Operations Research Letters 50 (2022) 362-369

www.elsevier.com/locate/orl

Contents lists available at ScienceDirect

Operations Research Letters

=
Operations
Research
Letters

Asymptotically optimal idling in the GI/GI/N+GI queue

Yueyang Zhong **, Amy R. Ward ?, Amber L. Puha”'

@ The University of Chicago Booth School of Business, United States of America
b California State University San Marcos, United States of America

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 18 June 2021

Received in revised form 16 February 2022
Accepted 7 April 2022

Available online 12 April 2022

Keywords:

GI/GI|N+GI

Fluid control problem
Asymptotically optimal idling

We formulate a control problem for a GI/GI/N+GI queue, whose objective is to trade off the long-run
average operational costs with server utilization costs. To solve the control problem, we consider an
asymptotic regime in which the arrival rate and the number of servers grow large. The solution to an
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unless some arrivals are turned away. We propose an admission control policy designed to ensure that
servers have sufficient idle time, which we show is asymptotically optimal.
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1. Introduction

One common assumption when studying the GI/GI/N+GI
queue is that the service discipline is non-idling; that is, that
servers do not idle when customers are present in the queue
([14,7,8,16,6]). However, in the restricted M/M/N+M setting, the
paper [15] (see Theorem 1, Proposition 1, and Example 1 therein)
shows that in the presence of server utilization costs, a non-idling
service discipline may not be asymptotically optimal. Our purpose
in this paper is to show that a similar phenomenon occurs in the
GI/GI/N+GI setting; that is, a non-idling service discipline might
be suboptimal in the non-Markovian setting, when the system op-
erates in a first-come, first-served (FCFS) manner.

The GI/GI|N+GI queue is more difficult to analyze than the
M[M|N+M queue because the state descriptor is more complex.
In particular, tracking the one-dimensional number-in-system pro-
cess is sufficient when studying the M/M/N+M queue, but more
is needed when studying the GI/GI/N+GI queue. This is because
a Markovian state descriptor must also include knowledge regard-
ing the time that has elapsed since the last arrival, the amount
of time each job in service has been in service, and the amount
of time each job in the queue has waited, resulting in a measure-
valued state descriptor.

The control question is to determine when an available server
should take the next customer into service, and when such a server
should idle for some period of time. Too much idleness may lead
to customer abandonment and excessive waiting, whereas too little
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rest may lead to server fatigue. To quantify these two compet-
ing interests, we consider an objective function that trades off the
abandonment costs (and also, as an extension, holding costs) with
server utilization costs. Exact analysis of the GI/GI/N+GI queue is
intractable, and, therefore, we study the queue in an overloaded
asymptotic regime in which the arrival rate and the number of
servers become large. In that regime, we formulate a fluid control
problem, and find that the solution to the fluid control problem
sometimes motivates idling servers when customers are waiting
(when operational costs are small compared to utilization costs).
The policy we propose, and show is asymptotically optimal (see
our main results in Theorems 1 and 2, and their extension to incor-
porate holding costs in the online appendix), is one that “thins” the
arrival process just enough to ensure the server utilization matches
the solution to the fluid control problem.

Incorporating server utilization in the objective function is
one way to ensure that the service discipline does not overwork
servers. This can lead to increased employee retention, which can
have performance benefits (discussed in [13]). Not overworking
servers means ensuring sufficient idleness for all servers, an idea
that arose earlier in papers that studied how to be fair to heteroge-
neous servers that can be grouped into statistically identical pools
(see, e.g., [4], [12]), and how to exploit heterogeneous customers
preferences so as to maximize revenue (see, e.g., [1], [9]).

Notation. We denote the set of integers endowed with the dis-
crete topology by Z, the set of non-negative integers by Z., the
set of positive integers by N, the set of real numbers endowed
with the Euclidean topology by R, and the set of non-negative real
numbers by R . For F, a cumulative distribution function (abbre-
viated c.d.f. henceforth) on R, with density f, we write F=1—F
and recall that the right edge of the support is given by x, =
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sup{x € R, : F(x) > 0} and the hazard function is x — f(x)/F(x)
for x € [0, x;). For a measurable space (S,¥) and a measurable
set A€ F, 14 is the indicator function of the set A, which is one
when its argument is a member of the set A and is zero other-
wise. In addition, when A is S, we use the shorthand notation 1
to mean 1s. For H € (0, 00], let M[0, H) denote the set of finite,
non-negative Borel measures on [0, H) endowed with the topology
of weak convergence. For a given n € M[0, H) and a Borel mea-
surable function f : [0, H) — R that is integrable with respect
to n, we write (f,n) = f[o,H) fx)n(dx). The set M[0, H) endowed
with the topology of weak convergence is a Polish space ([10]). We
let 0 € M[O, H) be the measure such that (f,0) =0 for all Borel
measurable functions f :[0, H) — R. Given x € [0, H), 8x denotes
the Dirac measure in M[0, H) such that for all Borel measurable
functions f : [0, H) — R, (f, &) = f(x). Then let Mp[0, H) de-
note the subset of M[0, H) consisting of the measures n € M[0, H)
such that either n =0 or n can be represented as a sum of
finitely many Dirac measures, that is, n = Y I ; aid,, for some fi-
nite ne N, (ay,...,a,) € (0,00)" and (x1,...,%,) € [0, H)". Given
a Polish space S, we use D(S) to denote the set of S valued func-
tions of R that are right continuous with finite lefts, endowed
with the usual Skorokhod Ji-topology. Finally, we use = to denote

weak convergence and 2 to denote equivalence in distribution.
2. The model and admissible policy class

In this paper, we study a single-class many server queue with
generally distributed inter-arrival, service, and patience times (i.e.,
a GI/GI/N+GI queue) operating under a head-of-the-line (HL) con-
trol policy, that may or may not be non-idling. This is as specified
in [11] specialized to a single customer class. In particular, we
consider the model specified in [7], but with the non-idling con-
dition [7, (2.30)] removed. Absent the non-idling condition, the
system dynamics are not uniquely specified. Hence, one must spec-
ify a control policy to determine when each customer in system
will commence service. Such control policies should satisfy nat-
ural conditions such as not using information about the future to
make scheduling decisions. In what follows, we describe the model
and admissible policy class in brief. We refer the interested reader
to [11] for details.

The model. Customers arrive according to a delayed renewal
process E with rate » € Ry, each with a service time sampled
from c.d.f. G* having finite mean 1/u € (0, 00), and a patience time
(also known as reneging time) sampled from a c.d.f. G having fi-
nite mean 1/6 € (0, co). We denote the c.d.f. for the inter-arrival
distribution associated with the renewal arrival as G. We assume
G, G° and G" are absolutely continuous with density functions g,
g® and g" respectively that have right edges of support H, H®
and H" respectively and hazard function h, h® and h" respectively.
We assume that there exists 0 < L¥ < H® such that h® is either
bounded or lower-semicontinuous on (L%, H%) and h" is bounded
and continuous. Boundedness of h" implies that H" = co. Finally,
we assume G’ is strictly increasing with inverse function (G")~!.
The queue indexed by N € N has N identical servers and is de-
fined on a fixed probability space (2, ¥, IP). For the remainder of
this paper, we superscript all quantities that depend on N by N,
eg, GN, gV HN AN and EN depend on N, but G° and G" do not
vary with N.

Following the notation in Section 2.2 in [11], the state descrip-
tor for the N-server queue is denoted by yN = (@™, xN, vN nN) e
Yp, where Yp =R x Z x Mp[0, H®) x Mp[0, H"). In particular,
aN € [0, HV) is the time that has elapsed since the last customer
arrived to the system, xN € Z is the number of customers in sys-
tem, vN € Mp[0, H%) is a measure that has a unit mass at the
age-in-service (amount of service received) of each customer cur-
rently in service, and nN € Mp[0, H") is a measure that has a unit
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mass at the potential waiting time of each customer “potentially”
in system. (That is, each unit mass tracks the time passed since a
customer’s arrival, until that customer’s patience time expires, at
which point the unit atom is removed and tracking stops.) When
YN(0) denotes the initial state, the coordinate o™ (0) determines
the distribution of the initial delay for EN as the conditional dis-
tribution of GN given o/ (0). That is, the initial delay distribution

has density g (x) = % for x € [0, HN — aN (0)).

A state process for the N-server queue is a Yp valued, right
continuous process YN with finite left limits that satisfies a set
of dynamic equations for the N-server queue consistent with HL
service. These are given as equations (5)-(26) in [11], which we
omit here due to space constraints. With these, customers can
only enter service at or after their arrival time and prior to their
patience time expiring. An available server may idle or may take
the customer in queue with the largest waiting time, the HL cus-
tomer, into service. Once a server commences serving a customer,
it works at rate one on the work associated with that customer
until completely fulfilling that customer’s service requirement, at
which point the customer departs.

The admissible policy class. The admissible policy class consists
of all policies that only allow customers to enter service at mo-
ments of a customer departure or arrival, do not use information
about the future, and are such that the state process YN is a Feller
Markov process with respect to a natural filtration, and whose ini-
tial condition is policy compatible. The following leverages [11] to
make this more precise.

As mentioned above, equations (5)-(26) in [11] do not uniquely
specify the system dynamics. These are uniquely determined by
the specification of an HL control policy 7N = (SN, {P)'},csn).
Here, as in Definition 1 in [11], SN is the Polish subspace of Yp
that corresponds to the set of states that are achievable under the
control policy. Also, for each initial state y € SV, ]P’)’,\’ is a probabil-
ity measure that uniquely determines the system dynamics when
the system starts in state y. More formally, {Py}yESN is a collec-
tion of probability measures indexed by SN such that the mapping
y > PY(B) from SN to [0,1] is Borel measurable for each mea-

surable B C D(SY) and, for each y € SN, Y almost surely,

YN@©) =y, YN e D(SV) and satisfies (5) — (26) in [11]. (1)

Given an HL control policy 7N, a state process YN satisfying
(1) specifies an entry-into-service process KV. Indeed, since a job
has age-in-service equal to zero at the time of entering service,
(1(0}, vN(t)) is the number of jobs to enter service at time t, for
each t > 0. Then KV is a counting process such that KN(0) =0
and KN(t) — KN(t—) = (140, vN(0)) for each t > 0. In particular,
KN(t) is the number of customers that enter service by time t
for each t > 0. Then, for each t >0, DN(t) = (1, vN(0)) + KN(t) —
(1, vN(t)) denotes the number of customers to depart the system
due to service completion by time t. We restrict attention to HL
policies that only allow customers to enter service at moments of
a customer departure or arrival. We require that for each y € SV,
)Y almost surely, for all t >0,

KNty — KNt—) < EN(@t) — EN(t—) + DN(t) — DN (t-). (2)

We allow for random initial states that are compatible with
a given HL control policy 7™ = (SN, {P}'},csn). As in Defini-
tion 2 in [11], an initial distribution for 7N is a Borel probability

measure ¢ on SN that determines the distribution of the ini-
tial state YN(0). In particular, for each measurable B ¢ D(SN),

2 This condition is sufficient for a tightness result to hold as shown in [11].
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define IP’Q’(B) = Jsn PJ'(B)sN(dy). Then IP’Q’ denotes the distri-
bution of the state process YN under mVN for initial distribution
¢N. We say that an initial distribution ¢V for 7N is compatible
if EX[(1,7"(0))] < oo, where E{ denotes the expectation opera-
tor for ]P’g. Given an HL control policy 7N and a compatible initial
distribution ¢, we refer to the process YN with law PY as the
state process for (N, ¢M).

In order to restrict attention to HL control policies that do
not use information about the future, we require KN to be non-
anticipating. This amounts to requiring KV to be adapted to a
suitable filtration as in Definition 3 in [11]. Because we consider
long-run average cost, we make a further restriction in the defini-
tion of admissible HL control policies, which is used in Section 6
to establish the existence of a stationary distribution.

Definition 1 (Admissible policies). An admissible HL control policy
for EN is an HL control policy N such that for any compatible
initial distribution ¢™, the pair (", ¢cM) (i) satisfies Definition
3 in [11] and (2) and (ii) is such that the state process YN for
(N, ¢Ny is a Feller Markov process with respect to the filtration
used in Definition 3 in [11].

Remark 1. Our admissible policies focus on HL (equivalently, FCFS)
control policies due to their common use in practice. However,
non-HL control policies can be optimal in some settings; see [5].

Let TIN denote the set of admissible HL control policies for EN
in Definition 1. For =N e IV, we will sometimes write YN(zV, ),
XN@N, ), vN@EN, D, pN@N, ), KN@N, ) or DNV, ) to make
the dependence on 7" explicit.

Proposition 1. For any N e TIV, there exists a compatible initial dis-
tribution &N such that the state process YN for (N, V) is a stationary
process.

Proposition 1 follows as a special case of Lemma 1 stated in
Section 7.

Given 7N e TN and a compatible initial distribution £V such
that the state process YN for (zN,£N) is a stationary process, we
refer to £V as a compatible stationary distribution for 7V and we
let S(r) denote the set of all compatible stationary distributions
for N,

3. The control problem

Each customer abandonment incurs a cost a € (0, c0) and the
strictly increasing, continuous and convex function gy : [0, 1] —
[0, o0) captures the cost of server utilization. The trade-off is be-
tween working the servers as much as possible, which incurs high
utilization cost but low abandonment cost, and giving the servers
more rest, which incurs lower utilization cost but higher abandon-
ment cost. In particular, given 7N € TN and a compatible initial
distribution ¢V, we define the long-run average cost of (m", ¢)
as

N, N
Co(@™)
T
1 RN@N, T) BN(#N, )
:=limsup —EV a7’+/gu (7’>dt ,
T ¢ N N
T—o0 0

where, for each t > 0, RN(wV,t) is the cumulative number of
abandonments by time t under #N, and BN(N,t) < N is the
number of busy servers at time t under 7.
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Proposition 2. For any =™ e TN and compatible initial distribution
N, there exists €N € S() such that CF (7V) = C?(n”).

Proposition 2 follows as a special case of Lemma 2 stated in
Section 7.

Given wN e IV, let CN (7 N) := SUPsNeS(nN)Cg(ﬂN) denote the
worst case cost. By Proposition 2, CN(zN) is the supremum of
CY (") over all compatible initial distributions ¢N. Our objective

is to find an admissible control policy né\{,t such that
Ny == inf CN@rM). (3)
aNermN

The objective is such that a non-idling control policy is not in gen-
eral optimal. Based on the discrete-event queuing model, it is not
possible to solve for né\l’m exactly. Thus, we leverage an analytically
tractable approximating fluid control problem to postulate an HL
control policy that one might expect to perform well for the objec-
tive (3). Then, we show that this policy is asymptotically optimal
(see Theorems 1 and 2 in Section 6).

4. The fluid control problem

The fluid control problem is based on the fluid model and
the fluid model solutions defined in [11]. Fluid model solutions
arise as functional law of large numbers limits of sequences of
state descriptors for the stochastic system under fluid scaling. For
each N € N, we define the fluid scaling for the N-server sys-
tem as follows. Recall the constant AN and the processes EV,
aN, XN N pN KN and DN defined in Section 2, and the pro-
cesses RN and BN defined in Section 3; also define the pro-
cess QN = XN — BN as the queue length, and the process IN =
N — BN as the number of idle servers. Then, let &V = «V; also
for AN = AN EN XN yN pN gN DN RN BN QN IN let AN =
AN/N. Then, the fluid-scaled state process for the N-server system
is YN = @V, XN, 5N, 4N). Under suitable asymptotic conditions,
limit points exist and are fluid model solutions almost surely (see
Lemma 4 in Section 7).

In particular, fluid model solutions are functions of time that
take values in the set X =R x M[0, H%) x M[0, H") endowed with
the product topology. Then a state (x, v, ) € X for the fluid model
is a fluid analog of the state descriptor for the stochastic system
with x, (1jo,z7, v) and (1joz}, n) corresponding to the total mass in
system, the total mass in service with age-in-service less than or
equal to z for each ze R, and the total mass potentially in sys-
tem of age less than or equal to z for each z € R, respectively.
They satisfy a set of conditions determined by a positive constant
y, which is the rate at which “fluid” or mass arrives to the system.
These conditions are referred to as the fluid model for y. We sum-
marize the fluid model for y and the definition of a fluid model
solution for y in Appendix A.

The invariant states for the fluid model for y are fixed points
of the fluid model for y. From Proposition 1 in [11], an invariant
state for y is determined by the long-run average fraction of the
collective server effort provided to the customers, denoted by b. It
is clear that b must satisfy b € [0, min{1, y/u}], where we recall
that u is the reciprocal of the mean of G°. Then, when the initial
state for a fluid model solution for y is an invariant state for y,
it turns out that the departure rate of the fluid from the system
is by and so, by conservation of mass, y —bu must be the rate
at which fluid abandons. This implies that the abandonment rate
is insensitive to the patience time distribution, which has a similar
flavor to the insensitivity result for a single server queue in the
large deviations regime in [2].

Assumption 1. Let A € (0, c0). Suppose that limy_, o AN = A.
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Henceforth, X satisfying the conditions in Assumption 1 is fixed.
Our fluid control problem is based on the invariant states for A. We
expect to obtain the following fluid control problem for A when
letting N — oo in problem (3).

Definition 2 (The fluid control problem). The fluid control problem
for A is given by

a(x —bu) + gu(b). (4)

min
be[0,min{1,1/u}]

We denote the solution to (4) by b, (which exists and is unique
because (4) optimizes a convex function over a compact set).

Example 1. Suppose a =1 and gy (b) = b?. Then, the solution to
(4) is by =min{1, /2, A/ u}.

The solution to (4) motivates a control policy that we expect
to have good performance with respect to the original objec-
tive (3) when the arrival rate AN and the number of servers N
are large. When b, = min{1, »/u}, we expect a non-idling control
policy to be optimal for (3). Otherwise, when b, < min{1,1/u},
the solution to the fluid control motivates defining a policy that
uses customer abandonments to trim congestion, in order to re-
duce server workload, and provide (additional) server idle time.
In this case, for each N € N, consider the HL control policy
7N such that each server idles after each service completion for
the difference between the desired expected time between ser-
vice completions, (b,u)~!, and the expected time between ser-
vice completions when the server is always busy, ©~1; that is, for
(bspt)™1 — =1 = (1 — by)(bsu)~! time units. Such a policy seems
quite reasonable, and should be asymptotically optimal. However,
establishing that for any sequence of compatible initial distribu-

tions {¢N}nen,

1 _

lim lim ~EV [RN(er,t)] — A —b,p and
N—ooot—oo t S (5)
N

c [gu (BN(fTN, f))] = gu(bs)

lim lim E
N—oot—00
is difficult. This difficulty is related to a lack of results provid-
ing sufficient conditions for fluid model solutions to converge to
invariant states in the time infinity limit (see Section 7.1 in [8]). In-
stead, we propose to expand the admissible policy class to include
thinned arrival processes and then rely on results in the literature
for non-idling many server queues to show that (5) holds. If we
can show a policy is asymptotically optimal for an enlarged policy
class, then we know that no policy in the original smaller policy
class can perform better.

5. The proposed policy N

The solution 0 < b, <min{1,1/u} to (4) represents the optimal
long-run average fraction of busy servers, which suggests that a
control policy that thins the arrival process to rate b, and forces
the servers to work in a non-idling fashion, but builds in idleness
due to admission control, should perform well for the original ob-
jective (3). This motivates us to enlarge the admissible policy class
in Definition 1 to allow for admission control. Specifically, at the
time of each arrival, let p € (0,1] be the probability the arrival
is admitted for service and 1 — p the probability the arrival is
rejected, which incurs a cost a. Given p € (0, 1], we denote the ad-
mitted arrival process by EN, and we refer to the N-server queue

with arrival process EQ’ as the p-admitted queue. It is clear that
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the thinned arrival process Eg is a suitably delayed renewal pro-

cess with arrival rate pAN, because the admitted arrivals remain
ii.d.

Definition 3 (Enlarged admissible policies). For any p € (0, 1], an ad-
missible HL control policy for E} satisfies Definition 1 with EN

replaced by EJ).

For p € (0, 1], let I'Ig denote the set of admissible HL control
polices for E}J. Note that TIYY = TIN. For p € (0,1], ) € I} and
AN =yN XN oN pN KN, DN, RN, BN, QN or IN, AN(r)Y, -) refers
to the process for the p-admitted queue under JTI’JV .

Given p € (0,1], w)' € TI}} and a compatible initial distribution
N, the long-run average cost of (), ¢") is

1 . ] _
CEory) i=limsup S B [a (E¥ (D) = Ej () + RV, 1))

T

+ /gu (BN(n{,V,t)) dt

0

(6)

When the initial state for the fluid model for pA is an invariant
state for pA associated with b € [0, pA/u], pA — bu is the rate
at which fluid abandons and (1 — p)A is the rate at which fluid
is rejected. Since p € (0, 1] is a parameter that can be optimized
over, the resulting fluid control problem is given by

min a(l—p)r+a(pr—bu)+ gub)
pe(0,1],be[0,min{1,pA/u}]

a(h—bp)+gu).

= min
be[0,min{1,A/u}]

(7)

The solution to (7) does not depend on the admission control
parameter p € (0,1] and is identical to the solution to (4). This
observation crucially relies on the abandonment cost being linear
with the per unit cost equal to the per unit cost of rejection.

This gives us flexibility to propose a policy in Hg for various
choices of p € (0, 1]. We first observe that an optimal admission
control parameter must lie in [b,u/A, 1], because otherwise the
admitted arrivals would not be sufficient for servers to work at
busyness level b,. Let

Py i =byt/A. (8)

We next observe that if the p,-admitted queue satisfies the non-
idling condition (that is, the servers never idle when customers are
waiting), the long-run average fraction of busy servers achieves b,.
The non-idling condition, together with (5)-(26) in [11] uniquely
specifies P)Y for each y € SN = {yN e Y? : N — (1,0N) = (N —
xNy* and xN < (1,9N)} and satisfies (2). Moreover, for any com-
patible initial distribution, the state process that satisfies the non-
idling condition is a Feller, strong Markov process (see Proposi-
tion 4.2 in [8]). Thus, for any p € (0, 1], the non-idling policy (the
control policy that obeys the non-idling condition) is an admissible
HL control policy for EV, and thus is in Hg.

Definition 4 (The proposed policy). For each N € N, let m,’f’ be the
non-idling policy in l'IN*. where p, is given by (8).

6. Asymptotic optimality of =N

In this section, we state our main results concerning asymptotic
optimality of {mN}ycny under fluid scaling.
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Theorem 1 (Convergence under the proposed policy). Suppose that As-
sumption 1 holds and that h® is non-increasing when b, = 1. Then the
sequence {7t N}y satisfies

Jim N (2 ) =a( = bpr) + g0 2.

Let TN := Upeo.11TT) denote the enlarged policy class, and

given 7N e TV, let pN € (0, 1] denote the associated admission
control parameter.

Theorem 2 (Asymptotic lower bound). Suppose that Assumption 1
holds, #N e TN for each N € N and the sequence {pN}nery Satisfies
limy_, o PV = p for some p € (0, 1]. Then,

lim infCN(AN) > a(h — byp) + gu (by).
— 00

Remark 2. The condition that limy_.o p" = p for some p € (0, 1]
implies that {pNAN}ycry satisfies limy_.oo PNAN = pi.

Theorem 1 establishes that the solution to the fluid control
problem (4) is achieved in the limiting system, when, for each
N, the N-server system operates under ﬂf:’ in Definition 4, and
in case b, =1, h® is non-increasing. Theorem 2 establishes that
the fluid control problem (4) is an asymptotic lower bound for the
objective (6). As a consequence, we conclude that the proposed se-
quence of policies {rN}yeny is asymptotically optimal.

The proof of Theorem 1 given in Section 8 is facilitated by the
fact that, for each N € N, under nf’ the p.-admitted N-server
queue is non-idling, and thus, we can appeal to results in [8,3]
to establish the weak convergence of the sequence of fluid-scaled
stationary distributions. The additional condition that h® is non-
increasing when b, =1, is needed for this in order to apply part
(3) of Theorem 3.2 in [3] in that case. This implies that the limit is
the unique invariant state with zero queue mass.

The proof of Theorem 2 in Section 8 requires first adapting
one of the arguments in [8] (wherein the non-idling condition is
assumed throughout) to show that a sequence of fluid-scaled sta-
tionary distributions is tight, and second arguing that the fluid
control problem (7) provides an asymptotic lower bound on the
cost along any convergent subsequence.

In the next section, we establish some preliminary results for
stationary distributions (for both the stochastic N-server queue
model and the fluid model) that help to prove Theorems 1 and 2,
which may also be of independent interest. The proofs of Theo-
rems 1 and 2 will be provided in Section 8.

7. Preliminary results

In order to prove our main results (Theorems 1 and 2), we be-
gin by establishing two foundational results concerning stationary
distributions for the N-server queue. Then, we provide a fluid limit
theorem, which shows that the distributional limit points of sta-
tionary distributions are fluid model solutions almost surely under
suitable asymptotic conditions. Finally, we show some properties
of stationary fluid model solutions for y. The proofs are delayed to
the online appendix A.1.

Stationary distributions of the N-server queue. The following
lemmas confirm the existence of a stationary distribution under
any admissible HL control policy for Eg and p € (0,1], and de-
rive an expression for the long-run average cost. We denote by
AN a stationary process associated with the process AN, for AN =
EN YN XN yN pN KN DN RN BN QN,IN,
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Lemma 1. Let p € (0, 1]. For any ”117\1 € IV, there exists a compatible
initial distribution £V such that the state process YN for ()Y, N) is
stationary. Moreover, IE’E\’ [(1, N ©®)] = pANo~! < oo, forall ¢ > 0.

Remark 3. Proposition 1 in Section 2 follows by setting p = 1.

Given p € (0, 1], w)) € 1)) and a compatible initial distribution
N
¢, let

XM © :=inflx= 0: (10,0, 1" ©) = AV (©)) (9)

represent the waiting time of the HL customer at time t for each
t > 0. Then, for t > 0,
Q" = (10 o 1" ). (10)

The associated stationary process is denoted by XOIZ-

Lemma 2. Let p € (0, 1]. For any 7} € T1}} and compatible initial dis-
tribution g™, there exists €N € S(r)) such that

[RN@N, 1)
. N ’ N ~N
llll}LsolipEg — =E; [<1[0’X01\é(0)]hr,noo(0)>], (11)
and
o
limsup £ ?/gu (BVery.0)de | =EY [eu (BY@)].
— 00
L O

(12)

If N e S()), then N = gN,

In light of (10), one can interpret the right-hand side of (11) as
an expected stationary reneging rate for the N-server queue.

Remark 4. For any p € (0, 1], 7}’ € I} and compatible initial dis-
tribution ¢V, there exists £N € S(7r)) such that

NN
Ce(my)
Proposition 2 in Section 2 follows by setting p = 1.

A fluid limit theorem. Here we provide asymptotic assumptions
under which it is shown in [11] that fluid limit points are almost
surely fluid model solutions. Such a result is crucial for the proof
of Theorem 2, which will appear in Section 8.

Assumption 2. Suppose for each N € N, pN € (0, 1], n;\’,\, € l'[’;’,\, for
EgN and ¢V is a compatible initial distribution for 7",. Assume
that limy_, p¥ = p and (X" (0), 5V (0), 7" (0)) = (X°,12,°), as
N — oo, for some random variable (X°, v°, n°) taking values in X
such that supyery Ef [{1, 7V (0))] < o0.

Remark 5. Under Assumptions 1 and 2 and the conditions on E gN,

KN, G, g5, h’, G", g", and h" specified in Sections 2 and 5, one
can without loss of generality assume that the convergence of the
initial condition in Assumption 2 is almost sure and then check
that Assumptions 1, 2, 3(1), 3(3), 3(4), 4, 5(1) and 5(3) in [11] hold,
i.e.,, Assumptions 3(2), 3(5) and 5(2) may not hold.
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Lemma 3. Suppose Assumptions 1 and 2 hold. Then, iV = 1, as N —

oo, where n(0) 4 n° and 7 satisfies (A.15) almost surely for E(t) = pAt,
t>0.

In fact, Assumptions 3(2) and 3(5) in [11] can be replaced by
the condition supy.py IEQ’ [(1,7V(0))] < 0o and Assumption 5(2)

(n° has no atoms) is used to establish convergence of the scaled
reneging processes to the expression in (A.8). Thus, the result in
Theorem 1 in [11] continues to hold. We obtain the following
slightly restated version of Theorem 1 in [11].

Lemma 4 (Theorem 1 in [11]). Suppose that {(wN, ¢N)}yen is such
that Assumptions 1 and 2 hold, n° has no atoms, and (X, v, n) is a distri-

butional limit point of { (XN, DN, 7N)} ;- Then (X(0), v(0), n(0)) 4
(X%, 10, 1% and (X, v, n) is almost surely a fluid model solution for p.

Properties of stationary fluid model solutions. Fix y > 0. Here
we consider the fluid model for ¥ with random initial states such
that the resulting fluid model solution is a stationary process. Lem-
mas 5 and 6 below, provide properties of such solutions. The proof
of Theorem 2 relies on Lemmas 5 and 6.

In what follows, we fix a fluid model solution Z,, = (X, Vs,
1) for y such that Z, is a stationary process. We denote the law
of Z,,(0) by £ and the expectation operator by E¢. In addition, we
define a Borel probability measure 7, satisfying dne (x) = 6G" (x)dx
for all x € Ry, where the subscript e is mnemonic for excess life
distribution.

Lemma 5. For all t > 0, 0 (t) = y0~'ne. In particular, for all t > 0,
Neo () has no atoms, x — (1[0.”, Moo (t)) is a continuous strictly increas-
ing function on R, and (1, ns(t)) = y6~1.

Lemma 6. There exists b € [0, min{1, y/u}] such that for all t > O,
E¢ [Boo ()] =b and E¢ [(110, o c)h". ()] = ¥ — bpt.

8. Proofs of main results (Theorems 1 and 2)

Proof of Theorem 1. For each N € N, let £V € S(rN) which exists
by Lemma 1, and recall that YN (0) has distribution £N. Consider
the sequence {(XN(0), DY (0), 1N (0))}yeny. We wish to show that
limNﬁooC(ni") =a(A —b.u) + gu(bs). By Lemma 2, it suffices to
show that,

: N TN =N BN
l\}meEg [a(l — DA +a<1[0’xo,%(0)]hf, ,700(0)> + gU(BOC(O))]

=a(h —byp) + gu (by). (13)
Note that p,AN — p,A, as N — oo (from Assumption 1). This, to-
gether with the assumptions on EN (which E inherits), G*, g°, h*,
G', g", and h" given in Section 2, implies that Assumptions 3.1-3.5
in [8] hold for {(E} , 7Y, &N)}yen. In addition, since it is assumed
that h® is non-increasing when b, = 1, the result in Theorem 3.3
in [8] holds,® which establishes

(XN ), 2N (0), 1N (0)) = (b, buve, pr0~ 1 e), (14)

3 There is a gap in the original proof of Theorem 3.3 in [8], where a stationary
distribution for the fluid model is assumed to coincide with the invariant state,
which is unique since G" is strictly increasing. Under the conditions of Theorem 3.3
in [8], Theorem 3.2(1) in [3] implies that this is true when b, < 1. With the added
condition that h® is non-increasing, Theorem 3.2(3) in [3] implies that this is true
when b, = 1. Hence, the result in Theorem 3.3 in [8] holds in the present setting.
See the discussion in [3] that follows the statement of Theorem 3.2 for a detailed
explanation.
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as N — oo, where dve(x) = uG*(x)dx and dne(x) = 6G"(x)dx for
each x € R;.. This, together with (A.5), (A.6), and p, = b, /2, gives
that as N — oo,

BY(0) =(1,51(0)) = (1, b.ve) =b.,
QL0 =x1(0) - BL(0) = b. —b. =0.

(15)
(16)

The function gy is continuous. Hence, by (15) and the continuous
mapping theorem,
gu(BL(0)) = gu(b.), as N — oc. (17)

Then, since gy is bounded, (17) and the bounded convergence the-
orem yield that

Jim EY [gu (BY(©) ] = gu b,

From (10) and (16),

(18)

(10,01 1 ©) =AY (©0) =0, as N — o.

Note that for each N € N,

(19)

0=a(1p0, 0" 1Y) = allh 1 QY ),
which, together with (19) and boundedness of h", implies
By Lemma 1, limy_, o0 p+AN = psA, and (14),

lim EY [(1 ﬁg(0)>] — lim p,aNo~1=p,0""

N—oo N—oo

=1, p*A0’1ne>.

This together with (14) implies that {(1, ﬁfl(O))}NEN is uniformly
integrable. Note that (10, ", I (©) = Wl (1, 7%(0)) for

each N e N and h" is bounded. Thus, {<1[0,xa’£(0)]hr’ ﬁa’!(O))}
is uniformly integrable. This together with (20) implies that

NeN

; N =N
Finally, by Assumption 1, it follows that

lim a(1 — p)AN =a(1 — p)r =a(h — b ). (22)
N—o0

Combining (18), (21) and (22) establishes (13), as desired. O

Proof of Theorem 2. Fix a sequence {##N}ycpy satisfying the con-
ditions of Theorem 2. For each N € N, let éN € S(#N) be such that

cN@ANy = Cg’ (7#N) which exists by Lemma 1 and the definition of
CN(#N). For each N e N, let YN be the state process for (AN, gN).
It suffices to show that 1im,-%ocg" #@NYy > a(n — b)) + gu(by),
for any convergent subsequence of cost functions {Cg i@l )}'oj .
Fix such a subsequence {N;}{°;. We consider the fluid scaled se-
quence {(XNi, bNi, 7Ni)}> . By Lemma 2, it suffices to show

Ni

: Ni ~N; ) 7 N;
lim IEE [a(l—p ))» +a<1[0,xoc

i—o00

r =N;
o2 ©)

+gu (BY(@)] = a0~ bow) + g0 o). (23)

We begin by noting that the sequence {(XNi(0),DNi(0),
’f:’of(O))}ioil is tight. This follows by Theorem 6.2 in [8] and
its proof since in the present setting, the result in Lemma 6.1



Y. Zhong, A.R. Ward and A.L. Puha

in [8] holds, KNi(t) < ENi(t) + (1. an(0)> forallie N and t >0,
and XNi(0) <1+ (1,7%i(0)) for all i € N. Since {(XNi(0), v%i(0),

jNi & ()}, is tight, there exists a further subsequence {N; }p2,
such that

(Xﬁ"k (0), Pk (0), 7 (0)) =>< 0 0, noo), (24)

as k — oo. Without loss of generality, we can replace {Nj, }p2, with
{Ni}2; by eliminating some members if necessary. In what fol-
lows, we verify that (23) holds along this subsequence. For this,
we will first show that

11—1>rgoE [ ( ﬁNi)}_\Ni +a<1[0 Xoo (0)] 7ﬁ£i(0)>

+gu (BY©)]=a = pya+ake (1,00 0" 7% )]
+E¢ [guB%)] =

where £ denotes the distribution of (X2,v%,7%) and E; is the
expectation operator for £&. Then we will establish process level
convergence to a stationary fluid model solution for pA in order to
apply Lemma 6 to the right-hand side of (25).

We begin by showing that ngo has no atoms and that

{(1[0 i (0)]h ’700 (0)>}1_] is uniformly integrable. By Lemma 1,

Assumption 1 and lim;_, o, PV = p,
lim EY' {1, 720)] = pro~", (26)
i—o00 §

SO SUPjeN ng [(1,7Ni(0))] < co. This together with (24) implies
that Assumption 2 holds with {Eg" o AN and (ENI)°) re-

placing {E vINeN, {7 I’;’N}NEN and {¢cN}yen Tespectively. Thus, by

Lemma 3, nfif' = 1, as i — 0o, where 1.,(0) < n% and 7, satis-
fies (A.15) almost surely for E.(t) = pit, t > 0. Moreover, since
ﬁo"ii is a stationary process for each i € N, 1, is a stationary

process such that 1. (t) 4 ng for all t > 0. Hence, by Lemma 5,
n% = pr6~1ne, so that n° has no atoms, (1,7%)=pr6~! and x —
(110,49, %) is a continuous, strictly increasing function on R ;. Then
recalling (26), 11m,_>OOIE "[(1,7N10))] = (1,1%). This together
with (24) implies that {( , i (0))},.:] is uniformly integrable.
Since h" is bounded and (1 N, R, '{1;(0)) < M oo (1, 71 (0))

[0, Xo0 (0]
for each i € N, uniform integrability of {(1 h", nx (O))]

[0, x IO
follows.

Next we show (25). For this without loss of generality, we as-
sume that the convergence in (24) is almost sure which we abbre-

viate as a.s. By (24), we have
ONH0)) = (1,v) = BY,

lim QNi(0) = lim X"i(0) — lim BYi(0) = X% — B,
1— 00 1—00 1—00

lim BYi(0) = lim (1 as,and (27)
1—>00 1—00

= ng, a.s.
This implies that

tim (10 g

7% (0)) = lim Q10 = Q2

0
= (1[0’X&], noo>, a.s.

Thus, since x> (1j0,x, 7% ) is a continuous strictly increasing func-
tion on R, lim;_, o Xgi 0) = Xg a.s. This together with the above
display and that h” is continuous and bounded implies

Operations Research Letters 50 (2022) 362-369

; r oN; _ r 0

iliTo<l[0,x§J<0>1h Moo (O)>_<1[0,x801h ”7°°>’ s (28)
Now, as in the proof of Theorem 1, (25) follows from
lim;_, o0 pNiANi = p2, (27) and gy is bounded and continuous, and

(28) and the uniform integrability of {(][O,Xé\loi (0)]hr, r')fi" (O))}j:
Finally, we argue process level convergence to a statianary
fluid model solution for pi. Since Assumption 2 holds for {N;}{2,
(as noted above) and no has no atoms (also noted above),
Lemma 4 implies that (XN, bNi 1) = (X, v, ), as i —
0o, where (X, Voo, o) 1 almost surely a fluid model solution
for pi such that (X(0), V. (0), 7. (0)) —( 9,v2.1n%). More-
over, (Xo, Voor Noo) 1S A statlonary fluid model solution for pA
by the stationarity of (XN‘ V f 7] i) for each i € N. Then, from
Lemma 6, there exists b € [0, mln{l, pA/u}] such that ES[BSOJ =
E¢[B.(0)]=b. Since gy is convex, Jensen’s inequality further im-

plies that

Ee [g0(B0)] = v (B: [B2]) = u®).
This together with (25) and the second part of Lemma 6 gives

lim IE

i—o00

[a(l — pNiyNi +a<l W, N (0)>

[0, Xod (0)]
+8u (BY©)]z a1 - p)a+a(pr—bw) +gu )
=a(—bp) +gu (b) Z=a(r —buu) + gu (bs), (29)

which completes the proof that (23) holds, as desired. O

Appendix A. The fluid model for y

We write the fluid model equations and write fluid model solu-
tions for y > 0 in this appendix. We refer the reader to Section 3.1
in [11] for details. Given a Polish space S, we use C(S) to denote
the set of functions having domain R and range S that are con-
tinuous in time.

The fluid model for y has as an input a non-decreasing function
E(t) = yt, t >0. We set X:=R x M[0, H’) x M[0, H"), endowed
with the product topology in a Polish space. To define the fluid
model for y, we consider (X, v, n) € C(X) such that

(11, n(0)) =0, forall x € [0, H"), (A1)

and such that for each t > 0,

(1Lv(®) = X(®) < (1,v(®) + (1, n(1)), (A2)

(1Lv(®) =1, (A3)
¢

t
/ , v(uw))du < oo and /(hr, n(w))du < co.
0

0

(A4)

Given (X, v, n) € C(X) satisfying (A.1)-(A.4), we define auxiliary
functions B, Q, x, R, D, and K in C(R;) and I in C(R,) as fol-
lows: for each t > 0,

B(®) =(1,v(®). (A5)

Q (&) =X() — B(©), (A.6)

X (®) =inf{x>0: (110, n(6)) > Q (D)}, (A7)
t [ x@

R(t) :/ f " (w)n(u)(dw) | du, (A.8)

0 0
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t

D@:mewwm (A.9)
0

K(t) = B(t) + D(t) — B(0), (A10)

I(t)y=1—B(0). (A11)

Then B, Q, x, R, D, K, and I are fluid analogs of the busy server,
the queue length, the waiting time of the HL fluid in queue, the
reneging, the departure, the entry-into-service, and the idleness
processes, respectively.

Further some additional properties and equations that should
be satisfied by (X, v, n) € C(X) are as follows: for any continuous
and bounded function f having domain R, for each t > 0,

K is non-decreasing, (A12)
X(t) = X(0) + E(t) — R(t) — D(t), (A13)
PN )
Um@»—@(+0 G%),wm>
t
+/fa—m@a—ummw, (A14)
0
G'(-+1) >
. t) = . + t)——— 5 O
<fn0><ﬂ )G%) 1n(0)
t
+y/fa—m@a—ww. (A15)
0

Definition 5. A fluid model solution for y > 0 is (X, v, n) that sat-
isfies (A.1)-(A.4), and (A.12)-(A.15).

Definition 6. A non-idling fluid model solution for y > 0 is
(X,v,n) that satisfies Definition 5 and the following non-idling
condition for each t > 0:

I)=1-X(@t)". (A16)
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Appendix. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi.org/10.1016/j.0r.2022.04.005.
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