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ABSTRACT. We examine iteration of certain skew-products on the bidisk
whose components are rational inner functions, with emphasis on simple
maps of the form ®(z1,22) = (P(z1,22),22). If ¢ has degree 1 in the
first variable, the dynamics on each horizontal fiber can be described
in terms of Md&bius transformations but the global dynamics on the 2-
torus exhibit some complexity, encoded in terms of certain T?-symmetric
polynomials. We describe the dynamical behavior of such mappings ®
and give criteria for different configurations of fixed point curves and
rotation belts in terms of zeros of a related one-variable polynomial.

1. INTRODUCTION AND OVERVIEW

q(2)
p(z

Iteration of a rational function R(z) = on the Riemann sphere, that

N

is, the study of
2+ R"(z2)=(RoRo---oR)(z) (n=1,2,...)

on C,, = CU{oc}, is a well-known topic in mathematics, discussed in many
textbooks (e.g. [5, 12, 23]) and illustrated in beautiful computer images. The
theory is quite mature, but important new results are still being discovered.
The higher-dimensional theory, addressing iteration of n-variable polyno-
mial or rational mappings R is of later date but is rapidly developing. See,
for instance, [14, 16, 29|, and the references therein, for basic overviews of
dynamics in several complex variables.

In a different direction, considering self-maps of special bounded do-
mains in C" (the unit disk in the complex plane, the unit n-ball) allows for
the study of iteration of functions that are not necessarily defined through-
out C", and leads to interesting boundary phenomena not observed in the
unbounded setting. An important example in this latter direction is the
classical Denjoy-Wolff theorem [12]| concerning fixed points of analytic self-

maps of the unit disk; there are many subsequent extensions of the original
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result to different settings. See e.g. [6, 19] (and the references therein) for
recent developments.

Our investigation concerns the study of the dynamics of certain self-maps
of the unit bidisk

D? = {(z1,22) € C*: |2] < 1,5 = 1,2}

and seeks to establish some basic facts about their iteration theory. There
are many works addressing iteration of analytic self-maps of the bidisk and
higher-dimensional polydisks. See, for instance, the papers [1, 4, 13, 17, 18]
and the thesis [24] for some background. Our focus is on obtaining detailed
results for a restricted class of rational mappings by using elementary means.

We say that a mapping of the form
$: D* — D?
(21, 22) = (91(21, 22), Pa(21, 22))

is a rational inner mapping (RIM) if each component ¢, is a rational inner
function on D?. A rational inner function in turn is an analytic function of

the form

. 61(21,22)
ez = ey

with ¢,p € C[z1, 23] and p(z) # 0 in D?, which is bounded in D? and has
unimodular non-tangential boundary values at almost every point ¢ € T? =
{(¢1,¢) € C*:|¢| = 1,7 = 1,2}. We recall the basic fact that T? is the
distinguished boundary of the bidisk, the subset of the boundary dD? where
most interesting function-theoretic phenomena on D? are observed and the
maximum modulus principle is supported. By a theorem of Knese [22], if
¢; is rational inner then the boundary values ¢7(() exist as unimodular
numbers at every point of T2, and so we can view a rational inner mapping
® as inducing a map ®: D2 — D2, with ® sending T? to T2. In the same
way, the nth iterate of ®

q)n(Zl,ZQ) = ((I) obo---0 @)(21,22)

can be viewed as a mapping of the closure of the bidisk into itself that fixes
the distinguished boundary.

I[teration of certain classes of rational inner mappings on the bidisk and
on T? has been considered in a number of papers. For instance, monomial
maps of the form (z1,29) — (2]"23", 27"%25?) appear in [15] and in other
works. In [26, 25| (see also [30] for some applications), the component maps

¢; are assumed to be of the special type

V;(21,22) = Bji(21) - Bja(22)
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where B; ), are one-variable finite Blaschke products. Recall that these are
functions B: D — D of the form

iom 2 — Qg
=€z
H 1 —agz’
where {ay,...,a,} C D, a € R, and m,n € N. It is apparent that a finite
Blaschke product extends continuously to the unit circle T, but the dy-

namics of one-variable Blaschke products nevertheless exhibit complicated
features; see for instance [23, Chapter 15|. Similarly, the works [15, 26, 25]
uncover a rich dynamical structure associated with monomial maps and
two-dimensional Blaschke products.

In contrast with one-variable Blaschke products, a general rational inner
function 1) = ¢/p in D? can have boundary singularities: these occur at
points 7 = (1, 7) € T? where ¢(11,7) = p(71,72) = 0, and represent a
genuinely new higher-dimensional phenomenon. The function v is in general
discontinuous at 7 € T?, even though *(7) always exists, meaning that a
RIM ® need not be a continuous self-map of D2. This fact will be the source
of several interesting phenomena that we observe in this paper.

Apart from some preliminary observations concerning RIMs, we mostly
restrict our attention to rational inner skew-products (RISPs). These are
rational inner mappings of the special form

(21, 22) = (¢1(21, 22), P2(22)),

with ¢ rational inner in D?, and ¢, a rational inner function in one variable,
viewed as a function on D? in the obvious way. Skew-products have been
studied extensively in the polynomial setting, see e.g. [20, 27| and the refer-
ences therein. In fact, we focus on the very simplest case of skew-mappings

(1.1) (21, 22) = (@(21, 22), 22),

where ¢ is a rational inner function in D? having bidegree (1,n), that is,
degree 1 in z; and degree n € N in z5. (We drop the subscript in the first
component to lighten notation.) Skew-products of the form (1.1) fix horizon-
tal lines so that the main dynamics take place along one-dimensional sets,
but even this apparently very simple case gives rise to interesting behavior,
as is suggested in the images below. The advantage in working with such
low-degree RISPs is that the extremely simple classification of fiber dynam-
ics (discussed below) allows us to focus in detail on the global features of
iteration on T2.

We proceed to describe the contents of our paper. We begin by examining

three elementary examples of RISPs in Section 2. These examples serve as
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guides for our general investigations and illustrate most of the features we
uncover in a more general setting. In Section 3 we introduce basic definitions
for RIMs and RISPs, record some facts about RIFs and their numerator and
denominator polynomials, and discuss iteration of Mobius transformations
in the unit disk. Section 4 contains the main results of our paper. After
some preliminary remarks about general RIMs and certain associated es-
sentially T?-symmetric polynomials, we focus on degree (1,n) RISPs. We
then introduce and study rotation belts associated with a RISP, strips on
which the dynamical actions on fibers are conjugate to rotations, and give
an estimate on their number. We investigate how different components of
the fixed point set of a RISPs can come together at a singular fixed point,
and give criteria for different configurations to be present. The main tool we
use is a one-variable polynomial @), built from the numerator and denom-
inator polynomials of the first-component map ¢. We conclude in Section
5 by exhibiting further examples of RISPs having more intricate dynamical

behavior, and serving as illustrations of our main results.

2. THREE EXAMPLES

A fundamental result due to Rudin and Stout (see [28, Chapter 5|) asserts
that any RIF on D? can be written as
_ ia P P p (z )
(2.1) oz) = et B
where a € R, 31, 32 € N, the p € C[z1, 23] has no zeros in D?  and p is the
reflection of p, defined as
" n 1 1
(2.2) P21, 22) = 21" 25p <2—17 2—2>
Here the pair (m,n) is the bidegree of p, that is p has degree m in z; and
degree n in zs.
This structural result makes examples of rational inner functions par-
ticularly easy to construct - all one requires is a polynomial with no zeros
in the bidisk. The following such examples can be fruitfully analyzed using

elementary means.

Example 2.1. Consider the RISP

9 oy —
Bz, 2) (_ 2129 — 21 Z2’Z2)'

2—2’1—22

The first component ¢ = —g is a degree (1, 1) RIF having a single singularity
t (1,1). A computation reveals that the boundary value ¢*(1,1) = 1, and
so (1,1) is a fixed point of ®. In fact, we have ®(21,1) = (1, 1), so the entire
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(a) Vertical lines before mapping. (b) ®™ for n = 1.

7

(c) @™ for n =2 (d) @™ for n = 5.
FIGURE 1. Iteration of & = (—%, z9) on T2
line {z; = 1} is mapped to (1,1). Next, we note that ¢*(1,22) = 1 and
¢* (29, 22) = 2z meaning that both the line {z; = 1} and the diagonal are

comprised of fixed points of ®. Solving ¢*(z) = z1, or more precisely, the
equation

p(z) — z1p(2) =0,
confirms that these are all the fixed points of ®.

We now iterate ®. We visualize the action of the iterates by viewing the
2-torus as [—m, 7]? and applying ®" to vertical lines of the form {(am,t5)} for
several choices of —1 < a < 1. Figure 1 suggests that the iterates converge
as n grows. Using induction, one can show that, for n =1,2,.. .,

n 22129 — 21 — (2" — 1) 29
(a1 22) = <_ 2 — (20 — 1()21 — zi ’Z2) '
Hence, for all (21, 29) € D2\ {2 = 1}, we have

D" (21, 29) — (22,22) as n — oo.
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This means that each point on the diagonal is attractive on its corresponding
horizontal fiber, while points on {z; = 1} are repelling fixed points. The
special fiber {z, = 1} is immediately collapsed into (1,1) by ®, explaining
the pinched appearance of the images.

The special role the lines {z; = 1} and {2, = 1} play here is related to
the fact that they are the level sets of ¢ corresponding to the non-tangential
value A = 1, which is attained at the singularity of ¢ at (1, 1) (see [9]). This
will be discussed in detail below.

-1 -1

| | [/

(a) Vertical lines. (b) @™ for n = 1.

.

(c) @" for n =2 (d) @™ for n = 5.

FIGURE 2. Iteration of ® = (—322=21—22-1 ", op T2,

3—21—22—2122
Example 2.2. Our next example is
3 —21—2—1
Bz, ) = ( 2129 — 21 — Zo 22) ‘

32 — 2y — 212
The first component map ¢ = —g again has a unique singularity on T2
at the point (1, 1), with ¢*(1,1) = 1, and since ®(z1,1) = (1,1), the fiber
{z3 = 1} collapses. The fixed points of ® on the 2-torus are determined by

p—z1p =0, and since p — 21p = — (21 — 1)?(29 + 1), the fixed points consist
of {z1 =1} U {2y = —1}, a union of two lines.
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Since ¢(z1, —1) = 21, we obtain ®(z1, —1) = (21, —1), confirming that all
the points on {z; = —1} are fixed. By contrast, all other fibers contain a
single fixed point at (1, 29). The dynamics of ® are shown in Figure 2: we
see that when ¢, > 0, points are attracted to the t,-axis from the right, and
when t5 < 0, the fibers are attracted to the axis from the left. A concrete
formula for lim,, ., ® is not readily apparent, but a computation shows that

¢ (22 — 1)2

_ =4
(217 ZQ) (3 — 21 — k2 — 2122)

321

hence g—i(l, z9) = 1. As we will see later, this confirms that the fixed points

27

on {(1,¢{2)} are neither attractive nor repelling in this example: they are

so-called parabolic fixed points.

These two examples give an indication of the features (the presence of
a collapsing fiber, fixed point curves being smooth, convergence to fixed
points) present the general (1,n) RISP setting. However, other phenomena

do arise, and mixed behavior is possible, as the next example shows.
Example 2.3. The bidegree (1,1) RISP

D (21, 29) = (
has ®(1,1) = (1,1) so that (1,1) is again a fixed point, but in this example,

¢1(21) = ¢(21, 1) = 2 — 1

2—21

32122 — 21 — %9
y 22
3 — 21 — %9

?

which is non-constant, meaning that {2 = 1} does not collapse into a point
under ®. In fact, the component ¢ does not have a singularity at (1,1) or,
indeed, at any point of T?. Instead, the points (1,1) and (—1,1) are fixed
by @, and since ¢} (1) = 3 and ¢} (—1) = g, the fixed point (1, 1) is repelling
while (—1,1) is attracting.

We can determine all the fixed points of ® on T? by solving p(z) —
z1p(z) = 0 for z5. We obtain
4 — 2z
dzy — 17

and we note that the right-hand side is unimodular for unimodular z;, so

R = ¢(Z1) =z

that we again get a curve of fixed points in T?. However, v is not surjec-
tive on T, meaning that there are z-fibers without fixed points; see Figure
3(d). For instance, —1 is not in the range of ¢ on T, and a computation
reveals that ¢(z;, —1) = —% satisfies ¢? = id. Thus, the fiber dynamics

associated with ®" on {z3 = —1} are those of a rational rotation of order
2. This is clearly visible when looking at the top of the images in Figure 3.
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Other fibers that do not intersect the fixed point curve experience rotations
of different orders.

&
®
~
@

s

ys

s

(c) @™ for n =5. (d) Invariant curve.

FIGURE 3. Iteration of ® = (322-21-22 -} on T2

3—z1—29

This third example has some features in common with the first two, but
the dynamics varies in nature across fibers. Together, our examples illus-
trate the three possible dynamical behaviors of a bidegree (1,n) RISP —
attracting/repelling fixed points, so-called parabolic fixed points, and rota-
tions on a zo-fiber. In the investigation below, we explore how the actions on
individual fibers fit together in a global picture of the dynamical behavior
of a bidegree (1,n) RISP on T?.

3. PRELIMINARIES

3.1. Rational inner functions on the bidisk. Recall that a RIF is of
the form

o(z) = ez 2,

p(2)
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In what follows, we shall frequently assume that our RIFs are normalized.
We take this to mean 5; = f; = 0, meaning that
¢ — eia}_j
p
for some polynomial p with no zeros in D?. We also assume that p is atoral

in the sense of [2|, meaning that p and p have no common factors. (If p is
not initially atoral, then any toral factors can be canceled with the corre-
sponding toral factors in p.)

Let us review some basic facts concerning rational inner functions on the
bidisk. By the definition of the reflection operation, any 7 € T? that is a
zero of p is a zero of p. We say that 7 € T? is a singular point of ¢ if p(7) = 0
(and hence also p(7) = 0). Next, let us recall Bézout’s theorem for C, x Co,
as discussed in |22, Section 12|. Namely, if P,Q € C[z1, 23] are polynomials
with no common factors and with deg P = (M;, N1) and deg Q = (Ms, N»),
then P and ) have M;N5 + M;N; common zeros in C,, x C,,. Applying
this result to P = p and () = p shows that any two-variable rational inner
function has at most finitely many singularities on T2.

Since ¢ is a bounded analytic function, Fatou’s theorem for polydisks
guarantees the existence of non-tangential limits of ¢: that is,

¢*(C1,G2) = £ lim P(21, 22)

D23 (z1,22)—(C1,¢2)
exists at almost every ¢ € T2 Here, Zlim,_, f(2) denotes letting z tend to
¢ € T? with |z; — (| < ¢(1 —|z]), j = 1,2, for some constant ¢ > 1. Knese
proved [22; Corollary 14.6] that if ¢ is rational inner function, then the
non-tangential limit ¢*(¢) exists and is unimodular at every point ¢ € T?.
However, if a normalized ¢ has singular points, then ¢*({) is not typically

continuous on T2. See [3, 31, 9, 10| for more background material on RIFs.

Definition 3.1. Let ® = (¢, ¢»): D* — D? be a non-constant normalized
RIM. We say that 7 € T? is a singular fived point (SF-point) of & if

e 7 € T? is a singular point of at least one of ¢; and ¢s;

e 7 is a fized point: *(1) = T.

Note that, for each denominator p, we can make sure the corresponding
component RIFs ¢; satisfy the condition ¢%(7) = 7; by a suitable choice of
unimodular factor e/ If ¢; possesses multiple singularities then we cannot
typically normalize all of them to be SF-points simultaneously.

We record a few further facts about rational inner functions. Suppose ¢
is RIF of bidegree (m,n). For a fixed (» € T, the function

¢C2: z = ¢(zla CQ)
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is a bounded rational function in the unit disk, attaining unimodular bound-
ary values at every point of T. Hence ¢¢, is constant, a monomial, or a finite
Blaschke product of degree 1 < d < m. Returning to the setting of a RISP
® = (¢, z9), we note that if A is a constant, & maps the set

(3.1) Fy={(21,2) €D%: 2 = A}

into itself. The set F) is referred to as a fiber. On each F), the first component
¢, is generically a finite Blaschke product of degree m but on certain fibers

the degree may drop. The most extreme examples are the following.

Definition 3.2. Let & = (¢, 22) be a normalized RISP, and let A € T.
We say that F) is a collapsing fiber for ® if the one-variable function ¢, is

constant.

We often specialize to bidegree (1,n) RIFs. In that case, we write ¢ =

"L where
P

(3.2) p(2) = p1(22) + z1p2(22),

for some py,p2 € C[zg]. Then as a consequence p(z) = pa(z2) + 2101(22),
where each p;(z2) = 25D(1/22). Note that pi(z2) # 0 for 25 € D since p is
assumed to have no zeros in the bidisk, and in fact p;(z;) # 0 for z € D by
[22, Lemma 10.1]. Finally, for a € R, let us define the polynomial

(3.3) Qalz2) = (p1(22) — €P1(22))? + 4€"pa(22)P2(22)

which we shall later use to analyze the fixed points of the corresponding
RISP (¢, z2). Note that if ¢ has bidegree (1,n), then @, has degree at most
2n, and that Qu(22) = € 2*Qq(22).

When ¢ is a degree (1,n) RIF and (3 € T, the one-variable function ¢,
has deg(¢¢,) = 1, or is a constant and thus has a collapsing fiber F,. In this
case, we can characterize collapsing fibers using a result from [7]: reversing

the roles of z; and 2, |7, Theorem 3.3] yields the following.

Lemma 3.3. Suppose ® = (¢, z2) is a normalized bidegree (1,n) RISP.
Then F) is a collapsing fiber if and only if (11, \) € T? is a singularity of
¢ for some choice of 1. If this is the case, then after multiplication by a
unimodular factor ¢* (11, \) = 11, and (11, \) is an SF-point of .

In other words, Lemma 3.3 relates collapsing fibers of a RISP to the
level sets of its first component map ¢. In this regard, two-variable rational
inner functions exhibit better behavior than rational inner functions in D"
when n > 3. In [10, Theorem 2.8|, it is shown that for each fixed A € T, the
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unimodular level set

(3.4) Cr = {(G1, ¢2) € T p(C1, G2) — (G, G2) = 0}

consists of components that can be parametrized using analytic functions.
By contrast, unimodular level sets in higher dimensions need not even be

continuous [11].

3.2. Dynamics of Mobius transformations. Recall that the elements
of the conformal automorphism group Aut(D) of the unit disk are Mdbius

transformations of the form
a—z

m _ 1o ’
(2) =e 1—az

where o € T and a € D. Note that each M&bius transformation extends to
the closed disk D and in particular furnishes a smooth diffeomorphism of
the unit circle T.

If ¢ is a bidegree (1,n) rational inner function, then for each fixed A € T,
the analytic function z; +— ¢(z1,\) is bounded, satisfies |p(z1,\)| = 1,
and is of degree 0 or 1. Then either ¢(-, A) is a M&bius transformation for
some values of a(\) and a()\), or ¢(-, A) is constant. The latter possibility
corresponds to a collapsing fiber, and by Lemma 3.3, this occurs if only if
(¢1, M) is a singularity of ¢ for some choice of (.

In summary, for all but finitely many values

A ={X, ... N} CT,
whose number is bounded by the degree of ¢ in 25, the fiber map
21 = da(21) = (21, )

is a Mobius transformation with parameters «(A) and a(\). The functions
a()) and a()\) are continuous in any open set that does not intersect A’
Associated with A’ is the set
(3.5 () = | P
AEAP

note that this is a finite union of horizontal lines in T2

Let us recall the well-known classification of Mobius transformations
depending on their fixed points. See [5, Chapter 1] or [23, Chapter 1] for a

background discussion.
Definition 3.4. Suppose m € Aut(D) \ {id}. Then one of the following
holds:

e m is elliptic: m has one fixed point in D, and no fixed points on T

e m is parabolic: m has no fixed points in D and one fixed point on T
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e m is hyperbolic: m has no fixed points in D and two fixed points on
T.

Fixed points are classified according to the following scheme.

Definition 3.5. Suppose t € D is a fixed point of a Mbius transformation
m and define the multiplier p = w'(t). We say that

e ¢ is attracting if 0 < |p| <1

e ¢ is repelling if |p| > 1

e ¢ is indifferent if |p| = 1.
We further distinguish between rationally indifferent fized points arising
when p is a root of unity, and irrationally indifferent fixed points corre-

sponding to p unimodular but not a root of unity.

The dynamics of a M&bius transformation can be described depending
on its type in the above list. Recall that two analytic functions f,g: D — D
are conformally conjugate if there exists a conformal map n: D — D such
that

g=nofont
See [5, Chapter 2| or |23, Chapters 8-9| for general background. Note that
conjugation preserves the multiplier of a Mobius transformation at a fixed

point, leading to the following classification.

Proposition 3.6. Let m € Aut(D) \ {id}. Then the following holds:

e Ifm is elliptic, then m is conjugate to a rotation z — €z with angle
a = —ilogp, where p is the multiplier at the unique fixed point t € .

o [f m is parabolic then m has multiplier equal to 1 at its unique fized
point t € T.

o [f m hyperbolic then m has one attracting fized point t; € T with
associated multiplier p € D and one repelling fixed point to € T with

multiplier %

Proof. See, for instance, [5, Chapter 1] or [23, Chapter 1]. O

Proposition 3.6 gives us a complete description of the possible dynam-
ics of a bidegree (1,n) RISPs on each fiber F\. In the next sections, we
investigate how these dynamical properties vary along fibers.

3.3. Basic notions from complex dynamics. Our main results can be
formulated in terms of the dynamics of Md&bius transformations, as dis-
cussed in the preceding Subsection 3.2. We have included some comments

referencing the Julia set of a rational map R on the Riemann sphere, as
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well as some related notions. As these comments should be viewed as short
asides, we do not include full definitions, and refer the reader to [5, 12, 23]

for background on rational iteration.

4. RISP DYNAMICS ON THE BOUNDARY

4.1. General remarks on boundary fixed points. Consider a bidegree
(n1,n9) rational inner mapping ® = (¢1, ¢2), where ¢; = emji—j, j=12,
and where as usual each p; € C[z, 23] has no zeros in . The set of fixed
points of ® in D? consists of all z € D2 such that

@(21722) = (2’1722);

recall that ® is well-defined at each n € T? [22, Corollary 14.6].
We first record some facts about fixed points in the general case. For p;,
and p; as above, we define the auxiliary polynomials

(4.1) Pj(2) = €ip;(2) — z1pi(2),  j=1,2,
and we set
[(®) = Z(P) N Z(P,) N D2,

Then I'(®) is comprised of the fixed points of & along with all singular
points of ®. As before, we adopt the convention that at least one of these is
made into an SF-point by renormalizing the component maps ¢;, j = 1, 2.
Note that

degPlz(nl—i—l,nQ) and degpgz(nl,ng—i—l).

The polynomials P; belong to a special class of polynomials that is of-
ten singled out in function theory in polydisks. We follow [2| and use the
following definition.

Definition 4.1. We say that P € Clzy, 20 is essentially T?-symmetric if
P = ¢ P for some 3 € R.

We then have the following.

Lemma 4.2. If ® is a normalized RIM, then the associated polynomials
Py, P, defined in (4.1) are essentially T?-symmetric.

Proof. This amounts to a computation. Applying the reflection operation
(2.2) to the polynomial P; and exploiting the fact that reflection is an
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involution, we obtain

- — 1 1 1 1 1
Pi(z1, 2) = 2T 2p2e i, <_—, _—) — 2 —py ( )

Z1 Z2 Z1 Z1 Zo

= e " upi(21, 2) — D121, 20) = —e Y (—z1p1 (21, 22) + € P1 (21, 22))

= —€7ia1 Pl-
A similar computation establishes the assertion for P. O

Essentially T2-symmetric polynomials have been studied extensively, see
for instance |2, 21, 10| and the references therein. In particular, such poly-
nomials are related to determinantal representations and so-called distin-
guished varieties. We caution that the focus is often on essentially T?-
symmetric polynomials with no zeros in the bidisk, while the polynomials P;
that we encounter in this work typically do have some zeros in D?, namely
at interior fixed points of ®. As a consequence, some of the known results
from the literature (e.g. [8]) no longer apply.

In the pictures in Section 2, we observed the presence of curves of fixed
points in the 2-torus. The fixed point set of a general RIM, however, typically
consists of isolated points. This can be seen via a standard application of
Bézout’s theorem. (See [29, Section 1.3] for applications to counting the
number of fixed and periodic points in the context of iteration of rational
functions in P*.)

Lemma 4.3. Suppose ® = (¢1, ¢2) is a RIM such that the associated poly-
nomials Py and Py have no common factors. Then T'(®) is a finite set, with

cardinality bounded by 2nings + ny + ns.

Proof. Lemma 4.3 follows directly from Bézout’s theorem as discussed in

Section 3. Namely, since P; and P, have no common zeros, we have
#(Z(Pl) N Z(PQ)) = (n1 -+ ].) . (TLQ + ]_) +ng Ny = 2721”2 —+ nq + no.

This is an upper bound on the number of elements of I'(®) since some
common zeros could be located in (D2)°. O

Note that the assumption that P; and P, have no common factor is
important: if we set ¢; and ¢ both equal to the RIF in Example 2.1, then
Py and P, are both divisible by z; — 29, and the diagonal {z; = 23} is fixed
by the resulting mapping ®.

We now focus on fixed points of a RISP ® = (¢, 25), where ¢ = g, and p
has no zeros in D?. Note that for such functions, the polynomial P in (4.1)
becomes identically 0, and so Lemma 4.3 does not apply. Instead, in this
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case, we get that z € T? satisfies the single condition

(4.2) q(z) — z1p(2) =0,

and we can expect to see curves of fixed points in T?. Our goal is to inves-
tigate the nature of these fixed point curves.

We begin with a simple consequence of work in [10].

Proposition 4.4. Let ® = (210, 23), where ¢ is a normalized RIF. Then
[(®) N'T? is a union of curves, and each component of T'(®) N T? can be

parametrized by analytic functions.

The subtlety here is that ® may have singularities on T?, so that the
implicit function theorem does not apply directly.

Proof. By assumption, the first coordinate of ® can be written

[1e %1 ]5(217 2:2)
p(Z1, 22)

for some real a; and some polynomial p with no zeros on D?. Then, the

210 = z1€

fixed point condition (4.2) takes on the form

0 = mep(n) —mp(n) = ni(ep(n) — p(n)).
Since 1, # 0 for 7, € T, we get that € T? is a fixed point of @ if and
only if e*p(n) — p(n) = 0. This latter condition means that 1 belongs to

some unimodular level set of the RIF ¢. Appealing to [10, Theorem 2.8], we
arrive at the desired conclusion. U

In particular, Proposition 4.4 implies that RISPs of the particular form
(210, z2) exhibit an abundance of fixed points in the 2-torus. On each fiber,
the function z; — 21¢,(21) is a Blaschke product of degree at least 1, and
for all but finitely many values of )\, the degree is at least 2. This means that
the dynamical behavior on a A-fiber generically does not admit a description
in elementary terms.

For instance, z1¢,(z1) has a fixed point at z; = 0 for each choice of A and
this fixed point is attracting whenever z;¢, has degree at least 2. Moreover
since for generic A € T, the numerator of z;¢,(z1) has higher degree than
the denominator, the point at infinity of C, is also an attracting fixed point.
This implies |23, Chapter 7| that for generic A, the Julia set of the rational
map 210x(z1): Coo = Cy is T, the unit circle. We thus have complicated
dynamical behavior on each fiber Fy (see |5, Chapter 6] or [23, Chapter 4]),
and for all but finitely many values of A € T, the points in F\ N ['(¢) are
repelling fixed points of the rational map z1¢,(z1). Proposition 4.4 asserts
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that these repelling fixed points move in an analytic fashion in the fiber
variable A.
The following example illustrates some of the facts listed above.

Example 4.5. Consider the RISP

22129 — 21 — %9

- (—21 aa - ) |
As was noted above, the set {(0, 2,)} C D2 consists of fixed points of ®. On
the fiber zo = 1, ® reduces to the identity, and on all other F), the fiber
map z1¢,(21) has degree 2 and has attracting fixed points at 0 and co.

Solving — (22129 — 21 — 23) = 2 — z1 — 25, we find that {(1,\): A €
T\ {1}} C T? is fixed by ®, so that 1 € T is a fixed point on each Fy. A
direct computation shows that %(—zlgb)\)(l) = 3 when A # 1, confirming

O(z

~—

the presence of a repelling fixed point.
The dynamics of ® are visualized in Figure 4 and indeed have a more
complicated appearance than the examples in Section 2.

/

(b) ®™ for n = (c) @™ for n = 5.

FIGURE 4. Iteration of ® = (—z 2212=21=2 4} on T2,

2—z1—29

4.2. Rotation belts and parabolic fixed points for simple RISPs.
We return our focus to the simple case where ® = (¢, 23) and ¢ is a bide-
gree (1,n) normalized RIF, and where the fiber dynamics are completely
described by Proposition 3.6. In this case, since p and p are polynomials of
degree 1 in the first variable, (4.2) reduces to the quadratic equation

P(Zl, 22) = emﬁ(zl, 22) - le<zl7 22) = 0.

If ® has a SF-point in T? then Z(P) NT? # () but it may well happen that
Z(P)N(F\NT?) = @ for some values of A € T. With this in mind, we make
the following definition.
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Definition 4.6. Let A\, Ay € [—m, 7] and suppose A\; < Ay. We say that the
set

B()\l,)\g) =T x {eit: )\1 <t < )\2} C T2
is a rotation belt for ® = (¢, z3) if

e no point belonging to B(A1, A2) is a fixed point of ®
e cach of the sets F), N T? and F), N T? contains at least one fixed

point of ®.

The reason for our terminology here is that by Proposition 3.6, each
fiber map ¢, associated with fibers contained in B(Aq, \2) is conjugate to
a rotation. The second assumption is essentially a maximality condition.
Examples 2.1 and 2.2 illustrate that not all RISPs possess rotation belts.
Example 2.3 has a single rotation belt, but in general several rotation belts
may be present.

We now give a criterion for a degree (1,n) RISP to possess parabolic fixed
points in terms of the one-variable polynomial @,. As in (3.2) in Section 3,

we write ¢ = "2 where
p

p(2) = p1(z2) + z1p2(22),

and p(z) = Pa(z2) + 21P1(22) for a pair of one-variable polynomials pq, ps.
Recall that

Qo = (p1 — €P1)* + 4e"“pops.

We shall need the auxiliary expressions

43) U = s () — () + V()
and
(4.4) Y2 () = 2p21(z2) (Pl(zz) —€Pr(z2) — v Qa(22)> :

The functions ¢! parametrize the roots of the polynomial
Po(z) = € — z1p = €“Pa + €211 — 211 — 2112

away from the set A* = {2, € C: py(22) = 0}. Note that A> N A* = () since
p1<22) 75 0 for 2y € ﬁ

First, let us examine what happens on the set Af.

Lemma 4.7. Suppose A € Z(Q,) N (A*NT). Then ¢r(z1) = e 2.
Conversely, if ¢x(z1) = ez for some X € T, then po(\) = 0 and
A€ Z(Qn).
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Proof. By the definition of the reflection operation, pa(A) = 0 implies pa(A) =
0. Next, if also Q,(\) = 0 then (pi(\) — ep1(A))? = 0 so that pi(\) =
epy(N). But then

2’1}51()\> + 0 _ —ia

e, A) = p1(A) +0

Z1.

Conversely, suppose

mic, 21P1(A) + Pa(A)
' P1(A) + p2(N)21

for some unimodular A. Then, comparing coefficients, we get ps(\) = 0 and

as a direct consequence that po(A\) = 0. Finally, we read off that e~ = z 18;
and hence Q,(\) = 0, as claimed. O

Having seen what happens on the set A%, we now examine the behavior
of Q, on A’.

Lemma 4.8. Suppose A € A°. Then

(1) Qu(N) = 0 if and only if pr(A) + €5 (\) = 0;
(2) if Qa(N) =0 then Q, vanishes to at least order 2 at \.

Proof. We first prove (1). By completing the square, we can rewrite ), as

Qa(z2) = (p1(22) + € Pr(22))” + 4 (pa(22)P2(22) — pr(22)P1(22))-
Since A € A’ Lemma 3.3 implies that p(r,\) = p(m,A\) = 0 for some
T E "J}‘ Solving for 71, we deduce that z;&; = ngi; and then p;(A\)p1(A) —

Hence, Qo (A) = (p1(\) + €p1(N))? leading to the desired condition.
We turn to (2). Clearly, any zero of (p; + €"*p;)? occurs with even mul-

p2(z2)
p1(22)

have a zero in D?. Now, we note that
pa(e)pa(e"?) — pr(e)pi () = ™2 (Ipa(e™)* — Ipr(e™)?)

and since the expression on the right is a non-positive trigonometric poly-
2

tiplicity. Next, we note that < 1 for 2 € D, for otherwise p would

nomial, the Fejér-Riesz theorem implies that it is equal to —|r(e"2)|* for

some polynomial r, with a zero at A by the proof of (1). 0

We shall see later, in Example 5.2, that it may well happen that Q,(\) #
0 for certain A € A"

Theorem 4.9. Suppose Qn(\) = 0 for some A € T\ (A" UA*). Then 1'(N)
and *(\) coincide as an element of T, and ¢y has a parabolic fived point

at Pg(A).
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Note that ¥J, 7 = 1,2, will in general exhibit branch points at points
where @, vanishes, and so I'(®) does not in general admit a description in
terms of analytic functions near parabolic fixed points of ® in T2. This is
in contrast to the results in [10] which state that level sets of RIFs can be
parametrized in such a way at every point of T?.

Proof. Because of our assumptions, for each A € T \ (A’ U A%), the fiber
map ¢, is a Mobius transformation not of the form e”’z;. Then, by the
discussion in Section 3, ¢, either has two hyperbolic fixed points on the
unit circle, or a parabolic fixed point on T, or else an elliptic fixed point in
D with another fixed point lying in D¢. But Q. (\) = 0 with A ¢ A* implies
that 1L (\) = 2(\). Since A ¢ A®, we are in the parabolic case and then
necessarily ¥} (\) € T. O

Example 4.10. Consider the polynomials p and p in appearing in the RIF
¢ in Example 2.3 in Section 2. There, pi(22) = 3 — 29 and pa(22) = —1,
while py(22) = 323 — 1 and Pa(29) = —29. Then Q,(22) = 1623 — 2825 + 16,
and this polynomial has conjugate roots on Ajs = §(7 + V15i) € T. The
corresponding fibers F), , bound the rotation belt of ®.

Example 4.11. It may well happen that (), = 0, so that most fixed points
are parabolic. This can be seen in Example 2.2 from Section 2. In that case,
we have py(2z2) = 3—29 and pa(22) = —(1+422) as well as p1(22) = 32o—1 and
P2(22) = —(1 + z2), and if we insist on the normalized choice o = 7, then
indeed Q, is the zero polynomial. As we saw before, the set {(1,¢e"2): t, #
0,7} consists of parabolic fixed points of ®.

This example also illustrates the need to assume A ¢ A’ U A%, Namely,
$(z1,1) = 1 for A =1 € A” and ¢(z,—1) = —z for A = —1 € Af, and
neither case leads to a parabolic fixed point.

Theorem 4.12. Suppose ® is a degree (1,n) RISP with associated Q. not
tdentically zero. Then the number of rotation belts for ® is less than or equal

to

S#[(2(Qu)\ ) ).

Proof. Note that T'(®) is parametrized by the analytic functions ¥}? away
from the branch points, and that the fiber map derivative szll(b \ s continuous
off L(A”), see Lemma 4.13 below. Thus, within a rotation belt B(A;, Ay) the
composite map A — p(A\) € T is continuous. Now if a curve component of
['(®) containing elliptic fixed points were to meet T? in a hyperbolic fixed
point having [p(A)| # 1, this would force a discontinuity in the multiplier at
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A1 or \o. Hence, the boundary fiber of a rotation belt contains a parabolic
point, or is contained in t(A” U AF).

Next, we observe that neither of the boundary fibers F),, F), can be
collapsing. For if, say, F\, was collapsing, then it could contain at most
finitely many singularites (71, A1), ..., (T, A) of ¢ by Lemma 3.3. But the
collapsing of F), would imply that ® had discontinuities as A — A; in
B(\1, \9) along vertical lines {7} x T C T? for 7 # 71,..., Ty, which is
impossible. Hence, by Theorem 4.9, this implies that the fibers Fy, and F),
associated with a rotation belt B(A1, \2) contain a parabolic fixed point, or,
if A € Z(Q,) NA* and a = 0, have fiber map ¢, = 2. O

Note that deg ), < 2n, so that ), has at most 2n zeros on T counting
multiplicities. It may well happen, however, that ® has fewer than n rotation
belts if Qq(A;) = 0 for some \; € A’; see Section 5 for an example with
n = 2 and a single rotation belt. Similarly, examples show that the situation
where a rotation belt is bounded by a fiber where the fiber map is equal to
the identity can indeed arise.

Lemma 4.13. Let p(\) denote the multiplier of ¢ at a point A € D. Then
A = p(A) is an analytic function on each component of I'(¢) \ [t(Z(Q4)) N
LA U AP

Proof. Note that for each A € T \ (A” U A*), the Mobius map %gbA is non-
trivial and has no critical points. This implies that A — ﬁ@(iﬂi()\)) is
analytic off Z(Q,) and A° U A%, O

Lemma 4.13 has the following consequence for rotations belts.

Lemma 4.14. Suppose B(A1, \2) is a rotation belt for ® = (¢, z2) and that
p(A) is non-constant on (A, o). Then uncountably many ¢, are conjugate

to an irrational rotation.

Proof. By assumption —ilog(p()\)) is a non-constant smooth function taking
values in [—m, 7], and since moreover —ilog(p(A12)) = 0, the statement
follows from the intermediate value theorem. U

4.3. Hyperbolic fixed points and SF-points for simple RISPs. We
now examine the dynamical behavior of ® in the vicinity of an SF-point.

All singularities of a RISP are points of T?, and lie in collapsing fibers
by Lemma 3.3.

Lemma 4.15. Let (11, A1), ..., (Tn, Am) be SF-points of ®. Then (15, A;) €
L(®)NT? forj=1,...,m.
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The proof of Theorem 4.12 shows that a collapsing fiber cannot be con-
tained in a rotation belt B(Aj, Ag), nor can it coincide with one of the
boundary fibers F), or F),. We have already seen that SF-points can be
accessed in T? via a component of T'(®) N'T? in different ways. An SF-point
may belong to a component of I'(®) N T? consisting of parabolic points
(Example 2.2), or to one or more components of I'(®) N T? made up of
hyperbolic fixed points (Example 2.1).

Theorem 4.16. Let (1,\) € T? be an SF-point of a RISP ® with associated
polynomial (), not identically zero.

(1) If Qa(X) # 0 then (1,\) belongs to a single component of T'(®) N
T2. Moreover, this component can be parametrized by an analytic
function in some neighborhood of (T, \).

(2) If Qo(N\) = 0 then (1,A) belongs to two components of T'(®) N T=.
If Q. vanishes to even order, then each of these components can be

parametrized by an analytic function in some neighborhood of (T, \).

Proof. Ttem (1) follows from the definition of ¢/, j = 1,2, in (4.3) and (4.4)
together with the observation that points in A” cannot be elements of Af.
Let us turn to item (2). Lemma 4.8 asserts that (), vanishes to order at
least 2. If (), in fact vanishes to even order at z; = A, then the function
\/m is analytic in a neighborhood of A. Hence v/, j = 1, 2, are analytic
also. U

In other words, a pair of components of I'(®) coming together at an SF-
point generically cross transversally. In fact, examination of a wide range
of examples (see [32]) suggests that the components of I'(®) can always be
parametrized by analytic functions in a neighborhood of an SF-point, but
we have not been able to find an elementary proof.

As an example, the RISP in Example 5.2 has two SF-points, with two
hyperbolic fixed point curves meeting at one of them, and a single hyperbolic
fixed point curve passing through the other.

5. FURTHER EXAMPLES

We conclude by examining two examples with more intricate singularities
and dynamical behavior. Further examples and images can be found on the
webpage [32]. Also included on [32] are images associated with the two-
dimensional Blaschke products considered in |26, 25|, and with other types
of RIMs that are not studied in detail in this paper.
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(c) @™ forn =5 (d) T'(®) NT?. Parabolic fibers

F), , in pink.

FIGURE 5. Iteration of ® given by (5.1) on T?. (Successive
images of the vertical axis marked red)

Example 5.1. Consider the rational inner function
p(2) 42125 — 22 — 32129 — 20+ 21

(51) ¢(21,22) = — =

p(2) 4 — 2y — 3z — 2122 + 23

which features as an example in the paper [3|, and has been further studied
in [10, Section 1.3] and [7, Example 5.2 (without the minus sign in front).
Since ¢ has a single singularity at (1,1) and ¢*(1,1) = 1, the correspond-
ing RISP @ has a SF-point at (1,1). We further check that ¢(1,22) = 1,
confirming the presence of a collapsing fiber.

In this example, a = 7, and

p(2) = p1(22) + z1p2(22)
with
p1(z9) =4 — 320 + zg and  pa(z2) = —(1 + 29).

We have po(—1) = 0, and as expected ¢(z1, —1) = —z1, a rotation of order
2. A short computation shows that the associated polynomial @), is given
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FIGURE 6. Plot of |1)1?(e"2)| showing interior/exterior fixed
points coming together at parabolic fixed points.

by

(5.2) Qal22) = 25(2p — 1)? (zg - %22 + 1) :

which has a double root at A\; = 1, and two roots at Ay 3 = %(7 + 243).

Figure 5 displays the dynamics of ® on T?. We notice a single rotation
belt bounded by F), and F),, one fewer than the maximum given the degree
of Q.. Also visible are two curves containing hyperbolic fixed points with
a normal crossing at (1, 1), which is contained in the collapsing fiber. The
hyperbolic fixed points are on a pair of curves parametrized by

1
Y2 (z) = 201 2) (5 — 6z + 522 £ (—1+ 22)\/25 — 14z + 252%) :

These curves exhibit a normal crossing at (1, 1), the singularity of the RIF,
reflecting the double root of @, at (1,1). The branch point nature of the
parabolic fixed points at Ay and A3 can be observed in Figure 6 which
displays the absolute value of the functions ¥!?(e'2).

Example 5.2. We turn to a RIF with multiple singularities on T? and
multiple rotation belts. Consider the RIF ¢ = g with

(5.3) p(2) = 4+21— 212032125 +2125  and  P(2) = 421 25+25—234+320+1,

a slightly modified form of [10, Example 7.4 (see also [7, Example 5.4]).
We have p(—1,1) = 0 and p(—1, —1) = 0, and a computation shows that

¢(2z1,1) =1 and ¢(z;,—1) = —1, confirming the presence of two collapsing

fibers as guaranteed by Lemma 3.3, and so ¢ has two singularities on the

2-torus.
We read off that

pi(z) =4 and  py(zg) = 25 +325 — 2 + 1
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3k

(c) @* forn =75 (d) T'(®) NT?. Parabolic fibers
F), , in pink.

FIGURE 7. Iteration of ® given by (5.3) on T?. (Successive
images of the vertical axis marked red)

and

~—

Pi(z0) =425 and  pa(z0) = 25 — 25 + 32 + 1,

and after some simplifications (using that o = 0 here), we find that
(5.4) Qol22) = 4(20 + 1)%(25 + 1)(52; — 82 + 5).

The polynomial @, has a double root at z; = —1 (the 25-coordinate of the
SF-point at (—1,—1)), and simple roots at zp = +i and 2, = £(4 % 3i).
On the other hand Q,(1) # 0. This is reflected in the images in Figure 7:
['(®) has two components coming together at (—1, —1) € A’ with a normal
crossing, while (—1,1) € A’ is a generic point, in the sense that I'(®) does
not have a self-crossing. The simple zeros of (), correspond to parabolic
points bounding two distinct rotation belts, and these in turn lie between
two arrangements of curves with hyperbolic fixed points.
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