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ABSTRACT 
 
Functional network connectivity (FNC) is a useful measure 
for evaluating the temporal dependency among brain 
networks. Longitudinal changes of intrinsic function are of 
great interest, but to date there has been little focus on 
multivariate patterns of FNC changes with development. In 
this paper, we proposed a novel approach that uses FNC 
matrices to estimate multiple overlapping brain functional 
change patterns (FCPs). We applied this approach to the 
large-scale Adolescent Brain and Cognitive Development 
(ABCD) data. Results reveal several highly structured FCPs 
showing a significant change over a two-year period 
including brain functional connectivity between visual (VS) 
and sensorimotor (SM) domains. This pattern of FNC 
expression becomes stronger with age. We also found a 
differential pattern of changes between male and female 
individuals. Our approach provides a powerful way to 
evaluate whole brain functional changes in longitudinal data. 

 
Index Terms— Delta FNC, Longitudinal study, ICA, 

MRI 
 

1. INTRODUCTION 
 
The resting-state human brain can be used to reveal time-
varying functional connectivity (FC) dynamics [1-4]. There 
are various neuroimaging techniques that can be used to 
quantify FC. Functional magnetic resonance imaging (fMRI) 
is the most commonly used technique for the computation of 
the temporally coherent between brain blood oxygenation 
dependents. The FC between two brain regions from resting 
state functional magnetic resonance imaging (rfMRI) data 
can be computed via a measure of pairwise statistical 
dependency (most commonly Pearlson correlation) between 
the time courses. Data driven decomposition techniques such 
as independent component analysis (ICA) can be used to 
extract co-activated brain networks, whose time courses can 
be used to calculate the functional network connectivity 
(FNC) [5].  
There is a growing research interest in estimating age-related 
anatomical and functional changes. Spontaneous blood 

oxygenation level-dependent (BOLD) signals have been 
frequently used to identify the regional FC and investigate the 
changes in a variety of neurological and psychiatric disorders 
[6]. During the adolescence period, the human brain exhibits 
remarkable changes both in function [7, 8] and structure [9, 
10]. Several studies have reported age-related FC changes 
during the adolescence period, but the obtained results are 
somewhat inconsistent [11]. Small data size, the absence of 
longitudinal data, variation in fMRI data preprocessing, and 
the choice of different analysis methods contribute to this 
inconsistency. Vasa et al., have investigated changes in 
human brain function during adolescent and found two 
distinct modes (disruptive and conservative) of age-related 
change in FC. Age-related changes in FC have been studied 
including findings showing a progressive reduction in FC 
among different age groups [12]. The impact of aging on 
functional networks has also been reported in [13]. However 
there has been little work in evaluating multivariate patterns 
of change in functional (network) connectivity with 
development. 
In our work, we propose a new technique to visualize within 
individual changes in whole-brain FNC with increased age. 
We estimate the FC change patterns (FCPs) by first 
computing cellwise within individual DFNC matrix and then 
estimating covarying multivariate patterns via ICA on the 
DFNC matrices. A one sample t-test on the resulting 
component loading parameters reveals several FCPs showing 
significant longitudinal differences. To the best of our 
knowledge, our proposed procedure is the first approach to 
estimate multiple overlapping brain functional change 
patterns (FCPs) over a two-year period in the developing 
brain. The remainder of the research paper is organized as 
follows. In the materials and methods section, we introduced 
the data preprocessing and the analysis procedures. Next, in 
the result section, we show brain functional coupling change 
with age. Finally, we discuss the findings in the conclusion 
section. 
 

2. MATERIALS AND METHODS 
 
2.1 Summary of ABCD data: 
The present work used the dataset from the release 2.01 of the 
Adolescent Brain Cognitive Development (ABCD) study 



(https://abcdstudy.org/). The ABCD contains over 11,800 
children aged 9–11 years with multiple MRI scans from two 
image sessions (baseline and second year follow-up), and 
collected a diverse range of demographic and health 
backgrounds. The parent’s full written informed consent and 
the child’s assent were obtained for each participant under 
protocols approved by the Institutional Review Board (IRB). 
The ABCD dataset is shared by the National Institute of 
Mental Health Data Archive (NDA) (https://nda.nih.gov/), 
which makes available open-source datasets collected from 
wide range of research projects across many scientific 
domains to enable collaborative science and discovery. In this 
study we used 3,489 subjects who had been scanned both at 
baseline and at a two-year follow-up visit. 
 
2.2 Data preprocessing: 
We preprocessed the raw fMRI data via a combination of the 
FMRIB Software Library v6.0 (FSL) toolbox and the 
Statistical Parametric Mapping 12 (SPM) toolbox, under the 
MATLAB 2019b environment. First, rigid body motion 
correction was performed using FSL to correct subject head 
motion. Then we corrected the distortion in the fMRI images 
using the field map files acquired with phase encoding in the 
anterior-posterior (AP) direction and volumes with phase 
encoding in the posterior-anterior (PA) direction). After 
distortion correction, fMRI data were subsequently warped 
into the standard Montreal Neurological Institute (MNI) 
space with 3 × 3 ×3 spatial resolution and were then smoothed 
using a Gaussian kernel with a full width at half maximum 
(FWHM) = 6 mm. 

In this study, the Neuromark network templates were used to 
extract comparable intrinsic connectivity networks (ICNs) 
via a fully automated spatially constrained ICA approach 
across subjects from the ABCD dataset. The Neuromark 
framework used two healthy control datasets, the human 
connectome project (HCP, 823 subjects after the subject 
selection) and the genomics superstruct project (GSP, 1005 
subjects after the subject selection) to construct the priors. 
Details of the Neuromark framework and templates can be 
found at [14]. The selected spatial priors have also been 
demonstrated to be highly reliable between pipeline and 
between adult and adolescent datasets [15]. 
 

2.3 Models: 
In our experiment, we used the subject-wise FNC data from 
the baseline and two-year scans. We first computed the cell-
wise difference between the baseline and two-year FNC data 
to create change FNC matrices (∆FNCs). Next, for 
longitudinal brain functional coupling recognition, to capture 
covarying patterns of changes, called functional change 
patterns (FCP) we decompose the ∆FNC matrices with ICA 
using the infomax algorithm [16]. In this work we estimate 5 
components. More specifically the equation for the ICA 
model can be written as: 

      X = A.S 

Here, X = Subjects (3489) × ∆FNC cells (1378 cells from the 
upper triangle of the symmetric matrix); A = subjects (3489) 
× component number (5) and S = component number (5) × 
∆FNC cells (1378) 

This effectively models the input data as:  

∆FNC =  ∑ 𝑎!"
!#$ FCP    

Here, ∆FNC = F0 - F2, F0 is the baseline FNC data, F2 is the 
two-year FNC data, FCP, the source matrix, represent 
maximally independent functional change patterns, and ai are 
the subject specific loading parameters for each component. 
The sources represent maximally independent covarying 
patterns of functional change.  

After the ICA estimation, we further evaluated the loading 
parameters and source matrix. To identify FCPs which show 
a significant longitudinal change relative to zero, we perform 
a one sample t-test on the loading parameters and compute 
the statistical significance with 95% significance level, 
corrected for multiple comparisons. We also plotted the 
scatter plot of loadings parameters and generated the spatial 
map of FNC matrices. A block diagram shown in Figure 1 
presents the analysis workflow. 

 

 
Figure 1: Block diagram of the FCP analysis workflow 

 
3. RESULTS 

 
The Neuromark template identified 53 replicable networks 
that were divided into 7 domains based on anatomical and 
functional properties (subcortical, auditory, sensorimotor, 
visual, cognitive control, default mode and cerebellar) [14]. 
Figure 2 shows the brain network template where one color 
in the composite maps represents an intrinsic connectivity 
network in each subplot. 
 
Experimental results for the FCPs are shown in Figure 3. In 
the plot, we plot our 5 estimated components and marked the 
associated T values. From the figure, we see the evidence of 
considerable modularity in the results, suggesting structured 
changes with age. The FCPs for components 2 and 4 have the 
highest positive (component 2) and negative (component 4) 
T-values. Here the T-value tells us the degree to which each 
FCP is expressed in the data (either positively or negatively). 



A high negative (positive) value of T represents increased 
(decreased) expression of the given FCP with age.   
In the figure, we see that component 4 has the largest negative 
T value of -14.02 meaning this FCP is strongly (negatively) 
expressed in the data. In the plot, visual domain (VSN)-
sensorimotor domain (SMN) and cerebellar domain (CBN)-
sub cortical domain (SCN) exhibit the largest negative 
values, which implies increasing brain functional coupling 
over the two-year period. In addition, VSN-CBN and SMN-
SCN domains show decreasing change patterns with age. 
 
 

 
Figure 2: Visualization of Neuromark network template [14] 

For component 2, we observe decreasing functional 
connectivity coupling between default mode domain (DMN) 
and SMN with age. The associated T-value (of 11.47) is 
positive for component 2 meaning this FCP is strongly 
(positively) expressed in the data. We also see increased 
functional coupling between the CBN and DMN regions over 
the two-year period. 
 
We plotted the loading scores using a raincloud plot to show 
the distribution of data, and their relationship to one another 
at a glance via medians and confidence intervals. From figure 
4, we see that the variance of loading parameter is higher for 
component 4, and it also shows a (significantly) negative 
mean value.  
 
Finally, we also performed a two-sample t-test on each 
loading parameters using sex information. We observed that 
male and females show negative effects on component 4 and 
5, with the directionality being the opposite (males show 

smaller FCP changes for component 4 and females show 
smaller FCP changes for component 5). 
 

 
Figure 3: FNC component plot. In the figure, we observe the 
FCPs for components 2 and 4 have the highest positive 
(component 2) and negative (component 4) T-values. 

 
4. DISCUSSION AND CONCLUSION 

 
In this paper, we introduce a novel approach to compute 
multiple overlapping brain functional change patterns using 
FNC matrices. We take delta FNC matrix to show brain 
functional connectivity change with age. Our findings show 
that several FCPs showing a significant change over a two-
year period and stronger functional connectivity coupling 
between the VSN and SMN domains and decreasing 
anticorrelation between sensorimotor and cognitive/default 
mode network domains with increasing age. We also find 
both shared and distinct brain functional pattern changes 
between male and female where male and female exhibit 
negative effects on component 4 and 5 with the opposite 
directionality. Our approach shows promise to be a powerful 



tool to evaluate whole brain functional changes longitudinal 
studies 
 

 
Figure 4: Scatter plot of loadings parameters. In Y axis, we 
present five loading and in X axis, we present the scores of 
the corresponding loadings. 
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