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Abstract— Human-robot collaboration (HRC), where humans
and robots work together to handle specific tasks, requires
designing robots that can effectively support human beings.
Robots need to conduct reasoning using commonsense knowledge
(CSK), e.g., fundamental knowledge that humans possess and
use subconsciously, in order to assist humans in challenging
and dynamic environments. Currently, there are several effective
CSK systems used for organizing information and facts, along
with detecting objects and determining their properties. HRC
is employed in various manufacturing tasks, such as paint
spraying and assembly, in order to keep humans safe while
increasing efficiency. Although there is a large array of research
on HRC and on CSK, there is minimal research linking the
two concepts together. This paper presents a novel system on
human-robot collaboration guided by commonsense reasoning
for automation in manufacturing tasks. This fits within the
general realm of smart manufacturing. The primary focus is
on improving the efficacy of human-robot co-assembly tasks.
Evaluations conducted with online simulations and real-world
experiments indicate that reasoning using CSK-based robot
priorities enhances HRC as compared to simpler robot priorities,
e.g., merely handling nearby objects. This system is modifiable
and can be used for larger and more complex real-world tasks,
thereby leading to improved automation in manufacturing. This
paper demonstrates the scope of combining HRC and CSK,
while future works will be able to further utilize the benefits
of combining the two fields with significant impacts.

Note to Practitioners—This paper is motivated by the
human-robot collaboration problem in smart manufacturing.
Robots operating by reasoning with commonsense priorities
in human-robot collaboration enable faster task execution and
better human work life. This can help balance work for humans
and prevent injury. Adding robots to tasks accordingly does
not necessarily decrease costs, but can limit human exposure
to danger which is significant (and can also lower costs overall).
Simulations and real-world experiments in our research using
commonsense reasoning demonstrate how work is easier and
better with human-robot collaboration. These factors are highly
significant when tasks are repeated multiple times. The system
is presented within automated manufacturing and is scalable for
different real-world applications. Such automation is particularly
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helpful during recent times in the aftermath of the COVID-19
pandemic.

Index Terms— Collaborative robotics, commonsense knowl-
edge, human-robot interaction, UN SDG 9, smart manufacturing,
task quality optimization.

I. INTRODUCTION
A. Background and Motivation

UMAN-ROBOT collaboration (HRC) refers to the con-

cept of humans and robots working together on tasks.
It is an important part of automated manufacturing and would
surely benefit from reasoning based on commonsense knowl-
edge (CSK) such as determining where objects are typically
located relative to each other [1]. For smart manufacturing,
intelligent machines are given access to production data and
use that information to control parts of production and logis-
tics [2]. The adaptive nature of smart manufacturing allows for
customizable products and flexible production. Smart manu-
facturing allows for rapid response to events [3]. This includes
adapting to external changes and modifying manufacturing
load through decision-making, even with incomplete infor-
mation. Smart manufacturing also involves analyzing data for
real-time decision-making and forming both predictions and
models. Humans are quite important for smart manufacturing
due to their ingenuity and collaborative robots supplement
humans rather than supplanting them. Collaborative robots
have a variety of benefits over traditional robots, such as
being capable of working alongside human beings in the same
space and being designated to handle multiple tasks [4]-[8].
Adding additional space for robots or getting multiple types
of robots for multiple tasks increases costs, which can make
collaborative robots less costly than traditional robots. Human-
robot collaboration is important and requires robots to plan for
dynamic real-world situations [9]. Commonsense knowledge
(CSK), which is understanding objects, their properties, and
how they relate to and interact with each other, is important
for human-robot collaboration. Humans have commonsense
knowledge due to real life experiences, such as knowing that
icy ground is slippery and should be walked on carefully.
Robots have a difficult time acquiring and reasoning with this
knowledge, but need it in order to enhance collaboration with
humans [10]. Commonsense knowledge and related works
are used via many sources to manage information and to
detect, interpret and manage objects [11]-[14]. There is still
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great potential for combining commonsense knowledge and
reasoning with human-robot collaboration.

B. Contributions of This Study

This paper presents information on reasoning guided by
commonsense knowledge and human-robot collaboration,
specifically focusing on how the two areas are connected.
This paper also offers the context of automation in manu-
facturing demonstrating how commonsense knowledge based
reasoning can improve human-robot collaboration in tasks
therein. We conduct simulation studies involving a human
and a robot collaborating to construct a vehicle from a given
set of parts. CSK is used to guide the robot’s actions so
constructing the vehicle is fast and simple for the human
worker. In addition, this paper displays how in-person exper-
iments conducted in real-world contexts confirm the benefits
of human-robot collaboration guided by commonsense knowl-
edge that are applicable for constructing a vehicle in the real
world. This paper thus makes contributions to the domain
of smart manufacturing, e.g., the use of various intelligent
technologies within the context of industrial production [2].
While we address smart manufacturing in general, we focus
on vehicle assembly in particular for the experiments in this
paper. The conclusions of this study on reasoning with com-
monsense knowledge for human-robot collaboration can be
potentially usable in other real-world applications as well with
suitable modifications, though we focus mainly on automation
in manufacturing here. It is to be noted that our studies
in this paper have been conducted during the COVID-19
pandemic and we emphasize the role of simulations played
in them that set the stage for efficiently performing real-world
experiments. This is in line with the significant automation
needed during such times and paves the way for further similar
applications.

The paper is structured as follows. First, section II discusses
related work in the area. Then, prerequisite information about
commonsense knowledge and reasoning, as well as human-
robot collaboration pertinent to our research is presented in
section III. Afterwards, the methodology used in this work is
explained in section IV. Further, the experimental evaluation
is outlined in sections V and VI, describing online simulation
experiments and real-world experiments, respectively. Based
on this, section VII presents a discussion on our work. Lastly,
conclusions and future work are presented in section VIII. The
main contributions of this study are:

(1) Proposing a system for reasoning based on the use
of commonsense knowledge in human-robot collaboration for
automation in manufacturing, thus positively affecting the
smart manufacturing domain.

(2) Conducting mathematical modeling for robot action
planning and human-robot collaboration to provide task opti-
mization in assembling an object from its parts.

(3) Demonstrating online simulation tasks along with real-
world experiments to prove that humans and robots guided by
CSK can be efficient in task execution while valuing human
safety and comfort (by protecting humans, making them
carry lighter parts, and making the collaborative experience
pleasant).
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II. RELATED WORK

Artificial Intelligence or Al is the intelligence depicted by
machines analogous to the natural intelligence biologically
possessed by humans. In other words, Al pertains to machines
(computers, robots etc.) that simulate “cognitive” functions
which we humans typically associate with our real brain,
e.g., “learning” and “problem solving” [15]. In this context,
learning brings us to the realm of Machine Learning. As the
name implies that machine learning is for making machines
such as computers or robots “learn” analogous to humans.
It can be more formally defined as the study of algorithms
and mathematical models that machines can utilize to execute
target tasks without specific instructions, by relying on patterns
and inference. Thus, it can be considered a field of AI which
provides the ability for systems to automatically learn from
experience [16]. Machine learning is typically data-driven,
and it leads to Data Science. There are several paradigms
in Machine Learning, a highly significant one today is Deep
Learning, which is a kind of learning algorithms employing
multiple layers to progressively extract higher level features
from raw inputs [17]. While Deep Learning can be used for
several tasks in a variety of applications, it relies on prior
knowledge or experience, often requiring huge amounts of
training data. Thus, a machine when faced with a new situation
for the first time may not be able to make decisions analogous
to a human, due to lack of prior training. This issue can be
addressed by the inclusion of commonsense knowledge (CSK)
[10]. When machines are endowed with CSK, they can act in
a more humanlike manner, and can make intuitive decisions
closer to the thresholds of human cognition. A recent tutorial
discusses the pros and cons of Deep Learning and CSK [18]
with respect how they can potentially benefit from each other.
It surveys numerous interesting works in CSK while also
addressing Deep Learning models; and thereby emphasizes
how the extraction and compilation of CSK is crucial in order
to enhance modern Al systems. Given this overview, we now
proceed to discuss related work as pertinent to this paper.

Researchers at the University of Bremen, Germany are
developing a robot that handles tasks through using common-
sense knowledge [19]. The robot’s system stores entities’ 3D
positions at specified times, meaning the system’s model can
access every entity’s position at a specific time and access a
3D image of the entire environment. This information can be
used to connect detected visual patterns to spatial relationships.
A simple example of this involves connecting 2D and 3D
shapes to the objects’ size and distance. Through connecting
these features and properties, tasks can be made simpler. The
work of these researchers demonstrates how commonsense
knowledge can potentially makes robot task execution more
optimal.

Until recently, humans and robots needed to work separately
since humans could interrupt robots executing a task and
robots could potentially be a threat to human workers [20].
Robots have become safer and more capable of working along-
side human beings. Physical human-robot-interaction (pHRI)
focuses on humans and robots interacting and is relevant to
HRC. Prior approaches focus on planning out the individual
basic steps rather than planning out the complete assembly of
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Fig. 1.
human-robot collaborative disassembly (HRCD) system perception, cognition,
decision, execution and evolution circle (PCDEE-Circle) can collaborate with
a human to disassemble this type of coupling.

Virtual model of a diaphragm coupling and its parts [28]. The

a product. Researchers developed a human-robot collaboration
framework formed by three layers: the team level, the agent
level, and the skill execution level.

The team level plans out the product assembly based on
available agents, assembly parts and possible construction
plans [20]. The main goal of the team level is to allocate
tasks to human and robot workers by providing abstract task
descriptions. When the planner requests an agent to take an
action, that agent returns the cost for that agent executing
the specified action. If the agent cannot execute the specified
action, it returns a cost of infinity. The planner uses the costs
it receives to determine the optimal actions to undertake. The
agent level maps the abstract descriptions provided by the by
the assembly task planner to abstract planning a layer above
using the robot’s motors and sensors. The agent level features
other planning systems outside of the abstract planning that
help a robot execute a task. This planning requires the robot
to execute actions provided by the team level and provide
information to the team level. Additionally, the agent level
needs to be able to handle dynamic events such as interruptions
and collisions. Finally, the real time level handles trajectory
planning based on information from other layers. In addition,
it executes reflexive actions based on dynamic events. A poten-
tial example would be slowing down to avoid a collision or
stopping after a collision.

Non-specialist users are currently utilizing human-robot
collaboration more frequently, and because of this, robot
designers need to develop an effective interaction model [21].
Video games interfaces can be used to model robot interfaces
since video games convey information in a simple to under-
stand manner. One case where video game-based interfaces are
shown to be effective is using an augmented reality cockpit
interface rather than a virtual cockpit screen.

This paper has primarily focused on optimizing task execu-
tion, but robots also need to learn how to execute tasks, which
grows more important as tasks become more complicated.
This was not an issue for this paper’s experiments due to
their simplicity, but is much more important in the real
world. Typically, robots use domain models and mathematical
policies to learn how to execute tasks, which need to be
precisely designed by experts. Robots need to be able to use
learning from demonstration (LfD) [22], where they learn by
watching another entity perform a task. This form of learning
is much more intuitive and useful for non-specialists working
with robots. Crucially, ordinary people can demonstrate task

execution and robots can learn without the aid of experts.
LfD comes in three main forms, teleoperation, shadowing,
and imitation. Teleoperation involves a teacher operating the
robot learner while its sensors save the inputs. Shadowing
involves the teacher executing a task while the robot learns
by attempting to copy the teacher’s motions. Lastly, imitation
involves a different entity performing the task while the robot
learns by using its own sensors or sensors on the operator.
Unlike shadowing, the robot only watches task execution
during imitation. Through using these types of learning, robots
can better understand how to execute tasks.

The realm of cognitive robotics extends to concepts such
as object recognition. Machine learning techniques containing
deep learning and neural networks play an important role
here and the concerned systems can be augmented via the
use of commonsense knowledge [23]. Spatial commonsense
in particular is very useful here in generating benchmarks for
object recognition [24]. This could particularly benefit appli-
cations such as robotic driving in autonomous vehicles [25]
where the enhanced used of commonsense knowledge in
object recognition and related tasks can bring the Al systems
closer to human cognition thresholds so as to provide more
adequate decision-making especially in situations encountered
for the first time ever. Such aspects contribute to robotics and
automation on a large scale.

Researchers at Cranfield University have been working on
an Augmented Reality (AR) system for improving HRC [26].
AR has been applied in various fields such as customer
technology, plant maintenance, and nuclear industry. The AR
system is a handheld device that overlays a virtual animation of
robot movements on the robot so the human operator can see
how the robot will move. To test whether the AR-HRC system
increased trust in robots, the researchers had people perform
a maintenance task while using system and then answer
a five-point Likert scaled questionnaire. The test involves
picking and placing tasks of an electronic card. Importantly,
the user can activate the AR system to see the robot’s planned
actions before it executes them. This helped increase trust,
displayed by the fact that the average trust score from user
surveys was above a three out of five. While the AR-HRC
system has not been compared against a system not using AR,
it still indicates that users trust the AR-HRC system. Using
modern technology as AR can help improve HRC.

Robots are being used for agricultural tasks, demonstrated
by a robot assisting in tree fruit farming [27]. The tree fruit
farming robot has 3 modes, e.g., mule, pace, and scaffold
mode. In the mule mode, the robot helps with tasks such as
harvesting by following a group of workers. Its pace mode
involves the robot executing a particular task over a given
region. The scaffold mode makes the robot travel while it is
acting as a scaffold on which humans can stand. The robot’s
helpfulness is ascertained by the fact that workers are able to
trim the trees more than twice as fast in the scaffold mode
versus using ladders. Also, this makes things much easier for
humans. This is an excellent example of the robot’s benefits in
HRC and indicates how it positively impacts human workers,
with respect to efficiency and comfort, making contributions
to the realm of smart automation in general.
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Sustainable manufacturing helps the economy, environment
and society [28]. In terms of society, sustainable manufac-
turing generates new profits and allows for both better work
and more work. Sustainable manufacturing uses disassembly
as the main production mode of remanufacturing since it saves
resources and energy while reducing emissions. While robots
are able to handle some repetitive and dirty jobs in disassem-
bly, there are other jobs that requires human beings. Because of
this, human-robot collaborative disassembly (HRCD) is an
effective form of disassembly. This paradigm falls in the
overall realm of smart manufacturing since it contributes
to sustainable living via intelligent manufacturing processes
involving robots. Fig. 1 shows an example of diaphragm
coupling and its parts, as deployed within the realm of smart
manufacturing.

Robot intelligence is important for disassembly since
robots need to be able to understand human intentions,
their own motions and the product they are handling [28].
PCDEE-Circle is a HRCD system that uses “multi-modal
perception, multi-target cognition, decision making, and both
knowledge formation and evolution.” PCDEE-Circle uses
multi-modal perception to connect industry parameters to
human actions and uses multi-modal perceptions to analyze
entity actions and non-entity objects. From there, decision-
making is based on reinforcement learning while knowledge
formation and evolution are based on incremental learning
and transfer learning that occurs during the HRCD process.
A robot using this system works alongside a human in order
to successfully disassemble a diaphragm coupling, which con-
sists of several parts of varying sizes. The robot’s successful
collaboration demonstrates that HRCD is feasible.

Reimagining work in the age of Al explores how Al can
be used to aid human-robot collaboration [29]. Previously,
machines typically worked on static tasks apart from human
beings and were designed for one task. However, those static
tasks are really well optimized and very few automation
improvements can be made. Currently, due to advancements
in and Al and robotics, machines can work with people
on various areas including smart manufacturing. Robots are
now smaller, more flexible and capable of working safely
alongside humans through using machine-learning algorithms.
Al systems are not meant to remove humans from work,
rather to work alongside humans. Robots will use data and
machine learning to handle simple tasks while humans will
use commonsense knowledge and reasoning to handle more
complicated tasks.

Agriculture is a field that needs to become more efficient
since the population is growing and there are 795 million peo-
ple who do not have enough food [29]. Fresh water and fertile
land are limited and difficult resources to manage. Precision
agriculture uses Al and precise crop data to produce more
food with fewer resources. Precision agriculture uses data from
environmental sensors placed in the field, sensors attached to
farm equipment, soil databases and weather data. Accenture
is a company that developed Precision Agriculture Service to
improve pest control. The service uses Internet of Things (IoT)
sensor data to send suggestions, which farmers can manually
choose to implement or a digital work management system can
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automatically implement. Another modern Al improvement
in farming includes vertical farms [29]. In vertical farms,
plants are grown in 30-foot stacks of trays, which allow for
plant growth in more areas including urban settings and city
warehouses. In Newark, NJ, a farm uses machine learning
systems that analyze real-time plant data in order to maximize
crop growth efficiency. The farm is expected to use 95 percent
less water and 50 percent less fertilizer. In addition, due to
being inside, pesticides are no longer needed. This will allow
for more efficient farming.

Industry 4.0 predicts that humans and robots will work
together seamlessly, and robots will aid humans with work
rather than replacing them [30]. Robots need to be able to
predict dangerous situations so fewer unexpected collisions
can occur and robots can adapt to collisions. This requires
robots to observe their environment and plan decisions effec-
tively. Cyber-physical systems (CPS) are one of the linchpin
technologies that will enable Industry 4.0. The 5C architecture
states that implementing a CPS is made up of five levels,
smart connection, data-to-information conversion, cyber, cog-
nition and configuration. Smart connection focuses on sensing
the environment and transferring environmental information
between all entities. Data-to-information conversion focuses
on a machine using environmental information to understand
its environment. Cyber focuses on analyzing information from
all machines to predict future behavior. Cognition focuses
on translating analyzed data to forms more comprehensible
to human experts. Configuration focuses on mechanisms that
physically apply decisions determined in the cognition. This
system will allow for effective human-robot collaboration.

While the 5C architecture is effective, it does not include
safety component [30]. Because of that, CPS must also utilize
scene monitoring, task modeling and planning in order to work
safely alongside human beings. Scene monitoring focuses
on continuously modeling the operator and the assembly
processes’ manufacturing components. This allows the CPS to
be aware of where objects and operators are. Tasks modeling
focuses on understanding present and future operator actions
and assembly cycle states. This requires CPS to predict
the operator’s intentions through recognizing operator atomic
actions and modeling transitions between them. Planning
focuses on determining a plan that will complete action or
movement tasks. The robot needs to base its order of actions
around the predicted actions of the operator and the relative
action transition model, which tracks the transitions between
different actions. Through utilizing these safety systems, CPS
will further human-robot collaboration, especially in more
risk-filled environments.

While we have studied numerous works in the literature and
presented a few of them here, to the best of our knowledge,
none of these works focuses on the explicit adaptation of
commonsense based reasoning in the context of collaborative
robotics to enhance automation in the manufacturing domain.
Our research makes contributions in this arena. We specifically
propose a methodology that harnesses commonsense based
reasoning in order to optimize robot action planning and arm
movement for tasks in collaborative robotics, in particular
vehicle assembly, thus making a positive impact on smart
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Fig. 2. Collaborative robot working with a human to assemble an
engine. [31].

manufacturing. This serves as a good starting point offering
the two cents to the vast realm of human-robot collaboration
and surely paves the way for more research along these lines.

ITI. PREREQUISITES ON CSK AND HRC

Commonsense knowledge encompasses pragmatics, which
relates to general world knowledge, and semantics, which
relates to context-specific knowledge. Pragmatic knowledge
is often useful for corner cases that do not occur regularly.
For example, if a power failure occurs in a factory where a
collaborative assembly robot is working, the robot should stop
its current task until being given new tasks. Otherwise, it could
run into a person or object while lighting is limited.

The main goal of this work is to determine how robots
can support humans through reasoning by using commonsense
knowledge while efficiently working. As per that, the two
objectives for robots collaborating with humans are:

1. Determine commonsense knowledge priorities that can
support and protect humans in tasks involving human-robot
collaboration.

2. Conduct reasoning with CSK priorities to achieve HRC
with increased safety and comfort for humans while
maintaining effective execution for productivity especially
needed in smart manufacturing.

These goals must be such that they incorporate a good
balance between human safety and comfort versus effective
execution for high productivity. If too much focus is placed on
effective execution, humans may have worse work lives while
if too little focus is placed on effective execution, production
will be significantly harmed. Because of this, determining a
balanced set of commonsense priorities is critical. Safety is
the most important priority; robots must handle tasks leading
to minimal human risk. Other priorities include the weight
carried, the distance traveled and the danger and fragility of the
carried parts. Lastly, the total execution time is quite important.

Human-robot collaboration is widely used in automated
manufacturing. With reference to this, Fig. 2 portrays an
example of HRC in assembly tasks [31]. Note how a human
and a robot work together on assembling an object from
a set of parts. With reference to this, note that throughout
this paper, the term ‘parts’ will refer to the individual com-
ponents used to create a final product by being combined
in a pre-determined manner, while ‘object’ will refer to the

Embodiment

Fig. 3.
manufacturing by commonsense reasoning in collaborative robotics.

Framework of proposed system for object assembly within smart

assembled final product. These terms are used to explain
how human-robot collaboration for assembly occurs. For these
collaborative tasks, the term ‘arm’ refers to a human with both
arms and a robot with one arm, cooperating to combine parts
into an object. The robot uses commonsense knowledge for
reasoning in order to effectively select and move parts. The
robot prioritizes heavier parts since humans can more easily
and quickly carry lighter parts. Humans are also likely to have
more difficulty with heavy parts and would therefore move
more slowly. The robot arm prioritizes moving towards parts
that are further away so that the work is easier for humans. The
robot arm prioritizes carrying dangerous parts since that will
keep humans safer. For example, the robot arm should carry
sharp parts so humans do not cut themselves. At the same time
the robot prioritizes carrying parts that are more stable since
humans are better at handling parts that are fragile. The four
main premises for commonsense knowledge based reasoning
are:

1. Humans prefer carrying lighter and closer parts due to ease
and comfort.

2. Humans will carry heavy parts more slowly than light parts.

3. Humans should handle less stable parts in order to avoid
damaging them.

4. Humans should not handle dangerous parts as human safety
is imperative.

Stability is defined as how likely a part is to remain stable
if dropped, e.g., a wooden part is more stable than a ceramic
part. Humans will handle heavier parts slower than lighter
parts, especially if they carry the heavy parts all day. Humans
will find it extremely frustrating if a robot mishandles an
unstable part and not trust the robot to handle parts in the
future. To avoid this scenario, humans will handle fewer stable
parts. Since safety is the most important premise, robots will
handle parts that are more dangerous.

The proposed system for human-robot collaboration guided
by commonsense reasoning is illustrated in Fig. 3. It is to be
noted that there may be conflicts between CSK premises 3
and 4 (listed herewith) occasionally. This overall frame-
work for reasoning based on commonsense knowledge in
human-robot collaboration is explained as follows. First, the
human and robot executions affect a real-world workspace.
From there, task information is gathered within the workspace.
That information is used to inform actor action analysis and a
metric function, which are then combined into a cost function.
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The cost function in turn affects robot execution. Due to these
conflicting priorities such as premises 3 and 4 herewith, and
the need to determine how to best fulfill the premises for good
HRC, mathematical modeling is used.

Robot semantics is about robots interpreting the meaning of
the world, which is connected to presenting that meeting [32].
In particular, semantics is about robots understanding the
meaning of locations, objects, other entities in the same
environment and language. Human-robot interaction depends
on both semantics and natural language ontology. For robots
to operate in more complicated environments than manufactur-
ing, warehouse transportation and mining, they need to be able
to be able to interpret environments in complicated manners.
The two main types of semantics are provided semantics,
where robots are pre-programmed with information before
deployment, and learnt semantics, where robots learn infor-
mation before or during deployment. Semantics has potential
in a wide variety of fields, including house cleaning, scientific
exploration, intelligent transportation, and social interaction.

Pragmatics is about interpreting different forms of commu-
nication to a specific intention [33]. Some examples include,
“Can you bring me my tools?”, “Please give me my tools?”,
“I want my tools for work™, “Get me my tools already!” Cur-
rently, robots have been developed that can understand indirect
forms of speech, but more work remains on allowing robots
to appropriately respond based on the current social context.
Robot pragmatics also includes having robots make requests
politely when communicating with people. In addition, being
brief while remaining informative is quite important. Being
overly verbose is problematic as is missing information,
so robot pragmatics need to be designed carefully. Social
robots need to be able to adjust their language based on their
context in order to communicate optimally. Different envi-
ronments require different types of communication; a robot
in a surgery room should be terser than one in a classroom.
Pragmatics is important for developing social robots that can
collaborate with humans.

The HRC system uses the CSK premises in order to conduct
reasoning for potentially optimizing the smart manufacturing
tasks, more specifically with reference to vehicle construction
with the initial parts being shaped into a final object.

IV. METHODOLOGY

We propose a system based on commonsense knowledge
used for reasoning in human-robot collaboration to achieve
smart automation in manufacturing. The relevant background
on commonsense premises provided herewith serves as the
basis for this system. We explain its steps, e.g., robot action
planning followed by robot arm movement accordingly.

A. CSK-Based Robot Action Planning Optimization

The knowledge base (KB) developed in our research focuses
on human and robot priorities for selecting parts based on their
properties, such as their weight, size, distance (the sum of the
part’s distance from the arm and its distance from its final
position), danger and stability. In order to follow the premise
that humans prefer lighter and closer parts, the robot arm
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Algorithm 1: Optimization of Robot Action Planning
Input: Real-time parts, their properties, positions and priorities of arms
Output: The part that the current ami will target next
1. maxscore = 0; maxattrvals = [ ]; minattrvals = [ ];

2. selectedpart = None;
3. for (p = 0; p < n; p++):

4. for (a =0;a <t at+):

5. if (a(p) > maxattrvals [a]):

6. maxattrvals [a] = a(p)

7. if( a(p) < minattrvals [a]):

8. minattrvals [a] = a(p)

9. for(p = 0; p < u; p++):

10. o(p) =0

11. for (a =0;a <t at++):

12. o(p) += r(amax) x a(p) maxattrvals [a]
13 o(p) += r(amin) x minattrvals [a] / a(p)
14. if (o(p) > maxscore):

15. maxscore = o(p)

16. selectedpart = p

17. return selectedpart

should prioritize heavier parts and parts that are further away.
In order to fulfill the premise that robots should not carry
unstable parts, humans will carry parts that are less stable.
Lastly, in order to actualize the premise that humans should
not carry dangerous parts, robots should handle parts that are
more dangerous.

The steps for arms handling parts are described as follows:

1. Arms lock onto a part and indicate to other arms that they
done so to prevent other arms form locking onto the same
part.

2. Arms move to the part they have locked onto.

3. Arms move the part they are carrying to the final position.

Locking onto parts is used to indicate to other arms that
a specified part is being targeted and that they should target
other parts. From there, arms move to the parts they locked
onto, grab them and then move to where they are supposed to
be placed. This process is repeated until there are no remaining
parts. An algorithm is used to define this behavior in order to
aim for optimization of robot action planning and is displayed
as Algorithm 1 herewith. This algorithm uses the real-time
parts and their properties, and the arms’ positions and priorities
in order to determine which parts to first select and how to
move them to their respective final positions.

Each arm uses a scoring algorithm based on its position and
the attributes of the remaining parts to determine which part
to select. The scoring equations are:

Wa(s,,) = (mina(s,,) +meana(s,,) +maxq(sp))/3 (1)

01(p) =X rlamin) x Wals,)/(@(p)) )
02(p) = 3 _ r(anar) X @(p)/Wals)) 3)
O(p) = O1(p) + O2(p) (4)

In these equations, the set of parts is defined as s, and the
term a(p) refers to a specific attribute for the part p. The term
W, (s,) refers to the weighted average across the set of parts
for a specific attribute, formed by averaging the set’s minimum
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Industrial

Robot Am Industrial Robot
(Mawes to Base
truck parts)

Fig. 4. The industrial robot arm and the layout of the parts it will transfer
to the human (not to scale).

Fig. 5. The human arm and the layout of the parts once the robot transfers
the truck parts to the human (not to scale). The robot starts with the parts in
a rectangular configuration and then hands the parts to a human, placing each
part in a straight line. The human and robot arm do not interfere with each
other since even though they collaborate within the same environment, they
are at a sufficient distance from each other where they will not collide.

value for that attribute, maximum value for that attribute and
the average value for that attribute. R(a,,;,) refers to an arm’s
priority for minimizing a specific attribute and R(a,,,,) refers
to an arm’s priority for maximizing a specific attribute. The
series >, _, is the series of all measured attributes. There
are currently a few attributes being analyzed, but the system
is customizable to permit adding other attributes. The relative
attributes are important since the attribute of a part is compared
against the weighted average for that attribute. The score is
based on the priorities and values for attributes, including
weight, danger and distance, so each attribute is used for
calculations.

B. CSK-Based Human-Robot Collaboration

In human-robot collaboration such as a sample human-robot
vehicle model co-assembly as shown in Fig. 4 and Fig. 5,
an example outline of the process is described as follows.
Note that we use this HRC in vehicle assembly as a running
example in order to explain the further details herein. In this
collaborative task, the robot first gives a cargo bed of a truck
to the human. Thereafter, the human connects the two back
wheels onto the cargo bed. Whilst the human conducts this
task, the robot passes the back seat of the truck to the human.
The human then affixes that back seat to the cargo bed of
the truck. During this time, the robot delivers the front seat
of the truck to the human. After that, the human attaches
this front seat to the back seat of the truck. Simultaneously,
the robot offers the front part of the truck to the human.
As a next step, the human attaches this truck front part to
the front seat of the truck. Finally, the human attaches the
remaining parts, e.g., both the front wheels to the truck front
as appropriate. This synopsizes the process of vehicle model

Algorithm 2: Optimization of Robot Arm Movement
Input: Real-time parts, their properties, positions and priorities of arms
Output: The parts being placed in their correct positions
1. arm holdingpart = false;

2. for arm in arms:

if not (arm.lockedon):

4 bestpart [arm] = arm.determinebestpart();

5 bestconnect [arm] = arm.detemunebestconnect();

6. arm.lockonto (bestpart);

7

8

hed

if (arm.Jockedon);
if (not arm.holdingpart);

9. armarm.movetopart (bestpart);

10. arm.pickup(bestpart);

11. else:

12. arm.movetoconnect (bestconnect[arm]);
13. arm placepart (bestpart);

assembly collaboratively executed by the human and the robot.
Such co-assembly incorporates commonsense knowledge in
the part ordering for adjoining the individual parts to assemble
the entire model vehicle. This process is briefly illustrated
in Fig. 4 and Fig. 5. The robot starts with the parts in
a rectangular configuration and then hands the parts to a
human, placing each part in a straight line. The human and
robot arm do not interfere with each other since even though
they collaborate within the same environment, they are at a
sufficient distance from each other where they will not collide.
Its details are elaborated next as per CSK-based-HRC.

For robot arm movement in HRC, consider that humans and
robots collaborate in the same workspace with the same set
of parts denoted as P, and commonsense priorities denoted
as C. Thus, each P refers to a part such as wheell, seatl
in vehicle manufacturing etc. while each C refers to a CSK
priority such as distance, weight etc. Note that danger gets 1.5
times higher priority than the mean of all the other attributes.
Here, C(danger) represents the CSK priority of this attribute
while C(x) for x = I to m represents the priorities of each of
the other attributes. Furthermore, P; represents the i’ part
in the set P while S(p;) represents the overall score for
moving a part to its correct position. This score is calculated
by comparing the attributes of a part against the maximum
and minimum values of the attributes of all the parts, along
with the CSK priorities. Py represents the selected part while
t represents the total number of parts. Thus, human and robot
arms select their next part to move using Equations (5) to (7)
herewith.

1.5 m
C(danger) = . szl C(x) 5)
S={(S(pI0<i<t—1) ©)
Py = P(argmax(S)) (7

The optimization of robot arm movement is outlined in
Algorithm 2 herewith. The output of this algorithm involves
the parts being placed in their correct positions due to appro-
priate arm movement guided by the approach.

Within the task execution conducted using this approach,
human movement speed is affected by the amount of weight
being carried, so the simulation reflects this with the following
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formula. In the simulation, note that a human collaborating
with a robot can either be un-encumbered, slightly encum-
bered, encumbered, or very encumbered. The variable E is
used to represent how encumbered the human is, and the
variable v represents their normal velocity: when the person
is unencumbered. V (E;) represents the velocity when slightly
encumbered, V (E) represents the velocity when encumbered
and V(E,) represents the velocity when very encumbered.
This knowledge will modify their movement speed for placing
parts using the equations as follows:

v(Es) = 0.66 x v (8)
v(E)=05x%x0 9)
v(E,) =033 x0v (10)

In addition, this experiment primarily focuses on trajectory
programming. Once a robot obtains a part and moves itself to
where the connection area for that part is, connecting that part
is treated as instantaneous. Future work could involve more
task-based programming. This paper primarily focuses on how
robots can be programmed to follow an optimal trajectory
when gathering and inserting parts.

These algorithms and equations are used for the execu-
tion of tasks in our proposed system of reasoning based on
commonsense knowledge in human-robot collaboration for
smart automation in manufacturing tasks. We now describe its
experimental evaluation considering vehicle manufacturing.

V. ONLINE SIMULATION EXPERIMENTS
We conduct online simulations as the first part of the
experimental evaluation of the proposed system in this paper
for which some preliminary results have been obtained in our
early work [34]. We explain the simulation task setup and the
corresponding results in the respective subsections herewith.

A. Simulation Task Description

Sample ranges of the CSK-based attribute values that cor-
respond to aforementioned CSK premises of distance, weight,
danger and stability, are depicted with an example in TABLE I
herewith. Note that this is just one instance of values for
the attributes and is not a predetermined order. These are as
coded in the KB and used in our experiments. The cells here
indicate the extent of the respective CSK-based attributes. The
first row exemplifies the minimal permissible human attribute
values for the respective columns corresponding to distance,
weight, danger and stability, while the second row exemplifies
its maximal ones. Likewise, the third row exemplifies the
maximal permissible robot attribute values, and the fourth row
exemplifies its minimal ones.

In our simulation experiments, the robot’s maximization
priorities are instantiated based on Eq. (1) through Eq. (4) to
counterbalance the human’s minimization priorities and vice-
versa. This allows humans to work with parts they prefer and
are better at working with, resulting in object assembly being
faster, safer and more effective. Robots can then handle those
parts that humans have more difficulty moving, such as heavy,
large or fragile parts. The robot’s priority ranges are limited in
order to support human beings. This allows humans to work
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TABLE I
HUMAN AND ROBOT ATTRIBUTE RANGES

Distance (cm) Weight (kg) Danger (Level) Stability (Level)
Min for Human 5 1 0 0|
Max for Humans 600 55 30 30
Max for Robots 700 60 30 30
Min for Robots 10 2 30 0|

with parts they are best at working with, resulting in faster
object assembly. Robots can handle heavy or large parts more
effectively than humans; hence robots will handle those parts.

B. Implementation of CSK-Based HRC in
Simulation Contexts

We hereby describe how we implement our approach that
entails reasoning based on commonsense knowledge embod-
ied within human-robot collaboration. This is with reference
to Eq. (1) through Eq. (10) formulated in Section IV of
this paper. Accordingly, the tasks in our simulation experi-
ments consist of programmed human-robot collaboration, with
humans and robots combining the individual vehicle parts into
an actual vehicle. In order to determine optimal CSK priorities,
the simulation is conducted with various robot priorities and
with limitations placed on these priorities. Human priorities
are determined by common sense and remain constant while
robot priorities change for different tests. The calculated CSK
priorities based on Eq. (1) through Eq. (7) are tested against
manually determined CSK priorities as well as the simpler
priorities. The simpler priorities include: blank, where all
priorities equal 0; closest, where all priorities except distance
are equal to 0; and norobot, where only the human follows
priorities. Prioritiescsk and prioritiescskv3 refer to priorities
as determined by our research team. Combinationscsk and
combinationcskv3 refer to the priorities calculated by the
simulation system with minimum and maximum ranges, with
each tested priority being a multiple of 50, for each robot
priority in place. Priorities started at a lower multiple of 50 at
the start of testing and ended at a higher multiple of 50 by the
end of testing. Thesis priorities, are the final set of priorities
used for the entire CSK-based-HRC implementation, which
were calculated in a similar manner as the combinationscsk
priorities. When testing to determine the effectiveness of
priorities, each set combines five different sets of parts 1000
times, with a total of 5000 executions. The attributes that the
human arm handles and the time are then averaged and stored.
For these simulation experiments, distance is measured in cm,
weight in kg and time in seconds. Danger and stability are
measured as relative levels (which are unitless quantities).

The exact combination of priorities given to each attribute
is shown next in TABLE II. Note that we include the attribute
‘size’ here since we initially store it in the KB for preliminary
studies. However, we do not actually use the size of the parts
within our experiments so far, thus its value is recorded as 0
here (except in the 1°' sub-table where its value is shown just
to maintain a default). The other attributes, namely: distance,
weight, danger and stability are used for the experiments in
this paper. Addressing the size of parts in the experiments
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TABLE 11
LIST OF ALL PRIORITIES

prioritiescsk

TABLE III

SOME TYPICAL PARTS AND ATTRIBUTES IN AN EXAMPLE CASE
OF VEHICLE ASSEMBLY. THESE DIFFERENT SIMULATED VEHICLE
MODEL PART ATTRIBUTES WERE USED TO TEST THE DIFFERENT

Type Distance Weight Danger Stability Size HUMAN-ROBOT COLLABORATION MODELS
human max 0 0 0 100 0
human min 100 100 50 0 100 Attributesv1
robot max 100 100 150 100 100 partid Label isbase |Length | Width |Height | Weight | Danger [Stability
obot min 0 0 0 0 0 0| wheel 1 FALSE 3 2 3 10 3 2
— 1| wheel2 FALSE 3 2 3 10 3 2
prioriticscskv3 2| wheel3 FALSE sl o 3 w0 3 2
Type Distance Weight Danger Stability Size 3| wheeld FALSE 3 2 3 10 3 5
human max 0 0 0 50 0 4| vehiclebase TRUE 18] 14 10 30 10 15
human min 0 250 100 0 0 5|seatl FALSE 4 4 5 5 2 4
robot max 100 150 100 0 0 6]seat2 FALSE 4 4 5 5 2 4
robot min 0 0 0 0 0 7 | backseat FALSE 12 4 5 15 5 8
blank Attributesv2
- - — - partid Label isbase |Length | Width |Height | Weight | Danger | Stability
Type Distance Weight Danger Stability Size 0 [wheell TRUE 3 3 3 3 n
human max 0 0 0 0 0 1] wheel2 TRUE AE 6 2 3 4
human min 0 0 0 0 0 2| wheel3 TRUE 6 3 6 2 3 4
robot max 0 0 0 0 0 3| wheel4 TRUE 6 3 6 2 3 4
robot min 0 0 0 0 0 4|tirel FALSE 9 3 9 3 3 6
losest 5[tire2 FALSE 9 3 9 3 3 6
Type Distance Weight Danger Stability Size ¢ t¥re3 FALSE 2 3 2 3 = u
7| tired FALSE 9 3 9 3 3 6
human max 0 0 0 0 0 8| frontmirror FALSE 15| 15 3 2 15 2
human min 100 0 0 0 0 9| rearmirror FALSE 15] s 3 2 15 2
robot max 0 0 0 0 0 10| vehiclebase TRUE 54 42 30 15 10 15
robot min 100 0 0 0 0 11 [ vehiclebottombase | TRUE 54 42 30 15 10 15
12]scatl FALSE ] ] s 7 2 4
norobot 13 [seat2 FALSE 12 12 15 7 2 4
Type Distance Weight Danger Stability Size 14 backseat FALSE 36 12 15 11 S 8
human max 0 0 0 50 0 15 | sunroof FALSE 21 21 6 7 15 2
human min 150 150 75 0 0 Attributesy3
partid Label isbase |Length | Width |Height | Weight | Danger | Stability
robot max 0 0 0 0 0 0[wheell FALSE| 12| 3] 12| 10 3 4
robot min 0 0 0 0 0 1| wheel2 FALSE 12 3 12 10 3 4
combinationscsk 2| wheel3 FALSE 12 3 12 10 3 4
Type Distance Weight Danger Stability Size 3[wheel4 FALSE 12 3 12 10 3 4
human max 0 0 0 0 0 4| vehiclebase TRUE 18 14 10 30 10 15
human min 100 350 100 0 0 5[ seatl FaLSE] 12| 12| s 5 2 4
obot max 0 100 50 0 0 6| seat2 FaLSE] 12 12| 15 5 2 4
- 7| seat3 FALSE] 12 2] 15 5 2 4
robot min 30 0 0 0 0 8] front FALSE| 12| 30 30| 15 8 10
combinationscskv3 9 back FALSE| 20| 30| 30[ 15 8 10
Type Distance Weight Danger Stability Size 10 roof FALSE 48 30 12 20 12 4
human max 0 0 0 0 0
human min 100 250 100 50 0 Attributesv4
robot max 0 250 150 0 0 partid Label isbase [Length [Width |Height | Weight |Danger | Stability
obot min Too o o o 0 0| wheel1 FALSE 8 4 3 5 3 4
hesisprionitics 1| wheel2 FALSE 8 4 8 5 3 4
Type Distance Weight Danger Stability Size 2 wheel3 FALSE g 4 g 5 3 4
T — 5 5 5 5 5 3| wheel4 FALSE 8 4 8 5 3 4
human min 100 100 150 50 0 Afwheel’  JPALSEL 8L 4] 8 = 4
5| wheel6 FALSE 8 4 8 5 3 4
robot o 0 30 200 30 0 6| wheel7 FALSE 8 4 8 5 3 4
robot min 100 0 0 0 0 7| wheel8 FALSE 8 4 8 5 3 4
8| vehiclebase | TRUE sof 14 10 30 10 is
9]seatl FALSE 12l 12 15 5 2 4
10]seat2 FALSE 12l 12 15 5 2 4
remains an aspect of future work. The first row for each table II 11 [seat3 FALSE| 12| 12] 15 s 2 4
section corresponds to the human’s priority for maximizing an e T | B
; . 13 | back FALSE 200 30 30 15 8 10
attribute. The second row for each table II section corresponds 121 roor AsEl sol ol 121 20l 12 n
to the human’s priority for minimizing an attribute. The third Attributesvs
row for each table II section corresponds to the robot’s priority TR T S R B R
T ) 0| wheell FALSE 3 2 3 15 3 2
for maximizing an attribute. The fourth row for each table II 1[wheelz | FALSE| 3| 2| 3] 15| 3 P
section corresponds to the robot’s priority for minimizing an 2]wheel3 | FALSE E] I ] B 3 2
ttribute 3| wheel4 FALSE 3 2 3 15 3 2
a : 4|vehiclebase | TRUE 18] 14 10 40 10 15
In addition, the objects to assemble range from simple to 5 [seatt FasE| 4] 4] s[ 10| 2 4
complicated, allowing the simulations to test the approach on 6]seat2 FALSE| 4] 4] 5] 10] 2 4
7|backseat | FALSE 12 4 5 20 5 8

disparate sets of parts to be combined into an object, in this
case a vehicle. Through this, a more general set of priorities
can be determined and observations can be recorded for the
simulation tasks in vehicle assembly.

TABLE III (Shown in APPENDIX) depicts a list of various
sets of parts used in the simulation experiments as well as

the specific attributes for each part. This is with reference to
parts in assembling an object, in this case a vehicle. The parts
here are the wheels, vehicle base, front seats, back seat, tires,
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TABLE IV
DANGER AND STABIITY VALUES FOR PART TYPES

Part Type Danger Stability
Wheels 3 2
Tires 3 6
Seats 2 4
Backseat 5 8
Mirror 15 2
Vehicle Base 10 15
Sunroof 15 2
Front/Back 8 10

TABLE V
AVERAGED VALUES OF HUMAN ATTRIBUTES AFTER 5000 EXECUTIONS

attribute distance weight stability danger time
options

cskoriginal 531.8| 43.7 24.8 18.9] 35.6
cskv3 551.4] 39.2 25.8 19| 34.8
blank 566.4| 49.2 24.9 26.1 37
closest 501.6| 49.3 25.6 25.8| 37.8
norobot 508.1|] 52.7 28.1 28.4] 36.7
combinations 523.7 40.6 26.1 20.5] 35.4
combinationsv3 528.3] 40.5 25.5 21.2] 35.5
thesis 514.4] 44.1 26.6 19.4] 35.8

front mirror, rear mirror, vehicle bottom base, sunroof, front,
back, roof etc. The attributes of these respective parts are:
isbase (indicating whether the given part is a base or not, e.g.,
TRUE/FALSE), the length, width and height of the part in
cm, the weight of the part in kg, and its danger and stability
measured as relative levels.

Danger and stability are hypothetical values heuristically
estimated by the researchers such that these approximately
correspond to weight, and furthermore, they incorporate com-
monsense knowledge and reasoning based on the risk associ-
ated with the concerned objects as well as the extent to which
the objects are stable. These values are therefore assigned
based on the researchers’ subjective commonsense reasoning
mapped into objective values based on real-world knowledge
in the given context. TABLE IV specifically describes how
the various part types used in the context of vehicle assembly
correspond to danger and stability with respect to objective
values that are deployed in this work. These are the values
used in our experiments on human-robot collaboration in this
paper, conducted with examples from vehicle assembly.

Accordingly, each sub-table here depicts different versions
consisting of a variety of parts and their respective attribute
values. In each sub-table, the parts are indexed by their
respective part ID values that are used to refer to the given
part in the programming of the simulation.

We have conducted baseline experiments without CSK, the
results of which appear in TABLE V in the rows, “blank”,
“closest” and “norobot”. These depict our simulations without
using commonsense knowledge in the experiments. The other
rows in TABLE V correspond to the experiments entailing the
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use of commonsense knowledge. Hence, we have conducted
experiments with and without CSK, the results of which have
been tabulated herewith. TABLE V outlines the attributes
the human experienced while executing the assembly task,
such as the distance traveled and weight carried. The most
important attribute to minimize is danger since human safety
is critical while the most important attribute to maximize is
stability since humans should handle the most stable parts. The
other attributes should be minimized since they affect human
workers and production speed.

C. Observations and Discussion on Simulations

The results of the simulation experiments are recorded as
follows. Fig. 5 shows an example of car parts in their initial
and final state with respect to our simulation experiments.
This indicates an example of the outcome achieved with the
simulation in terms of the actual vehicle assembly, e.g., the
parts being assembled to form the object.

In these simulation experiments, the values of the average
attributes that the human handles and the average execution
times are summarized in the TABLE V as shown herewith.
The attributes that are considered include the average distance
traveled by the human being, the average weight carried by
the human being, the average stability of the parts carried by
the human being and the average danger of the parts carried
by the human being.

These results display benefits of using CSK priorities for
HRC. For example, in the csk row in Table V, the human
carries less weight (compared to blank, closest or norobot),
lessening the impact on human stamina and thus ensuring
human comfort. Stamina is not an issue if work is only
done for a minimal amount of time, but if work is under-
taken for hours at a time, stamina degrading will result
in humans working slower and negatively impacting their
comfort. Having humans handle lighter parts will maintain
stamina, and hence increase comfort which is desirable. Most
importantly, danger is lowered with CSK priorities, especially
in combinationcsk (and its v3), hence enhancing human safety.
Execution time is also found to be lower with CSK priorities
in comparison to simpler priorities. While the human travels a
greater distance in csk (compared to closest for example), that
is less important than safety. The human also performs tasks
more slowly since the closer parts are occasionally heavier and
this causes humans to move more slowly. The performance
is more optimal for combinationscsk and combinationscskv3
than for prioritiescsk and prioritiescskv3, since the values are
determined algorithmically rather than by hand. The thesis
priorities represent the newest research for this paper. Further
optimization can be performed in future work as needed.

The simulation results herewith demonstrate that using com-
monsense knowledge for reasoning within human-robot col-
laboration makes work easier for humans while only slightly
increasing the completion time in some cases. Humans are
also safer since are carrying parts that are less dangerous
on average. While work can be completed faster, oftentimes
more danger is added, which can increase the chance of
injury when tasks are frequently repeated. Having two humans
collaborate to assemble the parts into a final object would
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Fig. 6. An example of human-robot collaborative assembly in our typical
simulation environments. The parts the human moved are marked as blue in
the while the parts the robot moved are marked as red. Note that Figs. 4 and 5
cover real-life experiments using real-life parts for a toy vehicle while Fig. 6
refers to a simulated vehicle assembly online using hypothetical parts.
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be an option, but they would eventually become tired and
work more slowly than a human and a robot collaborating.
When tasks are repeated several times a day in a real scenario,
avoiding tiredness is important, especially since it can help
with preventing injury. Adding more aspects of commonsense
knowledge can be even more effective than shown in the
current simulation.

VI. REAL-WORLD EXPERIMENTS

We conduct in-person testing in a real-world task for our
proposed approach of human-robot collaboration based on
reasoning with commonsense knowledge, a subset of which is
demonstrated earlier [35]. This is described in the following
subsections.

A. Setup for Real-World Experiments
The real-world experiment involves a collaborative robot
arm, a web camera, a workstation, a target object, and a

‘OO‘

Fig. 7. Model vehicle type used for vehicle assembly experiments.

Fig. 8. HRC in vehicle assembly: snapshots from real-world experiments at
different stages in left and right photos here (altered for privacy protection).

shared workspace, similar to the simulation experiments shown
in Fig. 6. In this experiment, a human and a robot will
collaborate to assemble a vehicle model. A Franka Emika
Panda robot, which is a 7-DoF collaborative robot with a two
finger parallel gripper utilizing a pilot user interface and a
Franka Control Interface (FCI) controller, collaborates with
humans for this experiment [36]. A ThinkPad P15 with Intel
Core 19-10885H processor and 64 GB Memory is used to
run our CSK-based algorithms and communicate with the
robot. The open source Robot Operating System is used for
robot movement and robot system control [37], [38] while the
Movelt! package helps with operating in more realistic and
dynamic work environments [39]. The CSK premises applied
in the simulations are applied in the real-world experiments as
well. For this purpose, a model vehicle with four base parts
and four wheels is used, as shown in Fig. 7.

The base parts here are the cargo bed, the backseat, the front
seat, and the front, with the wheels being attached to the cargo
bed and the front. A robot arm collaborates with a human to
assemble the vehicle by grabbing the base parts and delivering
them to the human. From there, the human attaches the wheels
to the base parts. This division of labor is efficient since the
robot cannot effectively handle the wheels while the human
can attach the parts, and the robot can lessen the human’s work
by handling the base parts. An example of the execution of
real-world experiments is shown in Fig. 8.

B. Results Analysis

The in-person human-robot collaboration proves to be bene-
ficial. For the real-world experiments, the robot and the human
handle the parts in an optimized order. For example, in one
instance of real-world experiments, all of the parts have a
starting position, with the four base parts standing on the four
corners of the white cardboard base in Fig. 7, and the four
wheels being nearby the human worker. It is observed that in
this example, the execution proceeds in the following order:
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Robot hands over cargo bed of truck to human.

Human attaches back wheel 1 and back wheel 2 to cargo
bed.

Robot hands over truck back seat to human.

Human attaches truck back seat to cargo bed.

Robot hands over truck front seat to human.

Human attaches truck front seat to truck back seat.

Robot hands over truck front to human.

Human attaches truck front to truck front seat.

Human attaches front wheel 1 and front wheel 2 to truck
front.

The order for handing these parts from the robot to the
human is dynamically generated by the commonsense prior-
ities described in section IV. Thus, commonsense reasoning
is incorporated here during human-robot collaboration. This
is done on a really small scale in our real-world experiments
simply in order to illustrate the basic concepts in our proposed
methodology. A similar process can be used in large scale
industrial vehicle assembly with automated manufacturing
using HRC. It is to be noted that we have used a limited dataset
here because of the study occurring much during the COVID
pandemic with operations in a remote mode. The intention of
conducting advanced experiments with more decision-making
as future work explained in the Discussion section.

Testing this assembly order shows that assembling the
vehicle with aid from the robot makes the task easier than
assembling it without assistance. While the task takes more
time to complete with the robot’s assistance, human stamina
will remain higher for large-scale vehicle assembly execution,
allowing humans to continue producing high efficiency and
high-quality work. Maintaining stamina becomes more rele-
vant when in a large-scale setting, where a task is executed
hundreds of times. Because of this issue, the human-robot
collaboration outlined in these experiments is a significant
contribution.

This real-world validation leads to relevant inferences. Our
study proves that humans and robots guided by CSK can be
efficient in task execution while also valuing human safety and
comfort by protecting humans. In addition, it is noticed that
the robot arm is capable of verbally greeting the human worker
and informing the human worker when it has brought a base
part to them. This provides a pleasant sense of collaboration,
which can be furthered by the human occasionally speaking to
the robot. The robot arm makes the assembling of the vehicle
more efficient and interesting. The real-world experiments,
even more so than the simulation experiments, demonstrate
the importance of task optimization in collaborative robotics,
moving closer towards large scale real-world executions for
industrial vehicle assembly. This work contributes to smart
manufacturing, in manner analogous to other works [2],
[3], [40], [41] in the literature.

N

XN kW

VII. DISCUSSION

It is to be noted that even though real-world experiments are
conducted for our research in this paper, there is no subjective
evaluation for this study due to the COVID pandemic.

The study is also limited due to the fact that the CSK
system is tested in the real-world with one set of parts.
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The sets of parts can be assembled in various orders in
this example, but the system should be able to handle cases
where part order is more rigid with enhanced decision-making.
The results still appear conclusive in that the robots utilizing
commonsense knowledge can help in improving human-robot
collaboration. Future work could potentially remedy some of
these limitations.

The simulation conducted in this paper is modifiable, where
more attributes can be added and altered based on the needs
of the manufacturer. The system can be applied for larger and
more complicated real tasks in the future. Currently, the arm
used for in-person experiments does not detect the location of
the parts; they are consistently placed in the same position.
Future work can incorporate a detection system that would
send the location of parts to the robot arm, which would
then travel to the location and deliver the parts to a human
worker.

Additionally, it would be interesting to conduct studies
with CSK priorities changing in HRC based on different
levels of trust, drawing upon interesting conclusions from
related studies in the literature. This would further augment
human-robot collaboration for a more enhanced experience.

While a robot handing a human partner vehicle parts is a
simple example of human-robot collaboration, this still repre-
sents typical progress toward more complicated human-robot
collaboration in smart manufacturing. There are currently
experiments and implementations with far greater scope. In the
future, our work on human-robot collaboration based on
commonsense knowledge and reasoning could also incorpo-
rate more adequate object detection. Works such as [24] on
generating benchmarks for object recognition using spatial
commonsense, [42] on the detection of objects by transfer-
ring commonsense, and [1], [18] on conducting automated
commonsense knowledge extraction with compilation could
potentially be useful here.

Moreover, some experiments could be conducted in the
future for subjective evaluation in real-world HRC. For exam-
ple, this could consider factors such as the experience with
in-person experiments being pleasant due to the conversation
between the human and the robot. Other subjective evaluations
could involve the manufacturing outcomes with respect to
their reception by the real world. Some of this future work
could potentially entail contacting domain experts from the
industry in smart manufacturing. Their inputs on real-world
experiments and feedback through surveys etc. would be
valuable in further stages of the work emerging from this
paper, on a larger scale.

In general, this paper deploys concepts from commonsense
knowledge, proposes a system based on that for reasoning
in human-robot collaboration and conducts execution in the
application of vehicle assembly within the context of smart
manufacturing. Such work is particularly significant during
recent times considering the automation much needed dur-
ing the COVID pandemic and its aftermath/recovery phases.
Future work based on some of the aspects identified in this
paper can provide even further enhancements from various
perspectives, thereby making stronger impacts on robotics and
artificial intelligence. We can address some future work in the
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context of helpfulness of robots in dealing with the COVID
pandemic and other such adverse circumstances.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes and evaluates a system that harnesses
the benefits of reasoning based on commonsense knowledge
for human-robot collaboration in the context of smartmanufac-
turing. The simulations conducted in this work using vehicle
assembly display how HRC can be improved by applying
CSK in the reasoning, thereby resulting in a better work
environment for humans while retaining high efficiency in
the respective tasks. The in-person experiments conducted
in real-world contexts further corroborate the simulations
in demonstrating how the presented theory of CSK-based
reasoning for HRC is effective in practice, with particular
reference to vehicle assembly. With the robot arm’s assistance,
assembling the vehicle is significantly easier. Applying HRC
along with reasoning based on CSK can thus help improve
manufacturing especially since these tasks are executed mul-
tiple times. It therefore makes significant positive impacts on
the smart manufacturing domain. Data gathering, including
documenting execution time has been difficult due to the
COVID pandemic, and will thus be part of future work. The
experimental results indicate that the real-world execution time
will be decreased since a robot working alongside a person
will help that person’s stamina and allow them to work faster.
Future work can include testing more complicated forms of
human-robot collaboration, documenting execution time, and
incorporating object detection in human-robot collaboration
based on commonsense knowledge and reasoning. This is
expected to yield even better results and make further con-
tributions to smart manufacturing.

APPENDIX
See Table I11.
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