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We formulate a control problem for a GI/GI/N+GI queue, whose objective is to trade off the long-run 
average operational costs with server utilization costs. To solve the control problem, we consider an 
asymptotic regime in which the arrival rate and the number of servers grow large. The solution to an 
associated fluid control problem motivates that non-idling service disciplines are not in general optimal, 
unless some arrivals are turned away. We propose an admission control policy designed to ensure that 
servers have sufficient idle time, which we show is asymptotically optimal.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One common assumption when studying the GI/GI/N+GI
queue is that the service discipline is non-idling; that is, that 
servers do not idle when customers are present in the queue 
([14,7,8,16,6]). However, in the restricted M/M/N+M setting, the 
paper [15] (see Theorem 1, Proposition 1, and Example 1 therein) 
shows that in the presence of server utilization costs, a non-idling 
service discipline may not be asymptotically optimal. Our purpose 
in this paper is to show that a similar phenomenon occurs in the 
GI/GI/N+GI setting; that is, a non-idling service discipline might 
be suboptimal in the non-Markovian setting, when the system op-
erates in a first-come, first-served (FCFS) manner.

The GI/GI/N+GI queue is more difficult to analyze than the 
M/M/N+M queue because the state descriptor is more complex. 
In particular, tracking the one-dimensional number-in-system pro-
cess is sufficient when studying the M/M/N+M queue, but more 
is needed when studying the GI/GI/N+GI queue. This is because 
a Markovian state descriptor must also include knowledge regard-
ing the time that has elapsed since the last arrival, the amount 
of time each job in service has been in service, and the amount 
of time each job in the queue has waited, resulting in a measure-
valued state descriptor.

The control question is to determine when an available server 
should take the next customer into service, and when such a server 
should idle for some period of time. Too much idleness may lead 
to customer abandonment and excessive waiting, whereas too little 
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rest may lead to server fatigue. To quantify these two compet-
ing interests, we consider an objective function that trades off the 
abandonment costs (and also, as an extension, holding costs) with 
server utilization costs. Exact analysis of the GI/GI/N+GI queue is 
intractable, and, therefore, we study the queue in an overloaded 
asymptotic regime in which the arrival rate and the number of 
servers become large. In that regime, we formulate a fluid control 
problem, and find that the solution to the fluid control problem 
sometimes motivates idling servers when customers are waiting 
(when operational costs are small compared to utilization costs). 
The policy we propose, and show is asymptotically optimal (see 
our main results in Theorems 1 and 2, and their extension to incor-
porate holding costs in the online appendix), is one that “thins” the 
arrival process just enough to ensure the server utilization matches 
the solution to the fluid control problem.

Incorporating server utilization in the objective function is 
one way to ensure that the service discipline does not overwork 
servers. This can lead to increased employee retention, which can 
have performance benefits (discussed in [13]). Not overworking 
servers means ensuring sufficient idleness for all servers, an idea 
that arose earlier in papers that studied how to be fair to heteroge-
neous servers that can be grouped into statistically identical pools 
(see, e.g., [4], [12]), and how to exploit heterogeneous customers 
preferences so as to maximize revenue (see, e.g., [1], [9]).

Notation. We denote the set of integers endowed with the dis-
crete topology by Z, the set of non-negative integers by Z+, the 
set of positive integers by N , the set of real numbers endowed 
with the Euclidean topology by R, and the set of non-negative real 
numbers by R+ . For F , a cumulative distribution function (abbre-
viated c.d.f. henceforth) on R+ with density f , we write F̄ = 1 − F
and recall that the right edge of the support is given by xr =
 under the CC BY-NC-ND license 
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sup{x ∈ R+ : F̄ (x) > 0} and the hazard function is x �→ f (x)/ F̄ (x)
for x ∈ [0, xr). For a measurable space (S, F ) and a measurable 
set A ∈ F , 1A is the indicator function of the set A, which is one 
when its argument is a member of the set A and is zero other-
wise. In addition, when A is S , we use the shorthand notation 1
to mean 1S . For H ∈ (0, ∞], let M[0, H) denote the set of finite, 
non-negative Borel measures on [0, H) endowed with the topology 
of weak convergence. For a given η ∈ M[0, H) and a Borel mea-
surable function f : [0, H) → R+ that is integrable with respect 
to η, we write 〈 f , η〉 = ∫[0,H)

f (x)η(dx). The set M[0, H) endowed 
with the topology of weak convergence is a Polish space ([10]). We 
let 0 ∈ M[0, H) be the measure such that 〈 f ,0〉 = 0 for all Borel 
measurable functions f : [0, H) →R+ . Given x ∈ [0, H), δx denotes 
the Dirac measure in M[0, H) such that for all Borel measurable 
functions f : [0, H) → R+ , 〈 f , δx〉 = f (x). Then let MD [0, H) de-
note the subset of M[0, H) consisting of the measures η ∈ M[0, H)

such that either η = 0 or η can be represented as a sum of 
finitely many Dirac measures, that is, η =∑n

i=1 aiδxi , for some fi-
nite n ∈ N , (a1, . . . , an) ∈ (0, ∞)n and (x1, . . . , xn) ∈ [0, H)n . Given 
a Polish space S, we use D(S) to denote the set of S valued func-
tions of R+ that are right continuous with finite lefts, endowed 
with the usual Skorokhod J1-topology. Finally, we use ⇒ to denote 
weak convergence and d= to denote equivalence in distribution.

2. The model and admissible policy class

In this paper, we study a single-class many server queue with 
generally distributed inter-arrival, service, and patience times (i.e., 
a GI/GI/N+GI queue) operating under a head-of-the-line (HL) con-
trol policy, that may or may not be non-idling. This is as specified 
in [11] specialized to a single customer class. In particular, we 
consider the model specified in [7], but with the non-idling con-
dition [7, (2.30)] removed. Absent the non-idling condition, the 
system dynamics are not uniquely specified. Hence, one must spec-
ify a control policy to determine when each customer in system 
will commence service. Such control policies should satisfy nat-
ural conditions such as not using information about the future to 
make scheduling decisions. In what follows, we describe the model 
and admissible policy class in brief. We refer the interested reader 
to [11] for details.

The model. Customers arrive according to a delayed renewal 
process E with rate λ ∈ R+ , each with a service time sampled 
from c.d.f. Gs having finite mean 1/μ ∈ (0, ∞), and a patience time 
(also known as reneging time) sampled from a c.d.f. Gr having fi-
nite mean 1/θ ∈ (0, ∞). We denote the c.d.f. for the inter-arrival 
distribution associated with the renewal arrival as G . We assume 
G , Gs and Gr are absolutely continuous with density functions g , 
gs and gr respectively that have right edges of support H , Hs

and Hr respectively and hazard function h, hs and hr respectively. 
We assume that there exists 0 ≤ Ls < Hs such that hs is either 
bounded or lower-semicontinuous on (Ls, Hs) and hr is bounded 
and continuous. Boundedness of hr implies that Hr = ∞. Finally, 
we assume Gr is strictly increasing with inverse function (Gr)−1. 
The queue indexed by N ∈ N has N identical servers and is de-
fined on a fixed probability space (�, F , P ). For the remainder of 
this paper, we superscript all quantities that depend on N by N , 
e.g., GN , gN , HN , λN and EN depend on N , but Gs and Gr do not 
vary with N .

Following the notation in Section 2.2 in [11], the state descrip-
tor for the N-server queue is denoted by yN = (αN , xN , νN , ηN ) ∈
YD , where YD = R+ ×Z+ ×MD [0, Hs) ×MD [0, Hr). In particular, 
αN ∈ [0, HN) is the time that has elapsed since the last customer 
arrived to the system, xN ∈ Z+ is the number of customers in sys-
tem, νN ∈ MD [0, Hs) is a measure that has a unit mass at the 
age-in-service (amount of service received) of each customer cur-
rently in service, and ηN ∈ MD [0, Hr) is a measure that has a unit 
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mass at the potential waiting time of each customer “potentially” 
in system. (That is, each unit mass tracks the time passed since a 
customer’s arrival, until that customer’s patience time expires, at 
which point the unit atom is removed and tracking stops.) When 
Y N (0) denotes the initial state, the coordinate αN (0) determines 
the distribution of the initial delay for EN as the conditional dis-
tribution of GN given αN(0). That is, the initial delay distribution 
has density gN

0 (x) = gN (αN (0)+x)
1−GN (αN (0))

for x ∈ [0, HN − αN(0)).

A state process for the N-server queue is a YD valued, right 
continuous process Y N with finite left limits that satisfies a set 
of dynamic equations for the N-server queue consistent with HL 
service. These are given as equations (5)-(26) in [11], which we 
omit here due to space constraints. With these, customers can 
only enter service at or after their arrival time and prior to their 
patience time expiring. An available server may idle or may take 
the customer in queue with the largest waiting time, the HL cus-
tomer, into service. Once a server commences serving a customer, 
it works at rate one on the work associated with that customer 
until completely fulfilling that customer’s service requirement, at 
which point the customer departs.

The admissible policy class. The admissible policy class consists 
of all policies that only allow customers to enter service at mo-
ments of a customer departure or arrival, do not use information 
about the future, and are such that the state process Y N is a Feller 
Markov process with respect to a natural filtration, and whose ini-
tial condition is policy compatible. The following leverages [11] to 
make this more precise.

As mentioned above, equations (5)-(26) in [11] do not uniquely 
specify the system dynamics. These are uniquely determined by 
the specification of an HL control policy πN = (SN , {P N

y }y∈SN ). 
Here, as in Definition 1 in [11], SN is the Polish subspace of YD

that corresponds to the set of states that are achievable under the 
control policy. Also, for each initial state y ∈ SN , P N

y is a probabil-
ity measure that uniquely determines the system dynamics when 
the system starts in state y. More formally, {P N

y }y∈SN is a collec-
tion of probability measures indexed by SN such that the mapping 
y �→ P N

y (B) from SN to [0, 1] is Borel measurable for each mea-

surable B ⊂ D(SN ) and, for each y ∈ SN , P N
y almost surely,

Y N(0) = y, Y N ∈ D(SN) and satisfies (5) − (26) in [11]. (1)

Given an HL control policy πN , a state process Y N satisfying 
(1) specifies an entry-into-service process K N . Indeed, since a job 
has age-in-service equal to zero at the time of entering service, 〈
1{0}, νN (t)

〉
is the number of jobs to enter service at time t , for 

each t > 0. Then K N is a counting process such that K N (0) = 0
and K N (t) − K N (t−) = 〈1{0}, νN (t)

〉
for each t > 0. In particular, 

K N (t) is the number of customers that enter service by time t
for each t ≥ 0. Then, for each t ≥ 0, DN (t) = 〈1, νN (0)〉 + K N (t) −
〈1, νN (t)〉 denotes the number of customers to depart the system 
due to service completion by time t . We restrict attention to HL 
policies that only allow customers to enter service at moments of 
a customer departure or arrival. We require that for each y ∈ SN , 
P N

y almost surely, for all t ≥ 0,2

K N(t) − K N(t−) ≤ EN(t) − EN(t−) + DN(t) − DN(t−). (2)

We allow for random initial states that are compatible with 
a given HL control policy πN = (SN , {P N

y }y∈SN ). As in Defini-
tion 2 in [11], an initial distribution for πN is a Borel probability 
measure ςN on SN that determines the distribution of the ini-
tial state Y N(0). In particular, for each measurable B ⊂ D(SN ), 

2 This condition is sufficient for a tightness result to hold as shown in [11].
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define P N
ς (B) = ∫SN P N

y (B)ςN (dy). Then P N
ς denotes the distri-

bution of the state process Y N under πN for initial distribution 
ςN . We say that an initial distribution ςN for πN is compatible 
if EN

ς

[〈
1, ηN (0)

〉]
< ∞, where EN

ς denotes the expectation opera-
tor for P N

ς . Given an HL control policy πN and a compatible initial 
distribution ςN , we refer to the process Y N with law P N

ς as the 
state process for (πN , ςN ).

In order to restrict attention to HL control policies that do 
not use information about the future, we require K N to be non-
anticipating. This amounts to requiring K N to be adapted to a 
suitable filtration as in Definition 3 in [11]. Because we consider 
long-run average cost, we make a further restriction in the defini-
tion of admissible HL control policies, which is used in Section 6
to establish the existence of a stationary distribution.

Definition 1 (Admissible policies). An admissible HL control policy 
for EN is an HL control policy πN such that for any compatible 
initial distribution ςN , the pair (πN , ςN ) (i) satisfies Definition 
3 in [11] and (2) and (ii) is such that the state process Y N for 
(πN , ςN ) is a Feller Markov process with respect to the filtration 
used in Definition 3 in [11].

Remark 1. Our admissible policies focus on HL (equivalently, FCFS) 
control policies due to their common use in practice. However, 
non-HL control policies can be optimal in some settings; see [5].

Let �N denote the set of admissible HL control policies for EN

in Definition 1. For πN ∈ �N , we will sometimes write Y N(πN , ·), 
XN(πN , ·), νN(πN , ·), ηN(πN , ·), KN(πN , ·) or DN(πN , ·) to make 
the dependence on πN explicit.

Proposition 1. For any πN ∈ �N , there exists a compatible initial dis-
tribution ξN such that the state process Y N

∞ for (πN , ξN ) is a stationary 
process.

Proposition 1 follows as a special case of Lemma 1 stated in 
Section 7.

Given πN ∈ �N and a compatible initial distribution ξN such 
that the state process Y N

∞ for (πN , ξN ) is a stationary process, we 
refer to ξN as a compatible stationary distribution for πN and we 
let S(πN ) denote the set of all compatible stationary distributions 
for πN .

3. The control problem

Each customer abandonment incurs a cost a ∈ (0, ∞) and the 
strictly increasing, continuous and convex function gU : [0, 1] →
[0, ∞) captures the cost of server utilization. The trade-off is be-
tween working the servers as much as possible, which incurs high 
utilization cost but low abandonment cost, and giving the servers 
more rest, which incurs lower utilization cost but higher abandon-
ment cost. In particular, given πN ∈ �N and a compatible initial 
distribution ςN , we define the long-run average cost of (πN , ςN )

as

CN
ς (πN)

:= limsup
T→∞

1

T
EN

ς

⎡
⎣a RN(πN , T )

N
+

T∫
0

gU

(
BN(πN , t)

N

)
dt

⎤
⎦ ,

where, for each t > 0, RN (πN , t) is the cumulative number of 
abandonments by time t under πN , and BN(πN , t) ≤ N is the 
number of busy servers at time t under πN .
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Proposition 2. For any πN ∈ �N and compatible initial distribution 
ςN , there exists ξN ∈ S(πN ) such that CNς (πN ) = CNξ (πN ).

Proposition 2 follows as a special case of Lemma 2 stated in 
Section 7.

Given πN ∈ �N , let CN (πN ) := supξN∈S(πN ) CNξ (πN ) denote the 
worst case cost. By Proposition 2, CN (πN ) is the supremum of 
CNς (πN ) over all compatible initial distributions ςN . Our objective 
is to find an admissible control policy πN

opt such that

CN(πN
opt) := inf

πN∈�N
CN(πN). (3)

The objective is such that a non-idling control policy is not in gen-
eral optimal. Based on the discrete-event queuing model, it is not 
possible to solve for πN

opt exactly. Thus, we leverage an analytically 
tractable approximating fluid control problem to postulate an HL 
control policy that one might expect to perform well for the objec-
tive (3). Then, we show that this policy is asymptotically optimal 
(see Theorems 1 and 2 in Section 6).

4. The fluid control problem

The fluid control problem is based on the fluid model and 
the fluid model solutions defined in [11]. Fluid model solutions 
arise as functional law of large numbers limits of sequences of 
state descriptors for the stochastic system under fluid scaling. For 
each N ∈ N , we define the fluid scaling for the N-server sys-
tem as follows. Recall the constant λN and the processes EN , 
αN , XN , νN , ηN , K N and DN defined in Section 2, and the pro-
cesses RN and BN defined in Section 3; also define the pro-
cess Q N = XN − BN as the queue length, and the process IN =
N − BN as the number of idle servers. Then, let ᾱN = αN ; also 
for 
N = λN , EN , XN , νN , ηN , KN , DN , RN , BN , Q N , IN , let 
̄N =

N/N . Then, the fluid-scaled state process for the N-server system 
is Ȳ N = (ᾱN , X̄ N , ̄νN , η̄N ). Under suitable asymptotic conditions, 
limit points exist and are fluid model solutions almost surely (see 
Lemma 4 in Section 7).

In particular, fluid model solutions are functions of time that 
take values in the set X =R+×M[0, Hs) ×M[0, Hr) endowed with 
the product topology. Then a state (x, ν, η) ∈ X for the fluid model 
is a fluid analog of the state descriptor for the stochastic system 
with x, 

〈
1[0,z], ν

〉
and 

〈
1[0,z], η

〉
corresponding to the total mass in 

system, the total mass in service with age-in-service less than or 
equal to z for each z ∈ R+ , and the total mass potentially in sys-
tem of age less than or equal to z for each z ∈ R+ , respectively. 
They satisfy a set of conditions determined by a positive constant 
γ , which is the rate at which “fluid” or mass arrives to the system. 
These conditions are referred to as the fluid model for γ . We sum-
marize the fluid model for γ and the definition of a fluid model 
solution for γ in Appendix A.

The invariant states for the fluid model for γ are fixed points 
of the fluid model for γ . From Proposition 1 in [11], an invariant 
state for γ is determined by the long-run average fraction of the 
collective server effort provided to the customers, denoted by b. It 
is clear that b must satisfy b ∈ [0, min{1, γ /μ}], where we recall 
that μ is the reciprocal of the mean of Gs . Then, when the initial 
state for a fluid model solution for γ is an invariant state for γ , 
it turns out that the departure rate of the fluid from the system 
is bμ and so, by conservation of mass, γ − bμ must be the rate 
at which fluid abandons. This implies that the abandonment rate 
is insensitive to the patience time distribution, which has a similar 
flavor to the insensitivity result for a single server queue in the 
large deviations regime in [2].

Assumption 1. Let λ ∈ (0, ∞). Suppose that limN→∞ λ̄N = λ.
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Henceforth, λ satisfying the conditions in Assumption 1 is fixed. 
Our fluid control problem is based on the invariant states for λ. We 
expect to obtain the following fluid control problem for λ when 
letting N → ∞ in problem (3).

Definition 2 (The fluid control problem). The fluid control problem 
for λ is given by

min
b∈[0,min{1,λ/μ}]

a(λ − bμ) + gU (b). (4)

We denote the solution to (4) by b∗ (which exists and is unique 
because (4) optimizes a convex function over a compact set).

Example 1. Suppose a = 1 and gU (b) = b2. Then, the solution to 
(4) is b∗ = min{1, μ/2, λ/μ}.

The solution to (4) motivates a control policy that we expect 
to have good performance with respect to the original objec-
tive (3) when the arrival rate λN and the number of servers N
are large. When b∗ = min{1, λ/μ}, we expect a non-idling control 
policy to be optimal for (3). Otherwise, when b∗ < min{1, λ/μ}, 
the solution to the fluid control motivates defining a policy that 
uses customer abandonments to trim congestion, in order to re-
duce server workload, and provide (additional) server idle time. 
In this case, for each N ∈ N , consider the HL control policy 
π̃N such that each server idles after each service completion for 
the difference between the desired expected time between ser-
vice completions, (b∗μ)−1, and the expected time between ser-
vice completions when the server is always busy, μ−1; that is, for 
(b∗μ)−1 − μ−1 = (1 − b∗)(b∗μ)−1 time units. Such a policy seems 
quite reasonable, and should be asymptotically optimal. However, 
establishing that for any sequence of compatible initial distribu-
tions {ςN }N∈N ,

lim
N→∞ lim

t→∞
1

t
EN

ς

[
R̄N(π̃N , t)

]
= λ − b∗μ and

lim
N→∞ lim

t→∞EN
ς

[
gU
(
B̄N(π̃N , t)

)]
= gU (b∗)

(5)

is difficult. This difficulty is related to a lack of results provid-
ing sufficient conditions for fluid model solutions to converge to 
invariant states in the time infinity limit (see Section 7.1 in [8]). In-
stead, we propose to expand the admissible policy class to include 
thinned arrival processes and then rely on results in the literature 
for non-idling many server queues to show that (5) holds. If we 
can show a policy is asymptotically optimal for an enlarged policy 
class, then we know that no policy in the original smaller policy 
class can perform better.

5. The proposed policy π N∗

The solution 0 ≤ b∗ ≤ min{1, λ/μ} to (4) represents the optimal 
long-run average fraction of busy servers, which suggests that a 
control policy that thins the arrival process to rate b∗μ and forces 
the servers to work in a non-idling fashion, but builds in idleness 
due to admission control, should perform well for the original ob-
jective (3). This motivates us to enlarge the admissible policy class 
in Definition 1 to allow for admission control. Specifically, at the 
time of each arrival, let p ∈ (0, 1] be the probability the arrival 
is admitted for service and 1 − p the probability the arrival is 
rejected, which incurs a cost a. Given p ∈ (0, 1], we denote the ad-
mitted arrival process by EN

p , and we refer to the N-server queue 
with arrival process EN

p as the p-admitted queue. It is clear that 
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the thinned arrival process EN
p is a suitably delayed renewal pro-

cess with arrival rate pλN , because the admitted arrivals remain 
i.i.d.

Definition 3 (Enlarged admissible policies). For any p ∈ (0, 1], an ad-
missible HL control policy for EN

p satisfies Definition 1 with EN

replaced by EN
p .

For p ∈ (0, 1], let �N
p denote the set of admissible HL control 

polices for EN
p . Note that �N

1 = �N . For p ∈ (0, 1], πN
p ∈ �N

p and 

N = Y N , XN , νN , ηN , K N , DN , RN , BN , Q N or IN , 
N (πN

p , ·) refers 
to the process for the p-admitted queue under πN

p .

Given p ∈ (0, 1], πN
p ∈ �N

p and a compatible initial distribution 
ςN , the long-run average cost of (πN

p , ςN ) is

CN
ς (πN

p ) := limsup
T→∞

1

T
EN

ς

[
a
(
ĒN(T ) − ĒN

p (T ) + R̄N(πN
p , T )

)

+
T∫

0

gU
(
B̄N(πN

p , t)
)
dt

⎤
⎦ . (6)

When the initial state for the fluid model for pλ is an invariant 
state for pλ associated with b ∈ [0, pλ/μ], pλ − bμ is the rate 
at which fluid abandons and (1 − p)λ is the rate at which fluid 
is rejected. Since p ∈ (0, 1] is a parameter that can be optimized 
over, the resulting fluid control problem is given by

min
p∈(0,1],b∈[0,min{1,pλ/μ}]

a (1− p) λ + a (pλ − bμ) + gU (b)

= min
b∈[0,min{1,λ/μ}]

a (λ − bμ) + gU (b). (7)

The solution to (7) does not depend on the admission control 
parameter p ∈ (0, 1] and is identical to the solution to (4). This 
observation crucially relies on the abandonment cost being linear 
with the per unit cost equal to the per unit cost of rejection.

This gives us flexibility to propose a policy in �N
p for various 

choices of p ∈ (0, 1]. We first observe that an optimal admission 
control parameter must lie in [b∗μ/λ, 1], because otherwise the 
admitted arrivals would not be sufficient for servers to work at 
busyness level b∗ . Let

p∗ := b∗μ/λ. (8)

We next observe that if the p∗-admitted queue satisfies the non-
idling condition (that is, the servers never idle when customers are 
waiting), the long-run average fraction of busy servers achieves b∗ . 
The non-idling condition, together with (5)-(26) in [11] uniquely 
specifies P N

y for each y ∈ SN = {yN ∈ Y D : N − 〈1, νN
〉 = (N −

xN )+ and xN ≤ 〈1, ηN
〉}

and satisfies (2). Moreover, for any com-
patible initial distribution, the state process that satisfies the non-
idling condition is a Feller, strong Markov process (see Proposi-
tion 4.2 in [8]). Thus, for any p ∈ (0, 1], the non-idling policy (the 
control policy that obeys the non-idling condition) is an admissible 
HL control policy for EN

p , and thus is in �N
p .

Definition 4 (The proposed policy). For each N ∈ N , let πN∗ be the 
non-idling policy in �N

p∗ , where p∗ is given by (8).

6. Asymptotic optimality of π N∗

In this section, we state our main results concerning asymptotic 
optimality of {πN∗ }N∈N under fluid scaling.
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Theorem 1 (Convergence under the proposed policy). Suppose that As-
sumption 1 holds and that hs is non-increasing when b∗ = 1. Then the 
sequence {πN∗ }N∈N satisfies

lim
N→∞C

N
(
πN∗
)

= a(λ − b∗μ) + gU (b∗).

Let �̂N := ∪p∈(0,1]�N
p denote the enlarged policy class, and 

given π̂N ∈ �̂N , let p̂N ∈ (0, 1] denote the associated admission 
control parameter.

Theorem 2 (Asymptotic lower bound). Suppose that Assumption 1
holds, π̂N ∈ �̂N for each N ∈ N and the sequence {p̂N}N∈N satisfies 
limN→∞ p̂N = p for some p ∈ (0, 1]. Then,

lim inf
N→∞ C

N(π̂N) ≥ a(λ − b∗μ) + gU (b∗).

Remark 2. The condition that limN→∞ p̂N = p for some p ∈ (0, 1]
implies that {p̂N λ̄N}N∈N satisfies limN→∞ p̂N λ̄N = pλ.

Theorem 1 establishes that the solution to the fluid control 
problem (4) is achieved in the limiting system, when, for each 
N , the N-server system operates under πN∗ in Definition 4, and 
in case b∗ = 1, hs is non-increasing. Theorem 2 establishes that 
the fluid control problem (4) is an asymptotic lower bound for the 
objective (6). As a consequence, we conclude that the proposed se-
quence of policies {πN∗ }N∈N is asymptotically optimal.

The proof of Theorem 1 given in Section 8 is facilitated by the 
fact that, for each N ∈ N , under πN∗ the p∗-admitted N-server 
queue is non-idling, and thus, we can appeal to results in [8,3]
to establish the weak convergence of the sequence of fluid-scaled 
stationary distributions. The additional condition that hs is non-
increasing when b∗ = 1, is needed for this in order to apply part 
(3) of Theorem 3.2 in [3] in that case. This implies that the limit is 
the unique invariant state with zero queue mass.

The proof of Theorem 2 in Section 8 requires first adapting 
one of the arguments in [8] (wherein the non-idling condition is 
assumed throughout) to show that a sequence of fluid-scaled sta-
tionary distributions is tight, and second arguing that the fluid 
control problem (7) provides an asymptotic lower bound on the 
cost along any convergent subsequence.

In the next section, we establish some preliminary results for 
stationary distributions (for both the stochastic N-server queue 
model and the fluid model) that help to prove Theorems 1 and 2, 
which may also be of independent interest. The proofs of Theo-
rems 1 and 2 will be provided in Section 8.

7. Preliminary results

In order to prove our main results (Theorems 1 and 2), we be-
gin by establishing two foundational results concerning stationary 
distributions for the N-server queue. Then, we provide a fluid limit 
theorem, which shows that the distributional limit points of sta-
tionary distributions are fluid model solutions almost surely under 
suitable asymptotic conditions. Finally, we show some properties 
of stationary fluid model solutions for γ . The proofs are delayed to 
the online appendix A.1.

Stationary distributions of the N-server queue. The following 
lemmas confirm the existence of a stationary distribution under 
any admissible HL control policy for EN

p and p ∈ (0, 1], and de-
rive an expression for the long-run average cost. We denote by 

N

∞ a stationary process associated with the process 
N , for 
N =
EN , Y N , XN , νN , ηN , K N , DN , RN , BN , Q N , IN .
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Lemma 1. Let p ∈ (0, 1]. For any πN
p ∈ �N

p , there exists a compatible 
initial distribution ξN such that the state process Y N

∞ for (πN
p , ξN ) is 

stationary. Moreover, EN
ξ

[〈
1, ηN

∞(t)
〉]= pλNθ−1 < ∞, for all t ≥ 0.

Remark 3. Proposition 1 in Section 2 follows by setting p = 1.

Given p ∈ (0, 1], πN
p ∈ �N

p and a compatible initial distribution 
ςN , let

χN(t) := inf{x ≥ 0 :
〈
1[0,x], ηN(t)

〉
≥ Q N(t)} (9)

represent the waiting time of the HL customer at time t for each 
t ≥ 0. Then, for t ≥ 0,

Q N(t) =
〈
1[0,χN (t)], ηN(t)

〉
. (10)

The associated stationary process is denoted by χN
∞ .

Lemma 2. Let p ∈ (0, 1]. For any πN
p ∈ �N

p and compatible initial dis-
tribution ςN , there exists ξN ∈ S(πN

p ) such that

limsup
T→∞

EN
ς

[
R̄N(πN

p , T )

T

]
= EN

ξ

[〈
1[0,χN∞(0)]hr, η̄N

∞(0)
〉]

, (11)

and

limsup
T→∞

EN
ς

⎡
⎣ 1

T

T∫
0

gU
(
B̄N(πN

p , t)
)
dt

⎤
⎦= EN

ξ

[
gU
(
B̄N

∞(0)
)]

.

(12)

If ςN ∈ S(πN
p ), then ξN = ςN .

In light of (10), one can interpret the right-hand side of (11) as 
an expected stationary reneging rate for the N-server queue.

Remark 4. For any p ∈ (0, 1], πN
p ∈ �N

p and compatible initial dis-
tribution ςN , there exists ξN ∈ S(πN

p ) such that

CN
ς (πN

p )

= EN
ξ

[
a(1− p)λ̄N + a

〈
1[0,χN∞(0)]hr, η̄N

∞(0)
〉
+ gU

(
B̄N

∞(0)
)]

.

Proposition 2 in Section 2 follows by setting p = 1.

A fluid limit theorem. Here we provide asymptotic assumptions 
under which it is shown in [11] that fluid limit points are almost 
surely fluid model solutions. Such a result is crucial for the proof 
of Theorem 2, which will appear in Section 8.

Assumption 2. Suppose for each N ∈N , pN ∈ (0, 1], πN
pN ∈ �N

pN for 
EN
pN and ςN is a compatible initial distribution for πN

pN . Assume 
that limN→∞ pN = p and ( X̄ N (0), ̄νN (0), η̄N (0)) ⇒ (X0, ν0, η0), as 
N → ∞, for some random variable (X0, ν0, η0) taking values in X
such that supN∈N EN

ς

[〈
1, η̄N (0)

〉]
< ∞.

Remark 5. Under Assumptions 1 and 2 and the conditions on EN
pN , 

K N , Gs , gs , hs , Gr , gr , and hr specified in Sections 2 and 5, one 
can without loss of generality assume that the convergence of the 
initial condition in Assumption 2 is almost sure and then check 
that Assumptions 1, 2, 3(1), 3(3), 3(4), 4, 5(1) and 5(3) in [11] hold, 
i.e., Assumptions 3(2), 3(5) and 5(2) may not hold.
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Lemma 3. Suppose Assumptions 1 and 2 hold. Then, η̄N ⇒ η, as N →
∞, where η(0) d= η0 and η satisfies (A.15) almost surely for E(t) = pλt, 
t ≥ 0.

In fact, Assumptions 3(2) and 3(5) in [11] can be replaced by 
the condition supN∈N EN

ξ

[〈
1, η̄N (0)

〉]
< ∞ and Assumption 5(2) 

(η0 has no atoms) is used to establish convergence of the scaled 
reneging processes to the expression in (A.8). Thus, the result in 
Theorem 1 in [11] continues to hold. We obtain the following 
slightly restated version of Theorem 1 in [11].

Lemma 4 (Theorem 1 in [11]). Suppose that {(πN , ςN )}N∈N is such 
that Assumptions 1 and 2 hold, η0 has no atoms, and (X, ν, η) is a distri-
butional limit point of 

{(
X̄ N , ν̄N , η̄N

)}
N∈N . Then (X(0), ν(0), η(0)) d=

(X0, ν0, η0) and (X, ν, η) is almost surely a fluid model solution for pλ.

Properties of stationary fluid model solutions. Fix γ > 0. Here 
we consider the fluid model for γ with random initial states such 
that the resulting fluid model solution is a stationary process. Lem-
mas 5 and 6 below, provide properties of such solutions. The proof 
of Theorem 2 relies on Lemmas 5 and 6.

In what follows, we fix a fluid model solution Z∞ = (X∞, ν∞,

η∞) for γ such that Z∞ is a stationary process. We denote the law 
of Z∞(0) by ξ and the expectation operator by Eξ . In addition, we 
define a Borel probability measure ηe satisfying dηe(x) = θ Ḡr(x)dx
for all x ∈ R+ , where the subscript e is mnemonic for excess life 
distribution.

Lemma 5. For all t ≥ 0, η∞(t) = γ θ−1ηe . In particular, for all t ≥ 0, 
η∞(t) has no atoms, x �→ 〈

1[0,x], η∞(t)
〉
is a continuous strictly increas-

ing function on R+ , and 〈1, η∞(t)〉 = γ θ−1 .

Lemma 6. There exists b ∈ [0, min{1, γ /μ}] such that for all t ≥ 0, 
Eξ [B∞(t)] = b and Eξ

[〈
1[0,χ∞(t)]hr, η∞(t)

〉]= γ − bμ.

8. Proofs of main results (Theorems 1 and 2)

Proof of Theorem 1. For each N ∈ N , let ξN ∈ S(πN∗ ) which exists 
by Lemma 1, and recall that Y N

∞(0) has distribution ξN . Consider 
the sequence {( X̄ N

∞(0), ̄νN
∞(0), η̄N

∞(0))}N∈N . We wish to show that 
limN→∞ C(πN∗ ) = a(λ − b∗μ) + gU (b∗). By Lemma 2, it suffices to 
show that,

lim
N→∞EN

ξ

[
a(1− p∗)λ̄N + a

〈
1[0,χN∞(0)]hr, η̄N

∞(0)
〉
+ gU (B̄N

∞(0))
]

= a(λ − b∗μ) + gU (b∗). (13)

Note that p∗λ̄N → p∗λ, as N → ∞ (from Assumption 1). This, to-
gether with the assumptions on EN (which EN

p∗ inherits), Gs , gs , hs , 
Gr , gr , and hr given in Section 2, implies that Assumptions 3.1-3.5 
in [8] hold for {(EN

p∗ , π
N∗ , ξN )}N∈N . In addition, since it is assumed 

that hs is non-increasing when b∗ = 1, the result in Theorem 3.3 
in [8] holds,3 which establishes

( X̄ N
∞(0), ν̄N

∞(0), η̄N
∞(0)) ⇒ (b∗,b∗νe, p∗λθ−1ηe), (14)

3 There is a gap in the original proof of Theorem 3.3 in [8], where a stationary 
distribution for the fluid model is assumed to coincide with the invariant state, 
which is unique since Gr is strictly increasing. Under the conditions of Theorem 3.3 
in [8], Theorem 3.2(1) in [3] implies that this is true when b∗ < 1. With the added 
condition that hs is non-increasing, Theorem 3.2(3) in [3] implies that this is true 
when b∗ = 1. Hence, the result in Theorem 3.3 in [8] holds in the present setting. 
See the discussion in [3] that follows the statement of Theorem 3.2 for a detailed 
explanation.

a
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as N → ∞, where dνe(x) = μḠs(x)dx and dηe(x) = θ Ḡr(x)dx for 
each x ∈R+ . This, together with (A.5), (A.6), and p∗ = b∗μ/λ, gives 
that as N → ∞,

B̄N
∞(0) =

〈
1, ν̄N

∞(0)
〉
⇒ 〈1,b∗νe〉 = b∗, (15)

Q̄ N
∞(0) = X̄ N

∞(0) − B̄N
∞(0) ⇒ b∗ − b∗ = 0. (16)

The function gU is continuous. Hence, by (15) and the continuous 
mapping theorem,

gU (B̄N
∞(0)) ⇒ gU (b∗), as N → ∞. (17)

Then, since gU is bounded, (17) and the bounded convergence the-
orem yield that

lim
N→∞EN

ξ

[
gU
(
B̄N

∞(0)
)]

= gU (b∗). (18)

From (10) and (16),〈
1[0,χN∞(0)], η̄N

∞(0)
〉
= Q̄ N

∞(0) ⇒ 0, as N → ∞. (19)

Note that for each N ∈ N ,

0 ≤ a
〈
1[0,χN∞(0)]hr, η̄N

∞(0)
〉
≤ a‖hr‖∞ Q̄ N

∞(0),

which, together with (19) and boundedness of hr , implies〈
1[0,χN∞(0)]hr, η̄N

∞(0)
〉
⇒ 0, as N → ∞. (20)

By Lemma 1, limN→∞ p∗λ̄N = p∗λ, and (14),

lim
N→∞EN

ξ

[〈
1, η̄N

∞(0)
〉]

= lim
N→∞ p∗λ̄Nθ−1 = p∗λθ−1

= 〈1, p∗λθ−1ηe
〉
.

This together with (14) implies that 
{〈
1, η̄N

∞(0)
〉}

N∈N is uniformly 

integrable. Note that 
〈
1[0,χN∞(0)]hr, η̄N

∞(0)
〉

≤ ‖hr‖∞
〈
1, η̄N

∞(0)
〉
for 

each N ∈ N and hr is bounded. Thus, 
{〈
1[0,χN∞(0)]hr, η̄N

∞(0)
〉}

N∈N
is uniformly integrable. This together with (20) implies that

lim
N→∞EN

ξ

[
a
〈
1[0,χN∞(0)]hr, η̄N

∞
〉]

= 0. (21)

Finally, by Assumption 1, it follows that

lim
N→∞a(1 − p∗)λ̄N = a(1 − p∗)λ = a(λ − b∗μ). (22)

Combining (18), (21) and (22) establishes (13), as desired. �
Proof of Theorem 2. Fix a sequence {π̂N }N∈N satisfying the con-
ditions of Theorem 2. For each N ∈N , let ξN ∈ S(π̂N ) be such that 
CN (π̂N ) = CNξ (π̂N ) which exists by Lemma 1 and the definition of 
CN (π̂N ). For each N ∈N , let Y N

∞ be the state process for (π̂N , ξN ). 
It suffices to show that limi→∞ CNi

ξ (π̂Ni ) ≥ a(λ − b∗μ) + gU (b∗), 

for any convergent subsequence of cost functions 
{
CNi

ξ (π̂Ni )
}∞
i=1

. 
Fix such a subsequence {Ni}∞i=1. We consider the fluid scaled se-
quence {( X̄ Ni∞ , ̄νNi∞ , η̄Ni∞ )}∞i=1. By Lemma 2, it suffices to show

lim
i→∞ENi

ξ

[
a
(
1− p̂Ni

)
λ̄Ni + a

〈
1[0,χNi∞ (0)]h

r, η̄Ni∞ (0)
〉

+ gU
(
B̄Ni∞ (0)

)]
≥ a(λ − b∗μ) + gU (b∗). (23)

We begin by noting that the sequence {( X̄ Ni∞ (0), ̄νNi∞ (0),
η̄Ni∞ (0))}∞i=1 is tight. This follows by Theorem 6.2 in [8] and 
its proof since in the present setting, the result in Lemma 6.1 
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in [8] holds, K̄ Ni∞ (t) ≤ ĒNi∞ (t) + 〈1, η̄Ni∞ (0)
〉
for all i ∈ N and t ≥ 0, 

and X̄ Ni∞ (0) ≤ 1 + 〈1, η̄Ni∞ (0)
〉
for all i ∈ N . Since {( X̄ Ni∞ (0), ̄νNi∞ (0),

η̄Ni∞ (0))}∞i=1 is tight, there exists a further subsequence {Nik }∞k=1
such that(
X̄
Nik∞ (0), ν̄

Nik∞ (0), η̄
Nik∞ (0)

)
⇒
(
X0

∞, ν0
∞, η0

∞
)

, (24)

as k → ∞. Without loss of generality, we can replace {Nik }∞k=1 with 
{Ni}∞i=1 by eliminating some members if necessary. In what fol-
lows, we verify that (23) holds along this subsequence. For this, 
we will first show that

lim
i→∞

ENi
ξ

[
a
(
1− p̂Ni

)
λ̄Ni + a

〈
1[0,χNi∞ (0)]h

r, η̄Ni∞ (0)
〉

+ gU
(
B̄Ni∞ (0)

)]
= a (1− p)λ + aEξ

[〈
1[0,χ0∞]h

r, η0
∞
〉]

+Eξ

[
gU (B0

∞)
]
, (25)

where ξ denotes the distribution of 
(
X0

∞, ν0
∞, η0

∞
)
and Eξ is the 

expectation operator for ξ . Then we will establish process level 
convergence to a stationary fluid model solution for pλ in order to 
apply Lemma 6 to the right-hand side of (25).

We begin by showing that η0
∞ has no atoms and that{〈

1[0,χNi∞ (0)]h
r, η̄Ni∞ (0)

〉}∞
i=1

is uniformly integrable. By Lemma 1, 

Assumption 1 and limi→∞ p̂Ni = p,

lim
i→∞

ENi
ξ

[〈
1, η̄Ni∞ (0)

〉]
= pλθ−1, (26)

so supi∈N ENi
ξ

[〈
1, η̄Ni∞ (0)

〉]
< ∞. This together with (24) implies 

that Assumption 2 holds with {ENi

p̂Ni
}∞i=1, {π̂Ni }∞i=1 and {ξNi }∞i=1 re-

placing {EN
pN }N∈N , {πN

pN }N∈N and {ςN }N∈N respectively. Thus, by 

Lemma 3, η̄Ni∞ ⇒ η∞ , as i → ∞, where η∞(0) d= η0
∞ and η∞ satis-

fies (A.15) almost surely for E∞(t) = pλt , t ≥ 0. Moreover, since 
η̄Ni∞ is a stationary process for each i ∈ N , η∞ is a stationary 
process such that η∞(t) d= η0

∞ for all t ≥ 0. Hence, by Lemma 5, 
η0

∞ = pλθ−1ηe , so that η0
∞ has no atoms, 

〈
1, η0

∞
〉= pλθ−1 and x �→〈

1[0,x], η0
∞
〉
is a continuous, strictly increasing function on R+ . Then 

recalling (26), limi→∞ ENi
ξ

[〈1, η̄Ni∞ (0)〉] = 〈1, η0
∞〉. This together 

with (24) implies that 
{〈1, η̄Ni∞ (0)〉}∞i=1 is uniformly integrable. 

Since hr is bounded and 
〈
1[0,χNi∞ (0)]h

r, η̄Ni∞ (0)
〉
≤ ‖hr‖∞

〈
1, η̄Ni∞ (0)

〉
for each i ∈ N , uniform integrability of 

{〈
1[0,χNi∞ (0)]h

r, η̄Ni∞ (0)
〉}∞

i=1
follows.

Next we show (25). For this without loss of generality, we as-
sume that the convergence in (24) is almost sure which we abbre-
viate as a.s. By (24), we have

lim
i→∞

B̄Ni∞ (0) = lim
i→∞

〈1, ν̄Ni∞ (0)〉 = 〈1, ν0
∞〉 = B0

∞, a.s., and (27)

lim
i→∞

Q̄ Ni∞ (0) = lim
i→∞

X̄ Ni∞ (0) − lim
i→∞

B̄Ni∞ (0) = X0
∞ − B0

∞

= Q 0
∞, a.s.

This implies that

lim
i→∞

〈
1[0,χNi∞ (0)], η̄

Ni∞ (0)
〉
= lim

i→∞ Q̄ Ni∞ (0) = Q 0
∞

=
〈
1[0,χ0∞], η

0
∞
〉
, a.s.

Thus, since x �→ 〈
1[0,x], η0

∞
〉
is a continuous strictly increasing func-

tion on R+ , limi→∞ χNi∞ (0) = χ0
∞ a.s. This together with the above 

display and that hr is continuous and bounded implies
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lim
i→∞

〈
1[0,χNi∞ (0)]h

r, η̄Ni∞ (0)
〉
=
〈
1[0,χ0∞]h

r, η0
∞
〉
, a.s. (28)

Now, as in the proof of Theorem 1, (25) follows from
limi→∞ p̂Ni λ̄Ni = pλ, (27) and gU is bounded and continuous, and 
(28) and the uniform integrability of 

{〈
1[0,χNi∞ (0)]h

r, η̄Ni∞ (0)
〉}∞

i=1
.

Finally, we argue process level convergence to a stationary 
fluid model solution for pλ. Since Assumption 2 holds for {Ni}∞i=1
(as noted above) and η0

∞ has no atoms (also noted above), 
Lemma 4 implies that 

(
X̄ Ni∞ , ν̄Ni∞ , η̄Ni∞

) ⇒ (X∞, ν∞, η∞), as i →
∞, where (X∞, ν∞, η∞) is almost surely a fluid model solution 
for pλ such that (X∞(0), ν∞(0), η∞(0))

d= (
X0

∞, ν0
∞, η0

∞
)
. More-

over, (X∞, ν∞, η∞) is a stationary fluid model solution for pλ

by the stationarity of ( X̄ Ni∞ , ̄νNi∞ , η̄Ni∞ ) for each i ∈ N . Then, from 
Lemma 6, there exists b ∈ [0, min{1, pλ/μ}] such that Eξ [B0

∞] =
Eξ [B∞(0)] = b. Since gU is convex, Jensen’s inequality further im-
plies that

Eξ

[
gU (B0

∞)
]

≥ gU
(
Eξ

[
B0

∞
])

= gU (b).

This together with (25) and the second part of Lemma 6 gives

lim
i→∞

ENi
ξ

[
a(1− p̂Ni )λ̄Ni + a

〈
1[0,χNi∞ (0)]h

r, η̄Ni∞ (0)
〉

+ gU
(
B̄Ni∞ (0)

)]
≥ a(1 − p)λ + a (pλ − bμ) + gU (b)

= a (λ − bμ) + gU (b) ≥ a (λ − b∗μ) + gU (b∗) , (29)

which completes the proof that (23) holds, as desired. �
Appendix A. The fluid model for γ

We write the fluid model equations and write fluid model solu-
tions for γ > 0 in this appendix. We refer the reader to Section 3.1 
in [11] for details. Given a Polish space S, we use C(S) to denote 
the set of functions having domain R+ and range S that are con-
tinuous in time.

The fluid model for γ has as an input a non-decreasing function 
E(t) = γ t , t ≥ 0. We set X := R+ ×M[0, Hs) ×M[0, Hr), endowed 
with the product topology in a Polish space. To define the fluid 
model for γ , we consider (X, ν, η) ∈ C(X) such that〈
1{x}, η(0)

〉= 0, for all x ∈ [0, Hr), (A.1)

and such that for each t ≥ 0,

〈1, ν(t)〉 ≤ X(t) ≤ 〈1, ν(t)〉 + 〈1, η(t)〉 , (A.2)

〈1, ν(t)〉 ≤ 1, (A.3)

t∫
0

〈
hs, ν(u)

〉
du < ∞ and

t∫
0

〈
hr, η(u)

〉
du < ∞. (A.4)

Given (X, ν, η) ∈ C(X) satisfying (A.1)-(A.4), we define auxiliary 
functions B , Q , χ , R , D , and K in C(R+) and I in C(R+) as fol-
lows: for each t ≥ 0,

B(t) = 〈1, ν(t)〉 , (A.5)

Q (t) = X(t) − B(t), (A.6)

χ(t) = inf{x ≥ 0 : 〈1[0,x], η(t)
〉≥ Q (t)}, (A.7)

R(t) =
t∫

0

⎛
⎜⎝

χ(u)∫
0

hr(w)η(u)(dw)

⎞
⎟⎠du, (A.8)
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D(t) =
t∫

0

〈
hs, ν(u)

〉
du, (A.9)

K (t) = B(t) + D(t) − B(0), (A.10)

I(t) = 1− B(t). (A.11)

Then B , Q , χ , R , D , K , and I are fluid analogs of the busy server, 
the queue length, the waiting time of the HL fluid in queue, the 
reneging, the departure, the entry-into-service, and the idleness 
processes, respectively.

Further some additional properties and equations that should 
be satisfied by (X, ν, η) ∈ C(X) are as follows: for any continuous 
and bounded function f having domain R+ , for each t ≥ 0,

K is non-decreasing, (A.12)

X(t) = X(0) + E(t) − R(t) − D(t), (A.13)

〈 f , ν(t)〉 =
〈
f (· + t)

Ḡs(· + t)

Ḡs(·) , ν(0)

〉

+
t∫

0

f (t − u)Ḡs(t − u)dK (u), (A.14)

〈 f , η(t)〉 =
〈
f (· + t)

Ḡr(· + t)

Ḡr(·) ,η(0)

〉

+ γ

t∫
0

f (t − u)Ḡr(t − u)du. (A.15)

Definition 5. A fluid model solution for γ > 0 is (X, ν, η) that sat-
isfies (A.1)-(A.4), and (A.12)-(A.15).

Definition 6. A non-idling fluid model solution for γ > 0 is 
(X, ν, η) that satisfies Definition 5 and the following non-idling 
condition for each t ≥ 0:

I(t) = (1− X(t))+ . (A.16)

Appendix. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .orl .2022 .04 .005.
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