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Abstract—Robotics technology has been widely utilized for 

multiple applications in recent years. Human comfort has a direct 

impact on task quality and efficiency during the human-robot 

collaboration process. As an emerging study, human comfort in 

human-robot collaboration attracts more and more attention of 

scholars. In this study, we propose a novel approach to characterize 

and analyze human comfort based on T-Test to advance the 

understanding of human factors for the future of smart 

manufacturing. A factor set of robot performance and work 

environments that affect human comfort in the human-robot 

collaboration process is developed. We implement the proposed 

method to a high-diversity group of participants who are from 

different educational backgrounds, ages, genders, and countries. 

Experimental results and analysis indicate that the comfort levels of 

subjects are effectively evaluated under different/same robot/work 

environment factors. In addition, the highly statistically significant 

factors that affect the participants’ comfort level positively or 

negatively are discussed. 

Keywords—Robotics, human-robot interaction, comfort, smart 

manufacturing, human factors 

I.  INTRODUCTION

Robotics technology has been increasingly employed in a 
range of application areas in recent years [1, 2]. Human-robot 
collaboration can be viewed as humans and robots working 
together on common tasks forming a team. A team can be 
defined as several companions with compatible skills that are 
aiming to reach the same goals, efficiently achieve the common 
purposes, and methods for which they consider themselves 
mutually responsible. This also applies to human-robot teams 
where the companions are humans and robots, aiming to reach 
the same objectives through collaboration [3-6]. Currently, 
most modern factories leverage human-robot collaboration as a 
part of their daily routine. Human-robot collaboration can be 
found not only in factories, but offices, hospitals, and even 
outer space [7-11]. Industries continue to develop and verify 
innovative solutions intended to improve upon current 
manufacturing processes. The new approaches, which focus on 
robots assisting and supporting humans, provide a safer, 
friendlier working environment, and increase efficiency [12]. 

Thus, improving the human-robot relationship would increase 
cooperation and boost efficiency between humans and robots. 
In addition, improvements to the human-robot relationship 
would enhance the work environment tremendously by making 
it safer and more comfortable. 

Human comfort during any human-robot collaborative 
work would help improve the task quality and efficiency [13, 
14]. Introducing robots without considering human comfort 
during a task might result in poorly performed tasks as there 
would be a lack of seamless and efficient collaboration between 
the two sides. Furthermore, this will cause slower productivity, 
increase the possibility for error, and could even result in injury 
over longer periods. Another thing to consider would be its 
effect on creating a poor work environment. As human workers’ 
dissatisfaction with tools and their robot counterparts rises, 
people may be less inclined to foster a better relationship. On 
the other hand, when human comfort is considered, the 
ergonomics will be improved and human partners will be more 
encouraged to maintain a better human-robot partnership, 
which will enhance both the task quality and the general work 
environment. Therefore, considering how much human comfort 
affects work efficiency, we can see how important human 
comfort in general is. 

II. RELATED WORK

Several related studies have been conducted in recent years. 
An experiment conducted by the Department of Human Factors 
at Ulm University presented the impact of propensity to trust in 
automation and negative attitudes toward robots on state 
anxiety, trust, and comfort distance toward a robot [15]. Chen 
et al. developed four levels to plan muscular and peri personal-
space comfort using the Baxter robot. This work included three 
steps: peri personal-space comfort is the step to develop a 
metric for human-robot teams. Stability checking is used for 
developing muscular and peri personal space comfort. Finally, 
the optimization process focuses on evaluating the performance 
of the combined optimization with four planners [16]. Another 
study that focused on an aspect regarding human-robot 
collaboration was carried out to evaluate the performance 
difference between using human-aware robots and robots with 
standard motion planning. Multiple tests such as Wilcoxon 
signed-rank test and the Shapiro-Wilk test were used in this 
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investigation [17]. Through experiments with operators in 
manufacturing lines, a study addressed several areas of 
architecture of human robot collaboration such as task planning, 
task representation, and allocation of tasks combined with 
movement planning and the natural collaboration of humans 
and robots [18]. Wei et al. did two experiments, in which 
directing ways and sorting objects were conducted to evaluate 
the expression emotion of robots’ impact on the participants’ 
perception about the robot [19]. 

However, there is still a lack of comprehensive 
understanding of robot/work environment factors (e.g., speed, 
human-robot proximity, or lighting condition) that may affect 
humans’ comfort in human-robot collaborative tasks. Even 
though the experiments mentioned were about human-robot 
collaboration and some mentioned human comfort, but they did 
not focus on or study the factors, especially the highly 
significant factors, that affect human comfort directly during 
human-robot collaboration. 

To this end, a T-Test based approach for characterizing and 
analyzing human comfort in human-robot collaborative tasks is 
proposed in this study. We develop a factor set with 21 elements 
of robot performance and work environments to investigate 
which factors have a higher influence or effect on human comfort 
during the human-robot collaboration process. The proposed 
approach is tested with a high-diversity group of participants. We 
compare these factors against the neutral state which serves as 
our reference point and discuss statistically significant factors 
that highly affect the participants’ comfort.  

III. APPROACHES

A. Human Comfort Conceptualizing
In human-robot collaboration, human comfort can be

defined as a feeling of consolation, relief, or satisfaction caused 
by the factors of robot performance or work environments when 
the robot collaborates with the human to complete shared tasks 
[13]. Human comfort is a positive feeling that can be converted 
from a negative feeling (discomfort) or a neutral feeling when 
the human’s unhappiness, anxiety, or tension is mitigated by the 
robot’s proper assisting actions. To evaluate human comfort in 
human-robot collaboration, we need to measure the effect of 
robot actions or the work environment on human feelings. We 
should also concern the discomfort while evaluating human 
comfort. In this work, we will characterize human comfort by 
exploring multiple factors to determine if they help with human 
comfort or if they cause discomfort. 

TABLE I.  REWARD STRATEGY FOR THE CHARACTERIZATION OF HUMAN 

COMFORT 

Comfort Level Reward 
Very Uncomfortable -3

Uncomfortable -2

Somewhat Uncomfortable -1

Neutral 0

Somewhat Comfortable 1

Comfortable 2

Very Comfortable 3

B. Characterization of Human Comfort
While collecting data from participants in human-robot

collaborative contexts, we develop a reward strategy to 

characterize each comfort level from a Likert scale [20] with a 
number starting with zero as the neutral state and positive 
numbers for the feeling of comfort and negative numbers for 
the feeling of discomfort. As shown in Table I, we employ a 7-
point Likert scale with numbers ranging from (-3) to (3). This 
characterization strategy allows us to quantificationally 
evaluate the human comfort levels we received from 
participants. For example, if most people feel one of the 
positive feelings towards a specific robot factor, this will result 
in a positive number for the corresponding comfort level. On 
the other hand, if most people feel negatively towards another 
robot factor, this will result in a negative number for the 
corresponding discomfort level. Taking the weight of each 
factor and its correlation to human comfort, the significance of 
the weights can be determined and tested against other results. 
Thus, we will further get how much each factor affects the 
participants’ comfort. 

C. T-Test
The T-Test is an inferential statistic, which is utilized to find

out if there is a significant difference between the means of two 
groups that might have similar features. It is one of the tests 
utilized to examine hypotheses in statistics. Computing a T-
Test needs three main data values including (1) the mean 
difference that is the difference between the means of both data 
sets, (2) the standard deviations of each data set, and (3) the 
number of values in each data set [21, 22].  

Comparing the samples of group A and group B, the T-Test 
value can be evaluated as 

𝑡 = (𝑚𝐴 − 𝑚𝐵)/√
𝑆2

𝑛𝐴
+

𝑆2

𝑛𝐵

where  𝑚𝐴  and 𝑚𝐵  are the means of group A and group B,
separately, 𝑛𝐴 and 𝑛𝐵 denote the sizes of group A and group B,
respectively, and 𝑆2 is an estimator of the pooled variance of 
the two groups. It can be expressed as 

𝑆2 =
∑ (𝑥𝑖 − 𝑚𝐴)2𝑛𝐴

𝑖=1 + ∑ (𝑥𝑗 − 𝑚𝐵)2𝑛𝐵

𝑗=1

𝑛𝐴 + 𝑛𝐵 − 2
with degrees of freedom (df) as 𝑑𝑓 = 𝑛𝐴 + 𝑛𝐵 − 2, where 𝑥𝑖

and 𝑥𝑗 are samples of the group A and B, respectively.

We make four assumptions while using the T-Test. The first 
assumption for the T-Test is that the measurement scale applied 
to the data acquired follows an ordinal and continuous scale. 
The second assumption is that the sample of participants is from 
representative groups. The third assumption is that the result of 
the data is a normal distribution, bell-shaped distribution curve. 
The fourth assumption is only assumed if equal or 
homogeneous variance exists when the standard deviations of 
both data sets are approximately equal [23, 24]. 

TABLE II.  AN EXAMPLE OF HUMAN COMFORT EVALUATION RESULTS OF 

THE FAR DISTANCE OF HUMAN-ROBOT PROXIMITY VIA T-TEST 

Parameter Result 
Neutral states mean 0 

Far distance mean 0.36 

t value 1.8395 

Degree of freedom 138 

p value 0.068 

critical value 1.976 
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In this study, using the neutral state as our base group and 
comparing it with our collected data for each factor, we can see 
if the factor has any effect on human comfort during the human-
robot collaboration process. For example, if we take the data 
collected from the far distance of human-robot proximity and 
get the evaluation results as shown in Table II, where the 
calculated t value is smaller than the critical value. Hence the 
means of these samples are not significantly different, which 
indicates that having the robot work with its human partner 
from a far distance did not affect his/her comfort level enough 
to be statistically significant. 

IV. EXPERIMENTAL SETUP

A. Experimental Platform
The experimental platform includes a collaborative robot, a

target object, and a shared workspace. We assign a vehicle model 
co-assembly task to the robot and its human partner in 
manufacturing contexts. The robot used is Franka Emika, which 
is a 7-DoF collaborative robot [25]. During the human-robot co-
assembly process, we change the robot performance and adjust 
the work environments with 21 factors to investigate their 
influence on human comfort. To conduct this study by recruiting 
a diverse participant body in the pandemic period, we create an 
online comfort evaluation platform. On this platform, we record 
a video in which the robot delivers parts to its human partner in 
the co-assembly task with 21 different factors of robot 
performance and work environments. The participants can take 
part in the experiment at home by watching the recorded video 
and rating their comfort levels on each factor via online 
synchronous questions. 

B. Factors of Robot Performance and Work Environments
We investigate 21 factors that might affect human comfort

during the human-robot collaboration process. These factors are 
listed in Table III. 

TABLE III.  THE FACTORS OF ROBOT PERFORMANCE AND WORK 

ENVIRONMENTS USED IN THIS STUDY 

No. Factor 
1 Far distance 

2 Medium distance 

3 Close distance 

4 High speed 

5 Medium speed 

6 Low speed 

7 High robot delivery position 

8 Medium robot delivery position 

9 Low robot delivery position 

10 Dim lighting and far distance (DLFD) 

11 Dim lighting and medium distance (DLMD) 

12 Dim lighting and close distance (DLCD) 

13 Soft lighting and far distance (SLFD) 

14 Soft lighting and medium distance (SLMD) 

15 Soft lighting and close distance (SLCD) 

16 Regular factory noise and far distance (RNFD) 

17 Regular factory noise and medium distance (RNMD) 

18 Regular factory noise and close distance (RNCD) 

19 High factory noise and far distance (HNFD) 

20 High factory noise and medium distance (HNMD) 

21 High factory noise and close distance (HNCD) 

C. Data Collection
The Mindstamp [26] is used for the development of our

online comfort evaluation platform. It allows us to dynamically 

create an interactive video survey and organize the data. The 
Mindstamp also allows us to make sure our data is coming from 
different participants by showing us duplicated views and the 
degree of completion for each viewer. In addition, we can 
control the flow of the video.  

D. Participants
We collected data from 70 participants including 41 male

participants (58.6%) and 29 female participants (41.4%) with 
different ages, educational backgrounds, and countries. Most of 
the participants are in the age range [20, 30], which is a 
representative group of future workforces. The participants 
include undergraduate students, master’s students, Ph.D. 
students, technical college students, faculty, and others. 
Showing that it is more diverse than the age distribution. The 
participants are from 9 different countries, which makes our 
collected data substantially representative and solid. Through 
checking the IP addresses of the participants, each participant’s 
view was counted once by us even if they rewatched the video. 

V. RESULTS AND ANALYSIS

In this section, the results and analysis of the influence of 
human-robot proximity, robot speed, lighting condition, and 
noise in the work environment on the participants’ comfort are 
presented. 

A. Human-Robot Proximity

(a) 

(b) 

(c) 

Fig. 1. Participants’ comfort influenced by the human-robot proximity. (a) Far 

distance. (b) Close distance. (c) Medium distance. 
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The participants’ comfort influenced by the human-robot 
proximity is shown in Fig. 1. We have 3 factors related to 
human-robot proximity. Fig. 1 (a) shows how participants felt 
when the robot handed an object to them from a far distance. 
After calculating the t value as 1.8395 and the p value as 0.068 
of the comfort data, we concluded that the far distance is not 
statistically significant since the comfort data indicates that it 
did not affect the participants’ comfort level enough to be 
statistically significant. In addition, when the robot handed our 
participants the object with close proximity. The participants’ 
responses were mixed between somewhat uncomfortable and 
somewhat comfortable as shown in Fig. 1 (b). The evaluated t 
value is 0.6037 and the p value is 0.547. The close distance was 
also not statistically significant because the comfort data 
indicates that it did not affect the participants’ comfort level 
enough to be statistically significant. On the other hand, as 
shown in Fig. 1 (c), the medium distance was very positive. 
After calculating the t value as 3.293 and the p value as 0.0013, 
we found that the medium distance is highly statistically 
significant because the results indicate that it did affect the 
participants’ comfort level positively to be very statistically 
significant. 

(a) 

(b) 

(c) 

Fig. 2. Participants’ comfort influenced by the robot speed. (a) High speed. (b) 

Low speed. (c) Medium speed. 

B. Robot Speed
The participants’ comfort influenced by the robot speed is

shown in Fig. 2. We have 3 factors related to robot speed. Fig. 
2 (a) shows how participants felt when the robot handed an 
object to them at high speed. After calculating the t value as 

6.6259 and the p value as 0.0001 of the comfort data. We 
concluded that the high speed is extremely statistically 
significant. The comfort data indicates that the high speed 
affected the participants’ comfort level in an extremely negative 
way which can also be deduced from Fig. 2 (a) since the 
overwhelming majority had negative responses. In addition, 
when the robot handed our participants the object with low 
robot speed. The participants’ responses were also very 
negative as shown in Fig. 2 (b). The results (t = 5.685 and p = 
0.0001) suggest that the low robot speed did affect the 
participants’ comfort level enough to be extremely statistically 
significant. On the other hand, as shown in Fig. 2 (c), the 
medium robot speed was overwhelmingly positive. After 
calculating the t value as 8.3481 and the p value as 0.0001, we 
found that the medium robot speed is extremely statistically 
significant because it did affect the participants’ comfort level 
positively to be very statistically significant. 

C. Lighting Condition
The participants’ comfort influenced by the lighting

conditions is shown in Table IV. We have 6 factors related to 
lighting conditions. For the soft lighting condition, after 
calculating the soft lighting and far distance against the far 
distance and finding the t value as 0.9247 and the p value as 
0.3567, we concluded that it was not statistically significant. 
The results indicate that, in all three cases of soft lighting 
against distance (far, medium, and close), the participants were 
not affected enough to be considered statistically significant. 
On the other hand, when we tested dim lighting conditions for 
far distance (t = 6.6813 and p = 0.0001), medium distance (t = 
5.7717 and p = 0.0001), and close distance (t = 5.0158 and p = 
0.0001). Against the three kinds of distances in a well-lit room, 
we found that our participants had an overwhelmingly negative 
response for all three dim lighting cases. The results suggest 
that the dim lighting condition is extremely statistically 
significant. Therefore, we should avoid creating such a work 
environment when we develop and deploy human-robot 
collaborative contexts. 

TABLE IV.  PARTICIPANTS’ COMFORT INFLUENCED BY THE LIGHTING 

CONDITION 

DLFD DLCD DLMD SLFD SLCD SLMD 

Very 
Uncomfortable 

24.3% 25.7% 12.9% 4.3% 2.9% 5.7% 

Uncomfortable 32.9% 22.9% 31.4% 11.4% 8.6% 11.4% 
Somewhat 

Uncomfortable 
18.6% 21.4% 22.9% 15.7% 5.7% 14.3% 

Neutral 11.4% 14.3% 11.4% 27.1% 30% 24.3% 
Somewhat 

Comfortable 
8.6% 10% 11.4% 25.7% 20% 20% 

Comfortable 2.9% 4.3% 8.6% 10% 27.1% 18.6% 
Very 

Comfortable 
1.4% 1.4% 1.4% 5.7% 5.7% 5.7% 

D. Noise in the Work Environment
The participants’ comfort influenced by the noise in the

work environment is shown in Table V. We have 6 factors 
related to noise in the work environment. For regular factory 
noise, after calculating the regular factory noises and far 
distance against the far distance and finding the t value as 
2.6529 and the p value as 0.0089. we concluded that it was 
statistically significant. The results indicate that it affected the 
participants’ comfort level negatively. In the other two cases of 
regular factory noises in the work environment against distance, 
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the participants were not affected enough to be considered 
statistically significant. On the other hand, when we tested high 
factory noises in the work environment for far distance (t = 
6.5304 and p = 0.0001), medium distance (t = 7.4468 and p = 
0.0001), and close distance (t = 5.7133 and p = 0.0001). Against 
the three kinds of distances in a quiet room, we found that our 
participants had an overwhelmingly negative response for all 
three high noise cases. These results indicate that the high 
factory noise is extremely statistically significant. Therefore, 
we should avoid creating such a work environment when we 
develop and deploy human-robot collaborative contexts. 

TABLE V.  PARTICIPANTS’ COMFORT INFLUENCED BY THE NOISE IN THE 

WORK ENVIRONMENT 

RNFD RNCD RNMD HNFD HNCD HNMD 

Very 
Uncomfortable 

10% 14.3% 8.6% 27.1% 31.4% 18.6% 

Uncomfortable 15.7% 17.1% 12.9% 30% 28.6% 40% 
Somewhat 

Uncomfortable 
18.6% 18.6% 10% 14.3% 14.3% 14.3% 

Neutral 28.6% 12.9% 20% 15.7% 12.9% 12.9% 
Somewhat 

Comfortable 
11.4% 21.4% 22.9% 8.6% 5.7% 10% 

Comfortable 14.3% 11.4% 24.3% 2.9% 4.3% 2.9% 
Very 

Comfortable 
1.4% 4.3% 1.4% 1.4% 2.9% 1.4% 

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have proposed a T-Test based approach to 
characterize and analyze human comfort for human-robot 
collaboration in manufacturing contexts. We have employed 21 
factors of robot performance and work environments to 
investigate which ones have a higher influence or effect on 
human comfort during the human-robot collaboration process. 
The proposed solution has been experimentally implemented to 
a high-diversity group of participants. Results and analysis 
suggest that the comfort levels of subjects are effectively 
evaluated under different/same robot/work environment factors. 
In addition, we have also discussed the factors, which are highly 
statistically significant, that affect the participants’ comfort 
level positively or negatively. Based on these preliminary 
findings, in our future work, we will create a novel 
computational model to dynamically evaluate human comfort 
levels during the human-robot collaboration process. 
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