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ABSTRACT 

 
Time-resolved functional network connectivity (trFNC) 
provides a useful tool for representing functional magnetic 
resonance imaging (fMRI) data with functional networks that 
change with time. Partly due to its simplicity, sliding window 
Pearson correlation (SWPC) is the most widely-used method 
for trFNC estimation. In SWPC, the window size should be 
selected long enough to avoid spurious estimates of 
connectivity values, and short enough to capture meaningful 
fast variations in connectivity estimates. To solve this issue, 
we propose a method inspired by single sideband (SSB) 
modulation that allows us to select small window sizes for 
SWPC without filtering out important low-frequency activity 
information. We use simulation to show the improvement 
offered by the proposed method. Additionally, we use fMRI 
data to show that SSB-SWPC estimates have reduced 
spurious variation compared with typical SWPC estimators. 
 

Index Terms— time-resolved connectivity, single-
sideband modulation, fMRI, Pearson correlation, 
connectivity 
 

1. INTRODUCTION 
 
Functional network connectivity (FNC) collectively refers to 
the functional relationship between different parts of the 
brain. As the brain is a dynamic system, it is assumed that 
FNC changes with time too. Approaches proposed for 
estimating time-resolved FNC (trFNC) include sliding 
window Pearson correlation (SWPC) [1], Instantaneous 
shared trajectory(IST) [2], Filter banked connectivity [3], 
multiplication of temporal derivatives (MTD)[4], cross 
wavelet coherence [5]. among many others [6]. 
SWPC is a widely used method for estimating trFNC partly 
because of its ease of use. But, like any method, SWPC has 
its advantages but also several shortcomings [7]. SWPC 
includes two filters: One highpass filter which is applied to 
activity time series and one lowpass filter which is applied to 
connectivity time series. We want to select a window size that 
is long enough so that the highpass filter does not filter out 
important low frequency information of activity time series. 

But selecting a very large window size will result in a very 
lowpass connectivity time series and important connectivity 
information might go undetected. Here we propose a solution 
to mitigate this issue, allowing us to select smaller window 
sizes without increasing the amount of spurious estimation.  

2. METHODS 
 
2.1. Sliding window Pearson correlation (SWPC) 
 

 
Figure 1. Sliding window Pearson correlation (SWPC) 
equation and system diagram. SWPC is made of 3 specific 
subsystems. First, there is a highpass filter (HPF) that is 
applied to the SWPC input. Then there is a bivariate coupling 
function C that mixes the information between the filtered 
activity pairs. Finally, there is a low pass filter (LPF) that is 
applied to the output of C and gives the connectivity estimate. 

Looking at the SWPC equation (Figure 1), we see that it can 
be broken into three different subsystems: assuming that we 
have two time series (𝑥ሺ𝑡ሻ and 𝑦ሺ𝑡ሻ), in the first subsystem 
(red rectangular part in Figure 1) the sliding average of each 
of the two time series (𝑥ሺ𝑡ሻതതതതതത and 𝑦ሺ𝑡ሻതതതതതത respectively) are 
removed from the time series. Removing an average of a 
signal from itself is equivalent to applying a highpass filter 
(HPF) to the original signal. The second subsystem (blue 
circle in Figure 1) involving a multiplication (and division by 
the moving standard deviation) is a coupling function. The 
final subsystem of SWPC (green rectangular in Figure 1) is 
simply a moving average function (i.e., low pass filter; LPF). 
In SWPC, the frequency response of both the HPF and LPF 
finite impulse response function (FIR) filters are determined 
by the window length (2Δ ൅ 1) and window shape 



(rectangular window in Figure 1). Selecting a higher value for 
the window length will reduce the cutoff of the HPF which 
can be considered a desirable selection for the fMRI signal as 
it is argued that the fMRI signal has a lowpass nature and pre-
processing for rsfMRI typically includes a bandpass filter. 
Because of this, prior studies recommend using longer 
window sizes up to 100 seconds [7]. One caveat for selecting 
a longer window size is that 𝑟௫,௬ሺ𝑡ሻ would be very smooth, 
and as a result, important connectivity variations might go 
undetected. Note that most research focused on the rsfMRI 
spectrum applies to the activity time series spectrum and not 
the connectivity time series spectrum [3].  
 

2.2. Single sideband modulation SWPC (SSB-SWPC) 
 
Inspired by single-sideband (SSB) modulation in 
communication theory [8] we propose a modification to 
SWPC which modulates the activity signals (𝑥ሺ𝑡ሻ and 𝑦ሺ𝑡ሻ) 
to a higher frequency before passing them through the first 
HPF subsystem of SWPC. This would allow us to select small 
window length values without excessively highpass filtering 
the activity signals. To perform SSB modulation, we first 
calculate the analytic signals using the Hilbert transform (1) 
effectively removing the negative part of 𝑥ሺ𝑡ሻ spectrum. 

 𝑥௔ሺ𝑡ሻ ൌ 𝑥ሺ𝑡ሻ ൅ √െ1 ൈℋሾ𝑥ሺ𝑡ሻሿ (1) 
Next, we modulate the analytic signal 𝑥௔ሺ𝑡ሻ by multiplying it 
by the term 𝑒ି௜ଶగ௙೘௧ and include only the real part of the 
modulated signal (add the negative part of the spectrum back 
into the data as real signals have symmetric spectrum). 

 𝑥௠ሺ𝑡ሻ ൌ 𝑅𝑒ሾ𝑥௔ሺ𝑡ሻ ൈ 𝑒ି௜ଶగ௙೘௧ሿ (2) 
Figure 2 illustrate these steps. The multiplication int the time 
domain (the coupling in the SWPC system), is equivalent to 
circular convolution in the frequency domain.  

 
Figure 2. The idea behind SSB. First, the analytic signal is 
calculated (step 2) removing one sideband of the data. Then 
this analytic signal is modulated to higher frequencies (step 
3) and by calculating the real part of this modulated signal, 
the other sideband is added back to the spectrum (step 4). 

The proposed SSB modulation, will not change the coupling 
function output (i.e., C in Figure 1) for a specific low-
frequency range. Assume that Zሺ𝑓ሻ and 𝑊ሺ𝑓ሻ (the Fourier 

transforms of 𝑧ሺ𝑡ሻ and 𝑤ሺ𝑡ሻ) are zero for all frequencies 
below a specific value (𝑓ு௉ி; i.e., SWPC HPF cutoff). We 
also assume that z௠ሺ𝑓ሻ and 𝑤௠ሺ𝑓ሻ are the SSB modulated 
versions of 𝑧ሺ𝑡ሻ and 𝑤ሺ𝑡ሻ respectively. By thinking about 
circular convolution visually, we can say that Zሺ𝑓ሻ ⊛  Wሺ𝑓ሻ 
and Z௠ሺ𝑓ሻ⊛  W௠ሺ𝑓ሻ are equal for the  range: 
 

 െ𝑓௘௤ ൏ 𝑓 ൏ ൅𝑓௘௤ 
𝑓௘௤ ൌ 𝑚𝑖𝑛ሺ2𝑓ு௉ி ,𝑓௦ െ 2ሺ𝑓௠ ൅ 𝑓௕ሻ ሻ 

(3) 

𝑓௦ is the sampling frequency, 𝑓௠ is the modulation value (2) 
and 𝑓௕ is the highest frequency that the signals have (signals 
are bandlimited therefore 𝑓௕ ് 𝑓௦). 2𝑓ு௉ி is the shift value 
where the negative sideband of the signal being shifted 
overlaps with the positive sideband of the signal being kept 
in place in the circular convolution. Because frequency 
transforms of discrete signals are periodic, if we shift the 
spectrum of one signal by more than 2 ൈ ሺ𝑓௦ 2⁄ െ ሺ𝑓௠ ൅ 𝑓௕ሻ) 
the positive sideband of the modulated signal in the range 
ሺെ𝑓௦ 2⁄ ,൅𝑓௦ 2⁄ ) will collide with the negative sideband of the 
other modulated signal in the range ሺ൅𝑓௦ 2⁄ ,൅3𝑓௦ 2⁄ ; next 
period in the spectrum of the signal).  
 

 
Figure 3 Illustration of the steps in SSB+SWPC. The main 
reason why SSB improves the SWPC results is seen in step 
1. By modulating the signal to higher frequencies (step 1), we 
make sure that the SWPC highpass filter does not filter any 
important information of the activity time series. The other 
steps provide illustrations for the inequalities provided in (4). 

Based on step 1 in Figure 3, we can say that 𝑓௠ ൅
𝑚𝑖𝑛ሺ𝑋௔,𝑌௔ሻ should be higher than 𝑓ு௉ி to make sure that 
HPF part of the signal does not filter out any important low-
frequency content. Based on the same step we can see that the 
modulation should not be so high that aliasing happens. 
Therefore 𝑓௠ ൅𝑚𝑎𝑥ሺ𝑋௕,𝑌௕ሻ should be lower than 𝑓௦ 2⁄  (i.e., 
Nyquist frequency). Note that essentially 𝑚𝑎𝑥ሺ𝑋௕,𝑌௕ሻ is 
equal to 𝑓௕ in (3). Based on the step 4 of Figure 3, we can also 
say that 𝑓௅௉ி (LPF cutoff of SWPC) should be lower than 



𝑚𝑎𝑥ሺ𝑋௕ െ 𝑌௔,𝑌௕ െ 𝑋௔ሻ so that we have all the range of 
possible information on the output. All in all, we can 
summarize all the inequalities: 

 𝒇𝒎 ൐ 𝒇𝑯𝑷𝑭  െ  𝑚𝑖𝑛ሺ𝑋௔,𝑌௔ሻ 
𝒇𝒎 ൏ 𝑓௦  െ  𝑚𝑎𝑥ሺ𝑋௕,𝑌௕ሻ 

𝒇𝑳𝑷𝑭 ൏  𝑚𝑖𝑛ሺ𝑓௘௤ ,𝑚𝑎𝑥ሺ𝑋௕ െ 𝑌௔,𝑌௕ െ 𝑋௔ሻሻ 
𝑓௘௤ ൌ 𝑚𝑖𝑛ሺ2𝒇𝑯𝑷𝑭,𝑓௦ െ 2ሺ𝑓௠ ൅ 𝑓௕ሻ ሻ 

(4) 

 
2.3. Simulation 
 
Here we show how the proposed method improves the 
estimation of trFNC. Assume that we have two bandlimited 
time series 𝑥ሺ𝑡ሻ and 𝑦ሺ𝑡ሻ that we want to have a specific time-
resolved covariance matrix Σ௫௬ሺ𝑡ሻ. We can achieve this by 
first generating two independent random signals 𝑥௪ሺ𝑡ሻ and 
𝑦௪ሺ𝑡ሻ by filtering white noise random signals where the 
filters are determined by the specific bandwidth, we desire for 
the signals. Next, we can calculate the Cholesky 
decomposition of Σ௫௬ሺ𝑡ሻ ൌ 𝐿்𝐿. Now by using this equation 

 
൤
𝑥ሺ𝑡ሻ
𝑦ሺ𝑡ሻ൨ ൌ ൤

𝑥௪ሺ𝑡ሻ
𝑦௪ሺ𝑡ሻ

൨ 𝐿  (5) 

We can have a pair of time series (i.e., 𝑥ሺ𝑡ሻ and 𝑦ሺ𝑡ሻ) that 
have a covariance of Σ௫௬ሺ𝑡ሻ. For this simulation, we chose 
the sampling frequency to be 2 Hz and the signals to have 
content in the frequency range [0-0.15] Hz. And for Σ௫௬ሺ𝑡ሻ 1 
was selected for the diagonal entries and 0.7𝑐𝑜𝑠ሺ2𝜋𝑡 ൈ 0.01ሻ 
in the off-diagonal entries which translate to sinusoidal 
correlation with a frequency of 0.01 Hz. Additionally, we 
selected the window size to be equal to 5 time points (3.5 sec). 
We compared the correlation between the output of typical 
SWPC and SSB-SWPC proposed here.  
 
2.4. fMRI analysis 
 
To showcase the benefits of the proposed method, we applied 
SSB+SWPC to a fMRI dataset that includes 314 subjects with 
TR equal to 2 seconds where the activity is  bandpass filtered 
(0.01-0.15 Hz). After preprocessing steps, a group 
independent component analysis pipeline (gICA) was applied 
[1, 9] and 47 components were selected based on their spatial 
maps. For a more detailed description of the dataset and all 
the preprocessing and analysis steps see *. For this project, 
we first upsample the dataset to have a TR of 1 second. This 
step was performed so that we have a larger frequency range 
to work with. Next, we estimated pairwise trFNC using both 
typical SWPC and SSB-SWPC methods using window sizes 
equal to 7 and 21 time points. Next, to evaluate if the 
proposed approach improves the estimation of trFNC, we 
calculated two metrics. The first metric was the mean square 
difference between the static FNC (FNC calculated over the 
whole time series temporal range) and averaged trFNC 
estimated using both SWPC and SSB-SWPC. We predict that 
as trFNC calculated using SSB modulation is less noisy, its 
average is closer to sFNC calculated directly. For the second 
metric, we first concatenated trFNC values across subjects 

and time and applied k-means clustering to it based on 
previous works [1]. Then we calculated dwell time as the 
number of times points each subject stays in a given cluster. 
The second metric is the average difference between each 
subject's dwell time and the window size (i.e., 7 time points). 
We predict that as SSB+SWPC results in a more robust 
estimation of trFNC, its dwell times are closer to the SWPC 
window length. The final results of both methods using 5 
clusters and a window size of 7 TR is calculated. 
 

3. RESULTS 
 
Figure 4 shows the simulation results. As can be seen here 
pairing SSB modulation with SWPC improve the results for 
almost all values of 𝑓௠s for up to 0.15 increase in correlation 
value (i.e., rho) between estimated trFC and its true value. 

 
Figure 4. Simulation results. First correlation between 
connectivity estimation and its true values are calculated for 
both SSB+SWPC (𝜌ௌௌ஻ାௌௐ௉஼) and SWPC (𝜌ௌௐ௉஼). Then the 
difference between these two values is calculated for different 
modulation values. Results are all positive across different 𝑓௠ 
meaning that SSB+SWPC gives a better estimate of the true 
connectivity time series. 

Figure 5 shows the results from the two performance metrics 
we explained in section 2.4 for both window sizes (7 and 21 
TR). As can be seen in this figure, the Mean Square Error 
(MSE) between sFNC and average trFNC is lower for 
SSB+SWPC compared to SWPC for both window sizes. 
Additionally, here we see that SSB+SWPC has resulted in 
dwell times closer to the window size compared to the classic 
SWPC result. Collectively, these two observations show that 
SSB+SWPC results in less spurious trFNC estimates. Figure 
6 shows the final clustering for both methods for the window 
size equal to 7 TR. As can be seen here the cluster centroids 
(the first two rows) are quite similar for 4 out of 5 clusters. 
The only cluster that is different is cluster 4. This cluster is 
not found in higher window sizes for SWPC as reported in 
[2] and is not reported in any of the other works using the 
same data that use other methods too *. This leads us to 
believe that this cluster is the outcome of spurious high-
frequency activity portions. This claim needs to be examined 
in future works. Other clusters have very similar cluster 
centroids but there is two specific differences in the statistical 
results of their correspondence dwell time. Namely in cluster 
3 SWPC shows a significant difference between the two 
groups (SZ<HC) while SSB+SWPC does not. On the other 



hand, the statistical test for cluster 5 dwell time shows a 
significant difference between the two groups (SZ>HC) 
while SWPC only results are not significant. Because of the 
lack of knowledge about true trFNC states, we cannot say if 
one cluster is better compared to the other one but it is 
interesting that cluster 3 (where SWPC results are significant) 
does not show a lot of modularity (connectivity between all 
nodes are high here regardless of their functional domains) 
while cluster 5 (where SSB+SWPC results are significant) 
shows what looks to be meaningful modularity between 
domains. 

 
Figure 5. The performance metric of the two methods using 
two window sizes (one short and one long). The left figure in 
each of the boxes shows the MSE between sFNC and 
averaged trFNC resulted from each method. For both window 
sizes, we see that SSB+SWPC MSE is smaller than SWPC 
which means that SSB+SWPC is less noisy. Additionally, the 
right figure in each box shows the average difference between 
dwell time and the window size used. We can say that the 
more positive this value the better as we should not be able to 
find variations smaller than the window sizes. For both 
window sizes, we see that the SSB+SWPC difference is 
higher pointing to a less noisy estimation of trFNC. 

 
Figure 6. Clustering results of both methods using window 
size equal to 7 TR.  
 

6. DISCUSSION AND LIMITATION 
 

In this work, we proposed a solution to mitigate one of the 
major weaknesses of SWPC. Using the idea behind SSB 
modulation, we move the main content of the activity time 
series to higher frequencies before calculating trFNC. Using 
a simple simulation, we showed this method can achieve a 
better estimate of the connectivity values. Additionally, we 
showed an application of the proposed SSB+SWPC approach 
and discussed its SSB+SWPC. We showed how SSB+SWPC 
can result in dwell time values closer to the window size used 
and possibly give a more accurate estimation of dwell time. 
Additionally, we showed how the final results of SSB+SWPC 
are not significant for a cluster that does not show modularity 
(which can be argued is not desirable). 
There are two specific limitations to the proposed approach: 
first, this method has additional parameters that need to be 
selected. Second, SSB+SWPC can result in aliased 
connectivity values if the users are not knowledgeable 
enough. To remedy these two limitations, we derived some 
inequality expressions that give the users a basis for selecting 
the parameter in addition to avoiding the aliasing issue. 
In summary, SSB+SWPC improves the estimation of trFNC 
allowing us to use smaller window sizes for the SWPC 
portion without losing the (important) lowpass information in 
fMRI. This method can also be used to mitigate the 
limitations of other methods such as IST [2] and MTD [4]. 
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