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ABSTRACT

The measurement of leaf optical properties (LOP) using reflectance and scattering properties of light allows a
continuous, time-resolved, and rapid characterization of many species traits including water status, chemical
composition, and leaf structure. Variation in trait values expressed by individuals result from a combination of
biological and environmental variations. Such species trait variations are increasingly recognized as drivers and
responses of biodiversity and ecosystem properties. However, little has been done to comprehensively charac-
terize or monitor such variation using leaf reflectance, where emphasis is more often on species average values.
Furthermore, although a variety of platforms and protocols exist for the estimation of leaf reflectance, there is
neither a standard method, nor a best practise of treating measurement uncertainty which has yet been
collectively adopted. In this study, we investigate what level of uncertainty can be accepted when measuring leaf
reflectance while ensuring the detection of species trait variation at several levels: within individuals, over time,
between individuals, and between populations. As a study species, we use an economically and ecologically
important dominant European tree species, namely Fagus sylvatica. We first use fabrics as standard material to
quantify measurement uncertainties associated with leaf clip (0.0001 to 0.4 reflectance units) and integrating
sphere measurements (0.0001 to 0.01 reflectance units) via error propagation. We then quantify spectrally
resolved variation in reflectance from F. sylvatica leaves. We show that the measurement uncertainty associated
with leaf reflectance, estimated using a field spectroradiometer with attached leaf clip, represents on average a
small portion of the spectral variation within a single individual sampled over one growing season (2.7 + 1.7%),
or between individuals sampled over one week (1.5 £ 1.3% or 3.4 £ 1.7%, respectively) in a set of monitored
F. sylvatica trees located in Swiss and French forests. In all forests, the spectral variation between individuals
exceeded the spectral variation of a single individual at the time of the measurement. However, measurements of
variation within individuals at different canopy positions over time indicate that sampling design (e.g., stan-
dardized sampling, and sample size) strongly impacts our ability to measure between-individual variation. We
suggest best practice approaches toward a standardized protocol to allow for rigorous quantification of species
trait variation using leaf reflectance.

1. Introduction

Biodiversity Observation Network (GEO BON) developed Essential
Biodiversity Variables (EBVs) for standardized and harmonized assess-

Monitoring biodiversity across biological scales — from genetic di-
versity to functional trait diversity — is critical to assess biodiversity loss,
shifts, and resilience under increasingly rapid global change (Hansen
et al., 2001; Oehri et al., 2017). The Group on Earth Observations
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ment and reporting of biodiversity change (Pereira et al., 2013). Among
the six classes of EBVs, ‘species traits’ encompasses all within-species
features (morphology, phenology, physiology, and reproduction) that
can be measured at the individual level and that allow for the
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monitoring of intraspecific variation across space and time (Kissling
et al., 2018; Pereira et al., 2013). Intraspecific variation reflects the
breadth of plant functional trait attributes expressed by individuals
within a species as a result of genetic diversity and phenotypic plasticity
in response to environmental factors (Albert et al., 2011). Greater
intraspecific variation promotes species coexistence in a more diverse
range of environments (Bolnick et al., 2011; Sides et al., 2014). . The
variation among individuals is both an indicator of, and an explanation
for, variation in environmental factors from nutrients and water, to
species distributions (Salazar et al., 2018; Asner et al., 2017). The pat-
terns of variation just within tree canopies likely supports different
niches for habitation by the hundreds to thousands of other species that
depend on any one tree species (Kennedy and Southwood, 1984).
Monitoring species trait variation thus offers the promise to better un-
derstand the contribution of intraspecific variation to biodiversity,
ecosystem properties, and species resilience under global change (Kis-
sling et al., 2018; Violle et al., 2007).

Leaf optical properties (LOP) describe how leaves reflect, absorb,
transmit and scatter light (Jacquemoud and Ustin, 2019a). As chemical
and morphological features alter the way leaves interact with light, LOP
integrate variation in these properties, which include traits that are in-
dicators of plant ecophysiology and performance. Leaf reflectance
measurements retrieved from remote sensing platforms allow for the
monitoring of the variation of LOP across space and time, and thus the
simultaneous and rapid characterization of several specific functional
plant traits (Jacquemoud and Ustin, 2019a). Numerous studies have
demonstrated the potential of remote sensing to monitor functional
plant traits at different biological scales (Cavender-Bares et al., 2017;
Meireles et al., 2020; Schneider et al., 2017) and have developed
biodiversity metrics based on the spectral variation of LOP (Laliberté
et al., 2020; Meireles et al., 2020; Schweiger et al., 2018; Williams et al.,
2020). However, because of a lack of available data or as a result of
concerns that such a level of detail will be neither generalizable nor
scalable, very few studies attempted to derive a comprehensive metric
for species trait variation or to discern such variation from uncertainties
(Cavender-Bares et al., 2016; Cepl et al., 2018; Czyz et al., 2020; Garcia-
Verdugo et al., 2010; Madritch et al., 2014; Pettorelli et al., 2016;
Santiso and Retuerto, 2015; Singh et al., 2015). And yet, remote sensing
of individuals made possible in recent years by the combination of high-
resolution imaging spectroscopy and LiDAR illustrates the potential of
remote sensing to capture species traits (Kellner et al., 2019). The
individual-level mapping of morphological and physiological traits (Ali
et al., 2017; Zheng et al., 2021), or even the monitoring of phenological
events as forest flowering from space (Dixon et al., 2021) resulting from
this approach are great examples.

Field spectroradiometers are widely used to estimate leaf reflectance
at the individual level (Jacquemoud and Ustin, 2019b) and to compare
with measurements from airborne optical sensors (Hueni and Bialek,
2017; Malenovsky et al., 2019). Coupled with a leaf sampling device and
standardized light source, they allow leaf measurements to be taken
independently of environmental conditions and thus with an expected
high accuracy and repeatability. The portability of the field spectror-
adiometer and leaf sampling device allows for non-destructive in-situ
measurements. While leaf clip (LC) devices measure in a bi-directional
view-illumination geometry, integrating sphere (IS) devices integrate
the reflected (or transmitted) light over a full hemisphere, which reduces
anisotropic directional reflectance (or transmittance) behavior (c.f.,
Schaepman-Strub et al., 2006 for terminology). For this reason, mea-
surements with an IS are often considered more repeatable and com-
parable, and thus preferred when sampling conditions allow (Milton
et al., 2009). However, information about anisotropic properties of LOP,
which may be important, is lost with IS measurements. Comparison of
LC and IS measurements of the same standard or leaf material revealed
systematic differences in reflectance retrieved from both types of mea-
surement, although variation among IS measurements was found to be
smaller (Hovi et al., 2018; Lukes et al., 2017; Potickova et al., 2016). In

Remote Sensing of Environment 264 (2021) 112601

this respect, Potiickova et al. (2016), among others, encouraged the
standardization of measurement procedures to improve the compara-
bility of spectral measurements across measurement campaigns and
within open access spectral librairies. Nevertheless, the diversity in
instrumentation and measurement protocols remains, and the system-
atic characterization of measurement uncertainty associated with
particular protocols is rarely reported.

Measurement uncertainty is inherent to any optical measurement
and characterizes the dispersion in reflectance (or absorbtance, or
transmittance) that could reasonably be attributed to the target (Joint
Committee for Guides in Metrology, GUM, 2008). The characteristics of
the spectroradiometer and external factors can impact the dispersion in
reflectance. Several studies exist to quantify and minimize measurement
uncertainty in spectroradiometric measurements, as well as in (needle)
leaf optical properties measurements (Forsstrom et al., 2021; Helder
et al., 2012; Schaepman and Dangel, 2000; Yanez-Rausell et al., 2014a,
2014b). In this study, we investigate to which extent LOP, and partic-
ularly the uncertainties associated with leaf reflectance measurements,
permit the detection of species traits. We hypothesize (1) that mea-
surement uncertainty depends on the plant sampling device and
reflectance anisotropy of the target (fabric materials or single leaf), but
(2) remains negligible compared to the total variation in spectra
measured from different leaves; and (3) that variation in LOP increases
at increasing levels of biological organization from individuals to pop-
ulations. Lastly, we hypothesize (4) that sampling time, size, and loca-
tion contribute to the variation in LOP and alter our ability to accurately
assess variation between individuals and populations.

2. Materials and methods

To evaluate our hypotheses, we first considered the spectral reflec-
tance of a set of fabrics with various degrees of anisotropy measured
with a field spectroradiometer coupled with either a leaf clip or an
integrating sphere. We calculated the measurement uncertainty associ-
ated with each material-sampling device pair. We then assessed mea-
surement uncertainty and variation at several levels of biological
organization within three datasets comprising the leaf reflectance of
Fagus sylvatica individuals from several European forests (Fig. 1) which
is chosen as a dominant tree of economic and ecological importance,
having an uncertain future under global change (Brun et al., 2020).

In a first step, we characterized the variation within an individual
tree, considering a time series including spectral reflectance taken at
different positions of the tree crown over the course of one growing
season. Secondly, we disentangled the contribution of individual vari-
ation from the variation observed among forest sites, based on variation
partitioning. Lastly, we evaluated the influence of sample size on the
observed variation using statistical approaches, and suggest measures
toward a standardized protocol to allow rigorous quantification of bio-
logical variation via LOP.

2.1. Experimental design

The study combines four datasets (Fig. 1.a). The first dataset (dataset
A) comprises spectral reflectance of fabrics (see Section 2.2). The three
other datasets comprise reflectance of F. sylvatica leaves that were
collected on one individual across the growing season (dataset B), and
on several individuals from a French forest (dataset C) or Swiss (dataset
D) forest stands (see Section 2.3). Fabric and leaf spectral reflectance
were estimated from measurements performed with a field spectror-
adiometer coupled with either a leaf clip or an integrating sphere (Fig. 1.
b; see Sections 2.4-2.6). For each dataset, we calculated the spectral
variation (see Section 2.7). In dataset A, we compare the spectral vari-
ation to the measurement uncertainty, while in the other datasets we
partitioned the spectral variation into measurement uncertainty and
biological variation. We further distinguish between the biological
variation originating from different levels of biological organization (i.
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a. Datasets

Standard materials

Fagus sylvatica

Dataset A

4 fabrics with
different optical
properties

Dataset B

Shaded and sun-
exposed leaves
sampled from one
individual across
the growing season

Dataset C

Leaves sampled
from 189 trees in a
French forest in
mid-summer

Dataset D

Leaves sampled
from 75 trees
located in 5 Swiss
forest stands in
mid-summer

b. Sampling device
leaf clip (LC)
integrating sphere (IS)

c. Reflectance
spectral variation

Spectral variation partitioned into ...
measurement uncertainty
non-biological variation

biological variation

Biological variation partitioned into ...

variation within branch

variation within individual

variation between individuals
from one forest stand

variation between individuals
from several forest stands

I Measurement uncertainty
[ Variation within branch/individual ——

[ Variation between individuals o
from one forest stand

Variation between individuals
from several forest stands

d. Spectral variation defined as standard deviation and coefficient of variation

Coefficient of variation (%)
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Fig. 1. Conceptual overview of the study. The study includes four datasets which allow to assess different sources of variation in optical properties measurements
made with a field spectroradiometer and two types of sampling devices, i.e., a leaf clip and an integrating sphere.

e., within- and between-individual variation) (Fig. 1.c-d).

2.2. Fabrics used as standard materials

The four following fabric materials were purchased at Alja Nouveau
AG, Oerlikon, Switzerland:

(1) A Camouflage fabric from SSZ Camouflage Technology AG: opa-
que, mostly isotropic reflectance, spectrum in the visible and in
the near infrared ranges highly similar to vegetation.

(2) A green translucent, woven, 100% cotton fabric, which reflects
light isotropically.

(3) A green opaque plastic fabric which reflects light with a specular
component depending only on the zenith angle.

(4) A green translucent satin fabric which reflects light anisotropi-
cally. It has a very strong specular component which depends
both on zenith and azimuth angles.

Reflectance of fabrics was estimated from measurements performed
with both sampling devices, i.e., a leaf clip and an integrating sphere,
which were successively coupled to the same ASD FieldSpec spectror-
adiometer (see Section 2.4. Instruments) (Fig. 1.b).

We selected the four different fabrics according to their optical
properties (Fig. 2). The optical properties are similar to LOP. However,
unlike LOP, which are known to be heterogenous within a leaf and
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Fig. 2. Photographs of the fabric materials: (a) camouflage fabric, (b) cotton fabric, (c) plastic fabric, (d) satin fabric and (e) F. sylvatica branch sample.

sensitive to light exposure over time (Jacquemoud and Ustin, 2019a),
the optical properties of each fabric are expected to be the same
everywhere on the piece of fabric and to not change over time. Also, the
measurement of these fabrics under controlled laboratory conditions
allows us to isolate the spectral variation which can be attributed to the
measurement uncertainty related to the spectroradiometer and the
sampling device. The potential effects of opacity and specular reflec-
tance on measurement uncertainty were furthermore assessed.

2.3. Leaf samples

Leaves of an approximately 200-year-old beech tree located on the
campus of the University of Ziirich (47°23'44.7°N 8°32'58.1"E) were
sampled weekly over the entire growing season, from the 3rd of May to
the 7th of November 2018. Eight repeat sampling spots, comprising
three shaded sampling spots located under the crown, and five sun-
exposed sampling spots, were selected to assess the variation in LOP
within an individual tree at each point in time, as well as over the sea-
son. Of the five sun-exposed sampling spots, three were located on the
east side at 3, 6, and 12 m tree height, and two on the south side at 6 and
12 m tree height to account for potential effects of varied light exposi-
tion and sampling height on LOP. Each week (n = 28), one terminal
branch with a diameter of 50 mm and including about 20 leaves was
sampled at each sampling spot. Leaf spectral reflectance of three leaves
chosen one at the base, one at the middle, and one at the tip of each
branch was acquired in situ using a leaf clip coupled with an ASD
FieldSpec spectroradiometer (see Section 2.4. Instruments). In-situ
measurements were used to characterize the biological variation
within an individual tree. Each node of three to four leaves was detached
from the branch, stored in a dark plastic bag and transported to the
laboratory on dry ice protected from the light. Within 3 h following the
sampling, leaf reflectance was acquired once more in a dark laboratory
simultaneously with a leaf clip and an integrating sphere, ensuring that
there was no water film on the surface of the leaves prior to measure-
ment. If a water film had formed because of rain or storage conditions, it
was gently removed with a tissue paper. Laboratory measurements were
compared to assess differences in leaf reflectance due to the use of
different sampling devices. Because of the smaller size of the leaves at
the beginning of the season, measurements in weeks 18 to 20 were
carried out on three individual leaves belonging to the same node.

To assess the variation in LOP between individuals and between sites
(Fig. 1.c~d), we collected leaves from 189 beech trees in la Massane in
the French Pyrenees (42°2828.0”N 3°01'11.7”E) (Dataset C) and from

75 beech trees located in five sites in Jura in northern Switzerland
(47°31'9.3”N 7°37'55.5"E) (Dataset B) (Fig. S1). The sampling was
conducted on 6-10 of July and on 25-26 of July 2019 for the French and
Swiss forests, respectively. From each sampled tree, we harvested one
branch per tree with a dimeter of 50 mm and containing about 20 leaves
from the top of canopy with a telescoping scythe (Takeni Trading co.,
Osaka,Japan) in France and by helicopter in Switzerland, kindly allowed
as part of the long-term monitoring sample harvest by the Institut fiir
Angewandte Pflanzenbiologie (IAP). At the French site, leaves were
measured in the field shortly after branches were harvested. At the Swiss
sites, branches were kept in dark plastic bags and protected from the
direct light until measurement. A limitation of the helicopter harvest is a
longer period between harvest and measurement which can vary across
sites. For these reasons, the two datasets are analyzed separately. From
eachbranch, we randomly selected three leaves from which we acquired
leaf reflectance within 3 h following the sampling using an ASD Field-
Spec spectroradiometer (see 2.4 Instruments). Two ASD Fieldspec
spectroradiometers were used, each measuring approx. half of all sam-
ples per site. One instrument was used for one plant individual.

2.4. Instruments

Reflectance was calculated from measurements performed with a
FieldSpec spectroradiometer (ASD Inc., Boulder, CO, USA) coupled with
a sampling device (leaf clip or integrating sphere). Datasets A and B were
obtained using a FieldSpec 4 Wide-Res device (serial n°18,130), while
datasets C and D were measured using two FieldSpec 4 Standard-Res
(serial n°18,130 and 18,140). A leaf clip, consisting of the plant probe
plus leaf clip (model A122317, serial n°455 and 885, ASD Inc., Boulder,
CO, USA), and/or an integrating sphere (serial n°6045-2, ASD Inc.,
Boulder, CO, USA) were used as sampling device depending on the
sample and measurement procedure (see 2.5. Measurement procedures).
Both sampling devices have an internal standardized light source
allowing the measurement to be taken independently of external illu-
mination conditions. The light source of the leaf clip is a halogen bulb
with colour temperature of approximately 2900 K according to specifi-
cations of the manufacturer, whereas the integrating sphere is supplied
with a collimated tungsten light source (Analytical Spectral Devices Inc,
2008).

The FieldSpec spectroradiometer employs three detectors covering
the visible and near infrared (VNIR) to the shortwave infrared (SWIR)
range from 350 to 2500 nm. The VNIR detector is a silicon photodiode
array while the two SWIR detectors are thermo-electrically cooled
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indium gallium arsenide detectors, covering the 1001-1800 nm and
1801-2500 nm ranges, respectively. The detectors are covered by order
separation filters and the light is dispersed by a holographic diffraction
grating. The factory wavelength accuracy is 0.5 nm while the nominal
spectral resolution ranges from 3 nm in the VNIR to 10 nm in the SWIR
(Analytical Spectral Devices Inc, 2010).

In dataset A and B, optimization of the detector sensitivities using the
standard light source and a white reference was set tol7 ms for the leaf
clip and to 136 ms for the integrating sphere to maximize the detector
sensitivity and minimize the exposure time. The white background of
the leaf clip was used as white reference for leaf clip measurements,
whereas uncalibrated Spectralon® panels (99% nominal reflectance)
were used as a white reference for integrating sphere measurements.
Exposure time in case of biological material should be considered with
care as prolonged exposure to heat from the lamp, especially in the leaf
clip set-up, may alter LOP. In this regard, optimized acquisition time was
set to 8.5 ms in dataset C and D.

2.5. Measurement procedures

Measurements performed with a leaf clip consisted of four successive
readings: the white reference (Ry), the white reference plus target (Ty),
the black reference (Ry,), and the black background reference plus target
(Tp). Measurements performed with the integrating sphere followed the
recommended method of the manufacturer (Analytical Spectral Devices
Inc, 2008) consisting of three successive readings: a measurement with
the sample in the sample port and the reference in the reference port (I5),
a measurement with the reference in the sample port and the sample in
the reference port (I), which is needed to correct for the substitution
error, and the dark reading (I4). Each reading consists into the mean of
repeated internal measurements referred as scans.

Measurements of the fabrics were taken with both sampling devices
in a dark laboratory. For these measurements, 15 scans per reading were
recorded and averaged. The measurement was repeated on 6 different
spots on the fabric sample. The sample was rotated by 60° after each
measurement to account for the anisotropic properties of the material.
One dark reading was performed per sample.

Measurements of leaf samples were taken in situ with a leaf clip as
soon as possible after branches were retrieved from trees; in dataset B
and C measurements were taken within 10 min and comprise 5 scans per
readings, while in dataset D measurements were taken within 3 h and
comprise 10 scans per readings. Additional measurements of leaves of
the individual tree (dataset B) were carried out in a dark laboratory
using both sampling devices within 3 h after sampling (leaves stored in
dark plastic bags were kept on dry ice during these up to 3 h; leaves were
not frozen and no water film was present at the surface by the time of
measurement). Measurements with a leaf clip and an integrating sphere
were respectively taken on the right and left side of the leaf to avoid
heating the leaf with repeated measurements on the same spot. The main
vein was systematically avoided, except for young leaves. Young leaves
were selected to entirely cover the field of view of both sampling de-
vices. For these measurements, 5 scans (10 scans, dataset D) per reading
were recorded. The first and last scans were systematically removed
before averaging the scans to avoid potential contamination from pre-
vious readings or from hasty opening of the sampling device.

Measurement results were saved as digital numbers (DN values),
corresponding to the signal intensity after optimization, and as reflec-
tance, corresponding to the signal intensity calibrated against the white
reference by the ASD software. The reflectance obtained is a reflectance
factor resulting from a bi-directional measurement (leaf clip) or a
directional-hemispherical reflectance (integrating sphere) (c.f.,
Schaepman-Strub et al., 2006 for terminology). Reflectance units vary
between 0 and 1, where 1 corresponds to 100% reflectance of the white
reference of the sampling device.
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2.6. Calculation of mean sample reflectance

The reflectance of a sample (R) is calculated from the mean of scans
of the different readings (see 2.5 Measurement procedures). Several
calculation methods are available in the literature using either the DN or
the reflectance values (Table S1). To assess the systematic effects
potentially induced by various calculation methods on the uncertainty
associated with reflectance, we compared the reflectance of the fabric
samples calculated from the equations shown in Table S1. The material
reflectance values calculated from DN values and reflectances are
identical when estimated from measurements with an integrating sphere
and differ by up to 2.2% when estimated from measurements with a leaf
clip (Fig. S2).

The reflectance of all other samples was calculated from recorded
reflectance values according to Eq. (1) (leaf clip measurement; Miller
et al., 1992) and Eq. (2) (integrating sphere measurement; Analytical
Spectral Devices Inc, 2008). The (—) indicates that the result is dimen-
sionless: a ratio between 0 and 1, referred to throughout this manuscript
as reflectance units.

Leaf clip:

_ T,*Ry — T,*R,
B Rw - Rb

R (-, “reflectance units™) 1)

where R is the spectral reflectance of the target.R, is the spectral
reflectance of the white background,T,, is the spectral reflectance of the
white background plus target,Ry, is the spectral reflectance of the black
background.Ty, is the spectral reflectance of the black background plus
target.

Integrating sphere:

(=, “reflectance units”) 2)

where R is the spectral reflectance of the target.l; is the spectral reflec-
tance with the sample in the reference port and the reference in the
sample port.L is the spectral reflectance with the sample in the sample
port and the reference in the reference port.l4 is the dark reading.

Radiometric steps commonly associated with incomplete warming-
up of the instrument (ASD Inc, 2010) and ambient temperature (Hueni
and Bialek, 2017) appeared at the detector limits (1000 and 1800 nm,
respectively). We thus applied a corrective model developed by Hueni
and Bialek (2017) that corrects for the changes in radiometric system
response due to temperature. Correction coefficients were empirically
determined by operating the field spectroradiometer in a climate
chamber over a range of known temperatures. The corrective model was
originally targeting the correction of radiances. It was consequently
adapted within this study to also correct reflectance values where,
previously, the correction values of the model were noise limited and
thus introduced new artifacts (Hueni, 2021).

2.7. Calculation of measurement uncertainty, spectral, and (non-)
biological variation

The measurement uncertainty, hereafter, corresponds to the com-
bined uncertainty associated with the reflectance and calculated ac-
cording to the law of propagation of uncertainties. The absolute
measurement uncertainty (Eq. (3)) equals the standard uncertainties
(Ux;) of the different readings involved in the reflectance calculation
weighted by the corresponding coefficients of sensitivity (cxi) and added
in quadrature. The standard uncertainty was defined as the standard
deviation of the reading (STDxi) divided by the square root of the
number of readings (N). The coefficient of sensitivity corresponds to the
partial derivative of the reflectance with respect to the reading (xi) and
describes how much the reflectance changes when the reading x;
changes. Except for the two measurements including the target (i.e., the
measured leaf or fabric), the uncertainties associated with each reading
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do not correlate with each other in any of the datasets (Figs. S3-6).
Consequently, co-variation terms were neglected in the uncertainty
calculation.

The relative measurement uncertainty was defined as the absolute
uncertainty divided by the mean reflectance of the material (or across
the dataset, for leaf measurements) with units of per cent (Eq. (4)).

Absolute measurement uncertainty:

" (0R\? STD, .
Uk =D (67,) Uy, with Uy, = \//V, (—, “reflectance units”) 3)

i=1

where Upg aps is the absolute uncertainty associated with the target

reflectance.R is the spectral reflectance of the target.x; are the readings

(leaf clip; Ry, Tw, Rp, Tp; integrating sphere: I, I, I3).Uy; is the standard

uncertainty associated with the reading x; STDy; is the standard devia-

tion among scans of each reading x; N is the number of scans per reading.
Relative measurement uncertainty:

Uk et = 100%Ug aps /R (%) @

where Ug,e is the relative uncertainty associated with the target
reflectance.Ug 4ps is the absolute uncertainty associated with the target
reflectance.R is the spectral reflectance of the target.

The standard uncertainty of each reading corresponds to the prob-
ability distributions associated with all different sources of uncertainty,
including the instrument characteristics and experimental conditions.
The contribution of individual sources of uncertainty was not considered
in our uncertainty calculation, except for the ambient temperature (see
2.6).

Definitions and terminology are consistent with the Guide to the
Expression of Uncertainty in Measurement (Joint Committee for Guides
in Metrology, GUM, 2008).

The measurement uncertainty was calculated for single and repeated
measurements of the four fabrics (dataset A), successively recorded with
a leaf clip and an integrating sphere. In the case of leaf datasets (dataset
B, C, D), the measurement uncertainty was consequently calculated for
each single leaf measured. We noted that repeated measurements of the
same leaf may incorporate stress responses of that leaf to the measure-
ment, especially the strong light exposure, and thus could not be
considered repeated measurements in the same way as repeated mea-
surements of non-living fabrics. Consequently, individual leaves were
not measured repeatedly using the same set-up (except for the two
measurements required to calculate reflectance) and no uncertainty
associated with repeated measurements of leaves was established.
Additional measurements of the same leaf were conducted only in a
limited manner, with extra precautions, to compare different sampling
devices as described in Sections 2.3-2.5. We can infer how measurement
uncertainty may accumulate over many measurements from Dataset A,
whereas we present mean and variance of calculated per-sample un-
certainty for the leaf datasets.

The spectral variation was defined as the standard deviation at a
given wavelength among leaf reflectance within a dataset. The relative
spectral variation, or coefficient of variation, corresponds to the stan-
dard deviation expressed as a percentage of the mean reflectance (Eq.
(5.

The (non-)biological variation was defined as the spectral variation
from which we subtracted the mean uncertainty associated with a single
measurement (Eq. (6)). Non-biological variation is here operationally
defined as variation in optical properties of fabrics. We assumed that the
optical properties of a standard fabric are homogenous. We thus expect
the non-biological variation to be nil or almost nil, and assess this by
comparing the deviation of fabric measurements against their calculated
measurement uncertainty. Biological variation is attributed to variation
in LOP caused by differences in leaf morphology and chemistry.

«STD
SV = 104" (%) (5)

Remote Sensing of Environment 264 (2021) 112601

with SV is the spectral variation,STD is the standard deviation among
reflectance,M is the mean reflectance.

BV = SV— UR,n:l (%) (6)

with BV is the biological variation,SV is the spectral variation,Ug r¢| is
the relative uncertainty associated with the target reflectance

2.8. Data treatment & statistical analyses

Data represent mean values + standard deviation. The 95% confi-
dence interval corresponds to two standard deviations under the
normality assumption. The number of replicates is indicated for each
dataset. Normality tests, t-tests and ANOVAs were performed on indi-
vidual wavelengths; see Results and figure captions for details. Scripts
and source data are available in an open repository (doi:https://doi.
org/10.5061/dryad.gtht76hkx), and further described in Data in Brief.
FieldSpec spectroradiometer data are also deposited in the open access
spectral library SPECCHIO (http://sc22.geo.uzh.ch:8080/SPECCHIO_W
eb_Interface/search, (Hueni et al., 2020) and can be found with the
identifiers ‘Field spectroscopy Fabrics’ (dataset A), ‘Field spectroscopy
F. sylvatica individual’ (dataset B), ‘Field spectroscopy F. sylvatica La
Massane’ (dataset C),

‘Field spectroscopy F. sylvatica SwissForest’ (dataset D).

3. Results

3.1. Uncertainty and variation associated with measurements of a white
reference

We first characterized the uncertainty associated with repeated
measurements of the white reference standard of the leaf clip in each of
the four datasets (Fig. 3).

The spectral variation equivalent to the standard uncertainty asso-
ciated with repeated measurement of the white reference. Under labo-
ratory conditions, the standard uncertainty was on average equal to
0.0013 + 0.0003 reflectance units and did not exceed 0.3% of reflec-
tance (or 0.7% of DN). Maxima of variation appeared at wavelengths
corresponding to the detector limits (350, 1000, 1800 and 2500 nm) and
atmospheric moisture absorption (1470 nm), In field conditions, the
standard uncertainty is on average equal to a spectral variation of 0.5%
or 0.005 + 0.002 reflectance units. Variation in reflectance of the white
reference potentially altered by the instability of the detector over time
(3 h) was usually less than +2% within one measurement session
(Fig. S7).

3.2. Uncertainty and variation associated with measurements of fabric
standards

We then characterized the uncertainty associated with the mea-
surement of fabrics. We explore two levels of uncertainty: the uncer-
tainty associated with a single measurement, and the uncertainty
generated by repeated measurements of the same fabric. Both mea-
surement uncertainties are combined uncertainties calculated on four
fabrics successively measured with a leaf clip, and an integrating sphere.

3.2.1. Measurement uncertainty associated with the leaf clip

The measurement uncertainty associated with a single leaf clip
measurement of the camouflage, plastic, and cotton fabrics represented
less than 0.002 reflectance units across the full spectral range
(Fig. 4e-g). In contrast, the satin fabric (Fig. 4h) had a high specular
component, and its uncertainty averaged at 0.1 reflectance units in the
SWIR. The uncertainty associated with a single measurement of the
material reflectance was also of the same magnitude as the standard
uncertainty (i.e., standard deviation) associated with the white refer-
ence (Fig. 3), except for the anisotropic fabric (satin). Repeated


https://doi.org/10.5061/dryad.gtht76hkx
https://doi.org/10.5061/dryad.gtht76hkx
http://sc22.geo.uzh.ch:8080/SPECCHIO_Web_Interface/search
http://sc22.geo.uzh.ch:8080/SPECCHIO_Web_Interface/search

F. Petibon et al.

a. dataset A: Standard materials

‘ : ; ‘ ; — 1,0
1,004
1083
—~ 0,96 =t
& ; s
8 ! 0,6 =
< ! R
509 ! 2
3 =
% 0,88 g
b4 54
Y joR
0,847 fimrr - r0.2:m
.
0,8

04— T T T T —0,0
400 800 1200 1600 2000 2400
Wavelength (nm)

: ‘ —25
1,00 L*——’% — |
| r20
70,961/ =
ki =
3 ‘ 152
S 0,921 2
© g
(]
% 0881 (0%
(4 5t
<3
0,841 (5 &
/L Y
0,80

; T T — 0
400 800 1200 1600 2000 2400
Wavelength (nm)

White reference:
Digital number
Reflectance

mean
—— mean

standard deviation
[ standard deviation

Remote Sensing of Environment 264 (2021) 112601

b. dataset B: Fagus sylvatica individual

—5
1,00 ] EE——

= N

t4

—~0,96] =

Y S

,3 -—

20,92 2

© ©

S =

% 0,88 g

O

o D

Q.

0,841, 1o

0,80

T T T T T —0
400 800 1200 1600 2000 2400
Wavelength (nm)

d. dataset D: Swiss forest site

: 5
1,00 ] P |
— i i rde
Z0,96] .
(0]
g8 1 8
g092] °%
[$) ©
@ >
8088 2s
@ 0521 :
[0
i Q.
084} ; | r1o
' A TN e
0,801 : : : : o
400 800 1200 1600 2000 2400

Wavelength (nm)

spectral variation
spectral variation

Fig. 3. Variation in the white reference standard of the leaf clip measured in digital numbers (DN; grey) and reflectance mode (black), in laboratory (a) and field

(b—d) conditions.

measurements of the same fabric increased the measurement uncer-
tainty such that it became nearly identical to the standard deviation of
measurement, which was lowest in the VNIR and ranged from about
0.0001 to 0.01 reflectance units for all but the satin fabric. The uncer-
tainty increased with increasing wavelength in the SWIR for all mate-
rials. The leaf clip allows for a bi-directional measurement. As the
sample was rotated in the leaf clip after each measurement, the high
azimuth anisotropy of the satin caused a high standard deviation. Thus,
the measurement uncertainty associated with the fabric measurements
appeared to strongly depend on the optical properties of the fabric itself,
and overall to be similar to the standard deviation from repeated mea-
surements of the same fabric.

3.2.2. Measurement uncertainty associated with the integrating sphere

The measurement uncertainty associated with a single integrating
sphere measurement was similar for all four standard materials
(Fig. 4i-1). It comprised between 0.0001 and 0.001 reflectance units in
the spectral range of 400-2000 nm and abruptly increased up to 0.1
reflectance units at both ends of the spectral measuring range (i.e.,
350-400 nm and 2000-2500 nm). Irrespective of the fabric measured,
the measurement uncertainty associated with repeated measurements
was between 0.001 and 0.01 reflectance units, slightly less than the
standard deviation. The measurement uncertainty was systematically
lower in the VNIR (0.001 & 0.0005 reflectance units) than in the SWIR
range (0.004 + 0.002 reflectance units). Repeated measurements also
helped to reduce the measurement uncertainty at both ends of the
spectral measuring range by an order of magnitude compared to a single
measurement.

3.2.3. Measurement uncertainty and non-biological variation when using
both sampling devices

The measurement uncertainty associated with single measurements
of all fabrics using either a leaf clip or an integrating sphere ranges from

107* to 107! reflectance units and tends to be independent of the
specular component (except for satin). Repeated measurements of the
same fabric were generally associated with a greater uncertainty than
single measurements. Differences between uncertainties associated with
single and repeated measurements tend to increase for fabrics with a
stronger specular component, though to a lesser extent for measure-
ments using an integrating sphere compared to those using a leaf clip.
The reflectance of opaque and more isotropic materials (camouflage and
plastic) calculated from measurements performed with either a leaf clip
or an integrating sphere led to comparable measurement uncertainties.
However, only measurements performed with an integrating sphere
ensure a low measurement uncertainty (<0.01 reflectance units) asso-
ciated with the reflectance of translucent and strongly anisotropic ma-
terials (cotton and satin). The integrating sphere thus allows for more
comparable results between materials than the leaf clip, although it
should be noted that the anisotropic reflectance captured by the leaf clip
and not by the integrating sphere may be important information about
the optical properties of the target. Besides, there is a systematically
higher mean reflectance obtained with the leaf clip compared to the
integrating sphere (Fig. 4a—d). Systematic differences in reflectance and
magnitude of uncertainty associated with measurements performed
using either a leaf clip or an integrating sphere indicate that the
magnitude and distribution of measurement uncertainty is sampling
device-specific.

The uncertainty associated with repeated measurements using either
sampling device was similar to the standard deviation. The non-
biological variation corresponding to the difference between the stan-
dard deviation and the measurement uncertainty was nil or almost nil,
which supports the assumption that the optical properties of a fabric are
homogenous. Also, while the uncertainty associated with a single mea-
surement mainly accounts for the variation due to the used instrumen-
tation, the uncertainty associated with repeated measurements accounts
for the variation due to measurement conditions and the specular
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Fig. 4. Spectral variation and measurement uncertainty associated with the reflectance of four fabrics. The first row represents the mean reflectance and standard
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(c), and the satin fabric (d)) measured with a leaf clip (grey) and an integrating
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legend, the reader is referred to the web version of this article.)

component of the target material. Thus, the standard deviation appears
to be an adequate proxy for spectral variation that includes the non-
biological variation (here, nil or almost nil) and the measurement un-
certainty, encompassing the variation due to the instrumentation, the
measurement conditions, and the anisotropic directional reflectance
behavior (see Fig. 1c).

3.3. Uncertainty and variation associated with measurement of leaves

The biological variation was derived from the spectral variation in
leaf reflectance (see Fig. 1c), hereafter approximated by the coefficient
of variation (CV). As the accuracy of the biological variation inferred
from leaf reflectance depends on our ability to isolate the measurement
uncertainty from the spectral variation, we quantified the contribution
of the measurement uncertainty (single measurement) to the spectral
variation observed in our three datasets, i.e., F. sylvatica individual (over
time, B), French forest (single site, C), and Swiss forest (multiple sites,
D). Uncertainty calculation on fabrics (see 3.1) showed that the uncer-
tainty associated to a single measurement accounts for the variation
induced by the instrumentation and measurement conditions, but un-
derestimates the uncertainty associated with repeated measurements
that depends on the specular component of the target. Thus, the
resulting spectral variation encompassed biological variation and po-
tential anisotropic directional reflectance behavior of the leaf. Never-
theless, given that the measurement uncertainty associated with single
measurement of leaf reflectance was comparable to isotropic standard
materials, we neglected the contribution of the specular component.

3.3.1. Measurement uncertainty associated with leaf reflectance
The uncertainty associated with the leaf clip measurements averaged

at 0.0004 + 0.0002 reflectance units (Fig. 5), corresponding to 0.3% of
the leaf reflectance on average across the full spectral range. The mea-
surement uncertainty varied between 0.2 and 3% of the mean reflec-
tance in the VNIR and averaged at 0.08% in the SWIR (Fig. 5e). The
absolute uncertainty when measuring leaves with an integrating sphere
was statistically identical to that of standard materials (ANOVA, df = 26,
p > 0.5), confirming that the measurement uncertainty for integrating
sphere measurements was independent from the target.

In contrast, the difference between leaf clip and integrating sphere
measurements represented up to 40-80% of the mean leaf reflectance in
the VNIR and between 10 and 40% of the mean reflectance in the SWIR
range, which was twice as large as the relative difference observed on
standard materials, confirming that the relationship between data ob-
tained with these two different sampling devices is target-specific
(Fig. S8). The largest differences were observed at wavelengths where
the reflectance was the lowest, i.e., between 370 and 740 nm and
centered near 1470, 1940 and 2500 nm. It is worth to be noticed that
pigment content is generally derived from spectral indices calculated at
wavelengths comprised between 430 and 800 nm (Croft and Chen,
2018).

In the following sections, we investigate relationships between
measurement uncertainty and variation (spectral and biological) among
leaf reflectance calculated from leaf clip measurements only.

3.3.2. Measurement uncertainty and biological variation within an
individual

We investigated the biological variation within a F. sylvatica indi-
vidual over time (dataset B), by calculating the spectral variation and
characterizing the measurement uncertainty associated with leaf
reflectance.
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to colour in this figure legend, the reader is referred to the web version of this article.)

3.3.2.1. Spectral variation and measurement uncertainty associated with growing season, including sun-exposed and shaded leaves (Fig. 5a). In
leaf reflectance within an individual. We calculated the spectral variation addition, we considered the spectral variation among sun-exposed
among leaves of an F. sylvatica individual sampled weekly during the leaves only, divided into measurements conducted in spring, summer

a. Fagus sylvatica individual

b. Sun-exposed leaves

Biological vanation (7o)

Biological varnation (%)

Siological vaation (%)

=
Fig. 6. Biological variation within a Fagus sylvatica individual during the growing season retrieved from leaf reflectance. The biological variation describes the

spectral diversity among weekly sampled (a) sun-exposed and shaded leaves (n = 24), (b) sun-exposed leaves (n = 15), (c) and shaded leaves (n = 9). The biological
variation of individual sampling spots is available in the supplementary data (Fig. S9).
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and fall (Fig. 5b—d). The largest contribution of the measurement un-
certainty to the spectral variation (20%) was observed for spectral bands
below 400 nm where the instrument noise is governed by a low quantum
efficiency of the silicon VNIR detector combined with a low intensity of
the halogen lamp used as light source. Above 400 nm, the relative un-
certainty represented on average 2.5 + 1.6% of the spectral variation
among sun-exposed leaves (Fig. 5e). Although the measurement uncer-
tainty tended to contribute more to the spectral variation in summer
(3.5 £ 1.8%) and fall (3.0 + 1.8%) than in spring (1.9 £+ 1.0%), its
contribution to the spectral variation was statistically independent of
the time of measurement (ANOVA, df = 198, p > 0.5) across the full
spectral range (Fig. 5f-h). Similarly, the relative uncertainty represented
on average 5.6 + 3.1% of the spectral variation among sun-exposed
leaves belonging to the same branch. Maxima in measurement uncer-
tainty roughly corresponded to maxima in spectral variation (e.g., at
690, 1415, 1900 nm) and did not exceed 10% and 20% of the spectral
variation observed within an individual and within branches,
respectively.

3.3.2.2. Spectral variation and biological variation within an individual.

Fig. 6a illustrates how the biological variation among sun-exposed and
shaded leaves evolved across weeks during the growing season. The
biological variation in the VNIR region varied from as low as 5% to as
high as 110% with respect to the wavelength and the sampling time.
Biological variation was highest in the spectral range of 500-750 nm
corresponding to pigment absorption, and showed a clear time de-
pendency. We distinguished three time periods, roughly following the
main phenological stages of a leaf, i.e., the leaf development in spring
(week 1-9), the maturation of fully developed leaves in summer (week
10-19), and leaf senescence in fall (week 20-28). Across the spectrum,
the mean biological variation was 20% of the leaf reflectance in spring,
between 30% and 50% in summer, and over 100% in fall, revealing an
increasing diversity in spectral features within a tree as leaves mature
and senesce. However, the biological variation at a given wavelength

Spectral variation

a. La Massane

c. Swiss forest sites
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remains largely constant (<+10%) over time in the SWIR region, and
thus the time dependency is driven by differences in the VNIR. The
largest values in the SWIR (15%-40%), mainly driven by the water
content, appeared between 1400 and 1500 nm and between 1800 and
2500 nm. Out of a biological variation of 40% in the SWIR, up to 30%
originate from the differences between sun-exposed and shaded leaves
(Fig. 6b—c).

Among individual sun-exposed branches only, the biological varia-
tion across the growing season comprised between 1.5%-10% in the
SWIR, and averaged at 11 + 6% in the VNIR region (Fig. S9). The bio-
logical variation in the VNIR was minimal in spring (9 + 3%) and had its
maximum in fall (16 + 10%). We observed the same pattern above 1800
nm in the SWIR, though smaller in magnitude than in the VNIR. The
biological variation within a branch explained on average 40 + 6% of
the biological variation observed within a tree (Fig. 5e-h). Its contri-
bution was minimal in spring (32 + 12%) and maximal in autumn (54 +
16%). The remaining biological variation (2-100%) originated from
differences in leaf reflectance between sun-exposed branches.

3.3.3. Measurement uncertainty and biological variation among several
individuals

We characterized the spectral variation, measurement uncertainty
and biological variation in datasets C and D, which consist of F. sylvatica
trees sampled within a week in a French forest (C) and at 5 Swiss forest
sites (D). We further partition the biological variation into variation
within tree, among trees and among sites.

3.3.3.1. Spectral variation and measurement uncertainty associated with
leaf reflectance among several individuals. In both datasets C and D, the
spectral variation defined as the coefficient of variation represented
between 4%-35% of the mean reflectance (Fig. 7). Similar to dataset B
(single individual), the spectral variation was largest between 400 and
700 nm in the VNIR, and centered at 1145, 1930 and beyond 2400 nm in
the SWIR.
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The maximum uncertainty was observed below 400 nm (French site:
5.5%, Swiss sites: 4.7%). After subtracting the measurement uncer-
tainty, the spectral variation below 400 nm still exceeded 30% of the
mean reflectance. This variation is unlikely to be due to biological
variation, but rather due to other factors. We expect a lower signal-to-
noise ratio near the limit of detection and the atmospheric scattering
of light in blue wavelengths that may enter around the edge of the leaf
clip. Consequently, spectral variation below 400 nm was excluded from
the following analysis.

The relative uncertainty above 400 nm in datasets C and D was on
average equal to 0.3 £ 0.2% and 0.2 £ 0.2% of reflectance, representing
on average 3.4 + 1.7% and 1.5 + 1.3% of the spectral variation,
respectively. The relative uncertainty represents up to 13% (dataset C
and D) of the spectral variation in the VNIR, and up to 7.8% (at 1380 nm,
dataset C) and 4.5% (at 1400 nm, dataset D) in the SWIR.

3.3.3.2. Spectral variation and biological variation among several individ-
uals. Within the spectral variation associated with biological variation
(after subtracting the estimated measurement uncertainty), we differ-
entiated three levels of biological organization: (i) the individual level,
representing the biological variation between leaves belonging to a
single tree; (ii) the single-site level, corresponding the biological varia-
tion between trees belonging to a single forest site; and (iii) the multiple-
site level, comparing the variation observed between trees belonging to
several forest sites (in dataset D only). The single- and multiple-site
comparisons evenly incorporate variation due to the parallel use of
two radiospectrometers, whereas the within-individual variation for
each site may be overestimated as a result of using measurements from
two instruments (all leaves for one individual were randomly measured
with either one or the other instrument). The spectral variation calcu-
lated for a single instrument on an individual sampling day was com-
parable to the spectral variation observed in the individual (B) and Swiss
forest site (D) datasets (Fig. 2).

Maxima of biological variation in the VNIR tended to differ between
levels of biological organization and were located at 480 and 660 nm for
the individual level, and at 608 and 695 nm for the single- and multiple-
site level. In the SWIR, maxima of biological variation were consistently
observed across all levels of biological organization at 1451, 1981, and
2500 nm (Fig. 7). Interestingly, the biological variation within in-
dividuals was statistically identical between all datasets (B, C, D;
ANOVA, df = 223, p > 0.05) across the full spectral range. Biological
variation within individuals ranged from 2 to 14% of the mean reflec-
tance and mainly differed among datasets in the visible range of the
spectrum. Within-individual variation represented 46 + 10% of the
spectral variation on average across the full spectral range.

The relative spectral variation between trees within a single Swiss
forest site comprised between 12%-32% (versus 14-18% at the French
site) of the mean reflectance in the visible range and between 4%-20%
(4-25%, French site) of the mean reflectance in the NIR and SWIR
(Fig. 7). After subtraction of the within-individual variation and mea-
surement uncertainty, variation between trees belonging to a single site
represented between 30 and 50% of the remaining spectral variation in
the SWIR.

The relative spectral variation between trees growing in different
Swiss forest sites represented up to 16% of the mean reflectance in the
visible range and 22% of the mean reflectance in the SWIR, which
corresponds to 15 + 5% of the spectral variation on average. When
considering biological variation within individual trees and sites, the
variation in the SWIR alone could be used to differentiate trees
belonging to different sites of the Swiss forest dataset (dataset D).

3.3.3.3. Systematic effect: sample size considerations. As observed in the
Swiss forest dataset (dataset D), the biological variation observed at
lower levels of biological organization may affect conclusions at higher
levels. The quality of the information thus depends on our ability to

11

Remote Sensing of Environment 264 (2021) 112601

accurately estimate mean biological variation and its standard devia-
tion. We assessed the effect of sample size on the mean and standard
deviation estimates of the spectral variation in the French forest (dataset
C) consisting of 180 trees (Fig. 8).

The accumulation curve suggests that a minimum of 20 trees is
required to approximate the mean biological variation originally
observed among 180 trees of the French forest (dataset C) at a precision
of +2%. However, in the SWIR, 70-90 trees and in the VNIR, 90-120
trees are required to obtain a standard deviation equal at +5% to the
standard deviation calculated by bootstrapping over the entire sampled
population of 180 trees.

4. Discussion
4.1. Sources of uncertainty in optical properties measurements

The spectral variation of the white background of the leaf clip reveals
three sources of uncertainty generally affecting optical measurements
(Fig. 3).

A first source of uncertainty is related to the optical sensor. The
largest variation (and thus uncertainty) occurs at the detector limits
where the signal-to-noise ratio is the lowest (lowest DN values). Signal-
to-noise ratio is a combination of instrument radiometric sensitivity and
the intensity of the light source (Schaepman and Dangel, 2000). This
intensity is low at the start of the VNIR and at the end of SWIR2 detector,
following in general the Planck law. Unlike the second and third de-
tector, the first detector (VNIR) is not cooled (ASD Inc, 2010). The
sensitivity of the silicon of the first detector to temperature variation
may in addition explain a higher spectral variation, particularly at the
lower detector wavelength limit (Hueni and Bialek, 2017; Schaepman
and Dangel, 2000).

A second source of uncertainty was associated with experimental
conditions including moisture and ambient temperature. Although the
internal calibration of the ASD spectroradiometer from DN values to
radiance units eliminated most of the variation, post-correction based on
temperature effect modelling was required to correct for the radiometric
steps between the three individual detectors of the ASD full range in-
struments at 1000 nm and 1800 nm, respectively (Hueni and Bialek,
2017; Hueni, 2021). While post-measurement corrections of known
systematic effects help to remove biases in the measurement, they may
also add uncertainties due to the underlying correction model, and
should be applied with caution.

A third and related source of uncertainty is the potential contami-
nation of the sampling device with previous samples, external light
pollution, changing temperatures and atmospheric moisture content
over time. Besides, multiple spectroradiometers may be used in parallel
in order to achieve sufficient throughput during field sampling. These
factors likely explain the larger variation in datasets B, C, and D,
compared to measurements made in dataset An under laboratory con-
ditions. The potential contamination of the white and the black refer-
ences of the leaf clip over time with leaf material when measuring leaves
is incorporated into uncertainty calculations using these references. In
contrast, uncertainty calculations do not account for spectral variation
potentially generated by several operators using multiple spectroradi-
ometers. The French dataset (C) collected over three sampling days by
two operators using two spectroradiometers in parallel show the largest
spectral variation (up to 20%) in the spectral range 350-400 nm where
the signal-to-noise ratio is the lowest. The spectral variation calculated
for a single instrument on an individual sampling day was comparable to
the spectral variation observed in the individual (B) and Swiss forest site
(D) datasets (Fig. 3). In other words, the spectral variation in the French
dataset reveals the systematic error introduced by two operators using
two spectroradiometers in parallel (e.g., calibration, optimization,
warming-up, detector characteristics, etc.) in changing measurement
conditions (e.g., temperature, moisture, etc.). Accordingly, Lukes et al.
(2017) and Kuester et al. (2001) reported relative differences between
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Fig. 8. Effect of sample size on the mean spectral variation estimate and its standard deviation. (a) The mean spectral variation and (b) its standard deviation
obtained for each sample size was normalized by the spectral variation and standard deviation observed in dataset C (n = 180 trees) and by the mean reflectance. By
increasing the number of trees sampled, the simulated mean spectral variation increased toward the observed mean variation while the simulated standard deviation
decreased toward the standard deviation calculated on the full sample by bootstrapping.

ASD FieldSpec spectroradiometers of 1% to 2%, respectively, while
Helder et al. (2012) estimated that the uncertainty induced by different
operators was equivalent to 1.5% to 2.5% when best measurement
practices are followed (cf., Hueni et al., 2017, for best practices
framework).

Among all datasets, the VNIR spectral region appears to be the most
sensitive to changes in measurement conditions. Nevertheless,
measuring in reflectance mode, which requires initial normalization to
the white reference and usually also entails periodic re-normalization
every several measurements, corrects for most of the sources of uncer-
tainty mentioned above and results in a spectral variation of the white
reference below 1% in the VNIR (>400 nm) and 0.6% in the SWIR region
(Fig. 3). The high variation remaining under 400 nm appears to be
associated with a low signal-to-noise ratio of the detector, especially for
one of our field spectroradiometers.

4.2. Measurement uncertainty on standard and leaf materials

Measurement uncertainty associated with optical properties
appeared to not only depend on the characteristics of the spectroradi-
ometer and its sensitivity to the measurement conditions, but also on the
characteristics of the sampling device (leaf clip or integrating sphere).
Uncertainty associated with leaf clip measurements additionally
depended on the optical properties of the target material. Due to its
geometry, a leaf clip device characterizes a bi-directional reflectance
sensitive to the anisotropic properties of the target material; a stronger
anisotropic directional reflectance behavior (specular component) re-
sults in a larger dispersion in reflectance (Schaepman-Strub et al., 2006).
The hemispheric geometry of the integrating sphere offers a great
alternative to the leaf clip device, allowing for measurements free of
anisotropic directional reflectance behavior (Milton et al., 2009).
Nevertheless, we showed that repeated measurements of the same target
material rotated by 60° in the leaf clip device after each measurement
reduced the directional effect and enabled us to account for the contri-
bution of the specular component to the spectral variation and thus
better inform us on the optical properties of the target material.

The measurement uncertainty associated with single measurements
of all standard fabrics using either a leaf clip or an integrating sphere
was very similar (except satin due to its specular qualities), suggesting
that our calculation method is robust, suitable to assess uncertainty
caused by instrumentation properties, and transferable to leaf mea-
surements. Repeated measurements of the same material were generally
associated with a larger uncertainty than single measurements as the
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uncertainty accounts for the variation introduced by (even small)
anisotropic properties of the target. To assess the contribution of the
specular component to the spectral variation, we recommend repeated
measurements with a leaf clip device. However, it must be noted that
prolonged exposure to the light beam may alter leaf chemical compo-
sition (e.g., pigment degradation, water content).

The details of the approach we adopted to calculate the uncertainty
budget are specific to the spectroradiometer-sampling device-target
combination and would consequently change if either the spectroradi-
ometer, the sampling device or the target change, as is apparent in the
several combinations used in this study. We also note that our conclu-
sions are limited to the measurement or estimation of reflectance, as we
did not measure transmittance, and thus a similar analysis should be
carried out for transmittance measurements. Similarly, a systematic bias
of the mean reflectance of an identical target was also observed by
several authors when different spectroradiometers, sampling devices or
protocols were used (Hovi et al., 2018; Pimstein et al., 2011; Jung et al.,
2010; Castro-Esau et al., 2006). However, systematic differences due to
the use of different spectroradiometers are often considered negligible
(Lukes et al., 2017). Still, all of these biases create challenges for
comparing data from different datasets and spectral databases. In a
meta-analysis, Meireles et al. (2020) successfully harmonized leaf
spectra measured using spectroradiometers from different manufac-
turers by applying a partial least square model. Errors between predicted
and measured spectra remained below 0.01 (VNIR) and 0.03 (SWIR)
reflectance units, corresponding to a spectral variation of up to 7-28% in
the VNIR and 2-55% in the SWIR spectral range. It is worth noting that
such variation is, for instance in the SWIR, larger than the variation
observed among sun-exposed leaves sampled on one individual across
the growing season (dataset B; Fig. $10), and would therefore negatively
affect our ability to identify species trait variation. Besides, the cali-
bration of such models seeking to harmonize spectra from different
sources requires measurements of same samples using the involved
spectroradiometers. Comparing measurements from databases consist-
ing of independent datasets collected by several laboratories thus re-
mains a challenge.

Jung et al. (2010) proposed an alternative approach using a white-
reference dependent post-correction; the white references of different
spectroradiometers are calibrated against a “master” white reference
before comparing spectral measurements. Likewise, Pimstein et al.
(2011) advocated the use of sand as an internal soil standard, being less
expensive than a calibrated white reference (Spectralon®). Both ap-
proaches have been successfully adopted in the soil spectroscopy
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community, improving the retrieval of soil properties (e.g., clay content)
by up to 10% (Romero et al., 2018). No equivalent procedure has so far
been tested and adopted by the vegetation spectroscopy community. In
our study, the measurement uncertainty associated with LOP was
comparable to the uncertainty associated with a single measurement of
standard fabrics with a low specular component (camouflage, cotton,
plastic materials), suggesting that standard fabrics could be used as
measurement standards to assess the measurement uncertainty associ-
ated with leaf reflectance. The uncertainty associated with repeated
measurements of the latter materials fell below 0.006 and 0.02 reflec-
tance units, representing between 4.5%-15% of leaf reflectance.

Similar to Hovi et al. (2018) and Potickova et al. (2016), we
observed systematic differences in reflectance between leaf clip and
integrating sphere sampling devices, while Lukes et al. (2017) observed
systematic differences among integrating spheres. Although Potiickova
et al. (2016) successfully applied a linear model to homogenize spectral
data measured with a leaf clip and an integrating sphere, our results
suggest that we would not only need to develop a new model for each
new combination of leaf sampling devices, but also for each new target.
However, we observed the largest differences in leaf reflectance between
leaf clip and integrating sphere measurements at specific wavelengths,
generally used to retrieve pigment and water content. Prolonged expo-
sure to the light beam due to successive measurements with a leaf clip or
an integrating sphere may alter leaf chemical composition. By placing
the leaf in slightly different positions for each measurement, we may
also account for the natural variability in leaf chemical composition, and
thus overestimate the actual differences in reflectance resulting from the
use of different sampling devices. As Hovi et al. (2018) highlighted,
correction procedures are challenging to develop, and care should be
taken when comparing spectral data measured with different methods.

The integrating sphere appeared to produce more reproducible
spectra with a low and stable measurement uncertainty, although the
target was manually moved from one port to the other. The measure-
ment uncertainty of integrating sphere measurements was independent
of the optical properties of the target — at least regarding isotropy or
anisotropy — and constant across a wide spectral range between 400 and
2500 nm. The integrating sphere has been the device of choice in
numerous studies investigating LOP due to its reputation as a more
stable measurement system (Milton et al., 2009). Nevertheless, we argue
that spectral variation induced by the bi-directional measurement
principle of a leaf clip provide vital information on the diversity in LOP.
Also, we advise to rotate the sample between measurements to better
assess the effect of the specular component on the spectral variation.

Developing an uncertainty budget accounting for all sources of un-
certainty and correcting systematic bias still appears a challenging task.
Although in the proposed approach, we do not account for potential
instability of the instrument over time, beyond applying a temperature
correction (see Section 2.6), or for specular properties, which increased
the uncertainty associated with repeated measurements of fabrics, our
results show that the calculation of the total uncertainty associated with
a spectral measurement is a practical indicator of the measurement
quality.

A more conservative approach would apply the measurement un-
certainty associated with repeated measurements of standard fabrics to
leaf spectral measurements. However, Anderson et al. (2011) high-
lighted that due to substantial differences between laboratory and field
conditions, laboratory-derived uncertainties are not representative of
uncertainties associated with field measurements. Thus, we rather
recommend applying the developed approach to a given
spectroradiometer-sampling device-target combination in field condi-
tions. In addition, we suggest that measurements of a common standard
(i.e., Spectralon or shared standard materials) should be adopted and
systematically reported in metadata to enhance the comparability of
spectral data in spectral libraries.
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4.3. Partitioning of spectral variation into measurement uncertainty and
biological variation

The largest spectral variation often corresponded to a maximum in
leaf absorbance, which is driven by leaf morphology and chemistry.
Also, spectral variation is a good indicator of morphological and phys-
iological variation supporting the monitoring of species traits. Spectral
indices, building on the spectral variation between given wavelengths,
and spectral diversity metrics using the variation across the full spectral
range are the two main approaches commonly applied to predict leaf
chemicals (Asner et al., 2009; Singh et al., 2015; Wang et al., 2020) and
biodiversity (Schneider et al., 2017; Schweiger et al., 2018; Williams
et al., 2020). However, a maximum in leaf absorbance corresponds to a
minimum in reflectance; hence, the lower the reflectance, the lower the
signal-to-noise ratio, and thus the larger the measurement uncertainty.
Accounting for measurement uncertainty would therefore result in a
more accurate assessment of biological variation. Yet, measurement
uncertainty has not been systematically reported to date.

The spectral variation partitioning presented here allows for the
distinction between measurement uncertainty and biological variation.
To our knowledge, we show for the first time that measurement un-
certainty represents roughly 2.5% of the spectral variation expected
when sampling a tree over time (dataset B) or several trees in a forest site
(datasets C and D). In addition, our measurements indicate that varia-
tion is at a minimum in spring and summer in the VNIR and SWIR
spectral regions, respectively. Analyses conducted on a dataset including
different levels of biological organization and phenology may thus
provide more detailed insight into when in the growing season, and
where in a spectrum, spectral measurements may best resolve species
trait variation.

As already promoted by a handful of studies (Anderson et al., 2011;
Hueni et al., 2017; Peterson et al., 2017; Schaepman and Dangel, 2000),
we thus advocate for a frequent calibration of field spectroradiometers,
and a systematic characterization of uncertainty associated with spectral
leaf measurements in field conditions. In addition, we suggest parti-
tioning spectral variation into measurement uncertainty and biological
variation for a more accurate retrieval of LOP.

4.4. Spectral variation as a measure of species trait variation

Species trait variation describes the diversity in plant traits expressed
by individuals within a species in response to their biotic and abiotic
environment. We focused on species trait variation at three levels of
biological organization: variation within an individual tree, and be-
tween individual trees sampled from single site and multiple sites.
Within-tree variation occurs due to plasticity in relation to micro-
environmental gradients within the crown (Atherton et al., 2017; Nii-
nemets et al., 2014), phenology, and ontogeny (Albert et al., 2011),
biotic interactions and at least in some cases to somatic mutations
inherited from different meristems (Cruzan et al., 2020). We showed
that out of an average biological variation of 40% in the SWIR, 30% is
explained by the difference between shaded and sun-exposed leaves.
This result appears to be in agreement with several studies investigating
the effects of light gradients within the crown on leaf optical properties
and reporting thicker leaves and lower water content in sun-exposed
than in shaded leaves (Jacquemoud and Ustin, 2019b; Niinemets
et al., 2014). The remaining 10% of biological variation expressed in
sun-exposed leaves was consistent across all datasets, suggesting that the
biological variation captured by LOP represents the functional space
allowed by the plasticity of sun-exposed leaves. We would like to note
that our measurements also indicate larger within-tree variation in the
fall. Similarly, Gao and Zhang (2006) observed a larger spectral di-
versity in fall and suggest that larger spectral variation allows for a
better classification of salt marsh vegetation. Thus, the time at which the
largest within-individual variation is observed may also be suitable for
observing the maximum between-individual variation, making a
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standardized approach even more important for comparing across
individuals.

The biological variation between individuals from a unique or
distinct population arises from the coexistence of genetically different
individuals and plastic response to heterogenous environmental condi-
tions (Albert et al., 2011). Spectral variation partitioning enables us to
differentiate between within-individual versus between-individual
variation. In our datasets, between-site variation appears larger than
between-tree variation, which on average exceeds within-individual
spectral variation when trees are measured within a short portion of
the growing season (1 week). However, when considering the standard
deviation within each biological level, variations within and among sites
overlap in the visible range, while 95% confidence intervals of both
levels were identical in the SWIR spectral range (Fig. S11). This finding
echoes ecological studies showing a decreasing functional diversity be-
tween species when accounting for intraspecific variability of a single
species (Cianciaruso et al., 2009; Violle et al., 2012) and suggests that
intraspecific variability is an often-unmeasured indicator of how plants
within a species fill a functional space (Schweiger et al., 2018). Thus, the
contribution of lower levels of biological organization (branch, tree) to
biological variation may exceed the contribution of higher levels of
variation (e.g., between trees), especially in measurements of bulk
properties such as spectroscopy. Neglecting the contribution of lower
levels of organization would overestimate the biological variation of the
level of organization of interest. This emphasizes the need for an
appropriate characterization of lower levels of biological organization
which is often neglected in remote sensing studies. Suitable sampling
strategies can help capture species trait variability, and the biological
variation retrieved from LOP allows for the monitoring of species traits
at different levels of biological organization.

Additionally, it should be noted that spectral measurements are often
carried out on harvested branches. Therefore, the measured variation
can be an outcome of the leaf degradation proportional to the time be-
tween sample collection and spectral acquisition. In our studies, we did
not account for this possible source of variation. Time between harvest
and measurement was largest for dataset D, intermediate for dataset C,
and least for dataset B (aside from the laboratory measurements asso-
ciated with this dataset), due to different sampling approaches. We
acknowledge that this can cause artifacts in derived measures of species
trait variation. In our datasets, this may be an explanation for larger
variation especially in the visible and short-wave infrared part of the
spectrum in dataset D.

The analysis of the effect of sample size suggested that a minimum of
3 leaves sampled on 20 trees would give a good estimate of mean bio-
logical variation among sunlit canopy leaves of different trees in datasets
that we investigated. This finding supports the sampling strategy
adopted in the Swiss forest dataset, where each site corresponds to a
collection of approximately 20 trees. In the same way, Petruzzellis et al.
(2017) suggested to use 4 leaves from 10 randomly-selected individuals
to estimate the variation in specific leaf area (SLA) between individuals.
However, an equally good characterization of the standard deviation
(<£5%) of between-individual variation would require a larger sample
size of from 80 (in SWIR) to 110 (in VNIR) trees of an investigated
population, again only if leaves are taken from a standardized position
in the canopy across individuals (i.e., if substantial within-individual
variation is ignored). Unlike Petruzelli's study focusing on one specific
trait, biological variation retrieved from LOP emerges from a range of
plant traits. Traits commonly retrieved in the SWIR (e.g., water content,
structural traits) appeared to require less sampling effort to characterize
a mean value than do highly dynamic physiological traits (e.g., pigment
content) expressed in the VNIR, but therefore a greater sampling effort
to characterize the variation of individuals around the mean.

Field campaigns commonly adopt a selective sampling focusing on
sun-exposed leaves preferentially located at the top of the canopy. This
is justified by the fact that field campaigns often aim for comparability
with spectral data from airborne or satellite sensors that can only
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measure the top of the canopy. Additionally, it ensures that the sampling
is standardized across individuals. However, such selective sampling
tends to underestimate the spectral diversity present within a popula-
tion. In a biodiversity experiment, Schweiger et al. (2018) estimated that
the spectral diversity at leaf level yielded a 10% better estimate of
grassland productivity than tram-based remotely sensed spectra taken
from above. Again, a more representative in situ sampling can help
assess the fraction of variation that is either not accessible, or not
resolved by conventional remote sensing at broader scales. To this end, a
random sampling strategy irrespective of the light exposition in addition
to the classic selective sampling — with a corresponding increase in the
number of samples within individuals, as well as more individuals —
would result in a better approximation of the commonly unmeasured
variation (Petruzzellis et al., 2017; Violle et al., 2012).

4.5. Recommendations for in-situ spectral measurements

The characterization of the measurement uncertainty associated
with leaf reflectance should become a compulsory step during data
processing, while sampling design should aim at minimizing it. We thus
encourage the use of common measurement protocols and the system-
atic reporting of sufficient metadata in order to improve the traceability,
the quality and comparability of spectral measurements. To this end, we
have prepared a list of recommendations related to the instrument, the
data acquisition, the sampling strategy, the data processing, and the
metadata. The list aims to recall and complement recommendations
made in previous studies (Jiménez Michavila and Diaz-Delgado, 2015;
Hueni et al., 2017; Milton, 1987; Milton et al., 2009) with a focus on the
use of sampling devices (i.e., leaf clip and integrating sphere).

Our recommendations are:

o Calibrate the spectroradiometer at least before each campaign season
and/or according to the manufacturer's specification as wavelength
drift may occur with time; this also implies checking the optical
interface (e.g. fiber-optic cable) for damage (Schaepman and Dangel,
2000)
Compare the white reference reflectance to the reflectance of a
‘pristine’ Spectralon reference panel before and after each sampling
campaign as impurities and ultraviolet radiation may degrade the
white reference over time.
Establish the measurement uncertainty associated with the spec-
troradiometer and sampling device with a calibrated Spectralon
reference panel and additional inert standard reference materials (e.
g., fabrics, papers).
Prefer repeated measurements at different spots of a target as pro-
longed exposure to the light beam may alter the chemical composi-
tion of biological material.
Rotate the sample to minimize the impact of directional effects when
measuring with a leaf clip device, but be aware that this will increase
uncertainty for highly anisotropic materials.
e Apply signal post-correction, including temperature correction to
reduce measurement bias if necessary (Hueni, 2021).
Estimate the uncertainty generated by the instrumentation, mea-
surement protocols, and post-processing, and propagate these un-
certainties to the resulting reflectance.
Characterize the measurement uncertainty associated with the
target, specifically if using a leaf clip (see Section 2.7) or any
directional measurement device.
Quantify the contribution of measurement uncertainty in relation to
the total spectral variation (e.g., Fig. 1).
Define the level of biological variation of interest and adopt a sam-
pling strategy suitable to characterize and/or minimize the contri-
bution of other levels of biological organization to the biological
variation, with specific attention to sampling bias and sample size.
e Random sampling produces a more faithful assessment of spectral
variation. However, if vicarious calibration of airborne data are
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based on field measurements, sun-exposed leaves of the top of the
canopy should be preferentially sampled. Random sampling within
the canopy could be carried out in parallel to assess the fraction of
variation that is not accessible to airborne sensors or satellite.
Provide systematic metadata regarding all of the above consider-
ations alongside your spectral data. The metadata should include the
target description (e.g., species, sampling height, preferably co-
ordinates), instrument characteristics (e.g., serial number), mea-
surement protocol, calculation and correction procedures, and
uncertainty budget.

The recommendations are generalizable to all types of vegetation (e.
g., coniferous needles). However, the list may not be exhaustive for a
given type of vegetation. Yanez-Rausell et al. (2014a, 2014b) provide
additional measures to minimize measurement uncertainties in case of
needle leaves.

5. Conclusion

We showed that leaf optical properties can indicate species trait
variation at various biological and temporal scales. Partitioning of bio-
logical variation and measurement uncertainty helps disentangle the
contribution of individual levels of biological organization, from the
individual to the forest, and to assess the potential biological informa-
tion which can be retrieved at different spectral regions. We showed that
relatively low measurement uncertainties for leaf reflectance given
either low anisotropy, or an integrating sphere sampling device, permit
the detection of variation at multiple levels of biological organization.
However, the contribution of the measurement uncertainty to the
spectral variation is not negligible, comprising 1-15% of total measured
variation, and potentially overwhelming other sources of variation for
leaves with high anisotropy.

Our study highlights the need for characterizing the contribution of
various sources of uncertainty, such as the use of different spectroradi-
ometers or different leaf clips of the same model, the repeatability of
measurements in time, and the contamination of the white and black
reference, to the measurement uncertainty associated with the leaf
reflectance. While our approach can help better assess uncertainty
associated with leaf spectral measurements, future work should focus on
assessing uncertainty associated with the calibration of spectral mea-
surements based on analytical methods (e.g., metabolome datasets). In
addition, increased sampling effort is required in order to better assess
species trait variation from leaf reflectance.
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