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A B S T R A C T   

The measurement of leaf optical properties (LOP) using reflectance and scattering properties of light allows a 
continuous, time-resolved, and rapid characterization of many species traits including water status, chemical 
composition, and leaf structure. Variation in trait values expressed by individuals result from a combination of 
biological and environmental variations. Such species trait variations are increasingly recognized as drivers and 
responses of biodiversity and ecosystem properties. However, little has been done to comprehensively charac
terize or monitor such variation using leaf reflectance, where emphasis is more often on species average values. 
Furthermore, although a variety of platforms and protocols exist for the estimation of leaf reflectance, there is 
neither a standard method, nor a best practise of treating measurement uncertainty which has yet been 
collectively adopted. In this study, we investigate what level of uncertainty can be accepted when measuring leaf 
reflectance while ensuring the detection of species trait variation at several levels: within individuals, over time, 
between individuals, and between populations. As a study species, we use an economically and ecologically 
important dominant European tree species, namely Fagus sylvatica. We first use fabrics as standard material to 
quantify measurement uncertainties associated with leaf clip (0.0001 to 0.4 reflectance units) and integrating 
sphere measurements (0.0001 to 0.01 reflectance units) via error propagation. We then quantify spectrally 
resolved variation in reflectance from F. sylvatica leaves. We show that the measurement uncertainty associated 
with leaf reflectance, estimated using a field spectroradiometer with attached leaf clip, represents on average a 
small portion of the spectral variation within a single individual sampled over one growing season (2.7 ± 1.7%), 
or between individuals sampled over one week (1.5 ± 1.3% or 3.4 ± 1.7%, respectively) in a set of monitored 
F. sylvatica trees located in Swiss and French forests. In all forests, the spectral variation between individuals 
exceeded the spectral variation of a single individual at the time of the measurement. However, measurements of 
variation within individuals at different canopy positions over time indicate that sampling design (e.g., stan
dardized sampling, and sample size) strongly impacts our ability to measure between-individual variation. We 
suggest best practice approaches toward a standardized protocol to allow for rigorous quantification of species 
trait variation using leaf reflectance.   

1. Introduction 

Monitoring biodiversity across biological scales – from genetic di
versity to functional trait diversity – is critical to assess biodiversity loss, 
shifts, and resilience under increasingly rapid global change (Hansen 
et al., 2001; Oehri et al., 2017). The Group on Earth Observations 

Biodiversity Observation Network (GEO BON) developed Essential 
Biodiversity Variables (EBVs) for standardized and harmonized assess
ment and reporting of biodiversity change (Pereira et al., 2013). Among 
the six classes of EBVs, ‘species traits’ encompasses all within-species 
features (morphology, phenology, physiology, and reproduction) that 
can be measured at the individual level and that allow for the 
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monitoring of intraspecific variation across space and time (Kissling 
et al., 2018; Pereira et al., 2013). Intraspecific variation reflects the 
breadth of plant functional trait attributes expressed by individuals 
within a species as a result of genetic diversity and phenotypic plasticity 
in response to environmental factors (Albert et al., 2011). Greater 
intraspecific variation promotes species coexistence in a more diverse 
range of environments (Bolnick et al., 2011; Sides et al., 2014). . The 
variation among individuals is both an indicator of, and an explanation 
for, variation in environmental factors from nutrients and water, to 
species distributions (Salazar et al., 2018; Asner et al., 2017). The pat
terns of variation just within tree canopies likely supports different 
niches for habitation by the hundreds to thousands of other species that 
depend on any one tree species (Kennedy and Southwood, 1984). 
Monitoring species trait variation thus offers the promise to better un
derstand the contribution of intraspecific variation to biodiversity, 
ecosystem properties, and species resilience under global change (Kis
sling et al., 2018; Violle et al., 2007). 

Leaf optical properties (LOP) describe how leaves reflect, absorb, 
transmit and scatter light (Jacquemoud and Ustin, 2019a). As chemical 
and morphological features alter the way leaves interact with light, LOP 
integrate variation in these properties, which include traits that are in
dicators of plant ecophysiology and performance. Leaf reflectance 
measurements retrieved from remote sensing platforms allow for the 
monitoring of the variation of LOP across space and time, and thus the 
simultaneous and rapid characterization of several specific functional 
plant traits (Jacquemoud and Ustin, 2019a). Numerous studies have 
demonstrated the potential of remote sensing to monitor functional 
plant traits at different biological scales (Cavender-Bares et al., 2017; 
Meireles et al., 2020; Schneider et al., 2017) and have developed 
biodiversity metrics based on the spectral variation of LOP (Laliberté 
et al., 2020; Meireles et al., 2020; Schweiger et al., 2018; Williams et al., 
2020). However, because of a lack of available data or as a result of 
concerns that such a level of detail will be neither generalizable nor 
scalable, very few studies attempted to derive a comprehensive metric 
for species trait variation or to discern such variation from uncertainties 
(Cavender-Bares et al., 2016; Čepl et al., 2018; Czyż et al., 2020; García- 
Verdugo et al., 2010; Madritch et al., 2014; Pettorelli et al., 2016; 
Santiso and Retuerto, 2015; Singh et al., 2015). And yet, remote sensing 
of individuals made possible in recent years by the combination of high- 
resolution imaging spectroscopy and LiDAR illustrates the potential of 
remote sensing to capture species traits (Kellner et al., 2019). The 
individual-level mapping of morphological and physiological traits (Ali 
et al., 2017; Zheng et al., 2021), or even the monitoring of phenological 
events as forest flowering from space (Dixon et al., 2021) resulting from 
this approach are great examples. 

Field spectroradiometers are widely used to estimate leaf reflectance 
at the individual level (Jacquemoud and Ustin, 2019b) and to compare 
with measurements from airborne optical sensors (Hueni and Bialek, 
2017; Malenovsky et al., 2019). Coupled with a leaf sampling device and 
standardized light source, they allow leaf measurements to be taken 
independently of environmental conditions and thus with an expected 
high accuracy and repeatability. The portability of the field spectror
adiometer and leaf sampling device allows for non-destructive in-situ 
measurements. While leaf clip (LC) devices measure in a bi-directional 
view-illumination geometry, integrating sphere (IS) devices integrate 
the reflected (or transmitted) light over a full hemisphere, which reduces 
anisotropic directional reflectance (or transmittance) behavior (c.f., 
Schaepman-Strub et al., 2006 for terminology). For this reason, mea
surements with an IS are often considered more repeatable and com
parable, and thus preferred when sampling conditions allow (Milton 
et al., 2009). However, information about anisotropic properties of LOP, 
which may be important, is lost with IS measurements. Comparison of 
LC and IS measurements of the same standard or leaf material revealed 
systematic differences in reflectance retrieved from both types of mea
surement, although variation among IS measurements was found to be 
smaller (Hovi et al., 2018; Lukeš et al., 2017; Potůčková et al., 2016). In 

this respect, Potůčková et al. (2016), among others, encouraged the 
standardization of measurement procedures to improve the compara
bility of spectral measurements across measurement campaigns and 
within open access spectral librairies. Nevertheless, the diversity in 
instrumentation and measurement protocols remains, and the system
atic characterization of measurement uncertainty associated with 
particular protocols is rarely reported. 

Measurement uncertainty is inherent to any optical measurement 
and characterizes the dispersion in reflectance (or absorbtance, or 
transmittance) that could reasonably be attributed to the target (Joint 
Committee for Guides in Metrology, GUM, 2008). The characteristics of 
the spectroradiometer and external factors can impact the dispersion in 
reflectance. Several studies exist to quantify and minimize measurement 
uncertainty in spectroradiometric measurements, as well as in (needle) 
leaf optical properties measurements (Forsström et al., 2021; Helder 
et al., 2012; Schaepman and Dangel, 2000; Yanez-Rausell et al., 2014a, 
2014b). In this study, we investigate to which extent LOP, and partic
ularly the uncertainties associated with leaf reflectance measurements, 
permit the detection of species traits. We hypothesize (1) that mea
surement uncertainty depends on the plant sampling device and 
reflectance anisotropy of the target (fabric materials or single leaf), but 
(2) remains negligible compared to the total variation in spectra 
measured from different leaves; and (3) that variation in LOP increases 
at increasing levels of biological organization from individuals to pop
ulations. Lastly, we hypothesize (4) that sampling time, size, and loca
tion contribute to the variation in LOP and alter our ability to accurately 
assess variation between individuals and populations. 

2. Materials and methods 

To evaluate our hypotheses, we first considered the spectral reflec
tance of a set of fabrics with various degrees of anisotropy measured 
with a field spectroradiometer coupled with either a leaf clip or an 
integrating sphere. We calculated the measurement uncertainty associ
ated with each material-sampling device pair. We then assessed mea
surement uncertainty and variation at several levels of biological 
organization within three datasets comprising the leaf reflectance of 
Fagus sylvatica individuals from several European forests (Fig. 1) which 
is chosen as a dominant tree of economic and ecological importance, 
having an uncertain future under global change (Brun et al., 2020). 

In a first step, we characterized the variation within an individual 
tree, considering a time series including spectral reflectance taken at 
different positions of the tree crown over the course of one growing 
season. Secondly, we disentangled the contribution of individual vari
ation from the variation observed among forest sites, based on variation 
partitioning. Lastly, we evaluated the influence of sample size on the 
observed variation using statistical approaches, and suggest measures 
toward a standardized protocol to allow rigorous quantification of bio
logical variation via LOP. 

2.1. Experimental design 

The study combines four datasets (Fig. 1.a). The first dataset (dataset 
A) comprises spectral reflectance of fabrics (see Section 2.2). The three 
other datasets comprise reflectance of F. sylvatica leaves that were 
collected on one individual across the growing season (dataset B), and 
on several individuals from a French forest (dataset C) or Swiss (dataset 
D) forest stands (see Section 2.3). Fabric and leaf spectral reflectance 
were estimated from measurements performed with a field spectror
adiometer coupled with either a leaf clip or an integrating sphere (Fig. 1. 
b; see Sections 2.4–2.6). For each dataset, we calculated the spectral 
variation (see Section 2.7). In dataset A, we compare the spectral vari
ation to the measurement uncertainty, while in the other datasets we 
partitioned the spectral variation into measurement uncertainty and 
biological variation. We further distinguish between the biological 
variation originating from different levels of biological organization (i. 
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e., within- and between-individual variation) (Fig. 1.c–d). 

2.2. Fabrics used as standard materials 

The four following fabric materials were purchased at Alja Nouveau 
AG, Oerlikon, Switzerland: 

(1) A Camouflage fabric from SSZ Camouflage Technology AG: opa
que, mostly isotropic reflectance, spectrum in the visible and in 
the near infrared ranges highly similar to vegetation.  

(2) A green translucent, woven, 100% cotton fabric, which reflects 
light isotropically.  

(3) A green opaque plastic fabric which reflects light with a specular 
component depending only on the zenith angle. 

(4) A green translucent satin fabric which reflects light anisotropi
cally. It has a very strong specular component which depends 
both on zenith and azimuth angles. 

Reflectance of fabrics was estimated from measurements performed 
with both sampling devices, i.e., a leaf clip and an integrating sphere, 
which were successively coupled to the same ASD FieldSpec spectror
adiometer (see Section 2.4. Instruments) (Fig. 1.b). 

We selected the four different fabrics according to their optical 
properties (Fig. 2). The optical properties are similar to LOP. However, 
unlike LOP, which are known to be heterogenous within a leaf and 

Fig. 1. Conceptual overview of the study. The study includes four datasets which allow to assess different sources of variation in optical properties measurements 
made with a field spectroradiometer and two types of sampling devices, i.e., a leaf clip and an integrating sphere. 
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sensitive to light exposure over time (Jacquemoud and Ustin, 2019a), 
the optical properties of each fabric are expected to be the same 
everywhere on the piece of fabric and to not change over time. Also, the 
measurement of these fabrics under controlled laboratory conditions 
allows us to isolate the spectral variation which can be attributed to the 
measurement uncertainty related to the spectroradiometer and the 
sampling device. The potential effects of opacity and specular reflec
tance on measurement uncertainty were furthermore assessed. 

2.3. Leaf samples 

Leaves of an approximately 200-year-old beech tree located on the 
campus of the University of Zürich (47◦23′44.7”N 8◦32′58.1′′E) were 
sampled weekly over the entire growing season, from the 3rd of May to 
the 7th of November 2018. Eight repeat sampling spots, comprising 
three shaded sampling spots located under the crown, and five sun- 
exposed sampling spots, were selected to assess the variation in LOP 
within an individual tree at each point in time, as well as over the sea
son. Of the five sun-exposed sampling spots, three were located on the 
east side at 3, 6, and 12 m tree height, and two on the south side at 6 and 
12 m tree height to account for potential effects of varied light exposi
tion and sampling height on LOP. Each week (n = 28), one terminal 
branch with a diameter of 50 mm and including about 20 leaves was 
sampled at each sampling spot. Leaf spectral reflectance of three leaves 
chosen one at the base, one at the middle, and one at the tip of each 
branch was acquired in situ using a leaf clip coupled with an ASD 
FieldSpec spectroradiometer (see Section 2.4. Instruments). In-situ 
measurements were used to characterize the biological variation 
within an individual tree. Each node of three to four leaves was detached 
from the branch, stored in a dark plastic bag and transported to the 
laboratory on dry ice protected from the light. Within 3 h following the 
sampling, leaf reflectance was acquired once more in a dark laboratory 
simultaneously with a leaf clip and an integrating sphere, ensuring that 
there was no water film on the surface of the leaves prior to measure
ment. If a water film had formed because of rain or storage conditions, it 
was gently removed with a tissue paper. Laboratory measurements were 
compared to assess differences in leaf reflectance due to the use of 
different sampling devices. Because of the smaller size of the leaves at 
the beginning of the season, measurements in weeks 18 to 20 were 
carried out on three individual leaves belonging to the same node. 

To assess the variation in LOP between individuals and between sites 
(Fig. 1.c–d), we collected leaves from 189 beech trees in la Massane in 
the French Pyrenees (42◦28′28.0”N 3◦01′11.7′′E) (Dataset C) and from 

75 beech trees located in five sites in Jura in northern Switzerland 
(47◦31′9.3”N 7◦37′55.5′′E) (Dataset B) (Fig. S1). The sampling was 
conducted on 6–10 of July and on 25–26 of July 2019 for the French and 
Swiss forests, respectively. From each sampled tree, we harvested one 
branch per tree with a dimeter of 50 mm and containing about 20 leaves 
from the top of canopy with a telescoping scythe (Takeni Trading co., 
Osaka,Japan) in France and by helicopter in Switzerland, kindly allowed 
as part of the long-term monitoring sample harvest by the Institut für 
Angewandte Pflanzenbiologie (IAP). At the French site, leaves were 
measured in the field shortly after branches were harvested. At the Swiss 
sites, branches were kept in dark plastic bags and protected from the 
direct light until measurement. A limitation of the helicopter harvest is a 
longer period between harvest and measurement which can vary across 
sites. For these reasons, the two datasets are analyzed separately. From 
eachbranch, we randomly selected three leaves from which we acquired 
leaf reflectance within 3 h following the sampling using an ASD Field
Spec spectroradiometer (see 2.4 Instruments). Two ASD Fieldspec 
spectroradiometers were used, each measuring approx. half of all sam
ples per site. One instrument was used for one plant individual. 

2.4. Instruments 

Reflectance was calculated from measurements performed with a 
FieldSpec spectroradiometer (ASD Inc., Boulder, CO, USA) coupled with 
a sampling device (leaf clip or integrating sphere). Datasets A and B were 
obtained using a FieldSpec 4 Wide-Res device (serial n◦18,130), while 
datasets C and D were measured using two FieldSpec 4 Standard-Res 
(serial n◦18,130 and 18,140). A leaf clip, consisting of the plant probe 
plus leaf clip (model A122317, serial n◦455 and 885, ASD Inc., Boulder, 
CO, USA), and/or an integrating sphere (serial n◦6045-2, ASD Inc., 
Boulder, CO, USA) were used as sampling device depending on the 
sample and measurement procedure (see 2.5. Measurement procedures). 
Both sampling devices have an internal standardized light source 
allowing the measurement to be taken independently of external illu
mination conditions. The light source of the leaf clip is a halogen bulb 
with colour temperature of approximately 2900 K according to specifi
cations of the manufacturer, whereas the integrating sphere is supplied 
with a collimated tungsten light source (Analytical Spectral Devices Inc, 
2008). 

The FieldSpec spectroradiometer employs three detectors covering 
the visible and near infrared (VNIR) to the shortwave infrared (SWIR) 
range from 350 to 2500 nm. The VNIR detector is a silicon photodiode 
array while the two SWIR detectors are thermo-electrically cooled 

Fig. 2. Photographs of the fabric materials: (a) camouflage fabric, (b) cotton fabric, (c) plastic fabric, (d) satin fabric and (e) F. sylvatica branch sample.  
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indium gallium arsenide detectors, covering the 1001–1800 nm and 
1801–2500 nm ranges, respectively. The detectors are covered by order 
separation filters and the light is dispersed by a holographic diffraction 
grating. The factory wavelength accuracy is 0.5 nm while the nominal 
spectral resolution ranges from 3 nm in the VNIR to 10 nm in the SWIR 
(Analytical Spectral Devices Inc, 2010). 

In dataset A and B, optimization of the detector sensitivities using the 
standard light source and a white reference was set to17 ms for the leaf 
clip and to 136 ms for the integrating sphere to maximize the detector 
sensitivity and minimize the exposure time. The white background of 
the leaf clip was used as white reference for leaf clip measurements, 
whereas uncalibrated Spectralon® panels (99% nominal reflectance) 
were used as a white reference for integrating sphere measurements. 
Exposure time in case of biological material should be considered with 
care as prolonged exposure to heat from the lamp, especially in the leaf 
clip set-up, may alter LOP. In this regard, optimized acquisition time was 
set to 8.5 ms in dataset C and D. 

2.5. Measurement procedures 

Measurements performed with a leaf clip consisted of four successive 
readings: the white reference (Rw), the white reference plus target (Tw), 
the black reference (Rb), and the black background reference plus target 
(Tb). Measurements performed with the integrating sphere followed the 
recommended method of the manufacturer (Analytical Spectral Devices 
Inc, 2008) consisting of three successive readings: a measurement with 
the sample in the sample port and the reference in the reference port (Is), 
a measurement with the reference in the sample port and the sample in 
the reference port (Ir), which is needed to correct for the substitution 
error, and the dark reading (Id). Each reading consists into the mean of 
repeated internal measurements referred as scans. 

Measurements of the fabrics were taken with both sampling devices 
in a dark laboratory. For these measurements, 15 scans per reading were 
recorded and averaged. The measurement was repeated on 6 different 
spots on the fabric sample. The sample was rotated by 60◦ after each 
measurement to account for the anisotropic properties of the material. 
One dark reading was performed per sample. 

Measurements of leaf samples were taken in situ with a leaf clip as 
soon as possible after branches were retrieved from trees; in dataset B 
and C measurements were taken within 10 min and comprise 5 scans per 
readings, while in dataset D measurements were taken within 3 h and 
comprise 10 scans per readings. Additional measurements of leaves of 
the individual tree (dataset B) were carried out in a dark laboratory 
using both sampling devices within 3 h after sampling (leaves stored in 
dark plastic bags were kept on dry ice during these up to 3 h; leaves were 
not frozen and no water film was present at the surface by the time of 
measurement). Measurements with a leaf clip and an integrating sphere 
were respectively taken on the right and left side of the leaf to avoid 
heating the leaf with repeated measurements on the same spot. The main 
vein was systematically avoided, except for young leaves. Young leaves 
were selected to entirely cover the field of view of both sampling de
vices. For these measurements, 5 scans (10 scans, dataset D) per reading 
were recorded. The first and last scans were systematically removed 
before averaging the scans to avoid potential contamination from pre
vious readings or from hasty opening of the sampling device. 

Measurement results were saved as digital numbers (DN values), 
corresponding to the signal intensity after optimization, and as reflec
tance, corresponding to the signal intensity calibrated against the white 
reference by the ASD software. The reflectance obtained is a reflectance 
factor resulting from a bi-directional measurement (leaf clip) or a 
directional-hemispherical reflectance (integrating sphere) (c.f., 
Schaepman-Strub et al., 2006 for terminology). Reflectance units vary 
between 0 and 1, where 1 corresponds to 100% reflectance of the white 
reference of the sampling device. 

2.6. Calculation of mean sample reflectance 

The reflectance of a sample (R) is calculated from the mean of scans 
of the different readings (see 2.5 Measurement procedures). Several 
calculation methods are available in the literature using either the DN or 
the reflectance values (Table S1). To assess the systematic effects 
potentially induced by various calculation methods on the uncertainty 
associated with reflectance, we compared the reflectance of the fabric 
samples calculated from the equations shown in Table S1. The material 
reflectance values calculated from DN values and reflectances are 
identical when estimated from measurements with an integrating sphere 
and differ by up to 2.2% when estimated from measurements with a leaf 
clip (Fig. S2). 

The reflectance of all other samples was calculated from recorded 
reflectance values according to Eq. (1) (leaf clip measurement; Miller 
et al., 1992) and Eq. (2) (integrating sphere measurement; Analytical 
Spectral Devices Inc, 2008). The (−) indicates that the result is dimen
sionless: a ratio between 0 and 1, referred to throughout this manuscript 
as reflectance units. 

Leaf clip: 

R =
Tb*Rw − Tw*Rb

Rw − Rb
(− , “reflectance units”) (1)  

where R is the spectral reflectance of the target.Rw is the spectral 
reflectance of the white background,Tw is the spectral reflectance of the 
white background plus target,Rb is the spectral reflectance of the black 
background.Tb is the spectral reflectance of the black background plus 
target. 

Integrating sphere: 

R =
Is − Id

1 − Id
(− , “reflectance units”) (2)  

where R is the spectral reflectance of the target.Ir is the spectral reflec
tance with the sample in the reference port and the reference in the 
sample port.Is is the spectral reflectance with the sample in the sample 
port and the reference in the reference port.Id is the dark reading. 

Radiometric steps commonly associated with incomplete warming- 
up of the instrument (ASD Inc, 2010) and ambient temperature (Hueni 
and Bialek, 2017) appeared at the detector limits (1000 and 1800 nm, 
respectively). We thus applied a corrective model developed by Hueni 
and Bialek (2017) that corrects for the changes in radiometric system 
response due to temperature. Correction coefficients were empirically 
determined by operating the field spectroradiometer in a climate 
chamber over a range of known temperatures. The corrective model was 
originally targeting the correction of radiances. It was consequently 
adapted within this study to also correct reflectance values where, 
previously, the correction values of the model were noise limited and 
thus introduced new artifacts (Hueni, 2021). 

2.7. Calculation of measurement uncertainty, spectral, and (non-) 
biological variation 

The measurement uncertainty, hereafter, corresponds to the com
bined uncertainty associated with the reflectance and calculated ac
cording to the law of propagation of uncertainties. The absolute 
measurement uncertainty (Eq. (3)) equals the standard uncertainties 
(Uxi) of the different readings involved in the reflectance calculation 
weighted by the corresponding coefficients of sensitivity (cxi) and added 
in quadrature. The standard uncertainty was defined as the standard 
deviation of the reading (STDxi) divided by the square root of the 
number of readings (N). The coefficient of sensitivity corresponds to the 
partial derivative of the reflectance with respect to the reading (xi) and 
describes how much the reflectance changes when the reading xi 
changes. Except for the two measurements including the target (i.e., the 
measured leaf or fabric), the uncertainties associated with each reading 
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do not correlate with each other in any of the datasets (Figs. S3–6). 
Consequently, co-variation terms were neglected in the uncertainty 
calculation. 

The relative measurement uncertainty was defined as the absolute 
uncertainty divided by the mean reflectance of the material (or across 
the dataset, for leaf measurements) with units of per cent (Eq. (4)). 

Absolute measurement uncertainty: 

U2
R,abs =

∑n

i=1

(
∂R
∂xi

)2

*U2
xi

, with Uxi =
STDxi̅̅̅̅

N
√ (− , “reflectance units”) (3)  

where UR,abs is the absolute uncertainty associated with the target 
reflectance.R is the spectral reflectance of the target.xi are the readings 
(leaf clip; Rw, Tw, Rb, Tb; integrating sphere: Ir, Is, Id).Uxi is the standard 
uncertainty associated with the reading xi.STDxi is the standard devia
tion among scans of each reading xi.N is the number of scans per reading. 

Relative measurement uncertainty: 

UR,rel = 100*UR,abs
/

R (%) (4)  

where UR,rel is the relative uncertainty associated with the target 
reflectance.UR,abs is the absolute uncertainty associated with the target 
reflectance.R is the spectral reflectance of the target. 

The standard uncertainty of each reading corresponds to the prob
ability distributions associated with all different sources of uncertainty, 
including the instrument characteristics and experimental conditions. 
The contribution of individual sources of uncertainty was not considered 
in our uncertainty calculation, except for the ambient temperature (see 
2.6). 

Definitions and terminology are consistent with the Guide to the 
Expression of Uncertainty in Measurement (Joint Committee for Guides 
in Metrology, GUM, 2008). 

The measurement uncertainty was calculated for single and repeated 
measurements of the four fabrics (dataset A), successively recorded with 
a leaf clip and an integrating sphere. In the case of leaf datasets (dataset 
B, C, D), the measurement uncertainty was consequently calculated for 
each single leaf measured. We noted that repeated measurements of the 
same leaf may incorporate stress responses of that leaf to the measure
ment, especially the strong light exposure, and thus could not be 
considered repeated measurements in the same way as repeated mea
surements of non-living fabrics. Consequently, individual leaves were 
not measured repeatedly using the same set-up (except for the two 
measurements required to calculate reflectance) and no uncertainty 
associated with repeated measurements of leaves was established. 
Additional measurements of the same leaf were conducted only in a 
limited manner, with extra precautions, to compare different sampling 
devices as described in Sections 2.3–2.5. We can infer how measurement 
uncertainty may accumulate over many measurements from Dataset A, 
whereas we present mean and variance of calculated per-sample un
certainty for the leaf datasets. 

The spectral variation was defined as the standard deviation at a 
given wavelength among leaf reflectance within a dataset. The relative 
spectral variation, or coefficient of variation, corresponds to the stan
dard deviation expressed as a percentage of the mean reflectance (Eq. 
(5)). 

The (non-)biological variation was defined as the spectral variation 
from which we subtracted the mean uncertainty associated with a single 
measurement (Eq. (6)). Non-biological variation is here operationally 
defined as variation in optical properties of fabrics. We assumed that the 
optical properties of a standard fabric are homogenous. We thus expect 
the non-biological variation to be nil or almost nil, and assess this by 
comparing the deviation of fabric measurements against their calculated 
measurement uncertainty. Biological variation is attributed to variation 
in LOP caused by differences in leaf morphology and chemistry. 

SV = 100*
STD
M

(%) (5)  

with SV is the spectral variation,STD is the standard deviation among 
reflectance,M is the mean reflectance. 

BV = SV − UR,rel (%) (6)  

with BV is the biological variation,SV is the spectral variation,UR,rel is 
the relative uncertainty associated with the target reflectance 

2.8. Data treatment & statistical analyses 

Data represent mean values ± standard deviation. The 95% confi
dence interval corresponds to two standard deviations under the 
normality assumption. The number of replicates is indicated for each 
dataset. Normality tests, t-tests and ANOVAs were performed on indi
vidual wavelengths; see Results and figure captions for details. Scripts 
and source data are available in an open repository (doi:https://doi. 
org/10.5061/dryad.gtht76hkx), and further described in Data in Brief. 
FieldSpec spectroradiometer data are also deposited in the open access 
spectral library SPECCHIO (http://sc22.geo.uzh.ch:8080/SPECCHIO_W 
eb_Interface/search, (Hueni et al., 2020) and can be found with the 
identifiers ‘Field spectroscopy Fabrics’ (dataset A), ‘Field spectroscopy 
F. sylvatica individual’ (dataset B), ‘Field spectroscopy F. sylvatica La 
Massane’ (dataset C), 

‘Field spectroscopy F. sylvatica SwissForest’ (dataset D). 

3. Results 

3.1. Uncertainty and variation associated with measurements of a white 
reference 

We first characterized the uncertainty associated with repeated 
measurements of the white reference standard of the leaf clip in each of 
the four datasets (Fig. 3). 

The spectral variation equivalent to the standard uncertainty asso
ciated with repeated measurement of the white reference. Under labo
ratory conditions, the standard uncertainty was on average equal to 
0.0013 ± 0.0003 reflectance units and did not exceed 0.3% of reflec
tance (or 0.7% of DN). Maxima of variation appeared at wavelengths 
corresponding to the detector limits (350, 1000, 1800 and 2500 nm) and 
atmospheric moisture absorption (1470 nm), In field conditions, the 
standard uncertainty is on average equal to a spectral variation of 0.5% 
or 0.005 ± 0.002 reflectance units. Variation in reflectance of the white 
reference potentially altered by the instability of the detector over time 
(3 h) was usually less than ±2% within one measurement session 
(Fig. S7). 

3.2. Uncertainty and variation associated with measurements of fabric 
standards 

We then characterized the uncertainty associated with the mea
surement of fabrics. We explore two levels of uncertainty: the uncer
tainty associated with a single measurement, and the uncertainty 
generated by repeated measurements of the same fabric. Both mea
surement uncertainties are combined uncertainties calculated on four 
fabrics successively measured with a leaf clip, and an integrating sphere. 

3.2.1. Measurement uncertainty associated with the leaf clip 
The measurement uncertainty associated with a single leaf clip 

measurement of the camouflage, plastic, and cotton fabrics represented 
less than 0.002 reflectance units across the full spectral range 
(Fig. 4e–g). In contrast, the satin fabric (Fig. 4h) had a high specular 
component, and its uncertainty averaged at 0.1 reflectance units in the 
SWIR. The uncertainty associated with a single measurement of the 
material reflectance was also of the same magnitude as the standard 
uncertainty (i.e., standard deviation) associated with the white refer
ence (Fig. 3), except for the anisotropic fabric (satin). Repeated 
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measurements of the same fabric increased the measurement uncer
tainty such that it became nearly identical to the standard deviation of 
measurement, which was lowest in the VNIR and ranged from about 
0.0001 to 0.01 reflectance units for all but the satin fabric. The uncer
tainty increased with increasing wavelength in the SWIR for all mate
rials. The leaf clip allows for a bi-directional measurement. As the 
sample was rotated in the leaf clip after each measurement, the high 
azimuth anisotropy of the satin caused a high standard deviation. Thus, 
the measurement uncertainty associated with the fabric measurements 
appeared to strongly depend on the optical properties of the fabric itself, 
and overall to be similar to the standard deviation from repeated mea
surements of the same fabric. 

3.2.2. Measurement uncertainty associated with the integrating sphere 
The measurement uncertainty associated with a single integrating 

sphere measurement was similar for all four standard materials 
(Fig. 4i–l). It comprised between 0.0001 and 0.001 reflectance units in 
the spectral range of 400–2000 nm and abruptly increased up to 0.1 
reflectance units at both ends of the spectral measuring range (i.e., 
350–400 nm and 2000–2500 nm). Irrespective of the fabric measured, 
the measurement uncertainty associated with repeated measurements 
was between 0.001 and 0.01 reflectance units, slightly less than the 
standard deviation. The measurement uncertainty was systematically 
lower in the VNIR (0.001 ± 0.0005 reflectance units) than in the SWIR 
range (0.004 ± 0.002 reflectance units). Repeated measurements also 
helped to reduce the measurement uncertainty at both ends of the 
spectral measuring range by an order of magnitude compared to a single 
measurement. 

3.2.3. Measurement uncertainty and non-biological variation when using 
both sampling devices 

The measurement uncertainty associated with single measurements 
of all fabrics using either a leaf clip or an integrating sphere ranges from 

10−4 to 10−1 reflectance units and tends to be independent of the 
specular component (except for satin). Repeated measurements of the 
same fabric were generally associated with a greater uncertainty than 
single measurements. Differences between uncertainties associated with 
single and repeated measurements tend to increase for fabrics with a 
stronger specular component, though to a lesser extent for measure
ments using an integrating sphere compared to those using a leaf clip. 
The reflectance of opaque and more isotropic materials (camouflage and 
plastic) calculated from measurements performed with either a leaf clip 
or an integrating sphere led to comparable measurement uncertainties. 
However, only measurements performed with an integrating sphere 
ensure a low measurement uncertainty (<0.01 reflectance units) asso
ciated with the reflectance of translucent and strongly anisotropic ma
terials (cotton and satin). The integrating sphere thus allows for more 
comparable results between materials than the leaf clip, although it 
should be noted that the anisotropic reflectance captured by the leaf clip 
and not by the integrating sphere may be important information about 
the optical properties of the target. Besides, there is a systematically 
higher mean reflectance obtained with the leaf clip compared to the 
integrating sphere (Fig. 4a–d). Systematic differences in reflectance and 
magnitude of uncertainty associated with measurements performed 
using either a leaf clip or an integrating sphere indicate that the 
magnitude and distribution of measurement uncertainty is sampling 
device-specific. 

The uncertainty associated with repeated measurements using either 
sampling device was similar to the standard deviation. The non- 
biological variation corresponding to the difference between the stan
dard deviation and the measurement uncertainty was nil or almost nil, 
which supports the assumption that the optical properties of a fabric are 
homogenous. Also, while the uncertainty associated with a single mea
surement mainly accounts for the variation due to the used instrumen
tation, the uncertainty associated with repeated measurements accounts 
for the variation due to measurement conditions and the specular 

Fig. 3. Variation in the white reference standard of the leaf clip measured in digital numbers (DN; grey) and reflectance mode (black), in laboratory (a) and field 
(b–d) conditions. 
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component of the target material. Thus, the standard deviation appears 
to be an adequate proxy for spectral variation that includes the non- 
biological variation (here, nil or almost nil) and the measurement un
certainty, encompassing the variation due to the instrumentation, the 
measurement conditions, and the anisotropic directional reflectance 
behavior (see Fig. 1c). 

3.3. Uncertainty and variation associated with measurement of leaves 

The biological variation was derived from the spectral variation in 
leaf reflectance (see Fig. 1c), hereafter approximated by the coefficient 
of variation (CV). As the accuracy of the biological variation inferred 
from leaf reflectance depends on our ability to isolate the measurement 
uncertainty from the spectral variation, we quantified the contribution 
of the measurement uncertainty (single measurement) to the spectral 
variation observed in our three datasets, i.e., F. sylvatica individual (over 
time, B), French forest (single site, C), and Swiss forest (multiple sites, 
D). Uncertainty calculation on fabrics (see 3.1) showed that the uncer
tainty associated to a single measurement accounts for the variation 
induced by the instrumentation and measurement conditions, but un
derestimates the uncertainty associated with repeated measurements 
that depends on the specular component of the target. Thus, the 
resulting spectral variation encompassed biological variation and po
tential anisotropic directional reflectance behavior of the leaf. Never
theless, given that the measurement uncertainty associated with single 
measurement of leaf reflectance was comparable to isotropic standard 
materials, we neglected the contribution of the specular component. 

3.3.1. Measurement uncertainty associated with leaf reflectance 
The uncertainty associated with the leaf clip measurements averaged 

at 0.0004 ± 0.0002 reflectance units (Fig. 5), corresponding to 0.3% of 
the leaf reflectance on average across the full spectral range. The mea
surement uncertainty varied between 0.2 and 3% of the mean reflec
tance in the VNIR and averaged at 0.08% in the SWIR (Fig. 5e). The 
absolute uncertainty when measuring leaves with an integrating sphere 
was statistically identical to that of standard materials (ANOVA, df = 26, 
p > 0.5), confirming that the measurement uncertainty for integrating 
sphere measurements was independent from the target. 

In contrast, the difference between leaf clip and integrating sphere 
measurements represented up to 40–80% of the mean leaf reflectance in 
the VNIR and between 10 and 40% of the mean reflectance in the SWIR 
range, which was twice as large as the relative difference observed on 
standard materials, confirming that the relationship between data ob
tained with these two different sampling devices is target-specific 
(Fig. S8). The largest differences were observed at wavelengths where 
the reflectance was the lowest, i.e., between 370 and 740 nm and 
centered near 1470, 1940 and 2500 nm. It is worth to be noticed that 
pigment content is generally derived from spectral indices calculated at 
wavelengths comprised between 430 and 800 nm (Croft and Chen, 
2018). 

In the following sections, we investigate relationships between 
measurement uncertainty and variation (spectral and biological) among 
leaf reflectance calculated from leaf clip measurements only. 

3.3.2. Measurement uncertainty and biological variation within an 
individual 

We investigated the biological variation within a F. sylvatica indi
vidual over time (dataset B), by calculating the spectral variation and 
characterizing the measurement uncertainty associated with leaf 
reflectance. 

Fig. 4. Spectral variation and measurement uncertainty associated with the reflectance of four fabrics. The first row represents the mean reflectance and standard 
deviation of the camouflage material (a), the plastic material (b), the cotton fabric (c), and the satin fabric (d)) measured with a leaf clip (grey) and an integrating 
sphere (dark) The spectral variation, or standard deviation (dotted line), obtained for each combination of fabric and sampling device is compared to the corre
sponding measurement uncertainties associated with single (red) and repeated measurements (n = 6; blue) (e-l). The absolute measurement uncertainty associated 
with repeated measurements includes all measurements taken for each material (no standard deviation). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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3.3.2.1. Spectral variation and measurement uncertainty associated with 
leaf reflectance within an individual. We calculated the spectral variation 
among leaves of an F. sylvatica individual sampled weekly during the 

growing season, including sun-exposed and shaded leaves (Fig. 5a). In 
addition, we considered the spectral variation among sun-exposed 
leaves only, divided into measurements conducted in spring, summer 

Fig. 5. Spectral variation and measurement uncertainties of shaded and sun-exposed leaves of a Fagus sylvatica individual in spring, summer, and fall. The first row 
represents the mean leaf reflectance (black), the measurement uncertainty (red) and spectral variation within a branch (n = 3 leaves) (green) and within the tree 
(grey) of shaded (n = 3 branches) and sun-exposed leaves (n = 5 branches) of a Fagus sylvatica individual across the growing season (a), and more specifically of sun- 
exposed leaves in spring (b), summer (c), and fall (d). The second row represents the relative uncertainty (red) and the coefficient of variation associated with the 
variation within a branch (green) and within the tree (grey) across the growing season (e), in spring (f), summer (g), and fall (h). (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Biological variation within a Fagus sylvatica individual during the growing season retrieved from leaf reflectance. The biological variation describes the 
spectral diversity among weekly sampled (a) sun-exposed and shaded leaves (n = 24), (b) sun-exposed leaves (n = 15), (c) and shaded leaves (n = 9). The biological 
variation of individual sampling spots is available in the supplementary data (Fig. S9). 
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and fall (Fig. 5b–d). The largest contribution of the measurement un
certainty to the spectral variation (20%) was observed for spectral bands 
below 400 nm where the instrument noise is governed by a low quantum 
efficiency of the silicon VNIR detector combined with a low intensity of 
the halogen lamp used as light source. Above 400 nm, the relative un
certainty represented on average 2.5 ± 1.6% of the spectral variation 
among sun-exposed leaves (Fig. 5e). Although the measurement uncer
tainty tended to contribute more to the spectral variation in summer 
(3.5 ± 1.8%) and fall (3.0 ± 1.8%) than in spring (1.9 ± 1.0%), its 
contribution to the spectral variation was statistically independent of 
the time of measurement (ANOVA, df = 198, p > 0.5) across the full 
spectral range (Fig. 5f–h). Similarly, the relative uncertainty represented 
on average 5.6 ± 3.1% of the spectral variation among sun-exposed 
leaves belonging to the same branch. Maxima in measurement uncer
tainty roughly corresponded to maxima in spectral variation (e.g., at 
690, 1415, 1900 nm) and did not exceed 10% and 20% of the spectral 
variation observed within an individual and within branches, 
respectively. 

3.3.2.2. Spectral variation and biological variation within an individual. 
Fig. 6a illustrates how the biological variation among sun-exposed and 
shaded leaves evolved across weeks during the growing season. The 
biological variation in the VNIR region varied from as low as 5% to as 
high as 110% with respect to the wavelength and the sampling time. 
Biological variation was highest in the spectral range of 500–750 nm 
corresponding to pigment absorption, and showed a clear time de
pendency. We distinguished three time periods, roughly following the 
main phenological stages of a leaf, i.e., the leaf development in spring 
(week 1–9), the maturation of fully developed leaves in summer (week 
10–19), and leaf senescence in fall (week 20–28). Across the spectrum, 
the mean biological variation was 20% of the leaf reflectance in spring, 
between 30% and 50% in summer, and over 100% in fall, revealing an 
increasing diversity in spectral features within a tree as leaves mature 
and senesce. However, the biological variation at a given wavelength 

remains largely constant (<±10%) over time in the SWIR region, and 
thus the time dependency is driven by differences in the VNIR. The 
largest values in the SWIR (15%–40%), mainly driven by the water 
content, appeared between 1400 and 1500 nm and between 1800 and 
2500 nm. Out of a biological variation of 40% in the SWIR, up to 30% 
originate from the differences between sun-exposed and shaded leaves 
(Fig. 6b–c). 

Among individual sun-exposed branches only, the biological varia
tion across the growing season comprised between 1.5%–10% in the 
SWIR, and averaged at 11 ± 6% in the VNIR region (Fig. S9). The bio
logical variation in the VNIR was minimal in spring (9 ± 3%) and had its 
maximum in fall (16 ± 10%). We observed the same pattern above 1800 
nm in the SWIR, though smaller in magnitude than in the VNIR. The 
biological variation within a branch explained on average 40 ± 6% of 
the biological variation observed within a tree (Fig. 5e-h). Its contri
bution was minimal in spring (32 ± 12%) and maximal in autumn (54 ±
16%). The remaining biological variation (2–100%) originated from 
differences in leaf reflectance between sun-exposed branches. 

3.3.3. Measurement uncertainty and biological variation among several 
individuals 

We characterized the spectral variation, measurement uncertainty 
and biological variation in datasets C and D, which consist of F. sylvatica 
trees sampled within a week in a French forest (C) and at 5 Swiss forest 
sites (D). We further partition the biological variation into variation 
within tree, among trees and among sites. 

3.3.3.1. Spectral variation and measurement uncertainty associated with 
leaf reflectance among several individuals. In both datasets C and D, the 
spectral variation defined as the coefficient of variation represented 
between 4%–35% of the mean reflectance (Fig. 7). Similar to dataset B 
(single individual), the spectral variation was largest between 400 and 
700 nm in the VNIR, and centered at 1145, 1930 and beyond 2400 nm in 
the SWIR. 

Fig. 7. Spectral variation and measurement uncertainty within trees (green), among trees (orange), and among sites (purple) for Fagus sylvatica leaves measured in a 
French (a–b) and five Swiss forest sites (c–d). The 95% confidence interval was plotted independently in the supplementary data (Fig. S10). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The maximum uncertainty was observed below 400 nm (French site: 
5.5%, Swiss sites: 4.7%). After subtracting the measurement uncer
tainty, the spectral variation below 400 nm still exceeded 30% of the 
mean reflectance. This variation is unlikely to be due to biological 
variation, but rather due to other factors. We expect a lower signal-to- 
noise ratio near the limit of detection and the atmospheric scattering 
of light in blue wavelengths that may enter around the edge of the leaf 
clip. Consequently, spectral variation below 400 nm was excluded from 
the following analysis. 

The relative uncertainty above 400 nm in datasets C and D was on 
average equal to 0.3 ± 0.2% and 0.2 ± 0.2% of reflectance, representing 
on average 3.4 ± 1.7% and 1.5 ± 1.3% of the spectral variation, 
respectively. The relative uncertainty represents up to 13% (dataset C 
and D) of the spectral variation in the VNIR, and up to 7.8% (at 1380 nm, 
dataset C) and 4.5% (at 1400 nm, dataset D) in the SWIR. 

3.3.3.2. Spectral variation and biological variation among several individ
uals. Within the spectral variation associated with biological variation 
(after subtracting the estimated measurement uncertainty), we differ
entiated three levels of biological organization: (i) the individual level, 
representing the biological variation between leaves belonging to a 
single tree; (ii) the single-site level, corresponding the biological varia
tion between trees belonging to a single forest site; and (iii) the multiple- 
site level, comparing the variation observed between trees belonging to 
several forest sites (in dataset D only). The single- and multiple-site 
comparisons evenly incorporate variation due to the parallel use of 
two radiospectrometers, whereas the within-individual variation for 
each site may be overestimated as a result of using measurements from 
two instruments (all leaves for one individual were randomly measured 
with either one or the other instrument). The spectral variation calcu
lated for a single instrument on an individual sampling day was com
parable to the spectral variation observed in the individual (B) and Swiss 
forest site (D) datasets (Fig. 2). 

Maxima of biological variation in the VNIR tended to differ between 
levels of biological organization and were located at 480 and 660 nm for 
the individual level, and at 608 and 695 nm for the single- and multiple- 
site level. In the SWIR, maxima of biological variation were consistently 
observed across all levels of biological organization at 1451, 1981, and 
2500 nm (Fig. 7). Interestingly, the biological variation within in
dividuals was statistically identical between all datasets (B, C, D; 
ANOVA, df = 223, p > 0.05) across the full spectral range. Biological 
variation within individuals ranged from 2 to 14% of the mean reflec
tance and mainly differed among datasets in the visible range of the 
spectrum. Within-individual variation represented 46 ± 10% of the 
spectral variation on average across the full spectral range. 

The relative spectral variation between trees within a single Swiss 
forest site comprised between 12%–32% (versus 14–18% at the French 
site) of the mean reflectance in the visible range and between 4%–20% 
(4–25%, French site) of the mean reflectance in the NIR and SWIR 
(Fig. 7). After subtraction of the within-individual variation and mea
surement uncertainty, variation between trees belonging to a single site 
represented between 30 and 50% of the remaining spectral variation in 
the SWIR. 

The relative spectral variation between trees growing in different 
Swiss forest sites represented up to 16% of the mean reflectance in the 
visible range and 22% of the mean reflectance in the SWIR, which 
corresponds to 15 ± 5% of the spectral variation on average. When 
considering biological variation within individual trees and sites, the 
variation in the SWIR alone could be used to differentiate trees 
belonging to different sites of the Swiss forest dataset (dataset D). 

3.3.3.3. Systematic effect: sample size considerations. As observed in the 
Swiss forest dataset (dataset D), the biological variation observed at 
lower levels of biological organization may affect conclusions at higher 
levels. The quality of the information thus depends on our ability to 

accurately estimate mean biological variation and its standard devia
tion. We assessed the effect of sample size on the mean and standard 
deviation estimates of the spectral variation in the French forest (dataset 
C) consisting of 180 trees (Fig. 8). 

The accumulation curve suggests that a minimum of 20 trees is 
required to approximate the mean biological variation originally 
observed among 180 trees of the French forest (dataset C) at a precision 
of ±2%. However, in the SWIR, 70–90 trees and in the VNIR, 90–120 
trees are required to obtain a standard deviation equal at ±5% to the 
standard deviation calculated by bootstrapping over the entire sampled 
population of 180 trees. 

4. Discussion 

4.1. Sources of uncertainty in optical properties measurements 

The spectral variation of the white background of the leaf clip reveals 
three sources of uncertainty generally affecting optical measurements 
(Fig. 3). 

A first source of uncertainty is related to the optical sensor. The 
largest variation (and thus uncertainty) occurs at the detector limits 
where the signal-to-noise ratio is the lowest (lowest DN values). Signal- 
to-noise ratio is a combination of instrument radiometric sensitivity and 
the intensity of the light source (Schaepman and Dangel, 2000). This 
intensity is low at the start of the VNIR and at the end of SWIR2 detector, 
following in general the Planck law. Unlike the second and third de
tector, the first detector (VNIR) is not cooled (ASD Inc, 2010). The 
sensitivity of the silicon of the first detector to temperature variation 
may in addition explain a higher spectral variation, particularly at the 
lower detector wavelength limit (Hueni and Bialek, 2017; Schaepman 
and Dangel, 2000). 

A second source of uncertainty was associated with experimental 
conditions including moisture and ambient temperature. Although the 
internal calibration of the ASD spectroradiometer from DN values to 
radiance units eliminated most of the variation, post-correction based on 
temperature effect modelling was required to correct for the radiometric 
steps between the three individual detectors of the ASD full range in
struments at 1000 nm and 1800 nm, respectively (Hueni and Bialek, 
2017; Hueni, 2021). While post-measurement corrections of known 
systematic effects help to remove biases in the measurement, they may 
also add uncertainties due to the underlying correction model, and 
should be applied with caution. 

A third and related source of uncertainty is the potential contami
nation of the sampling device with previous samples, external light 
pollution, changing temperatures and atmospheric moisture content 
over time. Besides, multiple spectroradiometers may be used in parallel 
in order to achieve sufficient throughput during field sampling. These 
factors likely explain the larger variation in datasets B, C, and D, 
compared to measurements made in dataset An under laboratory con
ditions. The potential contamination of the white and the black refer
ences of the leaf clip over time with leaf material when measuring leaves 
is incorporated into uncertainty calculations using these references. In 
contrast, uncertainty calculations do not account for spectral variation 
potentially generated by several operators using multiple spectroradi
ometers. The French dataset (C) collected over three sampling days by 
two operators using two spectroradiometers in parallel show the largest 
spectral variation (up to 20%) in the spectral range 350-400 nm where 
the signal-to-noise ratio is the lowest. The spectral variation calculated 
for a single instrument on an individual sampling day was comparable to 
the spectral variation observed in the individual (B) and Swiss forest site 
(D) datasets (Fig. 3). In other words, the spectral variation in the French 
dataset reveals the systematic error introduced by two operators using 
two spectroradiometers in parallel (e.g., calibration, optimization, 
warming-up, detector characteristics, etc.) in changing measurement 
conditions (e.g., temperature, moisture, etc.). Accordingly, Lukeš et al. 
(2017) and Kuester et al. (2001) reported relative differences between 
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ASD FieldSpec spectroradiometers of 1% to 2%, respectively, while 
Helder et al. (2012) estimated that the uncertainty induced by different 
operators was equivalent to 1.5% to 2.5% when best measurement 
practices are followed (cf., Hueni et al., 2017, for best practices 
framework). 

Among all datasets, the VNIR spectral region appears to be the most 
sensitive to changes in measurement conditions. Nevertheless, 
measuring in reflectance mode, which requires initial normalization to 
the white reference and usually also entails periodic re-normalization 
every several measurements, corrects for most of the sources of uncer
tainty mentioned above and results in a spectral variation of the white 
reference below 1% in the VNIR (>400 nm) and 0.6% in the SWIR region 
(Fig. 3). The high variation remaining under 400 nm appears to be 
associated with a low signal-to-noise ratio of the detector, especially for 
one of our field spectroradiometers. 

4.2. Measurement uncertainty on standard and leaf materials 

Measurement uncertainty associated with optical properties 
appeared to not only depend on the characteristics of the spectroradi
ometer and its sensitivity to the measurement conditions, but also on the 
characteristics of the sampling device (leaf clip or integrating sphere). 
Uncertainty associated with leaf clip measurements additionally 
depended on the optical properties of the target material. Due to its 
geometry, a leaf clip device characterizes a bi-directional reflectance 
sensitive to the anisotropic properties of the target material; a stronger 
anisotropic directional reflectance behavior (specular component) re
sults in a larger dispersion in reflectance (Schaepman-Strub et al., 2006). 
The hemispheric geometry of the integrating sphere offers a great 
alternative to the leaf clip device, allowing for measurements free of 
anisotropic directional reflectance behavior (Milton et al., 2009). 
Nevertheless, we showed that repeated measurements of the same target 
material rotated by 60◦ in the leaf clip device after each measurement 
reduced the directional effect and enabled us to account for the contri
bution of the specular component to the spectral variation and thus 
better inform us on the optical properties of the target material. 

The measurement uncertainty associated with single measurements 
of all standard fabrics using either a leaf clip or an integrating sphere 
was very similar (except satin due to its specular qualities), suggesting 
that our calculation method is robust, suitable to assess uncertainty 
caused by instrumentation properties, and transferable to leaf mea
surements. Repeated measurements of the same material were generally 
associated with a larger uncertainty than single measurements as the 

uncertainty accounts for the variation introduced by (even small) 
anisotropic properties of the target. To assess the contribution of the 
specular component to the spectral variation, we recommend repeated 
measurements with a leaf clip device. However, it must be noted that 
prolonged exposure to the light beam may alter leaf chemical compo
sition (e.g., pigment degradation, water content). 

The details of the approach we adopted to calculate the uncertainty 
budget are specific to the spectroradiometer-sampling device-target 
combination and would consequently change if either the spectroradi
ometer, the sampling device or the target change, as is apparent in the 
several combinations used in this study. We also note that our conclu
sions are limited to the measurement or estimation of reflectance, as we 
did not measure transmittance, and thus a similar analysis should be 
carried out for transmittance measurements. Similarly, a systematic bias 
of the mean reflectance of an identical target was also observed by 
several authors when different spectroradiometers, sampling devices or 
protocols were used (Hovi et al., 2018; Pimstein et al., 2011; Jung et al., 
2010; Castro-Esau et al., 2006). However, systematic differences due to 
the use of different spectroradiometers are often considered negligible 
(Lukeš et al., 2017). Still, all of these biases create challenges for 
comparing data from different datasets and spectral databases. In a 
meta-analysis, Meireles et al. (2020) successfully harmonized leaf 
spectra measured using spectroradiometers from different manufac
turers by applying a partial least square model. Errors between predicted 
and measured spectra remained below 0.01 (VNIR) and 0.03 (SWIR) 
reflectance units, corresponding to a spectral variation of up to 7–28% in 
the VNIR and 2–55% in the SWIR spectral range. It is worth noting that 
such variation is, for instance in the SWIR, larger than the variation 
observed among sun-exposed leaves sampled on one individual across 
the growing season (dataset B; Fig. S10), and would therefore negatively 
affect our ability to identify species trait variation. Besides, the cali
bration of such models seeking to harmonize spectra from different 
sources requires measurements of same samples using the involved 
spectroradiometers. Comparing measurements from databases consist
ing of independent datasets collected by several laboratories thus re
mains a challenge. 

Jung et al. (2010) proposed an alternative approach using a white- 
reference dependent post-correction; the white references of different 
spectroradiometers are calibrated against a “master” white reference 
before comparing spectral measurements. Likewise, Pimstein et al. 
(2011) advocated the use of sand as an internal soil standard, being less 
expensive than a calibrated white reference (Spectralon®). Both ap
proaches have been successfully adopted in the soil spectroscopy 

Fig. 8. Effect of sample size on the mean spectral variation estimate and its standard deviation. (a) The mean spectral variation and (b) its standard deviation 
obtained for each sample size was normalized by the spectral variation and standard deviation observed in dataset C (n = 180 trees) and by the mean reflectance. By 
increasing the number of trees sampled, the simulated mean spectral variation increased toward the observed mean variation while the simulated standard deviation 
decreased toward the standard deviation calculated on the full sample by bootstrapping. 
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community, improving the retrieval of soil properties (e.g., clay content) 
by up to 10% (Romero et al., 2018). No equivalent procedure has so far 
been tested and adopted by the vegetation spectroscopy community. In 
our study, the measurement uncertainty associated with LOP was 
comparable to the uncertainty associated with a single measurement of 
standard fabrics with a low specular component (camouflage, cotton, 
plastic materials), suggesting that standard fabrics could be used as 
measurement standards to assess the measurement uncertainty associ
ated with leaf reflectance. The uncertainty associated with repeated 
measurements of the latter materials fell below 0.006 and 0.02 reflec
tance units, representing between 4.5%–15% of leaf reflectance. 

Similar to Hovi et al. (2018) and Potůčková et al. (2016), we 
observed systematic differences in reflectance between leaf clip and 
integrating sphere sampling devices, while Lukeš et al. (2017) observed 
systematic differences among integrating spheres. Although Potůčková 
et al. (2016) successfully applied a linear model to homogenize spectral 
data measured with a leaf clip and an integrating sphere, our results 
suggest that we would not only need to develop a new model for each 
new combination of leaf sampling devices, but also for each new target. 
However, we observed the largest differences in leaf reflectance between 
leaf clip and integrating sphere measurements at specific wavelengths, 
generally used to retrieve pigment and water content. Prolonged expo
sure to the light beam due to successive measurements with a leaf clip or 
an integrating sphere may alter leaf chemical composition. By placing 
the leaf in slightly different positions for each measurement, we may 
also account for the natural variability in leaf chemical composition, and 
thus overestimate the actual differences in reflectance resulting from the 
use of different sampling devices. As Hovi et al. (2018) highlighted, 
correction procedures are challenging to develop, and care should be 
taken when comparing spectral data measured with different methods. 

The integrating sphere appeared to produce more reproducible 
spectra with a low and stable measurement uncertainty, although the 
target was manually moved from one port to the other. The measure
ment uncertainty of integrating sphere measurements was independent 
of the optical properties of the target – at least regarding isotropy or 
anisotropy – and constant across a wide spectral range between 400 and 
2500 nm. The integrating sphere has been the device of choice in 
numerous studies investigating LOP due to its reputation as a more 
stable measurement system (Milton et al., 2009). Nevertheless, we argue 
that spectral variation induced by the bi-directional measurement 
principle of a leaf clip provide vital information on the diversity in LOP. 
Also, we advise to rotate the sample between measurements to better 
assess the effect of the specular component on the spectral variation. 

Developing an uncertainty budget accounting for all sources of un
certainty and correcting systematic bias still appears a challenging task. 
Although in the proposed approach, we do not account for potential 
instability of the instrument over time, beyond applying a temperature 
correction (see Section 2.6), or for specular properties, which increased 
the uncertainty associated with repeated measurements of fabrics, our 
results show that the calculation of the total uncertainty associated with 
a spectral measurement is a practical indicator of the measurement 
quality. 

A more conservative approach would apply the measurement un
certainty associated with repeated measurements of standard fabrics to 
leaf spectral measurements. However, Anderson et al. (2011) high
lighted that due to substantial differences between laboratory and field 
conditions, laboratory-derived uncertainties are not representative of 
uncertainties associated with field measurements. Thus, we rather 
recommend applying the developed approach to a given 
spectroradiometer-sampling device-target combination in field condi
tions. In addition, we suggest that measurements of a common standard 
(i.e., Spectralon or shared standard materials) should be adopted and 
systematically reported in metadata to enhance the comparability of 
spectral data in spectral libraries. 

4.3. Partitioning of spectral variation into measurement uncertainty and 
biological variation 

The largest spectral variation often corresponded to a maximum in 
leaf absorbance, which is driven by leaf morphology and chemistry. 
Also, spectral variation is a good indicator of morphological and phys
iological variation supporting the monitoring of species traits. Spectral 
indices, building on the spectral variation between given wavelengths, 
and spectral diversity metrics using the variation across the full spectral 
range are the two main approaches commonly applied to predict leaf 
chemicals (Asner et al., 2009; Singh et al., 2015; Wang et al., 2020) and 
biodiversity (Schneider et al., 2017; Schweiger et al., 2018; Williams 
et al., 2020). However, a maximum in leaf absorbance corresponds to a 
minimum in reflectance; hence, the lower the reflectance, the lower the 
signal-to-noise ratio, and thus the larger the measurement uncertainty. 
Accounting for measurement uncertainty would therefore result in a 
more accurate assessment of biological variation. Yet, measurement 
uncertainty has not been systematically reported to date. 

The spectral variation partitioning presented here allows for the 
distinction between measurement uncertainty and biological variation. 
To our knowledge, we show for the first time that measurement un
certainty represents roughly 2.5% of the spectral variation expected 
when sampling a tree over time (dataset B) or several trees in a forest site 
(datasets C and D). In addition, our measurements indicate that varia
tion is at a minimum in spring and summer in the VNIR and SWIR 
spectral regions, respectively. Analyses conducted on a dataset including 
different levels of biological organization and phenology may thus 
provide more detailed insight into when in the growing season, and 
where in a spectrum, spectral measurements may best resolve species 
trait variation. 

As already promoted by a handful of studies (Anderson et al., 2011; 
Hueni et al., 2017; Peterson et al., 2017; Schaepman and Dangel, 2000), 
we thus advocate for a frequent calibration of field spectroradiometers, 
and a systematic characterization of uncertainty associated with spectral 
leaf measurements in field conditions. In addition, we suggest parti
tioning spectral variation into measurement uncertainty and biological 
variation for a more accurate retrieval of LOP. 

4.4. Spectral variation as a measure of species trait variation 

Species trait variation describes the diversity in plant traits expressed 
by individuals within a species in response to their biotic and abiotic 
environment. We focused on species trait variation at three levels of 
biological organization: variation within an individual tree, and be
tween individual trees sampled from single site and multiple sites. 
Within-tree variation occurs due to plasticity in relation to micro- 
environmental gradients within the crown (Atherton et al., 2017; Nii
nemets et al., 2014), phenology, and ontogeny (Albert et al., 2011), 
biotic interactions and at least in some cases to somatic mutations 
inherited from different meristems (Cruzan et al., 2020). We showed 
that out of an average biological variation of 40% in the SWIR, 30% is 
explained by the difference between shaded and sun-exposed leaves. 
This result appears to be in agreement with several studies investigating 
the effects of light gradients within the crown on leaf optical properties 
and reporting thicker leaves and lower water content in sun-exposed 
than in shaded leaves (Jacquemoud and Ustin, 2019b; Niinemets 
et al., 2014). The remaining 10% of biological variation expressed in 
sun-exposed leaves was consistent across all datasets, suggesting that the 
biological variation captured by LOP represents the functional space 
allowed by the plasticity of sun-exposed leaves. We would like to note 
that our measurements also indicate larger within-tree variation in the 
fall. Similarly, Gao and Zhang (2006) observed a larger spectral di
versity in fall and suggest that larger spectral variation allows for a 
better classification of salt marsh vegetation. Thus, the time at which the 
largest within-individual variation is observed may also be suitable for 
observing the maximum between-individual variation, making a 

F. Petibon et al.                                                                                                                                                                                                                                 



Remote Sensing of Environment 264 (2021) 112601

14

standardized approach even more important for comparing across 
individuals. 

The biological variation between individuals from a unique or 
distinct population arises from the coexistence of genetically different 
individuals and plastic response to heterogenous environmental condi
tions (Albert et al., 2011). Spectral variation partitioning enables us to 
differentiate between within-individual versus between-individual 
variation. In our datasets, between-site variation appears larger than 
between-tree variation, which on average exceeds within-individual 
spectral variation when trees are measured within a short portion of 
the growing season (1 week). However, when considering the standard 
deviation within each biological level, variations within and among sites 
overlap in the visible range, while 95% confidence intervals of both 
levels were identical in the SWIR spectral range (Fig. S11). This finding 
echoes ecological studies showing a decreasing functional diversity be
tween species when accounting for intraspecific variability of a single 
species (Cianciaruso et al., 2009; Violle et al., 2012) and suggests that 
intraspecific variability is an often-unmeasured indicator of how plants 
within a species fill a functional space (Schweiger et al., 2018). Thus, the 
contribution of lower levels of biological organization (branch, tree) to 
biological variation may exceed the contribution of higher levels of 
variation (e.g., between trees), especially in measurements of bulk 
properties such as spectroscopy. Neglecting the contribution of lower 
levels of organization would overestimate the biological variation of the 
level of organization of interest. This emphasizes the need for an 
appropriate characterization of lower levels of biological organization 
which is often neglected in remote sensing studies. Suitable sampling 
strategies can help capture species trait variability, and the biological 
variation retrieved from LOP allows for the monitoring of species traits 
at different levels of biological organization. 

Additionally, it should be noted that spectral measurements are often 
carried out on harvested branches. Therefore, the measured variation 
can be an outcome of the leaf degradation proportional to the time be
tween sample collection and spectral acquisition. In our studies, we did 
not account for this possible source of variation. Time between harvest 
and measurement was largest for dataset D, intermediate for dataset C, 
and least for dataset B (aside from the laboratory measurements asso
ciated with this dataset), due to different sampling approaches. We 
acknowledge that this can cause artifacts in derived measures of species 
trait variation. In our datasets, this may be an explanation for larger 
variation especially in the visible and short-wave infrared part of the 
spectrum in dataset D. 

The analysis of the effect of sample size suggested that a minimum of 
3 leaves sampled on 20 trees would give a good estimate of mean bio
logical variation among sunlit canopy leaves of different trees in datasets 
that we investigated. This finding supports the sampling strategy 
adopted in the Swiss forest dataset, where each site corresponds to a 
collection of approximately 20 trees. In the same way, Petruzzellis et al. 
(2017) suggested to use 4 leaves from 10 randomly-selected individuals 
to estimate the variation in specific leaf area (SLA) between individuals. 
However, an equally good characterization of the standard deviation 
(<±5%) of between-individual variation would require a larger sample 
size of from 80 (in SWIR) to 110 (in VNIR) trees of an investigated 
population, again only if leaves are taken from a standardized position 
in the canopy across individuals (i.e., if substantial within-individual 
variation is ignored). Unlike Petruzelli's study focusing on one specific 
trait, biological variation retrieved from LOP emerges from a range of 
plant traits. Traits commonly retrieved in the SWIR (e.g., water content, 
structural traits) appeared to require less sampling effort to characterize 
a mean value than do highly dynamic physiological traits (e.g., pigment 
content) expressed in the VNIR, but therefore a greater sampling effort 
to characterize the variation of individuals around the mean. 

Field campaigns commonly adopt a selective sampling focusing on 
sun-exposed leaves preferentially located at the top of the canopy. This 
is justified by the fact that field campaigns often aim for comparability 
with spectral data from airborne or satellite sensors that can only 

measure the top of the canopy. Additionally, it ensures that the sampling 
is standardized across individuals. However, such selective sampling 
tends to underestimate the spectral diversity present within a popula
tion. In a biodiversity experiment, Schweiger et al. (2018) estimated that 
the spectral diversity at leaf level yielded a 10% better estimate of 
grassland productivity than tram-based remotely sensed spectra taken 
from above. Again, a more representative in situ sampling can help 
assess the fraction of variation that is either not accessible, or not 
resolved by conventional remote sensing at broader scales. To this end, a 
random sampling strategy irrespective of the light exposition in addition 
to the classic selective sampling – with a corresponding increase in the 
number of samples within individuals, as well as more individuals – 
would result in a better approximation of the commonly unmeasured 
variation (Petruzzellis et al., 2017; Violle et al., 2012). 

4.5. Recommendations for in-situ spectral measurements 

The characterization of the measurement uncertainty associated 
with leaf reflectance should become a compulsory step during data 
processing, while sampling design should aim at minimizing it. We thus 
encourage the use of common measurement protocols and the system
atic reporting of sufficient metadata in order to improve the traceability, 
the quality and comparability of spectral measurements. To this end, we 
have prepared a list of recommendations related to the instrument, the 
data acquisition, the sampling strategy, the data processing, and the 
metadata. The list aims to recall and complement recommendations 
made in previous studies (Jiménez Michavila and Díaz-Delgado, 2015; 
Hueni et al., 2017; Milton, 1987; Milton et al., 2009) with a focus on the 
use of sampling devices (i.e., leaf clip and integrating sphere). 

Our recommendations are:  

• Calibrate the spectroradiometer at least before each campaign season 
and/or according to the manufacturer's specification as wavelength 
drift may occur with time; this also implies checking the optical 
interface (e.g. fiber-optic cable) for damage (Schaepman and Dangel, 
2000)  

• Compare the white reference reflectance to the reflectance of a 
‘pristine’ Spectralon reference panel before and after each sampling 
campaign as impurities and ultraviolet radiation may degrade the 
white reference over time. 

• Establish the measurement uncertainty associated with the spec
troradiometer and sampling device with a calibrated Spectralon 
reference panel and additional inert standard reference materials (e. 
g., fabrics, papers). 

• Prefer repeated measurements at different spots of a target as pro
longed exposure to the light beam may alter the chemical composi
tion of biological material.  

• Rotate the sample to minimize the impact of directional effects when 
measuring with a leaf clip device, but be aware that this will increase 
uncertainty for highly anisotropic materials.  

• Apply signal post-correction, including temperature correction to 
reduce measurement bias if necessary (Hueni, 2021). 

• Estimate the uncertainty generated by the instrumentation, mea
surement protocols, and post-processing, and propagate these un
certainties to the resulting reflectance.  

• Characterize the measurement uncertainty associated with the 
target, specifically if using a leaf clip (see Section 2.7) or any 
directional measurement device.  

• Quantify the contribution of measurement uncertainty in relation to 
the total spectral variation (e.g., Fig. 1). 

• Define the level of biological variation of interest and adopt a sam
pling strategy suitable to characterize and/or minimize the contri
bution of other levels of biological organization to the biological 
variation, with specific attention to sampling bias and sample size.  

• Random sampling produces a more faithful assessment of spectral 
variation. However, if vicarious calibration of airborne data are 
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based on field measurements, sun-exposed leaves of the top of the 
canopy should be preferentially sampled. Random sampling within 
the canopy could be carried out in parallel to assess the fraction of 
variation that is not accessible to airborne sensors or satellite. 

• Provide systematic metadata regarding all of the above consider
ations alongside your spectral data. The metadata should include the 
target description (e.g., species, sampling height, preferably co
ordinates), instrument characteristics (e.g., serial number), mea
surement protocol, calculation and correction procedures, and 
uncertainty budget. 

The recommendations are generalizable to all types of vegetation (e. 
g., coniferous needles). However, the list may not be exhaustive for a 
given type of vegetation. Yanez-Rausell et al. (2014a, 2014b) provide 
additional measures to minimize measurement uncertainties in case of 
needle leaves. 

5. Conclusion 

We showed that leaf optical properties can indicate species trait 
variation at various biological and temporal scales. Partitioning of bio
logical variation and measurement uncertainty helps disentangle the 
contribution of individual levels of biological organization, from the 
individual to the forest, and to assess the potential biological informa
tion which can be retrieved at different spectral regions. We showed that 
relatively low measurement uncertainties for leaf reflectance given 
either low anisotropy, or an integrating sphere sampling device, permit 
the detection of variation at multiple levels of biological organization. 
However, the contribution of the measurement uncertainty to the 
spectral variation is not negligible, comprising 1–15% of total measured 
variation, and potentially overwhelming other sources of variation for 
leaves with high anisotropy. 

Our study highlights the need for characterizing the contribution of 
various sources of uncertainty, such as the use of different spectroradi
ometers or different leaf clips of the same model, the repeatability of 
measurements in time, and the contamination of the white and black 
reference, to the measurement uncertainty associated with the leaf 
reflectance. While our approach can help better assess uncertainty 
associated with leaf spectral measurements, future work should focus on 
assessing uncertainty associated with the calibration of spectral mea
surements based on analytical methods (e.g., metabolome datasets). In 
addition, increased sampling effort is required in order to better assess 
species trait variation from leaf reflectance. 
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