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ABSTRACT 
 
Resting-state functional magnetic resonance imaging (rs-
fMRI) has become a widely used approach for detecting 
subtle differences in functional brain fluctuations in various 
studies of the healthy and disordered brain. Such studies are 
often based on temporal functional connectivity (i.e., the 
correlation between time courses derived from regions or 
networks within the fMRI data). While being successful for a 
number of tasks, temporal connectivity does not fully 
leverage the available spatial information. In this research 
study, we present a new perspective on spatial functional 
connectivity, which involves learning patterns of spatial 
coupling among brain networks by utilizing recent advances 
in deep learning as well as the contrastive learning 
framework. We show that we can learn domain-specific 
mappings of brain networks that can, in turn, be used to 
characterize differences between schizophrenia patients and 
control. Furthermore, we show that the coupling of intra-
domain networks in the controls is stronger than in patients 
suffering from the disorder. We also evaluate the coupling 
among networks of different domains and find various 
patterns of stronger or weaker coupling among certain 
domains, which provide additional insights about the brain. 

Index Terms— Contrastive learning, spatial coupling, 
resting-state fMRI, ICA  
 

1. INTRODUCTION 
 
Schizophrenia (SZ) is a psychotic disorder that is thought to 
be linked to dysconnectivity in the brain [1]. This disorder 
often cooccurs with symptoms including delusions, 
hallucinations, social isolation, and disorganized behavior. 
The disease impacts individuals worldwide1, and as a lifelong 
disorder, it is one of the most disabling, existing treatments 
have many side effects, and there is no cure. A significant 
amount of effort has been pursued in clinical and research 
entities to discover the cause(s) and characteristics of SZ to 

 
1 About 1% of the population worldwide suffers from schizophrenia. 
2 Other studies have used task-based fMRI studies (where the 
subjects are instructed to follow/perform certain task), although the 
rs-fMRI is more common. 

enhance the chance of early detection and developing more 
effective treatments. Because schizophrenia is a brain 
disorder, there is much focus on brain imaging modalities 
(e.g., fMRI) and statistical analysis methods for identifying 
brain networks. 

During the past decade, fMRI has become one of the 
most widely used neuroimaging techniques in SZ studies. 
Many research studies have tended to work with resting-state 
fMRI (rs-fMRI), where subjects are at rest during their scan2. 
This is because rs-fMRI scans are more easily performed in 
patients across a range of ages, and there are many existing 
data analysis pipelines [2]. An fMRI scan provides a map of 
functional activity in the brain that can be later used with 
statistical and mathematical approaches to estimate 
functional networks. Two of the most well-established 
approaches are seed-based analysis and independent 
component analysis (ICA). While seed-based approaches are 
widely used and relatively straightforward to implement, ICA 
has several advantages over seed-based approaches. First, 
ICA is a data-driven method in the sense that it adapts to the 
individual subjects and ensures temporally coherent voxels. 
Second, ICA provides both spatial maps and their 
corresponding time courses. And finally, ICA components 
can overlap, which allows for separation of artifacts from 
signal as well as for capturing multiple overlapping but 
distinct signals of interest. 

Many rs-fMRI studies have investigated group 
differences in interactions between functional networks by 
comparing functional brain connectivity (FNC3) of SZ to 
control (CN) groups [3]. They have discovered increased or 
decreased connectivity in certain regions of the brain for SZ 
individuals. For example, some papers have reported the 
default mode network (DMN), a widely studied network 
associated with internal reflection, has been linked to hypo-
connectivity in SZ [4], [5]. Several other studies have noted 
decreased connectivity within salience networks (SN) [1] and 
between thalamus and cerebellum networks [6] as well as 
between visual and sensory-motor networks [7] for SZ, while 

3 The correlation between time courses. 



others have observed increased connectivity among thalamus 
and sensory networks [6] in SZ versus CNs. 

While such work has focused on temporal connectivity 
among regions (functional connectivity; FC) or among 
networks/components (functional network connectivity; 
FNC) to identify dysconnectivity in the brain, in our research, 
we investigated the relationship among spatial maps (i.e., 
spatial coupling) to recognize functional networks coupling 
that contributes to the SZ disorder. Our method is based on a 
novel deep learning-based architecture that generates 
domain-specific embeddings of ICA-driven spatial maps in a 
supervised contrastive learning setting. 
 

2. METHOD 
 
Concisely speaking, our approach employs the contrastive 
learning framework to extract embeddings for spatial maps, 
which are later used to measure the coupling between brain 
networks. As such, the proposed model is comprised of two 
important components, an embedding network, and an L1-
based distance metric. The task of the embedding network is 
to generate domain-specific embeddings of the functional 
networks in such a way that similar networks (i.e., networks 
of the same domain) are mapped to closer points in the 
embedding space and at the same time farther from networks 
that belong to different domains. Once the samples are 
mapped into a space where the abovementioned objective is 
fulfilled, we use an L1 distance to quantify how similar or 
dis-similar each pair network would be. 
 
2.1. The embedding network 
 
Our embedding network is based on the 3D-ResNet10 [8] 
architecture, which receives 3D input images and generates 
512 high-level features4. This model is a reduced version of 
the original Resnet model, which replaces 2D CNN 
components (i.e., convolutional kernels, pooling and batch 
normalization layers, etc.) with their 3D counterparts and 
removes the layers that do not contribute significantly to the 
performance. This makes such a model trainable on moderate 
GPU memories. To better capture complex non-local 
relationships between features, we augmented this model 
with a multi-layer perceptron [9] with a 512-dimensional 
hidden layer and a 128-dimensional output layer5. Fig. 1 
visualizes a high-level view of our proposed model. In 
summary, this model leverages the residual networks as well 
as the multi-layer perceptron to generate 128-dimensional 
embeddings of ICA-generated spatial maps for downstream 
analysis. 

To learn domain-specific embeddings of spatial maps 
efficiently, we used the supervised contrastive learning 
framework [10]. This allows extraction of within and 

 
4 We modified the ResNet model in [8] 
(https://github.com/kenshohara/3D-ResNets-
PyTorch/blob/master/models/resnet.py) 

between-domain informative embeddings. Because the 
contrastive loss requires pairs of samples, we pair each spatial 
map of a given subject with another map of the same domain 
but a different subject. For any given domain, the contrastive 
loss considers all such pairs that belong to the same domain 
as positive pairs, and the rest are regarded as negative ones. 
Once this model is trained using the contrastive loss, the 
resulting embeddings can serve as a domain-informed 
representation of each input network. 

 
Fig. 1.  The architecture of the proposed model. 

 
2.2. The L1-distance layer 
 
The supervised contrastive learning framework makes it 
possible to learn rich embeddings of spatial maps. Now to 
compute the distance between each pair of networks in the 
resulting space, we compute the L1 distance (i.e., the sum of 
the absolute difference values of two embeddings) as it has 
been shown to serve as a robust dissimilarity metric before. 
This final distance can now be regarded as a measure of 
spatial coupling between the functional brain networks of 
interest. A large distance corresponds to networks that have 
weak spatial couplings, while low distance pairs represent 
strong couplings between networks. 
 

3. EXPERIMENTAL DATA 
 
We studied resting-state fMRI data from 2,115 individuals, 
including 1,060 healthy control (CN) and 1,055 
schizophrenia (SZ) patients. The data are aggregated across 
five multi-site studies. We applied spatially constrained ICA 
using the NeuroMark pipeline [11] to generate 53 subject-
specific functional networks from 4D rs-fMRI images. The 
NeuroMark approach is a hybrid between data-driven ICA 
and model-based approaches, which leverages spatial priors 
are adapted to individual subjects to provide a fully 
automated ICA framework. The functional networks were 
grouped into seven domains, namely, subcortical (SC), 

5 The size of the last two fully connected layers is selected based on 
[10]; however, we replaced the 2048-dimensional layer with a 512-
dimensional embeddings layer to fit our data into GPUs. 



auditory (AU), sensory-motor (SM), visual (VI), cognitive 
control (CC), default mode (DM), and cerebellar (CB) 
domain (see Fig. 2), according to [12].  

 
4. EXPERIMENTS AND RESULTS 

 
To evaluate our model in an unbiased way, we split our data 
into training, validation, and test sets, such that the data 
corresponding to no two subjects appears in more than one 
set. Furthermore, we perform a max-min per-image 
normalization on each spatial map. To counter the overfitting 
effect, stratified 5-fold cross-validation where the number of 
healthy and SZ patients remain roughly the same across each 
fold. We trained our model with a learning rate of 0.01 and 
batch size of 2500 samples for 100 epochs. We used early 
stopping with a patience of 20 to avoid overfitting. The 
contrastive loss temperature in our experiments was set to 
0.01.  

We implemented our model using the PyTorch deep 
learning library and trained it on eight NVIDIA Tesla V100 
GPUs, each with 32GB of RAM, in parallel. The overall 
training time for each fold took ~8 hours on our local cluster. 
Fig. 3 (right) visualizes the convergence curve of our model 
on the test sets. 

 
Fig. 2. ICA-driven functional networks. 

 
4.1. t-SNE visualization 
 
We visualized the embeddings of spatial maps learned by the 
model using the t-SNE visualization. Fig. 3 (left) shows that 
our model has a strong capability in differentiating brain 
networks that belong to different domains. This means our 
model can efficiently map networks into a new space in 
which networks of the same domain are close together while 
other networks of different domains are far apart.  
 
4.2. Spatial couplings heatmap 
 
Fig. 4 shows the heatmap of the difference in L1 distances 
between the schizophrenia and control groups. According to 
the figure, intra-domain networks, especially subcortical and 
default mode domains, in SZ subjects have significantly 

larger distances than normal controls. A larger distance 
suggests a lower strength of spatial coupling in schizophrenia 
subjects compared to the control group. Furthermore, we 
observe that networks of each domain interact strongly in 
different ways with other domains across the two groups. 
This is especially the case for subcortical networks. In other 
words, while the subcortical networks in the SZ cohort have 
stronger spatial coupling with visual and cerebellar networks 
than NC, they have weaker coupling with sensory-motor and 
cognitive-control networks. 

To test for the significance of the abovementioned 
results, we applied a two-sample t-test to the L1-distance 
mean between the two cohorts. In Fig. 4, the upper triangle 
shows the pairs that are statistically significant (i.e., 
corresponding p-values < 0.05). Accordingly, the majority of 
the network pairs show significant differences. This is 
particularly the case for the subcortical and default mode 
networks when paired with other networks. 

 
Fig. 3. t-SNE visualization of embeddings (left) and 

convergence curve (right). 

 
5. DISCUSSION 

 
Overall, our results suggest that the spatial coupling between 
functional brain networks computed by ICA turns out to be 
significantly different between SZ and NC subjects in most 
cases. We observe a significantly lower coupling within 
default mode networks, which is consistent with previous 
findings that report a decreased functional connectivity [1], 
[5]. This observation suggests that coupling between DMNs 
is disturbed when a subject is engaged with stimulus-
independent thoughts [13], such as thinking about himself or 
his past/future. Furthermore, we observe significant hypo-
coupling, i.e., decreased spatial coupling, in SC-CB (which is 
consistent with [6] that reports decreased coupling between 
thalamus and cerebellum), SC-VI, SM-VI (which is 
consistent with [7] that reports disconnection between visual 
and sensory-motor networks), and DM-CB networks, and 
hyper-coupling, i.e., increased spatial coupling, in SC-SM 
(which is consistent with [6] that reports thalamo-sensory 
increased coupling) and SC-CC networks, and nearly no 
difference between CC-CB networks in SZ comparing with 
NC. 

Last but not least, we should note that when training our 
model, we are not using the diagnostic labels of the subjects 
in any way, yet when we compute the distance between 
embeddings, we see a clear pattern that depends on such 



labels. This corroborates the success of the proposed model 
in finding informative and insightful representations of the 
underlying networks when using contrastive learning to learn 
the model parameters. 

 

 
Fig. 4. Heatmap of differences in L1 distance between 

schizophrenia and control groups (SZ - NC). 

 
6. CONCLUSION 

 
In this study, we proposed a deep learning-based framework 
to compute the spatial coupling between functional brain 
networks of rs-fMRI images. We utilized the contrastive 
learning framework to generate domain-specific embeddings 
of the networks such that networks of the same domain 
become closer in the embedding space than networks of 
different domains. We further showed that such embeddings 
are informative enough that can reveal the network-network 
couplings with the use of a simple distance metric such as the 
L1 distance. We used SZ as the case study and showed that it 
serves as a proof of concept for our proposed approach in a 
statistically significant way. Furthermore, our findings 
showed that schizophrenia patients can be characterized by 
hypo-coupling within the SC and DM networks and in SC-
CB and SC-VI networks in a statistically significant way. On 
the other hand, we observed hyper-coupling between SC-SM 
and SC-CC networks. Finally, it remains to be seen if such an 
approach can help us gain interesting insights about other 
types of brain disorders such as Alzheimer's and Parkinson's 
disease and to see if brain networks coupling can be used as 
a non-invasive biomarker. 
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