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Abstract. We prove that the principal pivot transform (also known
as the partial inverse, sweep operator, or exchange operator in
various contexts) maps matrices with positive imaginary part to
matrices with positive imaginary part. We show that the princi-
pal pivot transform is matrix monotone by establishing Hermitian
square representations for the imaginary part and the derivative.

1. Introduction

Suppose that A ∈Mn(C) is partitioned into the block matrix

A =
[
A11 A12
A21 A22

]
and that the block A11 is an invertible matrix. The principal pivot
transform of A is the matrix B given by

PPT(A) =
[

−A−1
11 A−1

11 A12

A21A
−1
11 A22−A21A

−1
11 A12

]
.

Applied to a linear equation Ax = y, after partitioning x, y relative to
A, the principal pivot transform has the effect of switching the places
of the first block of the unknown and the right-hand side and then
negating the first block on the right-hand side. That is,

(1.1) A [ x1
x2 ] = [ y1y2 ] if and only if PPT(A) [ y1x2 ] = [ −x1

y2 ] .

We note that some authors use a slightly different version of the princi-
pal pivot transform where the top block row is negated. The principal
pivot transform has been thoroughly studied in various guises, for ex-
ample, as the sweep operator [5, 11] and the partial inverse [13, 14].
The PPT is used in many applications (see [10, 12] for a wide list
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of references including control theory, numerical analysis, and linear
regression).

Equation 1.1 implies that

PPT(PPT(PPT(PPT(A)))) = A.

Namely, the principal pivot transform algebraically has order 4 and is
injective on its domain. Define the imaginary part of a matrix A to
be

ImA =
A− A∗

2i
,

where A∗ denotes the adjoint or conjugate transpose of A. Let A,B be
self-adjoint matrices. We say that A � B if B − A is positive semi-
definite. This ordering on matrices, the so-called Löwner ordering, is
related to majorization of eigenvalues and therefore other applications
[1].

The PPT is known to have good properties relating to positive defi-
niteness. For example, the PPT preserves P-matrices (which generalize
positive semidefinite matrices) under a proper choice of signs (see [12]
and [4, Theorem 4.4]). In [10], Poloni and Strabić show that the PPT
has a predictable effect on signature. We show that the principal pivot
transform is an automorphism of matrices with positive imaginary part.

Theorem 1.1. The following are true:

(1) Suppose A is a block 2 by 2 matrix. If ImA is positive semidef-
inite, then Im PPT(A) is positive semidefinite.

(2) Suppose A,B are self-adjoint matrices of the same size , such
that for every t ∈ [0, 1] the matrix (1−t)A11+tB11 is invertible.
If A � B, then PPT(A) � PPT(B).

Part (1) follows from Proposition 2.1. Part (2) comes integrating a
formula for the derivative of the principal pivot transform from Propo-
sition 2.2. (We give a brief proof of (2) after the proof of Proposition
2.2.) In the case where each of the blocks are square matrices, condi-
tion (1) implies condition (2) in Theorem 1.1 by the noncommutative
Löwner theorem [9, 8, 6, 7]. We note that as the principal pivot trans-
form is an automorphism of the block 2 by 2 matrix “upper half plane”,
under conjugation by a suitable Cayley transform it is conjugate to an
automorphism of block 2 by 2 matrices which was studied in [3]. Ma-
trix monotonicity is important in various contexts including MIMO
systems (see, e.g. [15, 2]).

The rather obnoxious assumption in part (2) of Theorem 1.1 that
(1− t)A11 + tB11 is invertible holds trivially if A11 and B11 are positive
definite. The monotonicity of the principal pivot transform on other
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parts of the domain when such a line segment is contained in the domain
is somewhat remarkable. When such a segment is not in the domain,
the result fails. For example, the principal pivot transform takes the
matrices

[ −1 0
0 0 ] , [ 1 0

0 0 ]

to each other, but the first is less than the second.

2. Hermitian square representations

The proof relies on the basic observation that if we can write Y =
Z∗XZ and X is positive semidefinite, then Y is also positive semidefi-
nite.

Proposition 2.1. Let A be a square block 2 by 2 matrix such that A11

is invertible.

Im PPT(A) =
[
A−1

11 −A−1
11 A12

0 I

]∗
ImA

[
A−1

11 −A−1
11 A12

0 I

]
.

Proof. Note

2i ImA =
[
A11−A∗

11 A12−A∗
21

A21−A∗
12 A22−A∗

22

]
Now,

2i ImA
[
A−1

11 −A−1
11 A12

0 I

]
=
[

I−A∗
11A

−1
11 A∗

11A
−1
11 A12−A∗

21

A21A
−1
11 −A∗

12A
−1
11 −A21A

−1
11 A12+A∗

12A
−1
11 A12+A22−A∗

22

]
.

Now considering, [
A−1

11 −A−1
11 A12

0 I

]∗
=
[

(A∗
11)

−1 0

−A∗
12(A

∗
11)

−1 I

]
,

and calculating,[
(A∗

11)
−1 0

−A∗
12(A

∗
11)

−1 I

] [
I−A∗

11A
−1
11 A∗

11A
−1
11 A12−A∗

21

A21A
−1
11 −A∗

12A
−1
11 −A21A

−1
11 A12+A∗

12A
−1
11 A12+A22−A∗

22

]
,

we get [
−A−1

11 +(A∗
11)

−1 A−1
11 A12−(A∗

11)
−1A∗

21

A21A
−1
11 −A∗

12(A
∗
11)

−1 A22−A21A
−1
11 A12−A∗

22+A∗
12(A

∗
11)

−1A∗
21

]
,

which is exactly 2i Im PPT(A). �

Proposition 2.2. Let A,H be like-sized self-adjoint square block 2 by
2 matrices such that A11 is invertible.

D PPT(A)[H] =
[
A−1

11 −A−1
11 A12

0 I

]∗
H
[
A−1

11 −A−1
11 A12

0 I

]
where D PPT(A)[H] = d

dt
PPT (A + tH)|t=0.

Thus, if H is positive semidefinite, so is D PPT(A)[H].
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Proof. Evaluate the formula from Proposition 2.1 at A(t) = A+ itH to
obtain

Im PPT(A(t)) =
[
(A

(t)
11 )

−1 −(A
(t)
11 )

−1A
(t)
12

0 I

]∗
ImA(t)

[
(A

(t)
11 )

−1 −(A
(t)
11 )

−1A
(t)
12

0 I

]
.

Dividing by t, we get

Im PPT(A(t))

t
=
[
(A

(t)
11 )

−1 −(A
(t)
11 )

−1A
(t)
12

0 I

]∗ ImA(t)

t

[
(A

(t)
11 )

−1 −(A
(t)
11 )

−1A
(t)
12

0 I

]
.

Note that
ImA(t)

t
= H,

and
Im PPT(A(t))

t
=

PPT(A + itH)− PPT(A− itH)

2it
.

By taking the limit as t goes to 0, we get

D PPT(A)[H] =
[
A−1

11 −A−1
11 A12

0 I

]∗
H
[
A−1

11 −A−1
11 A12

0 I

]
.

�

To see (2) in Theorem 1.1, assume A � B. That is, B − A is
positive semidefinite. Since (1− t)A11 + tB11 is invertible for t ∈ [0, 1],
PPT ((1− t)A + tB) is well-defined on [0, 1]. Now

PPT(B)− PPT(A) =

∫ 1

0

D PPT[A + t(B − A)][B − A] dt,

which is positive semidefinite since D PPT[A + t(B − A)][B − A] is
positive semidefinite by Proposition 2.2.
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