SINGLE SIDEBAND MODULATION AS A TOOL TO IMPROVE FUNCTIONAL
CONNECTIVITY ESTIMATION

ABSTRACT

Time-resolved functional network connectivity (trFNC)
provides a useful tool for representing functional magnetic
resonance imaging (fMRI) data with functional networks that
change with time. Partly due to its simplicity, sliding window
Pearson correlation (SWPC) is the most widely-used method
for trFNC estimation. In SWPC, the window size should be
selected long enough to avoid spurious estimates of
connectivity values, and short enough to capture meaningful
fast variations in connectivity estimates. To solve this issue,
we propose a method inspired by single sideband (SSB)
modulation that allows us to select small window sizes for
SWPC without filtering out important low-frequency activity
information. We use simulation to show the improvement
offered by the proposed method. Additionally, we use fMRI
data to show that SSB-SWPC estimates have reduced
spurious variation compared with typical SWPC estimators.

Index Terms— time-resolved connectivity, single-
sideband  modulation, {fMRI, Pearson correlation,
connectivity

1. INTRODUCTION

Functional network connectivity (FNC) collectively refers to
the functional relationship between different parts of the
brain. As the brain is a dynamic system, it is assumed that
FNC changes with time too. Approaches proposed for
estimating time-resolved FNC (trFNC) include sliding
window Pearson correlation (SWPC) [1], Instantaneous
shared trajectory(IST) [2], Filter banked connectivity [3],
multiplication of temporal derivatives (MTD)[4], cross
wavelet coherence [5]. among many others [6].

SWPC is a widely used method for estimating trFNC partly
because of its ease of use. But, like any method, SWPC has
its advantages but also several shortcomings [7]. SWPC
includes two filters: One highpass filter which is applied to
activity time series and one lowpass filter which is applied to
connectivity time series. We want to select a window size that
is long enough so that the highpass filter does not filter out
important low frequency information of activity time series.

But selecting a very large window size will result in a very
lowpass connectivity time series and important connectivity
information might go undetected. Here we propose a solution
to mitigate this issue, allowing us to select smaller window
sizes without increasing the amount of spurious estimation.

2. METHODS

2.1. Sliding window Pearson correlation (SWPC)
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Figure 1. Sliding window Pearson correlation (SWPC)
equation and system diagram. SWPC is made of 3 specific
subsystems. First, there is a highpass filter (HPF) that is
applied to the SWPC input. Then there is a bivariate coupling
function C that mixes the information between the filtered
activity pairs. Finally, there is a low pass filter (LPF) that is
applied to the output of C and gives the connectivity estimate.

Looking at the SWPC equation (Figure 1), we see that it can
be broken into three different subsystems: assuming that we
have two time series (x(t) and y(t)), in the first subsystem
(red rectangular part in Figure 1) the sliding average of each
of the two time series (x(t) and y(t) respectively) are
removed from the time series. Removing an average of a
signal from itself is equivalent to applying a highpass filter
(HPF) to the original signal. The second subsystem (blue
circle in Figure 1) involving a multiplication (and division by
the moving standard deviation) is a coupling function. The
final subsystem of SWPC (green rectangular in Figure 1) is
simply a moving average function (i.e., low pass filter; LPF).
In SWPC, the frequency response of both the HPF and LPF
finite impulse response function (FIR) filters are determined
by the window length (2A+ 1) and window shape



(rectangular window in Figure 1). Selecting a higher value for
the window length will reduce the cutoff of the HPF which
can be considered a desirable selection for the fMRI signal as
it is argued that the fMRI signal has a lowpass nature and pre-
processing for rsfMRI typically includes a bandpass filter.
Because of this, prior studies recommend using longer
window sizes up to 100 seconds [7]. One caveat for selecting
a longer window size is that 7, ,,(t) would be very smooth,
and as a result, important connectivity variations might go
undetected. Note that most research focused on the rsfMRI
spectrum applies to the activity time series spectrum and not
the connectivity time series spectrum [3].

2.2. Single sideband modulation SWPC (SSB-SWPC)

Inspired by single-sideband (SSB) modulation in
communication theory [8] we propose a modification to
SWPC which modulates the activity signals (x(t) and y(t))
to a higher frequency before passing them through the first
HPF subsystem of SWPC. This would allow us to select small
window length values without excessively highpass filtering
the activity signals. To perform SSB modulation, we first
calculate the analytic signals using the Hilbert transform (1)
effectively removing the negative part of x(t) spectrum.

xg () = x(t) + V=1 X H[x(1)] )
Next, we modulate the analytic signal x,(t) by multiplying it
by the term e~ ?"/m! and include only the real part of the
modulated signal (add the negative part of the spectrum back
into the data as real signals have symmetric spectrum).

X (t) = Re[xq(t) x e~12™/mt] 2
Figure 2 illustrate these steps. The multiplication int the time
domain (the coupling in the SWPC system), is equivalent to
circular convolution in the frequency domain.
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Figure 2. The idea behind SSB. First, the analytic signal is
calculated (step 2) removing one sideband of the data. Then
this analytic signal is modulated to higher frequencies (step
3) and by calculating the real part of this modulated signal,
the other sideband is added back to the spectrum (step 4).

The proposed SSB modulation, will not change the coupling
function output (i.e., C in Figure 1) for a specific low-
frequency range. Assume that Z(f) and W (f) (the Fourier

transforms of z(t) and w(t)) are zero for all frequencies
below a specific value (fypg; i.e., SWPC HPF cutoff). We
also assume that z,,(f) and w,,(f) are the SSB modulated
versions of z(t) and w(t) respectively. By thinking about
circular convolution visually, we can say that Z(f) ® W(f)
and Z,,(f) ® W,,,(f) are equal for the range:

_feq < f < +feq 3)
feq = minfupr, fs = 2(fm + f) )

f5 is the sampling frequency, f,,, is the modulation value (2)
and fj, is the highest frequency that the signals have (signals
are bandlimited therefore f;, # f;). 2fypr is the shift value
where the negative sideband of the signal being shifted
overlaps with the positive sideband of the signal being kept
in place in the circular convolution. Because frequency
transforms of discrete signals are periodic, if we shift the
spectrum of one signal by more than 2 X (f;/2 — (f;m + f))
the positive sideband of the modulated signal in the range
(—fs/2,+f;/2) will collide with the negative sideband of the
other modulated signal in the range (+ f;/2,+3f;/2; next
period in the spectrum of the signal).

1- Modulate sideband —r— ;
by fm Vifpe o o Hpe

I

2- Pass X s and Yys
through SWPCyee

>

3- Calculate
Xy ®Yy

(multipication in time) Y . [mpact of LSB
(G e i™._ | USB starts here
- N ™. -

4-Pass Xy ® Yar ‘ ‘ ““lhpE ‘ “ LPF wr : o
through SWPC ¢
o /\
-1 0.8 0.6 0.4 0.2 0 0.2 04 0.6 0.8 1

Normalized frequency
Figure 3 Illustration of the steps in SSB+SWPC. The main
reason why SSB improves the SWPC results is seen in step
1. By modulating the signal to higher frequencies (step 1), we
make sure that the SWPC highpass filter does not filter any
important information of the activity time series. The other
steps provide illustrations for the inequalities provided in (4).

Based on step 1 in Figure 3, we can say that f,, +
min(X,,Y,) should be higher than fypr to make sure that
HPF part of the signal does not filter out any important low-
frequency content. Based on the same step we can see that the
modulation should not be so high that aliasing happens.
Therefore f,, + max(X,,Y,) should be lower than f; /2 (i.e.,
Nyquist frequency). Note that essentially max(X,,Yy) is
equal to f, in (3). Based on the step 4 of Figure 3, we can also
say that f;pr (LPF cutoff of SWPC) should be lower than



max (X, —Y,, Y, —X,) so that we have all the range of
possible information on the output. All in all, we can
summarize all the inequalities:
fm > fHPF - min(Xa' Ya)
[ < fs — max(X,Yp) 4
fupr < Min(fug, max(Xp = Yo, Yp = Xa) ¥

feq = minQ2fupr, fs — 2(fm + 1) )
2.3. Simulation

Here we show how the proposed method improves the
estimation of trFNC. Assume that we have two bandlimited
time series x(t) and y(t) that we want to have a specific time-
resolved covariance matrix X, (t). We can achieve this by
first generating two independent random signals x,,(t) and
Y (t) by filtering white noise random signals where the
filters are determined by the specific bandwidth, we desire for
the signals. Next, we can calculate the Cholesky
decomposition of Z,,,(t) = LTL. Now by using this equation
X0 [5)]
bl =l ©

We can have a pair of time series (i.e., x(t) and y(t)) that
have a covariance of X, (t). For this simulation, we chose
the sampling frequency to be 2 Hz and the signals to have
content in the frequency range [0-0.15] Hz. And for Z,,,(¢) 1
was selected for the diagonal entries and 0.7cos(2mt X 0.01)
in the off-diagonal entries which translate to sinusoidal
correlation with a frequency of 0.01 Hz. Additionally, we
selected the window size to be equal to 5 time points (3.5 sec).
We compared the correlation between the output of typical
SWPC and SSB-SWPC proposed here.

2.4. fMRI analysis

To showcase the benefits of the proposed method, we applied
SSB+SWPC to a fMRI dataset that includes 314 subjects with
TR equal to 2 seconds where the activity is bandpass filtered
(0.01-0.15 Hz). After preprocessing steps, a group
independent component analysis pipeline (gICA) was applied
[1, 9] and 47 components were selected based on their spatial
maps. For a more detailed description of the dataset and all
the preprocessing and analysis steps see *. For this project,
we first upsample the dataset to have a TR of 1 second. This
step was performed so that we have a larger frequency range
to work with. Next, we estimated pairwise trFNC using both
typical SWPC and SSB-SWPC methods using window sizes
equal to 7 and 21 time points. Next, to evaluate if the
proposed approach improves the estimation of trFNC, we
calculated two metrics. The first metric was the mean square
difference between the static FNC (FNC calculated over the
whole time series temporal range) and averaged trFNC
estimated using both SWPC and SSB-SWPC. We predict that
as trFNC calculated using SSB modulation is less noisy, its
average is closer to sSFNC calculated directly. For the second
metric, we first concatenated trFNC values across subjects

and time and applied k-means clustering to it based on
previous works [1]. Then we calculated dwell time as the
number of times points each subject stays in a given cluster.
The second metric is the average difference between each
subject's dwell time and the window size (i.e., 7 time points).
We predict that as SSB+SWPC results in a more robust
estimation of trFNC, its dwell times are closer to the SWPC
window length. The final results of both methods using 5
clusters and a window size of 7 TR is calculated.

3. RESULTS

Figure 4 shows the simulation results. As can be seen here
pairing SSB modulation with SWPC improve the results for
almost all values of f;,;s for up to 0.15 increase in correlation
value (i.e., tho) between estimated trFC and its true value.
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Figure 4. Simulation results. First correlation between
connectivity estimation and its true values are calculated for
both SSB+SWPC (pssg+swpc) and SWPC (psypc)- Then the
difference between these two values is calculated for different
modulation values. Results are all positive across different f,,
meaning that SSB+SWPC gives a better estimate of the true
connectivity time series.

Figure 5 shows the results from the two performance metrics
we explained in section 2.4 for both window sizes (7 and 21
TR). As can be seen in this figure, the Mean Square Error
(MSE) between sFNC and average trFNC is lower for
SSB+SWPC compared to SWPC for both window sizes.
Additionally, here we see that SSB+SWPC has resulted in
dwell times closer to the window size compared to the classic
SWPC result. Collectively, these two observations show that
SSB+SWPC results in less spurious trFNC estimates. Figure
6 shows the final clustering for both methods for the window
size equal to 7 TR. As can be seen here the cluster centroids
(the first two rows) are quite similar for 4 out of 5 clusters.
The only cluster that is different is cluster 4. This cluster is
not found in higher window sizes for SWPC as reported in
[2] and is not reported in any of the other works using the
same data that use other methods too *. This leads us to
believe that this cluster is the outcome of spurious high-
frequency activity portions. This claim needs to be examined
in future works. Other clusters have very similar cluster
centroids but there is two specific differences in the statistical
results of their correspondence dwell time. Namely in cluster
3 SWPC shows a significant difference between the two
groups (SZ<HC) while SSB+SWPC does not. On the other



hand, the statistical test for cluster 5 dwell time shows a
significant difference between the two groups (SZ>HC)
while SWPC only results are not significant. Because of the
lack of knowledge about true trFNC states, we cannot say if
one cluster is better compared to the other one but it is
interesting that cluster 3 (where SWPC results are significant)
does not show a lot of modularity (connectivity between all
nodes are high here regardless of their functional domains)
while cluster 5 (where SSB+SWPC results are significant)
shows what looks to be meaningful modularity between
domains.
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Figure 5. The performance metric of the two methods using
two window sizes (one short and one long). The left figure in
each of the boxes shows the MSE between sFNC and
averaged trFNC resulted from each method. For both window
sizes, we see that SSB+SWPC MSE is smaller than SWPC
which means that SSB+SWPC is less noisy. Additionally, the
right figure in each box shows the average difference between
dwell time and the window size used. We can say that the
more positive this value the better as we should not be able to
find variations smaller than the window sizes. For both
window sizes, we see that the SSB+SWPC difference is
higher pointing to a less noisy estimation of trFNC.
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Figure 6. Clustering results of both methods using window
size equal to 7 TR.
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6. DISCUSSION AND LIMITATION

In this work, we proposed a solution to mitigate one of the
major weaknesses of SWPC. Using the idea behind SSB
modulation, we move the main content of the activity time
series to higher frequencies before calculating trFNC. Using
a simple simulation, we showed this method can achieve a
better estimate of the connectivity values. Additionally, we
showed an application of the proposed SSB+SWPC approach
and discussed its SSB+SWPC. We showed how SSB+SWPC
can result in dwell time values closer to the window size used
and possibly give a more accurate estimation of dwell time.
Additionally, we showed how the final results of SSB+SWPC
are not significant for a cluster that does not show modularity
(which can be argued is not desirable).

There are two specific limitations to the proposed approach:
first, this method has additional parameters that need to be
selected. Second, SSB+SWPC can result in aliased
connectivity values if the users are not knowledgeable
enough. To remedy these two limitations, we derived some
inequality expressions that give the users a basis for selecting
the parameter in addition to avoiding the aliasing issue.

In summary, SSB+SWPC improves the estimation of trFNC
allowing us to use smaller window sizes for the SWPC
portion without losing the (important) lowpass information in
fMRI. This method can also be used to mitigate the
limitations of other methods such as IST [2] and MTD [4].
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