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ABSTRACT

The oak wilt disease caused by the invasive fungal pathogen Bretziella fagacearum is one of the greatest threats to
oak-dominated forests across the Eastern United States. Accurate detection and monitoring over large areas are
necessary for management activities to effectively mitigate and prevent the spread of oak wilt. Canopy spectral
reflectance contains both phylogenetic and physiological information across the visible near-infrared (VNIR) and
short-wave infrared (SWIR) ranges that can be used to identify diseased red oaks. We develop partial least square
discriminant analysis (PLS-DA) models using airborne hyperspectral reflectance to detect diseased canopies and
assess the importance of VNIR, SWIR, phylogeny, and physiology for oak wilt detection. We achieve high ac-
curacy through a three-step phylogenetic process in which we first distinguish oaks from other species (90%
accuracy), then red oaks from white oaks (Quercus macrocarpa) (93% accuracy), and, lastly, infected from non-
infected trees (80% accuracy). Including SWIR wavelengths increased model accuracy by ca. 20% relative to
models based on VIS-NIR wavelengths alone; using a phylogenetic approach also increased model accuracy by ca.
20% over a single-step classification. SWIR wavelengths include spectral information important in differentiating
red oaks from other species and in distinguishing diseased red oaks from healthy red oaks. We determined the
most important wavelengths to identify oak species, red oaks, and diseased red oaks. We also demonstrated that
several multispectral indices associated with physiological decline can detect differences between healthy and
diseased trees. The wavelengths in these indices also tended to be among the most important wavelengths for
disease detection within PLS-DA models, indicating a convergence of the methods. Indices were most significant
for detecting oak wilt during late August, especially those associated with canopy photosynthetic activity and
water status. Our study suggests that coupling phylogenetics, physiology, and canopy spectral reflectance pro-
vides an interdisciplinary and comprehensive approach that enables detection of forest diseases at large scales.
These results have potential for direct application by forest managers for detection to initiate actions to mitigate
the disease and prevent pathogen spread.

1. Introduction

function (Evans et al., 2010; Hulcr and Dunn, 2011). The damage caused
by invasive species can have negative consequences for ecosystem pro-
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nutrient and carbon cycling, wood and food provision, and climate
regulation (Cavender-Bares et al., 2019; Diaz et al., 2019; Waller et al.,
2020). In North American forests, invasive pathogens and pests that
infect trees have had devastating impacts over the last century due to
multiple factors, including global trade and climate change (Bergot
et al., 2004; Liebhold et al., 1995; Sturrock et al., 2011), leading to the
loss or potential loss of multiple foundational canopy species such as
American chestnut (Castanea dentata), elm and ash species (Ulmus and
Fraxinus spp.), and eastern hemlock (Tsuga canadiensis). Protecting
ecosystems from the threats of invasive species resulting from global-
ization and a changing climate is one of the most pressing challenges of
our times (Diaz et al., 2019; Liebhold et al., 1995; Waller et al., 2020).

The oak genus (Quercus) is under threat from multiple pathogens and
is of critical management interest due to its dominance in temperate
forests of the Eastern US (Johnson et al., 2019). Oaks rank among the
most diverse and important tree lineages in the United States, with 91
oak species comprising nearly 30% of biomass in US temperate forests
(Cavender-Bares, 2019). Among the pathogens affecting oaks, oak wilt
caused by the fungus Bretziella fagacearum (de Beer et al., 2017) is
considered one of the most destructive threat to oaks (Appel, 1995;
Haight et al., 2011; Wilson and Lindsey, 2005). The oak wilt fungus
spreads below-ground from diseased trees to neighboring oaks through
networks of grafted roots, thus forming centers (i.e., pockets or foci) of
diseased oaks. The pathogen is also transmitted above-ground by niti-
dulid beetles (family Nitidulidae) and oak bark beetles (Pityophthorus spp)
(Gibbs and French, 1980). Multiple species of nitidulid beetles are
attracted to spore-producing fungal mats that form on branches and
main stems of recently wilted red oaks (Gibbs and French, 1980; Juzwik
etal., 2011; Juzwik and French, 1983). On a land parcel to larger scale,
oak wilt can be most effectively controlled when oak wilt centers are
detected and appropriately treated (Juzwik et al., 2011; Koch et al.,
2010). This prevents spread or minimizes disease intensification within
a stand or the surrounding landscape. Surveys of large, forested areas to
identify suspect diseased trees are time-intensive and require expert
training. Such surveys are needed for landscape level oak wilt man-
agement efforts. Current operational surveillance of forest landscapes in
the Upper Midwest USA utilize aerial surveys conducted with fixed wing
aircraft, helicopters, and UAVs (Juzwik, 2009). Other airborne imaging
spectrometry offers potential for accurate detection of oak wilt at
landscape scales.

Canopy spectral reflectance can potentially be used to detect the
physiological decline resulting from oak wilt fungus infection, and thus
provide forest managers with a powerful tool. Airborne spectral reflec-
tance and indices derived from reflectance spectra have successfully
been used to detect other diseases and insect damage, such as Rapid
Ohia Death, Emerald Ash Borer, bark beetles, olive decline due to Xylella
fastidiosa, and both drought- and Phytophtora-induced holm oak decline
(Asner et al., 2018; Hornero et al., 2021; Lausch et al., 2013; Ogaya
et al., 2015; Pontius et al., 2008, 2005; Zarco-Tejada et al., 2018). To
date, spectral indices for oak wilt detection have only been developed
for oak seedlings (Fallon et al., 2020). Oaks respond to oak wilt infection
by forming balloon-like structures called tyloses that occlude vessels
within the xylem (Juzwik and Appel, 2016; Yadeta et al., 2013). Vessel
occlusion potentially blocks or slows the spread of the pathogen but also
reduces water transport and limits canopy physiological performance by
reducing transpiration and photosynthesis and potentially causing
photoinhibition (Fallon et al., 2020; Juzwik and Appel, 2016; Struck-
meyer et al., 1954). In red oak species, the fungus is rapidly spread
internally in the transpiration stream through large diameter spring-
wood vessels before tylose formation limits the pathogen’s spread.
However, the tyloses formed contribute to the development of wilt
symptoms. Blockage of vascular conduits by tyloses and metabolites
produced by the fungus can lead to declines in transpiration and canopy
water content as water supply to the canopy is significantly impaired.
Changes in photosynthetic activity, foliar pigment pool sizes, and water
status can be detected from canopy spectra (Hanavan et al., 2015;
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Pontius et al., 2005; Serbin et al., 2015). Changes in foliar pigments,
particularly carotenoids, chlorophyll, and those involved in the
xanthophyll cycle, have recently been shown to be early markers of
holm oak decline (Encinas-Valero et al., 2021). Fallon et al. (2020)
identified several spectral wavelengths predictive of oak wilt in green-
house seedlings that were related to leaf photosynthesis and water sta-
tus. However, spectral properties of seedlings grown and measured
under greenhouse conditions may differ significantly from adult trees
grown under natural conditions due to growing conditions (e.g., sun,
shade, humidity, and selective filtering of solar radiation by glasshouse
materials), ontogeny, canopy position, degree of canopy emergence and
other factors (Cavender-Bares et al., 2020; Fernandes et al., 2020;
Ollinger, 2011). Hence, it is important to explicitly test the extent to
which we can detect oak wilt in natural populations of adult trees using
spectral reflectance. Identification of wavelengths associated with
physiological function may enable detection of isolated trees with oak
wilt that would otherwise remain undetected until oak wilt damage is
more extensive.

Oak lineages vary in susceptibility to oak wilt. Consequently, iden-
tifying vulnerable oak subgenera is crucial to detect the disease and
prevent its spread. White oaks (Quercus section Quercus), such as Quercus
alba and Quercus macrocarpa, have narrower vessels (Cavender-Bares
and Holbrook, 2001) and may produce tyloses efficiently (Cochard and
Tyree, 1990) and in a more targeted manner in response to fungal
infection (cf. Yadeta et al., 2013). This slows the spread or compart-
mentalizes (cf. Shigo, 1984) the pathogen in infected white oak species
(Jacobi and MacDonald, 1980; Koch et al., 2010; Schoenweiss, 1959).
Thus, symptoms of oak wilt in white oaks appear as scattered wilt or as
dieback in the crown that develops over several to many years. In
contrast, red oaks (Quercus section Lobatae), such as Quercus ellipsoidalis
and Quercus rubra, have larger diameter springwood vessels and tend to
delay tylose formation in response to fungal infection, limiting their
effectiveness in halting the spread of the fungus through the vascular
system (Juzwik and Appel, 2016; Struckmeyer et al., 1954; Yadeta et al.,
2013). Thus, crown wilt symptoms in red oaks progress rapidly and lead
to tree death within the same season or early in the subsequent growing
season. The comparatively rapid mortality of red oaks, the common
occurrence of intra-specific root grafts, and their common production of
spore mats on recently wilted trees contribute to the importance of the
red oak lineage in driving disease epidemics in the landscape (Menges
and Loucks, 1984). Distinguishing red oaks from white oaks and other
species across the landscape is therefore a critical step towards large-
scale management of oak wilt. Leaf level and canopy-level modeling
approaches using spectroscopic data have previously been successful in
distinguishing these lineages in experimental systems and manipulated
forest communities (Cavender-Bares et al., 2016; Fallon et al., 2020;
Williams et al., 2020). We thus anticipate that it is possible to detect red
oaks across the landscape remotely by mapping lineage identities from
classification algorithms using airborne spectroscopic imagery. Here, we
outline a stepwise phylogenetic approach to remote sensing of oak wilt
that entails: 1) identifying trees belonging to the oak genus, 2) identi-
fying oaks belonging to the red oak section, and 3) identifying red oaks
infected with oak wilt. The phylogenetic approach consists of three
sequential steps: first, pixels are classified as either “oak” or “other
species” using an algorithm specifically trained to discriminate oaks and
filter out pixels classified as other species. Second, pixels classified as
“oak” are classified as either “red oak” or “white oak” using an algorithm
specifically trained to discriminate between red oaks and white oaks.
After filtering out pixels classified as white oaks, pixels classified as “red
oak” are classified as either “diseased” or “healthy red oak” using an
algorithm specifically trained to distinguish diseased red oaks from
healthy read oaks.

The goal of this study is to identify the optimal spectral range for
detection of oak wilt in red oak species (Q. ellipsoidalis and Q. rubra)
across landscapes, find key wavelengths indicative of oak wilt and its
host species, and identify common spectral indices that distinguish
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diseased from healthy read oaks based on physiological processes.
Specifically, we compare both full-range (visible, near-infrared, short-
wave infrared, VSWIR, 400-2500 nm) and VNIR (visible, near-infrared,
400-1000 nm) imaging spectroscopy and assess their accuracy of oak
wilt detection. While the VNIR is sensitive to photosynthetic activity and
pigments (Curran et al., 1995; Gamon and Surfus, 1999; Ustin et al.,
2009), use of the SWIR provides structural and phenotypic information
(Townsend et al., 2013) that is strongly coupled with phylogenetic in-
formation (Meireles et al., 2020a) including mesophyll integrity,
chemical composition, and canopy water content (Jacquemoud and
Ustin, 2001; Ramirez et al., 2015; Romero et al., 2012; Sims and Gamon,
2003). Then, we test the efficacy of spectral vegetation indices known to
be sensitive to physiological decline and disease response for their
ability to differentiate healthy and diseased trees (Pontius, 2014; Pon-
tius et al., 2020) (Table S1). Spectral indices can increase flexibility in
the detection approach because they use only a handful of wavelengths
and can be easily calculated across platforms as long as the same
wavelengths are present (Pontius, 2014). Spectroscopic models that
require hundreds of wavelengths can have limited applicability across
platforms when sensor measurement characteristics vary (Castaldi et al.,
2018; Crucil et al., 2019; Nouri et al., 2017).

Here, we develop statistical models for oak wilt detection at the
landscape scale using airborne spectroscopic imagery collected by two
airborne systems (AISA Eagle and AVIRIS-NG) (Gholizadeh et al., 2019;
Hamlin et al., 2010) covering different ranges of wavelengths (VNIR and
VSWIR, respectively). We coupled on-ground tree identification and
status surveys with airborne imaging spectroscopy data to assess the
capacity of airborne spectroscopy to detect oak wilt in a temperate,
mixed hardwood forest that included adult red oak populations. In doing
so, we tested the following hypotheses:

i) Canopy reflectance from airborne spectroscopic imagery can
accurately detect oak wilt infected trees in a natural forest
landscape;

ii) Detecting red oaks susceptible to oak wilt prior to diseased trees
based on spectral features specific to their phylogenetic lineage
increases oak wilt detection by removing species outside the oak
genus and red oak lineage;

iii) A broad spectral range (VNIR+SWIR) exhibits greater detection
accuracy than a narrower spectral range (VNIR only) due to
additional spectral information related to phylogenetic identity
and plant structure; and

iv) Spectral indices including wavelengths associated with photo-
synthetic activity, carotenoid, chlorophyll, and xanthophyll
pigment content, and canopy water status differentiate diseased
red oaks from healthy red oaks.

2. Methods
2.1. Study area

The study area was the University of Minnesota Cedar Creek
Ecosystem Science Reserve (CCESR) (N 45°40'21", W 93°19'94").
Located in central Minnesota at approx. 280 m above sea level, CCESR
has a continental climate with cold winters (January mean — 10 °C), hot
summers (July mean 22.2 °C), and a mean annual precipitation of 660
mm, spread fairly evenly throughout the year. The vegetation is
comprised of a mosaic of uplands dominated by oak savanna, prairie,
mixed hardwood forest, and abandoned agricultural fields, with low-
lands comprised of ash and cedar swamps, acid bogs, marshes, and sedge
meadows. Oak savanna used to be one of the dominant vegetation types
in the Cedar Creek area before the European settlement (Grigal et al.,
1974). The savannas mainly include two species within the red oak
group (Quercus section Lobatae, (Denk et al., 2017)), Q. ellipsoidalis and
Q. rubra (northern pin oak and northern red oak, respectively) and a bur
oak, Q. macrocarpa (within the white oak group, Quercus section
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Quercus). These two oak groups have different sensitivities to oak wilt,
with red oaks being more susceptible, dying within one or two years of
infection. The presence of oak wilt fungus has been documented in
central Minnesota since the 1940’s where it has led to widespread
mortality in forests not treated for the disease. At CCESR, the fungal
pathogen oak wilt has spread rapidly in the last decade, leading to
exponential increases in the number of standing dead trees as a result of
recent mortality (Pellegrini et al., 2021). The diversity of tree species
and the widespread presence of active oak wilt make CCESR well suited
to assess the capacity of airborne spectroscopy to detect oak wilt in red
oaks.

2.2. Airborne data collection and tree survey

We collected two airborne imaging spectroscopy datasets across the
whole study area on two dates in 2016. The first dataset was collected on
07/22/2016 between 9:08 am and 10:24 am local time using “CHAMP”
(the CALMIT Hyperspectral Airborne Monitoring Platform), the Uni-
versity of Nebraska — Lincoln’s (UNL) aircraft operated by UNL’s Center
for Advanced Land Management Information Technologies (CALMIT)
and equipped with a pushbroom imaging spectrometer (AISA Eagle,
Specim, Ouluy, Finland). Data were collected at an average flight altitude
of 1150 m above ground level in the northwest-southeast direction,
yielding a spatial resolution of 0.75 m. The AISA Eagle comprises 488
spectral channels covering 400-982 nm with a spectral resolution of
1.25 nm and a field of view of 37.7° under nadir viewing conditions. To
increase the signal-to-noise-ratio of the data, spectral on-chip binning
was applied. The final product had 63 bands at ca. 9 nm intervals. The
AISA Eagle images were geometrically corrected using aircraft GPS and
IMU data in Specim’s CaliGeoPRO software. Radiance data were con-
verted to reflectance using the empirical line correction (Conel et al.,
1987) on reflectance measurements collected from three calibration
tarps (white, grey and black, with approx. 5%, 10%, and 40% reflec-
tance, respectively; Odyssey, Ennis Fabrics, Edmonton, Alberta, Canada)
with a portable spectroradiometer (SVC HR-1024i, Spectra Vista Cor-
poration, Poughkeepsie, NY, USA; 350-2500 nm) simultaneous to the
overflights. SVC reflectance data were resampled to match the wave-
length of airborne data and then used in the empirical line correction
approach. The second dataset was collected using the Airborne Visible/
Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) by the
National Aeronautics and Space Administration (NASA) on 08/22/2016
starting at 03:43 PM local time at an average flight altitude of 1210 m
above ground level in the near West-East direction, yielding a spatial
resolution of 0.9 m. AVIRIS-NG comprises 432 spectral channels
covering 380-2510 nm with a spectral resolution of 5 nm and a field of
view of 36° under nadir viewing conditions. We measured the three
calibration tarps with our portable spectroradiometer (SVC HR-1024i,
Spectra Vista Corporation, Poughkeepsie, NY, USA; 350-2500 nm)
during the overflights for empirical line correction. AVIRIS-NG images
that were delivered by the NASA Jet Propulsion Laboratory (JPL) were
orthorectified and atmospherically corrected to obtain apparent surface
reflectance using a radiative transfer approach following Thompson
et al. (2015), while the AISA Eagle images were corrected using
empirical line correction. Because the aircraft images were acquired
from different platforms on different dates, with different instruments
and atmospheric correction approaches, our objective was to test the
relative capacities of each system rather than to integrate the results
from each. Specifically, absolute values from the two sensors are not
directly comparable. However, if images from each sensor are processed
consistently (see Wang et al., 2021) the results from each set of analyses
to the different datasets can be compared. While using two different
sensors simultaneously is not necessary to detect oak wilt, not all forest
managers have access to all sensor types. Testing two different sensors
allows us to find wavelengths and indices predictive of oak wilt for
multiple sensors and provides alternative tools for oak wilt
management.
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About one year after collecting airborne data, between June-August
of 2017, we tagged 423 mature trees of 12 species with no visual
symptoms of oak wilt in woodland and savanna areas (see Table S2 for a
description of the range of heights and diameters at breast height, and
the number of trees included for each species) including 47
Q. ellipsoidalis E.J. Hill (red oak section, particularly vulnerable to oak
wilt). In addition to the 423 healthy trees, we tagged 41 adult
Q. ellipsoidalis trees (total of 464 trees) with foliar symptoms charac-
teristic of oak wilt (e.g., leaf epinasty, leaf bronzing discoloration
starting from apex and lateral margins and progressing to mid-rib and
base of the leaf) (Fig. S1). If any of such symptoms were observed—-
whether a few branches or most of the crown—the tree was considered
positive for oak wilt. Note that the number of trees covered by each
flight slightly varied due to different flight paths (Table S2). Current
season crown wilt in 2017 suggested that crown wilt was present during
mid to late August 2016 when airborne spectral data were collected. We
georeferenced the canopy center of each tagged tree using a high-
precision Trimble Pro6H GPS (Trimble, Sunnyvale, CA, USA) during
the leaf-off stage the following winter 2017-2018. Finally, we geore-
ferenced additional 83 oaks (48 Q. ellipsoidalis and 35 Q. macrocarpa)
that were not included in the training or testing steps of our models (see
below). Instead, we used these oaks to further validate our models.

2.3. Canopy spectra extraction

We built a 1 m-radius circular buffer around each canopy center
using ArcGIS (version 10.6.1, ESRI, 2011) to sample fully sunlit canopy
pixels per individual tree (Table S2), which were then linked to the
respective species and oak wilt status (i.e., healthy, diseased). The
number of pixels per tree ranged from four to nine—depending on the
position of the buffer center in respect to that of the pixels within the
buffer—for both AISA Eagle and AVIRIS-NG datasets with the AISA
Eagle dataset yielding, on average, one to two more pixels per buffer due
to its smaller pixel size. We applied a segmentation method designed to
discard shaded canopy pixels and keep sunlit pixels only. For each tree,
we visually identified pixels within shaded areas and within lit areas of
the canopies and extracted their spectra. We then looked at reflectance
values near 552 nm, 671 nm, and 800 nm as in (Malenovsky et al., 2006)
to identify values corresponding to shaded and lit pixels. The lowest
values (least bright) found within lit areas (0.01, 0.01, and 0.15 for 552
nm, 671 nm, and 800 nm, respectively) were selected as threshold
values to classify pixels as shaded or sunlit. Then, we excluded pixels
with values below such thresholds from our datasets. Spectral data
processing employed the package spectrolab (Meireles et al., 2017) in R
(version 3.6.0, R Development Core Team, 2020). First, we resampled
the extracted spectral data to 410-980 nm for AISA Eagle and 410-2400
nm for AVIRIS-NG (both at 5 nm resolution to match wavelengths across
sensors within the VNIR range) to remove noisy wavelengths at the
range ends of the sensors and reduce the number of bands in the ana-
lyses. For AVIRIS-NG data only, we removed atmospheric water ab-
sorption bands between 1335 and 1430 nm and 1770-1965 nm and
corrected artifacts at the sensor overlap region around 950 nm. Finally,
for both datasets we unit vector-normalized reflectance values to reduce
illumination differences among spectra (i.e., standardize differences in
amplitude) (Feilhauer et al., 2010) while preserving differences in the
shape of spectra that are important for species classification (Meireles
etal., 2020b). After processing spectra, we calculated 21 spectral indices
commonly used in the literature related to plant photosynthetic activity
(e.g., RDVI, SIPI, SIF), water status (e.g., WBI, NDWI), and photo-
protective stress (e.g., PRI, CRI700, NPQI) (see Table S1 for full index
list). In cases where an index required a wavelength that was not a
multiple of 5 and therefore missing in our spectra, we approximated the
reflectance value of that wavelength based on the reflectance of the
neighboring wavelengths either by using the nearest wavelength if the
difference was <1 nm or otherwise by interpolation between the two
nearest wavelengths. We assessed whether vector normalization
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affected the capacity of spectral indices to detect oak wilt infected trees
and found no major differences in spectral index performance (Appendix
S1).

2.4. Statistical analyses

All statistical analyses were performed in R (version 3.6, R Devel-
opment Core Team, 2020). To assess the capacity of canopy spectral
reflectance to distinguish healthy trees from those infected with oak
wilt, we performed partial least square discriminant analyses (PLS-DAs)
(Barker and Rayens, 2003) using AISA Eagle (410-980 nm), AVIRIS-NG
VNIR (410-980 nm), AVIRIS-NG SWIR (985-2400 nm) and AVIRIS-NG
VSWIR (410-2400 nm). Performing PLS-DAs for each spectral range
allowed us to assess the importance of each range of wavelengths for
accurate detection. We treated each pixel as an observation because oak
wilt disease does not manifest uniformly across the canopy of a tree,
especially during early stages of infection. At early stages, the fungus
may have infected only a fraction of the vessels within the tree trunk.
Thus, curtailing the water supply to a few branches that become
symptomatic while others remain asymptomatic. Treating pixels -rather
than the whole tree- as observations is critical to prevent false negatives
that result from early infected trees displaying a small number of
symptomatic pixels. Thus, averaging pixels across a canopy composed of
mostly healthy pixels may hide the signal from the infected pixels and
lead to lower true positive classification rates as evidenced by the
reduced performance of whole-tree level PLS-DAs aimed at dis-
tinguishing diseased from healthy trees (Fig. S2). In all PLS-DAs, we used
ANOVA to compare models with different numbers of components and
to identify the minimal number of components that maximized Kappa, a
model performance statistic that quantifies model performance
compared to random classification (Cohen, 1960). PLS-DAs were then
run with the optimal number of components and the “Bayes” option to
account for differences in prior probability distributions among classes
(Brereton and Lloyd, 2014). The optimal number of components varied
by model and are reported in the results section.

We tested the extent to which distinguishing red oaks from other
species before oak wilt status classification improved the predictive
performance of our models by evaluating two approaches for oak wilt
detection: a modeling pipeline that did not consider species identities
(“direct” approach) and one that differentiated red oaks from other
species first (“phylogenetic” approach) (Fig. 1). Both approaches were
applied to each sensor type and spectral range. In the direct approach,
we ignored species identities and split the data within each class
(“diseased” and “other”) into 75:25 randomly sampled subsets for model
training and testing, respectively (Brereton and Lloyd, 2014; Fallon
etal., 2020). We used the caret and pls packages in R (Kuhn, 2008, Mevik
et al., 2011) to assess model performance (accuracy, sensitivity, speci-
ficity, kappa) and obtain model-predicted values for each class (Con-
galton, 2001; Fassnacht et al., 2006). The random sampling, model
training, model testing, performance assessment loop was iterated 10,
000 times to generate 10,000 different training and test subsets, classi-
fication models, and corresponding performance estimates. We assessed
overall performance of the direct approach by calculating the average
and standard deviation of the performance outputs across all iterations.

In the phylogenetic approach, we chained three distinctive PLS-DA
types to solve the oak wilt classification problem sequentially through
the steps illustrated in Fig. 1. First, we split our data into 75:25 randomly
sampled subsets and left the 25% aside to test the overall performance of
the phylogenetic approach at the end of the process (see below). Second,
we used the 75% to train three types of PLS-DAs specifically aimed to
distinguish 1) oaks from other species, 2) red oaks from white oaks, and
3) diseased red oaks from healthy red oaks. Accordingly, each model
type had a different data structure: data from all species for PLS-DAs that
distinguished oaks from other species, data belonging to the red and
white oak group only for PLS-DAs that distinguished red from white
oaks, and data including only putative red for PLS-DAs that



G. Sapes et al.
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10,000 x

75% Train
All species

25% Test

75% Train 75% Train

25% Test

100 O Models

100 R Models

75% Train
All species

25% Test

distinguished diseased from healthy red oaks. All three PLS-DA types
were performed following the same iterative approach described above
by randomly sampling a subset of the 75% of the data for training,
testing against the unused data of the subset (a 25% of the 75%), and
assessing predictive performance of each PLS-DA. The purpose of these
iterations was not to average model coefficients but rather to test how
well PLS-DA types perform on average by generating confidence in-
tervals for model performance estimates. We assessed performance of
each PLS-DA type by calculating the average and standard deviation of
the performance estimates across all iterations. We ran a total of 100
iterations for each PLS-DA type, thus obtaining 100 separate models of
each type capable of distinguishing either oaks from other species, red
oaks from white oaks, or diseased red oaks from healthy red oaks.
Finally, as an independent validation, we sequentially applied the
100 models of each PLS-DA type to the 25% of data originally set aside
through another 100 iterations. During each iteration, the 25% subset
containing all species was first split into 75:25 randomly sampled
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Fig. 1. Workflow of the direct and phylogenetic
modeling approaches used to classify diseased red
oaks. In the phylogenetic approach, data were
randomly split into 75% and 25% for model
training and testing, respectively. The training set
was used iteratively to train three sets of 100
models for distinguishing oaks from other species,
red oaks from white oaks, and diseased red oaks
from healthy red oaks. The trained models were
coupled to filter out any observations that do not
belong to the red oak group before running the
disease detection step. This filtering process was
tested using the initial 25% withheld test data.
The whole process was iterated 100 times using
different subsets of data to generate uncertainty
around the performance estimates of the model.
All classification results presented in the text uti-
lize the 25% withheld data sets. See Table S3 for
sample sizes within each step. (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article.)

75% Train

25% Test

100 D Models

Diseased

subsets (stratified by class, i.e., taxonomic grouping or health status) and
only the 75% of the data were used with the aim of generating variation
among iterations. In the first step of the phylogenetic pipeline, the
selected data—which included all species —were classified as either oak
or “other species” using the oak discrimination model. Then, the data
classified as oak were classified as either “red” or “white oak” using the
red oak discrimination model. Lastly, the data classified as red oak were
classified as either “diseased” or “healthy red oak” using the disease
discrimination model. Data classified as “other species”, “white oak”, or
“healthy red oak” were later reclassified as “other” and their predicted
classes were compared to their true identities to evaluate predictive
performance. The full phylogenetic approach was iterated 100 times to
ensure that the initial 75% split reflected all the existing variability
within the dataset. Hence, we report performance across a total of
10,000 (100 x 100) models of each type (Fig. 1, see Table S3 for sample
sizes and performance). We assessed overall performance of the phylo-
genetic approach by calculating the average and standard deviation of
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the multistep classification performance outputs across all iterations.
Additionally, we applied the oak, and red oak PLS-DA models to the
additional 83 oaks (48 Quercus ellipsoidalis and 35 Quercus macrocarpa)
that were not included in any of the training or testing steps of our
models as a second validation step.

Finally, we performed 100 direct PLS-DAs to classify the 12 domi-
nant species present in our study area to identify those potentially
causing misclassification of red oaks.

To determine which combination of wavelengths was most useful for
detection of oak wilt, we extracted wavelength importance factors from
PLS-DAs corresponding to AISA Eagle and AVIRIS-NG VSWIR and for
both direct and phylogenetic approaches using the varlmp() function in
caret (Kuhn, 2008). We focused on these four PLS-DAs because they
included the full range of wavelengths covered by each sensor with and
without considering species identity. For simplicity, we limited our se-
lection to the top 20 wavelengths with the highest average importance
across all iterations within each model. We also extracted wavelength
importance factors from AVIRIS-NG VNIR models to compare important
wavelengths with the AISA Eagle models and identify shared wave-
lengths between both sensors. Lastly, we cross-applied AISA Eagle and
AVIRIS-NG VNIR models to their respective testing datasets to assess the
extent to which models developed with one sensor can be applied to data
obtained from other sensors with similar range of wavelengths (i.e.,
sensor specificity).

To assess whether reflectance indices associated with physiology
could distinguish healthy red oaks from those infected with oak wilt, we
used ANOVA to perform pairwise comparisons between healthy and
diseased red oaks across all spectral reflectance indices and for both
AISA Eagle and AVIRIS-NG. Finally, we compared the effect sizes of
these pairwise comparisons using Cohen’s d statistic (Cohen, 1988) to
assess differences in the detectability of oak wilt between late July and
late August.

2.5. PLS-DA mapping

As proof of concept, we mapped PLS-DA model outputs for predicted
oak pixels, red oak pixels, and diseased red oak pixels across the land-
scape using an AISA Eagle flight line. We used AISA Eagle rather than
AVIRIS-NG because the lower number of wavelengths significantly
reduced the computational resources and time needed to generate the
maps. First, we resampled and vector-normalized every pixel with the
flight line using the same functions from the spectrolab package to match
the spectral data used to train and test oak, red oak, and diseased red oak
AISA Eagle PLS-DA models. For each model type (oak, red oak, and
diseased red oak), we applied the coefficients of 100 randomly chosen
model iterations of the 10,000 produced to each pixel of the resampled
and normalized flight line using the function “predict” from package car
(Fox and Weisberg, 2019). The result was 100 probability values per
pixel—and thus 100 maps—describing the probability of being an oak,
red oak, and a diseased red oak. We averaged the 100 probability values
to obtain a single map with probability values representative of the
average prediction. We then compared the mean value of the proba-
bilities of each pixel with a threshold value. The threshold value is a cut-
off probability value decided a-priori based on the risk of misclassifi-
cation that the user is willing to take. As such, the cut-off value used is
user-dependent as some users may, for instance, prefer to use higher,
more restrictive cut-off values to ensure that they do not misclassify a
healthy tree as infected and order their unnecessary removal or treat-
ment. In our case, we used a probability threshold of 0.5 to determine
pixels with high certainty of being oaks and red oaks because the PLS-DA
models for these two classes had very low classification error (see
below), and a 0.8 threshold for diseased red oaks to counter false posi-
tives resulting from the AISA model. Pixels with mean probabilities
above the threshold value were used to generate masks to select pixels of
the targeted classes. Lastly, we applied the masks to the original flight
line both seen through true colour and a combination of CMS, CI, and
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VOG2 indices in the red, green, and blue channels, respectively, to
obtain landscape maps of oaks, red oaks, and diseased red oaks. We
choose CI and CMS because they were among the highest performing
indices for AISA Eagle (see below) and their wavelengths correlate with
chlorophyll content and thus photosynthetic activity (Haboudane et al.,
2002). We choose VOG2 because it is also sensitive to plant water status
(Vogelmann et al., 1993). We decided that combining indices that
correlate with these different physiological traits that are affected by oak
wilt throughout the different stages of infection was the best way to
integrate the whole spectrum of physiological responses observed in
diseased red oaks. However, several combinations are suitable for this
purpose and, as such, our combination is just one example of many
possible ones.

3. Results

All classification accuracy results are reported for the sets of 25% of
samples withheld from the PLS-DA modeling steps, with the standard
deviation calculated across the 10,000 iterations performed. All classi-
fication results are reported in Table S3.

3.1. Tree species identities can be predicted from canopy spectral
reflectance

The tree species classification PLS-DA demonstrated that it is
possible to accurately identify most of our 12 study species from spectral
reflectance (AISA Eagle: 82.0% (+1.2%) correctly identified, AVIRIS-NG
VSWIR: 90.0% (+1.3%), Appendix S2). Models correctly classified and
differentiated white oaks (Q. macrocarpa) (AISA Eagle: 85.4% (£3.1%),
AVIRIS-NG VSWIR: 94.7% (+1.3%), Appendix S4) and red oaks
(Q. ellipsoidalis and Q. rubra) (AISA Eagle: 91.0% (£3.7%), AVIRIS-NG
VSWIR: 99.4% (+1.4%), Appendix S4). However, models classifying
the oak genus as a whole had higher accuracies (90.1% (+4.9%) and
98.6% (+2.9%) for AISA Eagle and AVIRIS-NG VSWIR, respectively,
Appendix S3) than individual species (Appendix S2), similar to results
from leaf level spectra (Cavender-Bares et al., 2016). Accordingly, the
validation steps also had higher performance when considering the oak
genus as a whole (85.7% (£+3.8%) and 94.7% (+2.5%) for AISA Eagle
and AVIRIS-NG VSWIR, respectively, Appendix S3) instead of white and
red oaks separately (average of 59.9% (+3.7%) and 85.1% (+4.7%)
across both classes for AISA Eagle and AVIRIS-NG VSWIR, respectively,
Appendix S4).

3.2. Spectral reflectance models detected diseased red oaks

Spectral reflectance models did not accurately distinguish diseased
red oaks from other trees unless red oaks were first distinguished from
other species (Table S3). In the direct approach, overall model accuracy
was significantly better than expected by chance (AISA Eagle: 58.9%
(£5.0%), components (k) = 18; AVIRIS-NG VSWIR: 68.8% (+8.5%), k
= 29, Fig. 2), but only healthy trees (true negatives) were correctly
classified with high accuracy (AISA Eagle: 98.7% (4+0.77%), AVIRIS-NG
VSWIR: 97.5% (+1.4%), indicating high model specificity). Diseased red
oaks were correctly classified (true positives) only 19.1% (+9.13%) and
40.0% (£15.5%) of the AISA Eagle and AVIRIS-NG VSWIR cases,
respectively, indicating low model sensitivity (Fig. 2). As a result,
isolating oaks and then red oaks through a stepwise phylogenetic PLS-
DA model prior to disease detection increased correct classifications
and improved the overall performance of both AISA Eagle and AVIRIS-
NG VSWIR models (AISA Eagle: 75.4% (+6.4%), k = oaks: 16, red oaks:
10, diseased red oaks: 21; AVIRIS-NG VSWIR: 84.2% (+7.7%), k = oaks:
15, red oaks: 10, diseased red oaks: 16; Appendix S3-5, Table S3). The
increase in performance was mostly due to a major increase in correct
classification (true positives) of diseased red oaks (AISA Eagle: 54.6%
(£11.5%), AVIRIS-NG VSWIR: 71.0% (+14.0%)) (Fig. 2, Appendix S5,
Table S3) resulting in increased model sensitivity compared to the direct
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Fig. 2. A stepwise phylogenetic classification approach enhanced detection of oak wilt in red oaks. Models that included both VNIR and SWIR wavelengths (AVIRIS-
NG VSWIR) showed better prediction capacity than models including VNIR only. The short-wave infrared (SWIR) range is responsible for the increased predictive
performance of AVIRIS-NG VSWIR relative to AVIRIS-NG VNIR PLS-DA models in the direct and phylogenetic modeling approaches. Blue and red circles represent
correct and incorrect classifications, respectively. The size and colour intensity of the circle represent the average percentage of classifications into each group based
on the 25% of data withheld from 10,000 model-fitting iterations, one standard deviation is shown in parentheses. Grey boxes describe the overall predictive
performance for a given approach and dataset. Red and blue circles in colored inset boxes above each phylogenetic model describe the performance of the steps
within the phylogenetic model at discriminating oaks (gold), red oaks (red), and diseased red oaks (purple), respectively. The number of components used for each
model or model step (O = oaks, R = red oaks, D = diseased) is given at the top left corner of the plot (see Appendices S3, S4, and S5 and Table S3 for detailed
performance of the phylogenetic steps). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

PLS-DA approach.

All steps within the phylogenetic PLS-DA model showed high per-
formance (Table S3). The oak detection step showed high accuracy
(AISA Eagle: 91% (+5.55%), k = 16; AVIRIS-NG VSWIR: 97% (+6.5%),
k = 15) and correctly classified oaks in 90.1% (+4.9%) and 98.6%
(£2.9%) of the AISA Eagle and AVIRIS-NG VSWIR cases, respectively
(Appendix S3). Similarly, the red oak detection step showed high ac-
curacy (AISA Eagle: 88% (+3.4%), k = 10; AVIRIS-NG VSWIR: 97%
(£1.35%), k = 10) and correctly classified red oaks in 91.0% (£3.7%)
and 99.4% (+£1.4%) of the AISA Eagle and AVIRIS-NG VSWIR cases,
respectively (Appendix S4). Finally, the diseased red oak detection step
also showed high accuracy (AISA Eagle: 84% (+3.2%), k = 21; AVIRIS-
NG VSWIR: 91% (+3.45%), k = 16) and correctly classified diseased red
oaks in 78.4% (+£3.1%) and 86.5% (+3.4%) of the AISA Eagle and
AVIRIS-NG VSWIR cases, respectively (Appendix S5). The complexity of
the model in this last step was higher in AISA Eagle (k = 21) than in
AVIRIS-NG VSWIR models (k = 16). We note, however, that models
were sensor-specific. AISA Eagle models failed to correctly distinguish
classes when challenged with AVIRIS-NG VNIR data (Table S4). Simi-
larly, AVIRIS-NG VNIR models failed to correctly distinguish classes
when challenged with AISA Eagle data (Table S4).

3.3. VNIR and SWIR ranges are both important in detecting oak wilt

AVIRIS-NG SWIR models showed slightly higher classification ac-
curacy (true positive rate) of diseased trees than AISA Eagle and AVIRIS-
NG VNIR models in both direct (AVIRIS-NG SWIR: 63.7% (£7.75%),
AISA Eagle: 58.9% (£5.0%), AVIRIS-NG VNIR: 55.6% (£5.45%)) and

phylogenetic approaches (AVIRIS-NG SWIR: 78.9% (£8.4%), AISA
Eagle: 75.4% (46.4%), AVIRIS-NG VNIR: 72.6% (£+8.65%)) (Fig. 2).
When both AVIRIS-NG VNIR and SWIR were used together, models
outperformed those using either VNIR or SWIR only. This was the case
under both direct (AVIRIS-NG VSWIR: 68.8% (+-8.45)) and phylogenetic
approaches (AVIRIS-NG VSWIR: 84.2% (+7.7)).

When differentiating oaks from other species using AISA Eagle
models, important wavelengths were clustered within the 500-560 nm,
600-620 nm, 660-690 nm, and the 970-980 nm regions of the VNIR
range (Fig. 3). From these, wavelengths located around 550 nm and 675
nm where also important in AVIRIS-NG VNIR models. However, in
AVIRIS-NG models that included both VNIR and SWIR, the importance
of these regions was outweighed by regions 1200-1300 nm, 1440 nm,
1600-1750 nm, and 2230-2400 nm within the SWIR range. When
differentiating red oaks from white oaks using AISA Eagle models, we
found important wavelengths clustered within the 400-425 nm,
700-770 nm, and 925-980 nm regions. From these, wavelengths located
at 420 nm and around 725 nm and 940 nm where also important in
AVIRIS-NG VNIR models. In AVIRIS-NG VSWIR models, the importance
of these VNIR regions remained high, but several regions within the
SWIR range showed similar degree of importance. Within the SWIR, the
important wavelengths were clustered at 1200 nm, 1440 nm, around
1490-1550 nm, and around 1700 nm. When differentiating healthy red
oaks from diseased red oaks using AISA Eagle models, important
wavelengths appeared at 725-750 nm and across the 800-980 nm re-
gion of the VNIR range. Wavelengths located around 725 nm, at 810 nm,
860, around 950 nm, and at 980 nm where also important in AVIRIS-NG
VNIR models. AVIRIS-NG VSWIR models also identified as important
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Fig. 3. The twenty most important wavelengths—based on variable importance in projection (VIP)—differed among steps discriminating oaks (gold) from other
species, red oaks (red) from white oaks, and diseased red oaks (purple) from healthy red oaks, and among models using either VNIR range (AISA Eagle) or both VNIR
and SWIR ranges (AVIRIS-NG VSWIR). Vertical lines with numbers indicate wavelengths used in spectral indices associated with photosynthetic capacity (green),
photoprotective pigment content (yellow), and water status (blue) that showed significant differences between healthy and oak wilt-infected trees. Numbers indicate
spectral indices SIPI (1), PRIM4 (2), TCARI/OSAVI (3), CMS (4), SRgrr (5), CRI700 (6), VOG2 (7), CI (8), RDVI (9), SR (10), NDWI (11), WBI (12), WBI-SWIR (13),
PRIm1 (14), CCI (15). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

wavelengths around 810 nm and 970 nm, but also identified important
wavelengths within the SWIR range such as wavelengths around 1160
nm, 1260 nm, 1600 to 1750 nm, 1975 to 2050 nm and 2350 to 2400 nm.
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Fig. 4. Spectral indices associated with
photosynthetic (green) and water status
(blue) differentiated diseased red oaks from
healthy red oaks. Indices associated with
photoprotective pigments (gold) only do so
when collected in July or when they also
include wavelengths associated with
photosynthetic capacity. Each point repre-
sents the magnitude of the difference be-
tween healthy and diseased trees—shown
by the absolute value of the Cohen’s d—for
a given index and sensor type (AISA Eagle
collected in July or AVIRIS-NG collected in
August). Effect size can be understood as
the amount of overlap between the distri-
butions of two groups. For an effect size of
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difference between them. For an effect size
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(Sullivan and Feinn, 2012). Lines represent
95% confidence intervals. Effect sizes are
significantly different from zero when their
confidence intervals do not overlap with the
red zero line. (For interpretation of the
references to colour in this figure legend,
the reader is referred to the web version of
this article.)
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where most of the important wavelengths for red oak detection were the
same than for diseased red oak detection.

3.4. Declines in photosynthetic capacity and water status signal oak wilt

Overall, spectral indices calculated from the AISA Eagle dataset
collected during July showed slightly more pronounced differences be-
tween healthy and diseased red oaks than those calculated from the
AVIRIS-NG dataset collected in August (Fig. 4). However, confidence
intervals overlapped between both sensors for all photosynthetic and
water status indices. Spectral indices associated with canopy photo-
synthetic capacity showed significant differences between healthy and
diseased red oaks for both sensors and time periods. Within the AISA
Eagle dataset, all indices associated with photosynthetic capacity were
significantly different between healthy and diseased red oaks (Table S5).
Within the AVIRIS-NG dataset, all indices associated with photosyn-
thetic capacity except NPCI were significantly different between healthy
and diseased red oaks. Most spectral indices associated with photo-
protective stress only showed significant differences between healthy
and diseased red oaks during the earliest flight (AISA Eagle). Those that
were always significant—Photochemical Reflectance Index (PRIm4) and
Carotenoid Reflectance Index (CRI700)—share wavelengths with
indices of photosynthetic capacity, such as the SR and Transformed
Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted
Vegetation Index (TCARI/OSAVI) indices. Indices associated with can-
opy water status also showed significant differences between healthy
and diseased red oaks. The effect sizes of the differences were compa-
rable to those of indices associated with photosynthetic capacity.

4. Discussion

The negative impacts of oak wilt and its rate of spread across North
American ecosystems calls for detection tools that accurately identify
trees affected by oak wilt at landscape scales (Haight et al., 2011; Hulcr
and Dunn, 2011; Juzwik et al., 2011). We show that PLS-DA models
developed from airborne spectroscopic imagery can detect oak wilt-
infected red oaks. We demonstrate an approach to identify oak wilt-
infected red oaks, which takes advantage of the physiological and
phylogenetic information embedded in their reflectance spectra (Cav-
ender-Bares et al., 2016; Meireles et al., 2020a). By first differentiating
oaks from non-oaks, and then identifying red oaks—which are highly
susceptible to rapid disease development—classification models based
on spectral reflectance data can be used to distinguish oak-wilt affected
and healthy red oaks with high accuracy. We also found that spectral
indices associated with plant photosynthesis, water status, and photo-
protective pigments are potentially sensitive to disease progression
through physiological decline. Spectral indices also provide a mecha-
nistic basis for understanding and tracking the physiological changes
that allow classification models to detect oak wilt and are consistent
with findings from other oak decline systems (Encinas-Valero et al.,
2021).

4.1. Including short wave infrared reflectance improves model accuracy

Including SWIR wavelengths in spectral reflectance models increases
oak wilt detection accuracy. We observed higher oak wilt detectability
in direct AVIRIS-NG SWIR and VSWIR than direct AISA Eagle and
AVIRIS-NG VNIR models. Direct PLS-DAs using AVIRIS-NG VNIR
showed similar performance to that of AISA Eagle VNIR models (Fig. 2).
We can therefore attribute the greater performance of direct AVIRIS-NG
VSWIR models to the addition of SWIR wavelengths. Direct AISA Eagle
models rely on many of the same wavelengths to distinguish red oaks
from white oaks and to distinguish diseased and healthy red oaks
(Fig. 3). As such, they often misclassify diseased red oaks as white oaks
(Fig. 2, Appendix S4). However, even direct models show much higher
accuracy when both VNIR and SWIR ranges are included (AVIRIS-NG

Remote Sensing of Environment 273 (2022) 112961

VSWIR). The additional information-rich SWIR wavelengths allow
models to use different wavelength regions to distinguish oaks from
other species, red oaks from white oaks, and diseased red oaks from
healthy red oaks (Fig. 2). Consequently, the critical wavelengths to
identify oaks, red oaks, and diseased red oaks overlap less, which re-
duces the chances of confusion among classes (Fig. 3 and validation
steps in Appendices S3 & 4). Most likely, including SWIR reflectance
provides temporally stable spectral features containing phylogenetic
information associated with plant structural traits (Cavender-Bares
et al., 2020; Meireles et al., 2020a) that serve to reduce misclassification
of diseased red oaks as white oaks and other species. Indeed, we find that
the SWIR wavelengths were more often represented than VNIR wave-
lengths in oak models and as represented as VNIR wavelengths in red
oak models (Fig. 3). In particular, 17 and 11 of the most important
wavelengths for identifying oaks and red oaks, respectively, fell within
the SWIR range. The SWIR was also important for distinguishing
diseased from healthy red oaks. Among the most important SWIR
wavelengths were those associated to plant water content and leaf
chemistry such as protein, sugars, lignin, and cellulose content (Asner
et al., 2018; Fourty et al., 1996). Signals in these SWIR wavelengths
agree with the physiological processes that occur in trees showing oak
wilt symptoms. Leaves first wilt and then become brown, dry, and
eventually die. During the process of wilting and drying, both leaf water
content and photosynthesis decline (Fallon et al., 2020) leading to cell
death and decay processes that affect the chemical makeup of leaves.
Accordingly, spectral indices known to respond to changes in photo-
synthetic activity, water content, and pigment pools were able to
differentiate diseased from healthy red oaks (Fig. 4, see below). Based on
our results, the SWIR range appears to contain disease-specific and
phylogenetic information highly relevant to detecting symptoms of oak
wilt and to identifying its hosts. Hence, similar to previous work
combining VNIR reflectance with SIF or thermal data (Zarco-Tejada
etal., 2018, 2016), when SWIR wavelengths are combined with VNIR in
oak wilt detection models, detection rates are maximized.

4.2. A multi-step phylogenetic approach increases accuracy

Partitioning the classification process into simple binary steps within
a phylogenetic framework reduces potential misclassification and in-
creases model accuracy. We used a hierarchical classification approach
(Allen and Walsh, 1996; Townsend et al., 2009; Wolter et al., 1995)
aimed towards distinguishing the more susceptible red oaks from white
oaks and other species that are less susceptible to oak wilt. During the
first step, phylogenetic models distinguish between oaks and other
species because the reflectance spectrum shows phylogenetic conser-
vatism among the oaks (Cavender-Bares et al., 2016; Cavender-Bares,
2019), including those infected by oak wilt. The model is not required to
distinguish between healthy and diseased conspecifics in this first step,
thus simplifying the task. Reducing the number of potential classes be-
comes increasingly important as the individuals become more phylo-
genetically related—and hence more phenotypically similar—which
makes correct classification more challenging (Meireles et al., 2020b).
Removing non-oak species significantly reduces variation in phyloge-
netically conserved regions of the spectra, allowing the model to be
trained on spectral differences that distinguish white and red oaks and
subsequently on the spectral variation that distinguishes diseased and
healthy red oaks. Because of these filtering steps, the disease detection
algorithm is highly accurate (84%; Fig. 2, appendix S5) and significantly
more accurate than a single-step, direct approach. While the phyloge-
netic approach gains complexity in terms of number of steps, each bi-
nary classification step is simple and requires few independent
components. Although each step generates classification errors that
propagate through the modeling pipeline, these errors are captured by
the overall performance metrics, indicating that the increase in accuracy
gained through the phylogenetic filtering outweighs the propagated
errors. The phylogenetic approach increases accuracy by reducing the
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number of classes to compare while inclusion of the SWIR range in-
creases accuracy by increasing the number of informative wavelengths.

While the PLS-DA models are sensor-specific (Table S4), the benefits
of implementing a stepwise phylogenetic approach or using the widest
range of wavelengths possible do seem common across hyperspectral
products. Implementing a stepwise phylogenetic approach boosted
model performance to a similar extent in models that had the same range
of wavelengths (i.e., AISA Eagle and AVIRIS-NG VNIR models). Simi-
larly, reducing the range of wavelengths in AVIRIS-NG models to the
VNIR range reduced model performance to similar values observed in
AISA Eagle models. The similar performance between datasets from
different sensors and time periods could suggest that the benefits of
adding SWIR wavelengths and a stepwise phylogenetic approach are
insensitive to sensor type or time of the year. Furthermore, despite the
sensor-specificity of the models, several wavelengths were commonly
highlighted as important across sensor types in oak, red oak, and
diseased red oak models (Fig. S3, see results section). These wavelengths
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True color
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were located around the green band and close to the red edge in case of
the oak model. In the case of the red oak and diseased red oak models,
shared wavelengths were also close to the red edge, and representative
of starch and water content (Curran, 1989).

Our results highlight that species classification is critical for
increasing model accuracy for a simple reason: if the disease is host-
specific, modeling can be more tractable by detecting potential hosts
first. Future studies should test whether phylogenetic models with
simple binary classification steps such as the one used here make disease
detection models generic enough to be applicable across different sites
and years.

4.3. Targeted spectral indices help understand physiological changes
associated with oak wilt disease

Diseased red oaks were more easily differentiated from healthy red
oaks by spectral reflectance indices associated with photosynthetic

B R:NDWI G:Cl B: WBI SWIR

i
s

B: WBI SWIR, E R:VOG2 G:CMS B:WB

G R:VOG2 G:RDVI B:WBISWIR H R:VOG2 G:Cl B: NDWI

Fig. 5. A typical oak wilt pocket observed through different combinations of spectral indices using the 2016 AVIRIS-NG data. A tree killed by oak wilt during 2015
can be observed at the center of the oak wilt pocket in true colour (red as 640 nm, green as 550 nm, and blue as 470 nm) (A). Three diseased trees stand next to it that
cannot be detected with true colour images. However, they become apparent through spectral indices associated with photosynthetic function and water status
placed (B—I) on the red (R), green (G), and blue (B) channels. Both dead and diseased trees are surrounded by an outer ring of healthy trees. See Table S1 for index
abbreviations. Several combinations are suitable for this purpose and, as such, our combinations are just some examples of many possible ones. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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activity (Carter and Knapp, 2001; Vogelmann et al., 1993; Zarco-Tejada
et al., 2002) and water status (Ceccato et al., 2001; Serrano et al., 2000;
Ullah et al., 2014) than by photoprotective pigment content indices.
Indices based on photoprotective pigment only differentiated diseased
trees from asymptomatic trees in July or when they included wave-
lengths also associated with photosynthetic activity (Figs. 3 & 4). These
results suggest that oak wilt infection in adult trees in natural ecosys-
tems first triggers changes in photoprotective pigments (similar to holm
oak decline caused by Phytopthora spp fungal infection and drought,
Encinas-Valero et al., 2021) followed by declines in photosynthetic rate,
stomatal conductance, and water content just as in greenhouse red oak
seedlings infected with oak wilt (Fallon et al., 2020). Our results uncover
an important temporal pattern in physiological decline: photoprotective
pigment content ceases to be a good predictor of oak wilt by the end of
summer. By July, indices of photoprotective pigment content showed
somewhat similar sensitivity to oak wilt than indices of photosynthetic
capacity or water status (Fig. 4). At early stages, both tylose production
(in response to infection) and plugging of vessels by metabolites of the
fungus are likely to have contributed to diminished water transport. In
turn, reduced transpiration and stomatal closure induced by reduced
water supply is expected to have caused photosynthetic decline (Fallon
et al., 2020) and abnormally increased photoprotective pigment content
to deal with light stress resulting from reduced photosynthesis. By
August, healthy trees may also have increased photoprotective pigment
content as summer drought becomes more prevalent and photosynthesis
is partially impaired. Yet, diseased trees have likely experienced greater
water deficit due to tylose formation and their photosynthetic capacity
and water status is impaired to a greater extent than drought-stressed
but uninfected trees. This would explain why photosynthetic capacity
indices still distinguished diseased and healthy red oaks and why water
status indices showed greater overall sensitivity to oak wilt than
photosynthetic activity indices by August (Fig. 4). The fact that,
photosynthetic and water status indices showed similar performance
between sensors suggests that normalized spectral indices should be
comparable and applicable across sensor types to some degree due to
their underlying mechanistic basis. The results are consistent with
experimental work indicating that photosynthesis is the first physio-
logical process to decline as stomata shut down (Fallon et al., 2020)
followed by water content as vessel occlusion develops and the fungus
damages cell walls and membranes (e.g., through pathogen-produced
toxins) leading to dehydration and tissue death (Oliva et al., 2014).
While other studies have proposed the use of machine learning algo-
rithms to identify tree species and the use of spectral indices to detect
plant diseases (Abdulridha et al., 2019; Ghosh et al., 2014; Iordache
et al.,, 2020; Pontius, 2014; Tang et al., 2021), we see potential in
coupling both. Pairing phylogenetic approaches to map oak wilt pres-
ence with photosynthetic activity and water status indices can provide
powerful tools to delineate oak wilt centers across areas of the land-
scape. The steps would entail first mapping red oaks (Fig. S4) -and
diseased red oaks if possible- and then combining spectral indices
associated with photosynthetic and water status, or indices that use oak-
wilt sensitive wavelengths to detect potential oak wilt pockets (Fig. 5).
Pockets of affected trees may show a center-outward radial gradient
with dry dead trees at the center, dehydrated and photosynthetically
impaired trees in the middle, and trees with slightly lower photosyn-
thetic capacity than expected around the edge of the pocket (i.e., early
disease development phase) (Figs. 5, S4, S5 & S5). The step of dis-
tinguishing oaks and red oaks from other species across the landscape is
highly advantageous for forest managers on its own as it allows them to
identify areas at high risk of infection in which to apply spectral indices
for further diagnostic. Hence, phylogenetic spectral models paired with
indices is a novel approach to predict the risk of disease spread based on
the abundance of red oaks across the landscape and the stage of disease
development based on physiological status, thus allowing managers to
better assess risk of spread and adjust the magnitude of their in-
terventions accordingly (Pontius and Hallett, 2014).
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5. Conclusions

Remote detection greatly enhances the ability of managers to pre-
vent the enormous ecological and economical damage caused by inva-
sive species (Juzwik, 2000; Poland et al., 2021). Airborne spectroscopic
imagery enables landscape-level detection of diseases caused by inva-
sive pathogens, like oak wilt, due to the phylogenetic and physiological
information embedded in spectral reflectance. SWIR wavelengths
increased model accuracy by enabling detection of disease-specific
hosts, a critical step in identifying forested areas vulnerable to infec-
tion. Additionally, inference of the physiological basis of oak wilt
symptom development using spectral indices associated with known
spectral features points to the potential to delineate oak wilt centers
using remote sensing products that monitor canopy photosynthetic ca-
pacity and water status such as VOG2, SIPI, SRgig, CMS, CI, RDVI, WBI,
and NDWI among others. Importantly, in our study landscape detection
was made possible by coupling airborne spectroscopic imagery with
traditional knowledge from taxonomic and disease experts and high
precision ground GPS reference data. While landscape detection of oak
wilt will facilitate the task of detecting infected trees, there is still much
work to do. Future studies should assess whether PLS-DA models will be
general enough to detect oak wilt across years and sites and whether the
physiological basis of oak wilt symptom development will be sufficient
to make accurate inferences about the presence of new oak wilt in-
fections. Further investigation of the physiological changes that
accompany disease progression using experimental approaches may also
provide the link to scale spectral detection to regional scales via
spaceborne platforms. The work done here points to the benefit of
research that might lead to an “optimal” remote sensing system
(airborne or satellite) for detecting invasive diseases. We hope that our
research motivates such work.
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