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ABSTRACT

Resting-state functional magnetic resonance imaging (rs-
fMRI) has become a widely used approach for detecting
subtle differences in functional brain fluctuations in various
studies of the healthy and disordered brain. Such studies are
often based on temporal functional connectivity (i.e., the
correlation between time courses derived from regions or
networks within the fMRI data). While being successful for a
number of tasks, temporal connectivity does not fully
leverage the available spatial information. In this research
study, we present a new perspective on spatial functional
connectivity, which involves learning patterns of spatial
coupling among brain networks by utilizing recent advances
in deep learning as well as the contrastive learning
framework. We show that we can learn domain-specific
mappings of brain networks that can, in turn, be used to
characterize differences between schizophrenia patients and
control. Furthermore, we show that the coupling of intra-
domain networks in the controls is stronger than in patients
suffering from the disorder. We also evaluate the coupling
among networks of different domains and find various
patterns of stronger or weaker coupling among certain
domains, which provide additional insights about the brain.

Index Terms— Contrastive learning, spatial coupling,
resting-state fMRI, ICA

1. INTRODUCTION

Schizophrenia (SZ) is a psychotic disorder that is thought to
be linked to dysconnectivity in the brain [1]. This disorder
often cooccurs with symptoms including delusions,
hallucinations, social isolation, and disorganized behavior.
The disease impacts individuals worldwide', and as a lifelong
disorder, it is one of the most disabling, existing treatments
have many side effects, and there is no cure. A significant
amount of effort has been pursued in clinical and research
entities to discover the cause(s) and characteristics of SZ to

! About 1% of the population worldwide suffers from schizophrenia.
2 Other studies have used task-based fMRI studies (where the
subjects are instructed to follow/perform certain task), although the
rs-fMRI is more common.

enhance the chance of early detection and developing more
effective treatments. Because schizophrenia is a brain
disorder, there is much focus on brain imaging modalities
(e.g., fMRI) and statistical analysis methods for identifying
brain networks.

During the past decade, fMRI has become one of the
most widely used neuroimaging techniques in SZ studies.
Many research studies have tended to work with resting-state
fMRI (rs-fMRI), where subjects are at rest during their scan?.
This is because rs-fMRI scans are more easily performed in
patients across a range of ages, and there are many existing
data analysis pipelines [2]. An fMRI scan provides a map of
functional activity in the brain that can be later used with
statistical and mathematical approaches to estimate
functional networks. Two of the most well-established
approaches are seed-based analysis and independent
component analysis (ICA). While seed-based approaches are
widely used and relatively straightforward to implement, ICA
has several advantages over seed-based approaches. First,
ICA is a data-driven method in the sense that it adapts to the
individual subjects and ensures temporally coherent voxels.
Second, ICA provides both spatial maps and their
corresponding time courses. And finally, ICA components
can overlap, which allows for separation of artifacts from
signal as well as for capturing multiple overlapping but
distinct signals of interest.

Many rs-fMRI studies have investigated group
differences in interactions between functional networks by
comparing functional brain connectivity (FNC?) of SZ to
control (CN) groups [3]. They have discovered increased or
decreased connectivity in certain regions of the brain for SZ
individuals. For example, some papers have reported the
default mode network (DMN), a widely studied network
associated with internal reflection, has been linked to hypo-
connectivity in SZ [4], [5]. Several other studies have noted
decreased connectivity within salience networks (SN) [1] and
between thalamus and cerebellum networks [6] as well as
between visual and sensory-motor networks [7] for SZ, while

3 The correlation between time courses.



others have observed increased connectivity among thalamus
and sensory networks [6] in SZ versus CNs.

While such work has focused on temporal connectivity
among regions (functional connectivity; FC) or among
networks/components (functional network connectivity;
FNC) to identify dysconnectivity in the brain, in our research,
we investigated the relationship among spatial maps (i.e.,
spatial coupling) to recognize functional networks coupling
that contributes to the SZ disorder. Our method is based on a
novel deep learning-based architecture that generates
domain-specific embeddings of ICA-driven spatial maps in a
supervised contrastive learning setting.

2. METHOD

Concisely speaking, our approach employs the contrastive
learning framework to extract embeddings for spatial maps,
which are later used to measure the coupling between brain
networks. As such, the proposed model is comprised of two
important components, an embedding network, and an L1-
based distance metric. The task of the embedding network is
to generate domain-specific embeddings of the functional
networks in such a way that similar networks (i.e., networks
of the same domain) are mapped to closer points in the
embedding space and at the same time farther from networks
that belong to different domains. Once the samples are
mapped into a space where the abovementioned objective is
fulfilled, we use an L1 distance to quantify how similar or
dis-similar each pair network would be.

2.1. The embedding network

Our embedding network is based on the 3D-ResNet10 [8]
architecture, which receives 3D input images and generates
512 high-level features*. This model is a reduced version of
the original Resnet model, which replaces 2D CNN
components (i.e., convolutional kernels, pooling and batch
normalization layers, etc.) with their 3D counterparts and
removes the layers that do not contribute significantly to the
performance. This makes such a model trainable on moderate
GPU memories. To better capture complex non-local
relationships between features, we augmented this model
with a multi-layer perceptron [9] with a 512-dimensional
hidden layer and a 128-dimensional output layer’. Fig. 1
visualizes a high-level view of our proposed model. In
summary, this model leverages the residual networks as well
as the multi-layer perceptron to generate 128-dimensional
embeddings of ICA-generated spatial maps for downstream
analysis.

To learn domain-specific embeddings of spatial maps
efficiently, we used the supervised contrastive learning
framework [10]. This allows extraction of within and

4 We  modified the  ResNet
(https://github.com/kenshohara/3D-ResNets-
PyTorch/blob/master/models/resnet.py)

model in [8]

between-domain informative embeddings. Because the
contrastive loss requires pairs of samples, we pair each spatial
map of a given subject with another map of the same domain
but a different subject. For any given domain, the contrastive
loss considers all such pairs that belong to the same domain
as positive pairs, and the rest are regarded as negative ones.
Once this model is trained using the contrastive loss, the
resulting embeddings can serve as a domain-informed
representation of each input network.
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Fig. 1. The architecture of the proposed model.
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2.2. The L1-distance layer

The supervised contrastive learning framework makes it
possible to learn rich embeddings of spatial maps. Now to
compute the distance between each pair of networks in the
resulting space, we compute the L1 distance (i.e., the sum of
the absolute difference values of two embeddings) as it has
been shown to serve as a robust dissimilarity metric before.
This final distance can now be regarded as a measure of
spatial coupling between the functional brain networks of
interest. A large distance corresponds to networks that have
weak spatial couplings, while low distance pairs represent
strong couplings between networks.

3. EXPERIMENTAL DATA

We studied resting-state fMRI data from 2,115 individuals,
including 1,060 healthy control (CN) and 1,055
schizophrenia (SZ) patients. The data are aggregated across
five multi-site studies. We applied spatially constrained ICA
using the NeuroMark pipeline [11] to generate 53 subject-
specific functional networks from 4D rs-fMRI images. The
NeuroMark approach is a hybrid between data-driven ICA
and model-based approaches, which leverages spatial priors
are adapted to individual subjects to provide a fully
automated ICA framework. The functional networks were
grouped into seven domains, namely, subcortical (SC),

3 The size of the last two fully connected layers is selected based on
[10]; however, we replaced the 2048-dimensional layer with a 512-
dimensional embeddings layer to fit our data into GPUs.



auditory (AU), sensory-motor (SM), visual (VI), cognitive
control (CC), default mode (DM), and cerebellar (CB)
domain (see Fig. 2), according to [12].

4. EXPERIMENTS AND RESULTS

To evaluate our model in an unbiased way, we split our data
into training, validation, and test sets, such that the data
corresponding to no two subjects appears in more than one
set. Furthermore, we perform a max-min per-image
normalization on each spatial map. To counter the overfitting
effect, stratified 5-fold cross-validation where the number of
healthy and SZ patients remain roughly the same across each
fold. We trained our model with a learning rate of 0.01 and
batch size of 2500 samples for 100 epochs. We used early
stopping with a patience of 20 to avoid overfitting. The
contrastive loss temperature in our experiments was set to
0.01.

We implemented our model using the PyTorch deep
learning library and trained it on eight NVIDIA Tesla V100
GPUs, each with 32GB of RAM, in parallel. The overall
training time for each fold took ~8 hours on our local cluster.
Fig. 3 (right) visualizes the convergence curve of our model
on the test sets.
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Fig. 2. ICA-driven functional networks.

4.1. t-SNE visualization

We visualized the embeddings of spatial maps learned by the
model using the t-SNE visualization. Fig. 3 (left) shows that
our model has a strong capability in differentiating brain
networks that belong to different domains. This means our
model can efficiently map networks into a new space in
which networks of the same domain are close together while
other networks of different domains are far apart.

4.2. Spatial couplings heatmap

Fig. 4 shows the heatmap of the difference in L1 distances
between the schizophrenia and control groups. According to
the figure, intra-domain networks, especially subcortical and
default mode domains, in SZ subjects have significantly

larger distances than normal controls. A larger distance
suggests a lower strength of spatial coupling in schizophrenia
subjects compared to the control group. Furthermore, we
observe that networks of each domain interact strongly in
different ways with other domains across the two groups.
This is especially the case for subcortical networks. In other
words, while the subcortical networks in the SZ cohort have
stronger spatial coupling with visual and cerebellar networks
than NC, they have weaker coupling with sensory-motor and
cognitive-control networks.

To test for the significance of the abovementioned
results, we applied a two-sample t-test to the L1-distance
mean between the two cohorts. In Fig. 4, the upper triangle
shows the pairs that are statistically significant (i.e.,
corresponding p-values < 0.05). Accordingly, the majority of
the network pairs show significant differences. This is
particularly the case for the subcortical and default mode
networks when paired with other networks.
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Fig. 3. t-SNE visualization of embeddings (left) and
convergence curve (right).

5. DISCUSSION

Overall, our results suggest that the spatial coupling between
functional brain networks computed by ICA turns out to be
significantly different between SZ and NC subjects in most
cases. We observe a significantly lower coupling within
default mode networks, which is consistent with previous
findings that report a decreased functional connectivity [1],
[5]. This observation suggests that coupling between DMN5s
is disturbed when a subject is engaged with stimulus-
independent thoughts [13], such as thinking about himself or
his past/future. Furthermore, we observe significant hypo-
coupling, i.e., decreased spatial coupling, in SC-CB (which is
consistent with [6] that reports decreased coupling between
thalamus and cerebellum), SC-VI, SM-VI (which is
consistent with [7] that reports disconnection between visual
and sensory-motor networks), and DM-CB networks, and
hyper-coupling, i.e., increased spatial coupling, in SC-SM
(which is consistent with [6] that reports thalamo-sensory
increased coupling) and SC-CC networks, and nearly no
difference between CC-CB networks in SZ comparing with
NC.

Last but not least, we should note that when training our
model, we are not using the diagnostic labels of the subjects
in any way, yet when we compute the distance between
embeddings, we see a clear pattern that depends on such



labels. This corroborates the success of the proposed model
in finding informative and insightful representations of the
underlying networks when using contrastive learning to learn
the model parameters.
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Fig. 4. Heatmap of differences in L1 distance between
schizophrenia and control groups (SZ - NC).

6. CONCLUSION

In this study, we proposed a deep learning-based framework
to compute the spatial coupling between functional brain
networks of rs-fMRI images. We utilized the contrastive
learning framework to generate domain-specific embeddings
of the networks such that networks of the same domain
become closer in the embedding space than networks of
different domains. We further showed that such embeddings
are informative enough that can reveal the network-network
couplings with the use of a simple distance metric such as the
L1 distance. We used SZ as the case study and showed that it
serves as a proof of concept for our proposed approach in a
statistically significant way. Furthermore, our findings
showed that schizophrenia patients can be characterized by
hypo-coupling within the SC and DM networks and in SC-
CB and SC-VI networks in a statistically significant way. On
the other hand, we observed hyper-coupling between SC-SM
and SC-CC networks. Finally, it remains to be seen if such an
approach can help us gain interesting insights about other
types of brain disorders such as Alzheimer's and Parkinson's
disease and to see if brain networks coupling can be used as
a non-invasive biomarker.
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