MONOTONICITY OF THE PRINCIPAL PIVOT
TRANSFORM

J. E. PASCOE!T AND RYAN TULLY-DOYLE?

ABSTRACT. We prove that the principal pivot transform (also known
as the partial inverse, sweep operator, or exchange operator in
various contexts) maps matrices with positive imaginary part to
matrices with positive imaginary part. We show that the princi-
pal pivot transform is matrix monotone by establishing Hermitian
square representations for the imaginary part and the derivative.

1. INTRODUCTION

Suppose that A € M, (C) is partitioned into the block matrix
Ay A
A= [ a]
and that the block Aq; is an invertible matrix. The principal pivot
transform of A is the matrix B given by

PPT(A) = [ “An - AnAn ]

A21 AT Asa— A1 AT Ara

Applied to a linear equation Az = y, after partitioning x, y relative to
A, the principal pivot transform has the effect of switching the places
of the first block of the unknown and the right-hand side and then
negating the first block on the right-hand side. That is,

(1.1) Azl =1%] if and only if PPT(A)[4]=["2"].

Y2

We note that some authors use a slightly different version of the princi-
pal pivot transform where the top block row is negated. The principal
pivot transform has been thoroughly studied in various guises, for ex-
ample, as the sweep operator [5, 11] and the partial inverse [13, 14].
The PPT is used in many applications (see [10, 12] for a wide list
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of references including control theory, numerical analysis, and linear
regression).
Equation 1.1 implies that

PPT(PPT(PPT(PPT(A)))) = A.

Namely, the principal pivot transform algebraically has order 4 and is
injective on its domain. Define the imaginary part of a matrix A to
be
A— A"
2
where A* denotes the adjoint or conjugate transpose of A. Let A, B be
self-adjoint matrices. We say that A < B if B — A is positive semi-
definite. This ordering on matrices, the so-called Léwner ordering, is
related to majorization of eigenvalues and therefore other applications

[1].

The PPT is known to have good properties relating to positive defi-
niteness. For example, the PPT preserves P-matrices (which generalize
positive semidefinite matrices) under a proper choice of signs (see [12]
and [4, Theorem 4.4]). In [10], Poloni and Strabi¢ show that the PPT
has a predictable effect on signature. We show that the principal pivot
transform is an automorphism of matrices with positive imaginary part.

ImA =

Theorem 1.1. The following are true:

(1) Suppose A is a block 2 by 2 matriz. If Tm A is positive semidef-
inite, then Im PPT(A) is positive semidefinite.

(2) Suppose A, B are self-adjoint matrices of the same size , such
that for every t € [0, 1] the matriz (1—1t)Ay; +tBy; is invertible.
If A X B, then PPT(A) < PPT(B).

Part (1) follows from Proposition 2.1. Part (2) comes integrating a
formula for the derivative of the principal pivot transform from Propo-
sition 2.2. (We give a brief proof of (2) after the proof of Proposition
2.2.) In the case where each of the blocks are square matrices, condi-
tion (1) implies condition (2) in Theorem 1.1 by the noncommutative
Lowner theorem [9, 8, 6, 7]. We note that as the principal pivot trans-
form is an automorphism of the block 2 by 2 matrix “upper half plane”,
under conjugation by a suitable Cayley transform it is conjugate to an
automorphism of block 2 by 2 matrices which was studied in [3]. Ma-
trix monotonicity is important in various contexts including MIMO
systems (see, e.g. [15, 2]).

The rather obnoxious assumption in part (2) of Theorem 1.1 that
(1 —t)Ay; +tBy; is invertible holds trivially if Aj; and By; are positive
definite. The monotonicity of the principal pivot transform on other
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parts of the domain when such a line segment is contained in the domain
is somewhat remarkable. When such a segment is not in the domain,
the result fails. For example, the principal pivot transform takes the
matrices

[% 0l [66]

to each other, but the first is less than the second.

2. HERMITIAN SQUARE REPRESENTATIONS

The proof relies on the basic observation that if we can write Y =
Z* X7 and X is positive semidefinite, then Y is also positive semidefi-
nite.

Proposition 2.1. Let A be a square block 2 by 2 matriz such that Aqq
15 wnwvertible.

Im PPT(A) = [Agf fA;}lAur m A [Agll 7A1—}1A12] ‘

Proof. Note
. | Ani—A7 A1a—A3,
2iIm A = [Azl—A*fg Aao— At
Now,
2% ImA |:A;11 —Af11A12i| — [ I_AyflAﬁl A11A1_11A12_A§1 ]
0 I Ao AL = AT AL — A2 AT Ao+ AT AT Ara+ Asa— Al

Now considering,

* . \—
ATl —AG AL | (At o
0 I —Af(Af)TH L]

and calculating,

[ (Ar)~t 0]|: I_AiklAl_ll AT1A1_11A12_A§1 ]
—AL(AT) TN T [ Ast A AL AT —An AT A+ AL A Ara+ Aga— A, |

we get
|: —A (A A A — (A7) 71 AY, i|
A2t ALY = AL (A7) T Ana—Ani A A1a = A3, +AT, (Af,) 1A |
which is exactly 2i Im PPT(A). O

Proposition 2.2. Let A, H be like-sized self-adjoint square block 2 by
2 matrices such that Ayq is invertible.

=1 -1 * -1 -1
DPPT(A)[H] = [Aél fAl}Au} 0 [Aél fAl}Alg]

where DPPT(A)[H] = L PPT(A+ tH)|i—.
Thus, if H is positive semidefinite, so is D PPT(A)[H].
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Proof. Evaluate the formula from Proposition 2.1 at A® = A4 itH to
obtain

ImPPT(A®) = [ ()" -4 7148 ] g A0 [(Ai’g)*l -~y A } .

Dividing by t, we get

t _ - t
I PPTAT) _ [t - IAD Faagy-s —cayay ]
t L 0 I ] t 0 I
Note that
ImA®
= H,
t
and

ImPPT(A®)  PPT(A+itH) — PPT(A—itH)
t B 2it
By taking the limit as ¢ goes to 0, we get

DPPT(A)[H] = [A[gf —AI;Aur H [Agf —A;;Am] _

O

To see (2) in Theorem 1.1, assume A < B. That is, B — A is
positive semidefinite. Since (1 —t)Ay; + By, is invertible for ¢ € [0, 1],
PPT((1 —t)A +tB) is well-defined on [0, 1]. Now

PPT(B) — PPT(A) = /1 DPPT[A+ (B — A)|[B — Al dt,

which is positive semidefinite since D PPT[A + t(B — A)|[B — 4] is
positive semidefinite by Proposition 2.2.
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