem 5.11]When 0 ≤ k ≤ s−1, the support of the fat point
modules F(ω+kτ) and F(ω′ +k′τ) coincide in Spec(Z) ifω+kτ = −ω′ −k′τ −2τ .
��
Notation 8.27 (C(ω + kτ)) Recall that for any ω ∈ E2 and 0 ≤ k ≤ s − 1,
the simple module V (ω + kτ) constructed by Sklyanin gives a non-zero point
(p0, p1, p2, p3, γ1, γ2) in Y via its support, or rather central annihilator, in Z(S).
Consider the parametric curve

C(ω + kτ) :=
{
(tn p0, t

n p1, t
n p2, t

p
3 , t2γ1, t

2γ2) | t ∈ k
}

.

Since scaling of the parameter t in C(ω + kτ) respects the degree of the variables, the
curve C(ω + kτ) represents a single point in R = Proj(Z(S)).

Lemma 8.28 The parametric curve C(ω + kτ) ⊂ Y is the support of F(ω + kτ) inR.
As a consequence, C(ω + kτ) = C(ω′ + k′τ) if ω + kτ = −ω′ − k′τ − 2τ . Moreover,
there is a (n/s)-to-1 correspondence between the isomorphism classes of nontrivial
simple quotients of F(ω + kτ) and the points of C(ω + kτ).

Proof By Proposition 2.18, Z(S) = k[z0, z1, z2, z3, g1, g2]/(F1, F2) is a graded
algebra with deg(zi ) = n and deg(g j ) = 2. Hence any scaling of a point
(p0, p1, p2, p3, γ1, γ2) ∈ Y with respect to the grading still belongs to Y . So
C(ω+kτ) ⊂ Y . Now let I be the smallest graded ideal in Z(S) containing C(ω+kτ).
By (8.20), one can check that I = AnnZ(S)(F(ω + kτ)). So C(ω + kτ) represents the
support of F(ω + kτ) inR via (8.25).

From the definition of F(ω + kτ) in (8.20), we know V (ω + kτ) is a simple
quotient of F(ω + kτ). By Proposition 8.24(3), all the nontrivial simple quotients of
F(ω + kτ) are given by twisted modules V (ω + kτ)λ for some λ ∈ k×. Moreover,
it is clear that F(ω + kτ) ∼= F(ω + kτ)[1] in S-qgr. So F(ω + kτ) has period 1.
(See, also [36, proof of Corollary 8.7 and Proposition 8.1(c)]). As a consequence,
PGLk+1(k) × k× acts freely on the simple quotients of F(ω + kτ) by Proposition
8.24(2). So V (ω+kτ) � V (ω+kτ)λ for any λ ∈ k×. Let (p0, p1, p2, p3, γ1, γ2) ∈ Y
be the point corresponding to V (ω + kτ). One can check that the point corresponding
to V (ω+kτ)λ is given by (λn p0, λn p1, λn p2, λn p3, λ2γ1, λ2γ2). So V (ω+kτ)λ and
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V (ω + kτ)λ
′
share the same central annihilator, if and only if λ = λ′ if n is odd and

λ = ±λ′ if n is even. This establishes the (n/s)-to-1 correspondence.
Finally, C(ω + kτ) = C(ω′ + k′τ) if ω + kτ = −ω′ − k′τ − 2τ by Proposition

8.26 since they represent the same point inR. ��
This brings us to the main results of this section, first for n odd.

Theorem 8.29 When the PI degree n of S is odd, we have the following statements.

(1) The curve C(ω+kτ) is equal to the curve C(ω+kτ) from Lemma 3.12, forω ∈ E2
and 0 ≤ k ≤ n − 2. Thus, Y sing = ⋃

ω∈E2, 0≤k≤n−2 C(ω + kτ).

(2) If 0 �= y ∈ Y sing and 0 ≤ k ≤ n − 2, then there are exactly 2 irreducible
representations of S with central annihilator my . They are simple quotients of
F(ω+ kτ) of dimension k+1 and of F(ω+ (n−2− k)τ ) of dimension n−1− k,
when y ∈ C(ω + kτ)\{0}. Moreover, the origin 0 ∈ Y corresponds uniquely to
the trivial module of S.

(3) If y ∈ Y smooth , then there is exactly 1 irreducible representation of S of dimension
n with central annihilatormy , which is a simple quotient of either the point module
M(p) for some p ∈ E or some fat point module of multiplicity n.

(4) S has irreducible representations of each dimension 1, 2, 3, . . . , n, where the non-
trivial irreducible representations of intermediate dimension k + 1, for 0 ≤ k ≤
n − 2, are given by V (ω + kτ)λ for ω ∈ E2 and λ ∈ k×.

Proof (1) It suffices to show for all ω ∈ E2 and 0 ≤ k ≤ n − 2 that the curves
C(ω+kτ) andC(ω+kτ) share a nonzero common point. Indeed, since the curves
are parametrized in the same way, sharing a nonzero point implies that the two
sets are equal to each other. Now let 0 �= y ∈ C(ω+kτ) correspond to a nontrivial
simple quotient V (ω + kτ) of a fat point module F(ω + kτ) of intermediate
multiplicity. Since dim V (ω+kτ) = k+1, which is< n byRemark 8.19, the point
y lies in the non-Azumaya locus and hence the singular locus of S by Theorem 8.1.
Then (8.18) and Lemma 3.12 imply that y ∈ Y sing ∩V(�(ω+kτ)) = C(ω+kτ).

(2) Let 0 �= y ∈ C(ω + kτ) = C(ω + (n − 2 − k)τ ) ⊂ Y sing by Lemma 8.28
for some ω ∈ E2 and 0 ≤ k ≤ n − 2. Then there are 2 nontrivial irreducible
representations V1 and V2 of S with central annihilatormy such that V1 is a simple
quotient of F(ω + kτ) and V2 is a simple quotient of F(ω + (n − 2 − k)τ ). It
is clear that V1 � V2 since n is odd, dim V1 = dim V (ω + kτ) = k + 1 and
dim V2 = dim V (ω+ (n−2− k)) = n−1− k by Remark 8.19. Now if {Vi }1≤i≤t

is a complete set of all non-isomorphic irreducible representations over S central
annihilator my , then applying a result of Braun [10, Proposition 4] yields

PIdeg(S) = n ≥
∑

1≤i≤t

dim Vi ≥ dim V1 + dim V2

= (k + 1) + (n − 1 − k) = n.

This implies that t = 2, as desired.
The statement for the correspondence between the trivial module and the origin
of Y is clear.
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(3) This can be proved similarly to (2), again using Theorem 8.1.
(4) This follows from (2), (3) and by Remark 8.19.

��
For n even case, the picture for irreducible representations of S of intermediate

dimension versus singular locus of Y is somewhat elusive due to the fact that we do
not know how the varieties Y sing

1 and Y sing
2 in Theorem 3.16 compare to the curves

C(ω + kτ). But we have the following result.

Theorem 8.30 Suppose that the PI degree n = 2s of S is even. Then the following
statements hold.

(1) If 0 �= y ∈ C(ω + kτ) for some ω ∈ E2 and 0 ≤ k ≤ s − 2, then there are exactly
4 irreducible representations of S with central annihilator my , two of which are
simple quotients of F(ω + kτ) of dimension k + 1 and the other two are simple
quotients of F(ω + sτ + (s − k − 2)τ ) of dimension s − 1 − k.

(2) If 0 �= y ∈ C(ω + (s − 1)τ ) for some ω ∈ E2, then there are exactly 2 irreducible
representations of S of dimension s with central annihilatormy , which are simple
quotients of F(ω + (s − 1)τ ).

(3) If 0 �= y ∈ Y sing \⋃ω∈E2,0≤k≤s−1 C(ω + kτ), then there are exactly 2 irreducible
representations of S of dimension s with central annihilatormy , which are simple
quotients of a fat point module of multiplicity s.

(4) If y ∈ Y smooth , then there is exactly 1 irreducible representation of S of dimension
n with central annihilator my , which is a simple quotient of a generic fat point
module of multiplicity s.

(5) S has irreducible representations of each dimension 1, 2, 3, . . . , s and n, where
the nontrivial irreducible representations of intermediate dimension k + 1, for
0 ≤ k ≤ s − 2, are given by V (ω + kτ)λ for ω ∈ E2 and λ ∈ k×.

Proof (1) Let 0 �= y ∈ C(ω+kτ) = C(ω+sτ +(s−k−2)τ ). Then there are two non-
isomorphic irreducible representations V and W , with central annihilator my , which
are simple quotients of F(ω+kτ) and F(ω+sτ+(s−k−2)τ ), respectively.Moreover,
byLemma8.28 there exists another simple quotient V−1 (respectively,W−1) of F(ω+
kτ) (respectively, of F(ω+ sτ + (s−k−2)τ )) which also corresponds to y and is not
isomorphic to V (respectively, toW ). So we have in total four non-isomorphic simple
modules V±1,W±1 corresponding to the same point y. Now applying Braun’s result
[10, Proposition 4] to get that these are the only four irreducible representations with
central annihilator my .

(2), (3) and (4) can be proved similarly to part (1).
(5) LetV be a nontrivial irreducible representation over S, which is a simple quotient

of some fat point F by Lemma 8.22. If F = M(p) for some p ∈ E , then V is a
module over the twisted homogeneous coordinate ring B and dim V = n by [29,
Lemma 5.8(c)] and Proposition 8.24(3). Suppose F = F(ω + kτ). Then dim V =
dim V (ω + kτ) = k + 1 by Remark 8.19. Finally, if V is a simple quotient of a fat
point of multiplicity s. Then by Proposition 8.24(1), we have dim V = es, where e is
the period of F . By [11, Proposition 3.1(a)], we know dim V ≤ PIdeg(S) = n. So we
have e = 1, 2. Now our result follows from Proposition 8.24(3). ��
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8.3 Discriminant ideals of the PI 4-dimensional Sklyanin algebras

Discriminant ideals of PI algebras play an important role in the study ofmaximal orders
[32], the automorphism and isomorphism problems for families of algebras [16], the
Zariski cancellation problem [7], and the description of dimensions of irreducible
representations [15].

Let A be an algebra and C ⊆ Z(A) be a central subalgebra. A trace map on A is a
nonzero map tr : A → C which is cyclic (tr(xy) = tr(yx) for x, y ∈ A) and C-linear.
For a positive integer �, the �-th discriminant ideal D�(A/C) and the �-th modified
discriminant ideal MD�(A/C) of A over C are the ideals of C with generating sets

{det([tr(yi y j )]�i, j=1) | y1, . . . , y� ∈ A} and

{det([tr(yi y′
j )]�i, j=1) | y1, y′

1, . . . , y�, y
′
� ∈ A}.

Every maximal order A in a central simple algebra admits the reduced trace map
tr : A → Z(A), see [32, Section 9]. Stafford [40] proved that the PI 4-dimensional
Sklyanin algebras S are maximal orders in central simple algebras.

The next theorem describes the zero sets of the discriminant ideals of a PI Sklyanin
algebra S of PI degree n. Denote the quadric function

q(k) := (k2 + (s − k)2)n/s,

keeping in mind that s = n if n is odd, and s = n/2 if n is even.

Theorem 8.31 Let S be a PI 4-dimensional Sklyanin algebra of PI degree n with
reduced trace map tr : S → Z. For all positive integers �, the zero sets of the �-th
discriminant and �-th modified discriminant ideals of S over its center coincide,

V(D�(S/Z(S)), tr) = V(MD�(S/Z(S)), tr);

denote this set by V� ⊂ Y := maxSpec(Z). For the top discriminant ideal of S, we
have

Vn2 = Y sing.

For the lower level discriminant ideals of S and base field k = C, the following hold:

(1) If n is odd, then

V� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y sing, � ∈ [
q (n − 1) + 1, n2

]

⋃
k∈[0,n−2],q(k+1)<� C(ω + kτ), � ∈ [

q(� n
2 �) + 1, q (n − 1)

]

0, � ∈ [
2, q(� n

2 �)]
∅, � = 1.
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(2) If n is even, then

V� =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Y sing, � ∈ [
2s2 + 1, n2

]

⋃
k∈[0,s−2],q(k+1)<� C(ω + kτ), � ∈ [

q
(� s

2�
) + 1, 2s2

]

0, � ∈ [
2, q

(� s
2�

)]

∅, � = 1.

��
Proof Let A be a maximal order in a central simple algebra over a field of charac-
teristic 0 with reduced trace map tr : A → Z(A). For m ∈ maxSpec(Z), denote by
Irrm(A) the set of isomorphism classes of irreducible representations of Awith central
annihilator m, and set

d(m) :=
∑

V∈Irrm(A)

(dimk V )2.

By [15, Main Theorem (a),(e)] and Theorem 8.1, we have that Vn2 = Y sing , and for
all � ∈ Z that

V� =
{
m ∈ maxSpecZ(A) | d(m) < �

}
. (8.32)

Theorems 8.29 and 8.30 imply that for the PI 4-dimensional Sklyanin algebra S, the
square-dimension function d : maxSpec(Z) → Z is given by

d(my) =

⎧
⎪⎨

⎪⎩

n2, y ∈ Y smooth

q(k + 1), y ∈ C(ω + kτ)\{0}, k ∈ [0, n − 2]
1, y = 0

for n odd, and by

d(my) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n2, y ∈ Y smooth

q(0) = 2s2, y ∈ Y sing\ (⋃k∈[0,s−2] C(ω + kτ)
)

q(k + 1), y ∈ C(ω + kτ)\{0}, k ∈ [0, s − 2]
1, y = 0

for n even. The statement of the theorem follows by combining the formulas for d(my)

with (8.32).Namely for n odd, the smallest value of d(my) for y ∈ C(ω+kτ)\{0}, with
0 ≤ k ≤ n − 2, is q(� n

2 �) and the largest value for such d(my) is q(n − 1). Moreover,
for n even, the smallest value of d(my) for y ∈ C(ω + kτ)\{0}, with 0 ≤ k ≤ s − 2, is
q(� s

2�) and the largest value for such d(my) is q(s − 1); note that q(0) > q(s − 1). ��
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