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A B S T R A C T   

The oak wilt disease caused by the invasive fungal pathogen Bretziella fagacearum is one of the greatest threats to 
oak-dominated forests across the Eastern United States. Accurate detection and monitoring over large areas are 
necessary for management activities to effectively mitigate and prevent the spread of oak wilt. Canopy spectral 
reflectance contains both phylogenetic and physiological information across the visible near-infrared (VNIR) and 
short-wave infrared (SWIR) ranges that can be used to identify diseased red oaks. We develop partial least square 
discriminant analysis (PLS-DA) models using airborne hyperspectral reflectance to detect diseased canopies and 
assess the importance of VNIR, SWIR, phylogeny, and physiology for oak wilt detection. We achieve high ac
curacy through a three-step phylogenetic process in which we first distinguish oaks from other species (90% 
accuracy), then red oaks from white oaks (Quercus macrocarpa) (93% accuracy), and, lastly, infected from non- 
infected trees (80% accuracy). Including SWIR wavelengths increased model accuracy by ca. 20% relative to 
models based on VIS-NIR wavelengths alone; using a phylogenetic approach also increased model accuracy by ca. 
20% over a single-step classification. SWIR wavelengths include spectral information important in differentiating 
red oaks from other species and in distinguishing diseased red oaks from healthy red oaks. We determined the 
most important wavelengths to identify oak species, red oaks, and diseased red oaks. We also demonstrated that 
several multispectral indices associated with physiological decline can detect differences between healthy and 
diseased trees. The wavelengths in these indices also tended to be among the most important wavelengths for 
disease detection within PLS-DA models, indicating a convergence of the methods. Indices were most significant 
for detecting oak wilt during late August, especially those associated with canopy photosynthetic activity and 
water status. Our study suggests that coupling phylogenetics, physiology, and canopy spectral reflectance pro
vides an interdisciplinary and comprehensive approach that enables detection of forest diseases at large scales. 
These results have potential for direct application by forest managers for detection to initiate actions to mitigate 
the disease and prevent pathogen spread.   

1. Introduction 

Invasive tree pathogens are a major threat to forest diversity and 

function (Evans et al., 2010; Hulcr and Dunn, 2011). The damage caused 
by invasive species can have negative consequences for ecosystem pro
cesses and services, including air and water quality maintenance, 
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nutrient and carbon cycling, wood and food provision, and climate 
regulation (Cavender-Bares et al., 2019; Díaz et al., 2019; Waller et al., 
2020). In North American forests, invasive pathogens and pests that 
infect trees have had devastating impacts over the last century due to 
multiple factors, including global trade and climate change (Bergot 
et al., 2004; Liebhold et al., 1995; Sturrock et al., 2011), leading to the 
loss or potential loss of multiple foundational canopy species such as 
American chestnut (Castanea dentata), elm and ash species (Ulmus and 
Fraxinus spp.), and eastern hemlock (Tsuga canadiensis). Protecting 
ecosystems from the threats of invasive species resulting from global
ization and a changing climate is one of the most pressing challenges of 
our times (Díaz et al., 2019; Liebhold et al., 1995; Waller et al., 2020). 

The oak genus (Quercus) is under threat from multiple pathogens and 
is of critical management interest due to its dominance in temperate 
forests of the Eastern US (Johnson et al., 2019). Oaks rank among the 
most diverse and important tree lineages in the United States, with 91 
oak species comprising nearly 30% of biomass in US temperate forests 
(Cavender-Bares, 2019). Among the pathogens affecting oaks, oak wilt 
caused by the fungus Bretziella fagacearum (de Beer et al., 2017) is 
considered one of the most destructive threat to oaks (Appel, 1995; 
Haight et al., 2011; Wilson and Lindsey, 2005). The oak wilt fungus 
spreads below-ground from diseased trees to neighboring oaks through 
networks of grafted roots, thus forming centers (i.e., pockets or foci) of 
diseased oaks. The pathogen is also transmitted above-ground by niti
dulid beetles (family Nitidulidae) and oak bark beetles (Pityophthorus spp) 
(Gibbs and French, 1980). Multiple species of nitidulid beetles are 
attracted to spore-producing fungal mats that form on branches and 
main stems of recently wilted red oaks (Gibbs and French, 1980; Juzwik 
et al., 2011; Juzwik and French, 1983). On a land parcel to larger scale, 
oak wilt can be most effectively controlled when oak wilt centers are 
detected and appropriately treated (Juzwik et al., 2011; Koch et al., 
2010). This prevents spread or minimizes disease intensification within 
a stand or the surrounding landscape. Surveys of large, forested areas to 
identify suspect diseased trees are time-intensive and require expert 
training. Such surveys are needed for landscape level oak wilt man
agement efforts. Current operational surveillance of forest landscapes in 
the Upper Midwest USA utilize aerial surveys conducted with fixed wing 
aircraft, helicopters, and UAVs (Juzwik, 2009). Other airborne imaging 
spectrometry offers potential for accurate detection of oak wilt at 
landscape scales. 

Canopy spectral reflectance can potentially be used to detect the 
physiological decline resulting from oak wilt fungus infection, and thus 
provide forest managers with a powerful tool. Airborne spectral reflec
tance and indices derived from reflectance spectra have successfully 
been used to detect other diseases and insect damage, such as Rapid 
Ohia Death, Emerald Ash Borer, bark beetles, olive decline due to Xylella 
fastidiosa, and both drought- and Phytophtora-induced holm oak decline 
(Asner et al., 2018; Hornero et al., 2021; Lausch et al., 2013; Ogaya 
et al., 2015; Pontius et al., 2008, 2005; Zarco-Tejada et al., 2018). To 
date, spectral indices for oak wilt detection have only been developed 
for oak seedlings (Fallon et al., 2020). Oaks respond to oak wilt infection 
by forming balloon-like structures called tyloses that occlude vessels 
within the xylem (Juzwik and Appel, 2016; Yadeta et al., 2013). Vessel 
occlusion potentially blocks or slows the spread of the pathogen but also 
reduces water transport and limits canopy physiological performance by 
reducing transpiration and photosynthesis and potentially causing 
photoinhibition (Fallon et al., 2020; Juzwik and Appel, 2016; Struck
meyer et al., 1954). In red oak species, the fungus is rapidly spread 
internally in the transpiration stream through large diameter spring
wood vessels before tylose formation limits the pathogen’s spread. 
However, the tyloses formed contribute to the development of wilt 
symptoms. Blockage of vascular conduits by tyloses and metabolites 
produced by the fungus can lead to declines in transpiration and canopy 
water content as water supply to the canopy is significantly impaired. 
Changes in photosynthetic activity, foliar pigment pool sizes, and water 
status can be detected from canopy spectra (Hanavan et al., 2015; 

Pontius et al., 2005; Serbin et al., 2015). Changes in foliar pigments, 
particularly carotenoids, chlorophyll, and those involved in the 
xanthophyll cycle, have recently been shown to be early markers of 
holm oak decline (Encinas-Valero et al., 2021). Fallon et al. (2020) 
identified several spectral wavelengths predictive of oak wilt in green
house seedlings that were related to leaf photosynthesis and water sta
tus. However, spectral properties of seedlings grown and measured 
under greenhouse conditions may differ significantly from adult trees 
grown under natural conditions due to growing conditions (e.g., sun, 
shade, humidity, and selective filtering of solar radiation by glasshouse 
materials), ontogeny, canopy position, degree of canopy emergence and 
other factors (Cavender-Bares et al., 2020; Fernandes et al., 2020; 
Ollinger, 2011). Hence, it is important to explicitly test the extent to 
which we can detect oak wilt in natural populations of adult trees using 
spectral reflectance. Identification of wavelengths associated with 
physiological function may enable detection of isolated trees with oak 
wilt that would otherwise remain undetected until oak wilt damage is 
more extensive. 

Oak lineages vary in susceptibility to oak wilt. Consequently, iden
tifying vulnerable oak subgenera is crucial to detect the disease and 
prevent its spread. White oaks (Quercus section Quercus), such as Quercus 
alba and Quercus macrocarpa, have narrower vessels (Cavender-Bares 
and Holbrook, 2001) and may produce tyloses efficiently (Cochard and 
Tyree, 1990) and in a more targeted manner in response to fungal 
infection (cf. Yadeta et al., 2013). This slows the spread or compart
mentalizes (cf. Shigo, 1984) the pathogen in infected white oak species 
(Jacobi and MacDonald, 1980; Koch et al., 2010; Schoenweiss, 1959). 
Thus, symptoms of oak wilt in white oaks appear as scattered wilt or as 
dieback in the crown that develops over several to many years. In 
contrast, red oaks (Quercus section Lobatae), such as Quercus ellipsoidalis 
and Quercus rubra, have larger diameter springwood vessels and tend to 
delay tylose formation in response to fungal infection, limiting their 
effectiveness in halting the spread of the fungus through the vascular 
system (Juzwik and Appel, 2016; Struckmeyer et al., 1954; Yadeta et al., 
2013). Thus, crown wilt symptoms in red oaks progress rapidly and lead 
to tree death within the same season or early in the subsequent growing 
season. The comparatively rapid mortality of red oaks, the common 
occurrence of intra-specific root grafts, and their common production of 
spore mats on recently wilted trees contribute to the importance of the 
red oak lineage in driving disease epidemics in the landscape (Menges 
and Loucks, 1984). Distinguishing red oaks from white oaks and other 
species across the landscape is therefore a critical step towards large- 
scale management of oak wilt. Leaf level and canopy-level modeling 
approaches using spectroscopic data have previously been successful in 
distinguishing these lineages in experimental systems and manipulated 
forest communities (Cavender-Bares et al., 2016; Fallon et al., 2020; 
Williams et al., 2020). We thus anticipate that it is possible to detect red 
oaks across the landscape remotely by mapping lineage identities from 
classification algorithms using airborne spectroscopic imagery. Here, we 
outline a stepwise phylogenetic approach to remote sensing of oak wilt 
that entails: 1) identifying trees belonging to the oak genus, 2) identi
fying oaks belonging to the red oak section, and 3) identifying red oaks 
infected with oak wilt. The phylogenetic approach consists of three 
sequential steps: first, pixels are classified as either “oak” or “other 
species” using an algorithm specifically trained to discriminate oaks and 
filter out pixels classified as other species. Second, pixels classified as 
“oak” are classified as either “red oak” or “white oak” using an algorithm 
specifically trained to discriminate between red oaks and white oaks. 
After filtering out pixels classified as white oaks, pixels classified as “red 
oak” are classified as either “diseased” or “healthy red oak” using an 
algorithm specifically trained to distinguish diseased red oaks from 
healthy read oaks. 

The goal of this study is to identify the optimal spectral range for 
detection of oak wilt in red oak species (Q. ellipsoidalis and Q. rubra) 
across landscapes, find key wavelengths indicative of oak wilt and its 
host species, and identify common spectral indices that distinguish 
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diseased from healthy read oaks based on physiological processes. 
Specifically, we compare both full-range (visible, near-infrared, short
wave infrared, VSWIR, 400–2500 nm) and VNIR (visible, near-infrared, 
400–1000 nm) imaging spectroscopy and assess their accuracy of oak 
wilt detection. While the VNIR is sensitive to photosynthetic activity and 
pigments (Curran et al., 1995; Gamon and Surfus, 1999; Ustin et al., 
2009), use of the SWIR provides structural and phenotypic information 
(Townsend et al., 2013) that is strongly coupled with phylogenetic in
formation (Meireles et al., 2020a) including mesophyll integrity, 
chemical composition, and canopy water content (Jacquemoud and 
Ustin, 2001; Ramirez et al., 2015; Romero et al., 2012; Sims and Gamon, 
2003). Then, we test the efficacy of spectral vegetation indices known to 
be sensitive to physiological decline and disease response for their 
ability to differentiate healthy and diseased trees (Pontius, 2014; Pon
tius et al., 2020) (Table S1). Spectral indices can increase flexibility in 
the detection approach because they use only a handful of wavelengths 
and can be easily calculated across platforms as long as the same 
wavelengths are present (Pontius, 2014). Spectroscopic models that 
require hundreds of wavelengths can have limited applicability across 
platforms when sensor measurement characteristics vary (Castaldi et al., 
2018; Crucil et al., 2019; Nouri et al., 2017). 

Here, we develop statistical models for oak wilt detection at the 
landscape scale using airborne spectroscopic imagery collected by two 
airborne systems (AISA Eagle and AVIRIS-NG) (Gholizadeh et al., 2019; 
Hamlin et al., 2010) covering different ranges of wavelengths (VNIR and 
VSWIR, respectively). We coupled on-ground tree identification and 
status surveys with airborne imaging spectroscopy data to assess the 
capacity of airborne spectroscopy to detect oak wilt in a temperate, 
mixed hardwood forest that included adult red oak populations. In doing 
so, we tested the following hypotheses:  

i) Canopy reflectance from airborne spectroscopic imagery can 
accurately detect oak wilt infected trees in a natural forest 
landscape;  

ii) Detecting red oaks susceptible to oak wilt prior to diseased trees 
based on spectral features specific to their phylogenetic lineage 
increases oak wilt detection by removing species outside the oak 
genus and red oak lineage;  

iii) A broad spectral range (VNIR+SWIR) exhibits greater detection 
accuracy than a narrower spectral range (VNIR only) due to 
additional spectral information related to phylogenetic identity 
and plant structure; and 

iv) Spectral indices including wavelengths associated with photo
synthetic activity, carotenoid, chlorophyll, and xanthophyll 
pigment content, and canopy water status differentiate diseased 
red oaks from healthy red oaks. 

2. Methods 

2.1. Study area 

The study area was the University of Minnesota Cedar Creek 
Ecosystem Science Reserve (CCESR) (N 45◦40′21′′, W 93◦19′94′′). 
Located in central Minnesota at approx. 280 m above sea level, CCESR 
has a continental climate with cold winters (January mean − 10 ◦C), hot 
summers (July mean 22.2 ◦C), and a mean annual precipitation of 660 
mm, spread fairly evenly throughout the year. The vegetation is 
comprised of a mosaic of uplands dominated by oak savanna, prairie, 
mixed hardwood forest, and abandoned agricultural fields, with low
lands comprised of ash and cedar swamps, acid bogs, marshes, and sedge 
meadows. Oak savanna used to be one of the dominant vegetation types 
in the Cedar Creek area before the European settlement (Grigal et al., 
1974). The savannas mainly include two species within the red oak 
group (Quercus section Lobatae, (Denk et al., 2017)), Q. ellipsoidalis and 
Q. rubra (northern pin oak and northern red oak, respectively) and a bur 
oak, Q. macrocarpa (within the white oak group, Quercus section 

Quercus). These two oak groups have different sensitivities to oak wilt, 
with red oaks being more susceptible, dying within one or two years of 
infection. The presence of oak wilt fungus has been documented in 
central Minnesota since the 1940’s where it has led to widespread 
mortality in forests not treated for the disease. At CCESR, the fungal 
pathogen oak wilt has spread rapidly in the last decade, leading to 
exponential increases in the number of standing dead trees as a result of 
recent mortality (Pellegrini et al., 2021). The diversity of tree species 
and the widespread presence of active oak wilt make CCESR well suited 
to assess the capacity of airborne spectroscopy to detect oak wilt in red 
oaks. 

2.2. Airborne data collection and tree survey 

We collected two airborne imaging spectroscopy datasets across the 
whole study area on two dates in 2016. The first dataset was collected on 
07/22/2016 between 9:08 am and 10:24 am local time using “CHAMP” 
(the CALMIT Hyperspectral Airborne Monitoring Platform), the Uni
versity of Nebraska – Lincoln’s (UNL) aircraft operated by UNL’s Center 
for Advanced Land Management Information Technologies (CALMIT) 
and equipped with a pushbroom imaging spectrometer (AISA Eagle, 
Specim, Oulu, Finland). Data were collected at an average flight altitude 
of 1150 m above ground level in the northwest-southeast direction, 
yielding a spatial resolution of 0.75 m. The AISA Eagle comprises 488 
spectral channels covering 400–982 nm with a spectral resolution of 
1.25 nm and a field of view of 37.7◦ under nadir viewing conditions. To 
increase the signal-to-noise-ratio of the data, spectral on-chip binning 
was applied. The final product had 63 bands at ca. 9 nm intervals. The 
AISA Eagle images were geometrically corrected using aircraft GPS and 
IMU data in Specim’s CaliGeoPRO software. Radiance data were con
verted to reflectance using the empirical line correction (Conel et al., 
1987) on reflectance measurements collected from three calibration 
tarps (white, grey and black, with approx. 5%, 10%, and 40% reflec
tance, respectively; Odyssey, Ennis Fabrics, Edmonton, Alberta, Canada) 
with a portable spectroradiometer (SVC HR-1024i, Spectra Vista Cor
poration, Poughkeepsie, NY, USA; 350–2500 nm) simultaneous to the 
overflights. SVC reflectance data were resampled to match the wave
length of airborne data and then used in the empirical line correction 
approach. The second dataset was collected using the Airborne Visible/ 
Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) by the 
National Aeronautics and Space Administration (NASA) on 08/22/2016 
starting at 03:43 PM local time at an average flight altitude of 1210 m 
above ground level in the near West-East direction, yielding a spatial 
resolution of 0.9 m. AVIRIS-NG comprises 432 spectral channels 
covering 380–2510 nm with a spectral resolution of 5 nm and a field of 
view of 36◦ under nadir viewing conditions. We measured the three 
calibration tarps with our portable spectroradiometer (SVC HR-1024i, 
Spectra Vista Corporation, Poughkeepsie, NY, USA; 350–2500 nm) 
during the overflights for empirical line correction. AVIRIS-NG images 
that were delivered by the NASA Jet Propulsion Laboratory (JPL) were 
orthorectified and atmospherically corrected to obtain apparent surface 
reflectance using a radiative transfer approach following Thompson 
et al. (2015), while the AISA Eagle images were corrected using 
empirical line correction. Because the aircraft images were acquired 
from different platforms on different dates, with different instruments 
and atmospheric correction approaches, our objective was to test the 
relative capacities of each system rather than to integrate the results 
from each. Specifically, absolute values from the two sensors are not 
directly comparable. However, if images from each sensor are processed 
consistently (see Wang et al., 2021) the results from each set of analyses 
to the different datasets can be compared. While using two different 
sensors simultaneously is not necessary to detect oak wilt, not all forest 
managers have access to all sensor types. Testing two different sensors 
allows us to find wavelengths and indices predictive of oak wilt for 
multiple sensors and provides alternative tools for oak wilt 
management. 
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About one year after collecting airborne data, between June–August 
of 2017, we tagged 423 mature trees of 12 species with no visual 
symptoms of oak wilt in woodland and savanna areas (see Table S2 for a 
description of the range of heights and diameters at breast height, and 
the number of trees included for each species) including 47 
Q. ellipsoidalis E.J. Hill (red oak section, particularly vulnerable to oak 
wilt). In addition to the 423 healthy trees, we tagged 41 adult 
Q. ellipsoidalis trees (total of 464 trees) with foliar symptoms charac
teristic of oak wilt (e.g., leaf epinasty, leaf bronzing discoloration 
starting from apex and lateral margins and progressing to mid-rib and 
base of the leaf) (Fig. S1). If any of such symptoms were observed—
whether a few branches or most of the crown—the tree was considered 
positive for oak wilt. Note that the number of trees covered by each 
flight slightly varied due to different flight paths (Table S2). Current 
season crown wilt in 2017 suggested that crown wilt was present during 
mid to late August 2016 when airborne spectral data were collected. We 
georeferenced the canopy center of each tagged tree using a high- 
precision Trimble Pro6H GPS (Trimble, Sunnyvale, CA, USA) during 
the leaf-off stage the following winter 2017–2018. Finally, we geore
ferenced additional 83 oaks (48 Q. ellipsoidalis and 35 Q. macrocarpa) 
that were not included in the training or testing steps of our models (see 
below). Instead, we used these oaks to further validate our models. 

2.3. Canopy spectra extraction 

We built a 1 m-radius circular buffer around each canopy center 
using ArcGIS (version 10.6.1, ESRI, 2011) to sample fully sunlit canopy 
pixels per individual tree (Table S2), which were then linked to the 
respective species and oak wilt status (i.e., healthy, diseased). The 
number of pixels per tree ranged from four to nine—depending on the 
position of the buffer center in respect to that of the pixels within the 
buffer—for both AISA Eagle and AVIRIS-NG datasets with the AISA 
Eagle dataset yielding, on average, one to two more pixels per buffer due 
to its smaller pixel size. We applied a segmentation method designed to 
discard shaded canopy pixels and keep sunlit pixels only. For each tree, 
we visually identified pixels within shaded areas and within lit areas of 
the canopies and extracted their spectra. We then looked at reflectance 
values near 552 nm, 671 nm, and 800 nm as in (Malenovský et al., 2006) 
to identify values corresponding to shaded and lit pixels. The lowest 
values (least bright) found within lit areas (0.01, 0.01, and 0.15 for 552 
nm, 671 nm, and 800 nm, respectively) were selected as threshold 
values to classify pixels as shaded or sunlit. Then, we excluded pixels 
with values below such thresholds from our datasets. Spectral data 
processing employed the package spectrolab (Meireles et al., 2017) in R 
(version 3.6.0, R Development Core Team, 2020). First, we resampled 
the extracted spectral data to 410–980 nm for AISA Eagle and 410–2400 
nm for AVIRIS-NG (both at 5 nm resolution to match wavelengths across 
sensors within the VNIR range) to remove noisy wavelengths at the 
range ends of the sensors and reduce the number of bands in the ana
lyses. For AVIRIS-NG data only, we removed atmospheric water ab
sorption bands between 1335 and 1430 nm and 1770–1965 nm and 
corrected artifacts at the sensor overlap region around 950 nm. Finally, 
for both datasets we unit vector-normalized reflectance values to reduce 
illumination differences among spectra (i.e., standardize differences in 
amplitude) (Feilhauer et al., 2010) while preserving differences in the 
shape of spectra that are important for species classification (Meireles 
et al., 2020b). After processing spectra, we calculated 21 spectral indices 
commonly used in the literature related to plant photosynthetic activity 
(e.g., RDVI, SIPI, SIF), water status (e.g., WBI, NDWI), and photo
protective stress (e.g., PRI, CRI700, NPQI) (see Table S1 for full index 
list). In cases where an index required a wavelength that was not a 
multiple of 5 and therefore missing in our spectra, we approximated the 
reflectance value of that wavelength based on the reflectance of the 
neighboring wavelengths either by using the nearest wavelength if the 
difference was ≤1 nm or otherwise by interpolation between the two 
nearest wavelengths. We assessed whether vector normalization 

affected the capacity of spectral indices to detect oak wilt infected trees 
and found no major differences in spectral index performance (Appendix 
S1). 

2.4. Statistical analyses 

All statistical analyses were performed in R (version 3.6, R Devel
opment Core Team, 2020). To assess the capacity of canopy spectral 
reflectance to distinguish healthy trees from those infected with oak 
wilt, we performed partial least square discriminant analyses (PLS-DAs) 
(Barker and Rayens, 2003) using AISA Eagle (410–980 nm), AVIRIS-NG 
VNIR (410–980 nm), AVIRIS-NG SWIR (985–2400 nm) and AVIRIS-NG 
VSWIR (410–2400 nm). Performing PLS-DAs for each spectral range 
allowed us to assess the importance of each range of wavelengths for 
accurate detection. We treated each pixel as an observation because oak 
wilt disease does not manifest uniformly across the canopy of a tree, 
especially during early stages of infection. At early stages, the fungus 
may have infected only a fraction of the vessels within the tree trunk. 
Thus, curtailing the water supply to a few branches that become 
symptomatic while others remain asymptomatic. Treating pixels -rather 
than the whole tree- as observations is critical to prevent false negatives 
that result from early infected trees displaying a small number of 
symptomatic pixels. Thus, averaging pixels across a canopy composed of 
mostly healthy pixels may hide the signal from the infected pixels and 
lead to lower true positive classification rates as evidenced by the 
reduced performance of whole-tree level PLS-DAs aimed at dis
tinguishing diseased from healthy trees (Fig. S2). In all PLS-DAs, we used 
ANOVA to compare models with different numbers of components and 
to identify the minimal number of components that maximized Kappa, a 
model performance statistic that quantifies model performance 
compared to random classification (Cohen, 1960). PLS-DAs were then 
run with the optimal number of components and the “Bayes” option to 
account for differences in prior probability distributions among classes 
(Brereton and Lloyd, 2014). The optimal number of components varied 
by model and are reported in the results section. 

We tested the extent to which distinguishing red oaks from other 
species before oak wilt status classification improved the predictive 
performance of our models by evaluating two approaches for oak wilt 
detection: a modeling pipeline that did not consider species identities 
(“direct” approach) and one that differentiated red oaks from other 
species first (“phylogenetic” approach) (Fig. 1). Both approaches were 
applied to each sensor type and spectral range. In the direct approach, 
we ignored species identities and split the data within each class 
(“diseased” and “other”) into 75:25 randomly sampled subsets for model 
training and testing, respectively (Brereton and Lloyd, 2014; Fallon 
et al., 2020). We used the caret and pls packages in R (Kuhn, 2008, Mevik 
et al., 2011) to assess model performance (accuracy, sensitivity, speci
ficity, kappa) and obtain model-predicted values for each class (Con
galton, 2001; Fassnacht et al., 2006). The random sampling, model 
training, model testing, performance assessment loop was iterated 10, 
000 times to generate 10,000 different training and test subsets, classi
fication models, and corresponding performance estimates. We assessed 
overall performance of the direct approach by calculating the average 
and standard deviation of the performance outputs across all iterations. 

In the phylogenetic approach, we chained three distinctive PLS-DA 
types to solve the oak wilt classification problem sequentially through 
the steps illustrated in Fig. 1. First, we split our data into 75:25 randomly 
sampled subsets and left the 25% aside to test the overall performance of 
the phylogenetic approach at the end of the process (see below). Second, 
we used the 75% to train three types of PLS-DAs specifically aimed to 
distinguish 1) oaks from other species, 2) red oaks from white oaks, and 
3) diseased red oaks from healthy red oaks. Accordingly, each model 
type had a different data structure: data from all species for PLS-DAs that 
distinguished oaks from other species, data belonging to the red and 
white oak group only for PLS-DAs that distinguished red from white 
oaks, and data including only putative red for PLS-DAs that 
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distinguished diseased from healthy red oaks. All three PLS-DA types 
were performed following the same iterative approach described above 
by randomly sampling a subset of the 75% of the data for training, 
testing against the unused data of the subset (a 25% of the 75%), and 
assessing predictive performance of each PLS-DA. The purpose of these 
iterations was not to average model coefficients but rather to test how 
well PLS-DA types perform on average by generating confidence in
tervals for model performance estimates. We assessed performance of 
each PLS-DA type by calculating the average and standard deviation of 
the performance estimates across all iterations. We ran a total of 100 
iterations for each PLS-DA type, thus obtaining 100 separate models of 
each type capable of distinguishing either oaks from other species, red 
oaks from white oaks, or diseased red oaks from healthy red oaks. 

Finally, as an independent validation, we sequentially applied the 
100 models of each PLS-DA type to the 25% of data originally set aside 
through another 100 iterations. During each iteration, the 25% subset 
containing all species was first split into 75:25 randomly sampled 

subsets (stratified by class, i.e., taxonomic grouping or health status) and 
only the 75% of the data were used with the aim of generating variation 
among iterations. In the first step of the phylogenetic pipeline, the 
selected data—which included all species —were classified as either oak 
or “other species” using the oak discrimination model. Then, the data 
classified as oak were classified as either “red” or “white oak” using the 
red oak discrimination model. Lastly, the data classified as red oak were 
classified as either “diseased” or “healthy red oak” using the disease 
discrimination model. Data classified as “other species”, “white oak”, or 
“healthy red oak” were later reclassified as “other” and their predicted 
classes were compared to their true identities to evaluate predictive 
performance. The full phylogenetic approach was iterated 100 times to 
ensure that the initial 75% split reflected all the existing variability 
within the dataset. Hence, we report performance across a total of 
10,000 (100 × 100) models of each type (Fig. 1, see Table S3 for sample 
sizes and performance). We assessed overall performance of the phylo
genetic approach by calculating the average and standard deviation of 

Fig. 1. Workflow of the direct and phylogenetic 
modeling approaches used to classify diseased red 
oaks. In the phylogenetic approach, data were 
randomly split into 75% and 25% for model 
training and testing, respectively. The training set 
was used iteratively to train three sets of 100 
models for distinguishing oaks from other species, 
red oaks from white oaks, and diseased red oaks 
from healthy red oaks. The trained models were 
coupled to filter out any observations that do not 
belong to the red oak group before running the 
disease detection step. This filtering process was 
tested using the initial 25% withheld test data. 
The whole process was iterated 100 times using 
different subsets of data to generate uncertainty 
around the performance estimates of the model. 
All classification results presented in the text uti
lize the 25% withheld data sets. See Table S3 for 
sample sizes within each step. (For interpretation 
of the references to colour in this figure legend, 
the reader is referred to the web version of this 
article.)   
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the multistep classification performance outputs across all iterations. 
Additionally, we applied the oak, and red oak PLS-DA models to the 
additional 83 oaks (48 Quercus ellipsoidalis and 35 Quercus macrocarpa) 
that were not included in any of the training or testing steps of our 
models as a second validation step. 

Finally, we performed 100 direct PLS-DAs to classify the 12 domi
nant species present in our study area to identify those potentially 
causing misclassification of red oaks. 

To determine which combination of wavelengths was most useful for 
detection of oak wilt, we extracted wavelength importance factors from 
PLS-DAs corresponding to AISA Eagle and AVIRIS-NG VSWIR and for 
both direct and phylogenetic approaches using the varImp() function in 
caret (Kuhn, 2008). We focused on these four PLS-DAs because they 
included the full range of wavelengths covered by each sensor with and 
without considering species identity. For simplicity, we limited our se
lection to the top 20 wavelengths with the highest average importance 
across all iterations within each model. We also extracted wavelength 
importance factors from AVIRIS-NG VNIR models to compare important 
wavelengths with the AISA Eagle models and identify shared wave
lengths between both sensors. Lastly, we cross-applied AISA Eagle and 
AVIRIS-NG VNIR models to their respective testing datasets to assess the 
extent to which models developed with one sensor can be applied to data 
obtained from other sensors with similar range of wavelengths (i.e., 
sensor specificity). 

To assess whether reflectance indices associated with physiology 
could distinguish healthy red oaks from those infected with oak wilt, we 
used ANOVA to perform pairwise comparisons between healthy and 
diseased red oaks across all spectral reflectance indices and for both 
AISA Eagle and AVIRIS-NG. Finally, we compared the effect sizes of 
these pairwise comparisons using Cohen’s d statistic (Cohen, 1988) to 
assess differences in the detectability of oak wilt between late July and 
late August. 

2.5. PLS-DA mapping 

As proof of concept, we mapped PLS-DA model outputs for predicted 
oak pixels, red oak pixels, and diseased red oak pixels across the land
scape using an AISA Eagle flight line. We used AISA Eagle rather than 
AVIRIS-NG because the lower number of wavelengths significantly 
reduced the computational resources and time needed to generate the 
maps. First, we resampled and vector-normalized every pixel with the 
flight line using the same functions from the spectrolab package to match 
the spectral data used to train and test oak, red oak, and diseased red oak 
AISA Eagle PLS-DA models. For each model type (oak, red oak, and 
diseased red oak), we applied the coefficients of 100 randomly chosen 
model iterations of the 10,000 produced to each pixel of the resampled 
and normalized flight line using the function “predict” from package car 
(Fox and Weisberg, 2019). The result was 100 probability values per 
pixel—and thus 100 maps—describing the probability of being an oak, 
red oak, and a diseased red oak. We averaged the 100 probability values 
to obtain a single map with probability values representative of the 
average prediction. We then compared the mean value of the proba
bilities of each pixel with a threshold value. The threshold value is a cut- 
off probability value decided a-priori based on the risk of misclassifi
cation that the user is willing to take. As such, the cut-off value used is 
user-dependent as some users may, for instance, prefer to use higher, 
more restrictive cut-off values to ensure that they do not misclassify a 
healthy tree as infected and order their unnecessary removal or treat
ment. In our case, we used a probability threshold of 0.5 to determine 
pixels with high certainty of being oaks and red oaks because the PLS-DA 
models for these two classes had very low classification error (see 
below), and a 0.8 threshold for diseased red oaks to counter false posi
tives resulting from the AISA model. Pixels with mean probabilities 
above the threshold value were used to generate masks to select pixels of 
the targeted classes. Lastly, we applied the masks to the original flight 
line both seen through true colour and a combination of CMS, CI, and 

VOG2 indices in the red, green, and blue channels, respectively, to 
obtain landscape maps of oaks, red oaks, and diseased red oaks. We 
choose CI and CMS because they were among the highest performing 
indices for AISA Eagle (see below) and their wavelengths correlate with 
chlorophyll content and thus photosynthetic activity (Haboudane et al., 
2002). We choose VOG2 because it is also sensitive to plant water status 
(Vogelmann et al., 1993). We decided that combining indices that 
correlate with these different physiological traits that are affected by oak 
wilt throughout the different stages of infection was the best way to 
integrate the whole spectrum of physiological responses observed in 
diseased red oaks. However, several combinations are suitable for this 
purpose and, as such, our combination is just one example of many 
possible ones. 

3. Results 

All classification accuracy results are reported for the sets of 25% of 
samples withheld from the PLS-DA modeling steps, with the standard 
deviation calculated across the 10,000 iterations performed. All classi
fication results are reported in Table S3. 

3.1. Tree species identities can be predicted from canopy spectral 
reflectance 

The tree species classification PLS-DA demonstrated that it is 
possible to accurately identify most of our 12 study species from spectral 
reflectance (AISA Eagle: 82.0% (±1.2%) correctly identified, AVIRIS-NG 
VSWIR: 90.0% (±1.3%), Appendix S2). Models correctly classified and 
differentiated white oaks (Q. macrocarpa) (AISA Eagle: 85.4% (±3.1%), 
AVIRIS-NG VSWIR: 94.7% (±1.3%), Appendix S4) and red oaks 
(Q. ellipsoidalis and Q. rubra) (AISA Eagle: 91.0% (±3.7%), AVIRIS-NG 
VSWIR: 99.4% (±1.4%), Appendix S4). However, models classifying 
the oak genus as a whole had higher accuracies (90.1% (±4.9%) and 
98.6% (±2.9%) for AISA Eagle and AVIRIS-NG VSWIR, respectively, 
Appendix S3) than individual species (Appendix S2), similar to results 
from leaf level spectra (Cavender-Bares et al., 2016). Accordingly, the 
validation steps also had higher performance when considering the oak 
genus as a whole (85.7% (±3.8%) and 94.7% (±2.5%) for AISA Eagle 
and AVIRIS-NG VSWIR, respectively, Appendix S3) instead of white and 
red oaks separately (average of 59.9% (±3.7%) and 85.1% (±4.7%) 
across both classes for AISA Eagle and AVIRIS-NG VSWIR, respectively, 
Appendix S4). 

3.2. Spectral reflectance models detected diseased red oaks 

Spectral reflectance models did not accurately distinguish diseased 
red oaks from other trees unless red oaks were first distinguished from 
other species (Table S3). In the direct approach, overall model accuracy 
was significantly better than expected by chance (AISA Eagle: 58.9% 
(±5.0%), components (k) = 18; AVIRIS-NG VSWIR: 68.8% (±8.5%), k 
= 29, Fig. 2), but only healthy trees (true negatives) were correctly 
classified with high accuracy (AISA Eagle: 98.7% (±0.77%), AVIRIS-NG 
VSWIR: 97.5% (±1.4%), indicating high model specificity). Diseased red 
oaks were correctly classified (true positives) only 19.1% (±9.13%) and 
40.0% (±15.5%) of the AISA Eagle and AVIRIS-NG VSWIR cases, 
respectively, indicating low model sensitivity (Fig. 2). As a result, 
isolating oaks and then red oaks through a stepwise phylogenetic PLS- 
DA model prior to disease detection increased correct classifications 
and improved the overall performance of both AISA Eagle and AVIRIS- 
NG VSWIR models (AISA Eagle: 75.4% (±6.4%), k = oaks: 16, red oaks: 
10, diseased red oaks: 21; AVIRIS-NG VSWIR: 84.2% (±7.7%), k = oaks: 
15, red oaks: 10, diseased red oaks: 16; Appendix S3–5, Table S3). The 
increase in performance was mostly due to a major increase in correct 
classification (true positives) of diseased red oaks (AISA Eagle: 54.6% 
(±11.5%), AVIRIS-NG VSWIR: 71.0% (±14.0%)) (Fig. 2, Appendix S5, 
Table S3) resulting in increased model sensitivity compared to the direct 
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PLS-DA approach. 
All steps within the phylogenetic PLS-DA model showed high per

formance (Table S3). The oak detection step showed high accuracy 
(AISA Eagle: 91% (±5.55%), k = 16; AVIRIS-NG VSWIR: 97% (±6.5%), 
k = 15) and correctly classified oaks in 90.1% (±4.9%) and 98.6% 
(±2.9%) of the AISA Eagle and AVIRIS-NG VSWIR cases, respectively 
(Appendix S3). Similarly, the red oak detection step showed high ac
curacy (AISA Eagle: 88% (±3.4%), k = 10; AVIRIS-NG VSWIR: 97% 
(±1.35%), k = 10) and correctly classified red oaks in 91.0% (±3.7%) 
and 99.4% (±1.4%) of the AISA Eagle and AVIRIS-NG VSWIR cases, 
respectively (Appendix S4). Finally, the diseased red oak detection step 
also showed high accuracy (AISA Eagle: 84% (±3.2%), k = 21; AVIRIS- 
NG VSWIR: 91% (±3.45%), k = 16) and correctly classified diseased red 
oaks in 78.4% (±3.1%) and 86.5% (±3.4%) of the AISA Eagle and 
AVIRIS-NG VSWIR cases, respectively (Appendix S5). The complexity of 
the model in this last step was higher in AISA Eagle (k = 21) than in 
AVIRIS-NG VSWIR models (k = 16). We note, however, that models 
were sensor-specific. AISA Eagle models failed to correctly distinguish 
classes when challenged with AVIRIS-NG VNIR data (Table S4). Simi
larly, AVIRIS-NG VNIR models failed to correctly distinguish classes 
when challenged with AISA Eagle data (Table S4). 

3.3. VNIR and SWIR ranges are both important in detecting oak wilt 

AVIRIS-NG SWIR models showed slightly higher classification ac
curacy (true positive rate) of diseased trees than AISA Eagle and AVIRIS- 
NG VNIR models in both direct (AVIRIS-NG SWIR: 63.7% (±7.75%), 
AISA Eagle: 58.9% (±5.0%), AVIRIS-NG VNIR: 55.6% (±5.45%)) and 

phylogenetic approaches (AVIRIS-NG SWIR: 78.9% (±8.4%), AISA 
Eagle: 75.4% (±6.4%), AVIRIS-NG VNIR: 72.6% (±8.65%)) (Fig. 2). 
When both AVIRIS-NG VNIR and SWIR were used together, models 
outperformed those using either VNIR or SWIR only. This was the case 
under both direct (AVIRIS-NG VSWIR: 68.8% (±8.45)) and phylogenetic 
approaches (AVIRIS-NG VSWIR: 84.2% (±7.7)). 

When differentiating oaks from other species using AISA Eagle 
models, important wavelengths were clustered within the 500–560 nm, 
600–620 nm, 660–690 nm, and the 970–980 nm regions of the VNIR 
range (Fig. 3). From these, wavelengths located around 550 nm and 675 
nm where also important in AVIRIS-NG VNIR models. However, in 
AVIRIS-NG models that included both VNIR and SWIR, the importance 
of these regions was outweighed by regions 1200–1300 nm, 1440 nm, 
1600–1750 nm, and 2230–2400 nm within the SWIR range. When 
differentiating red oaks from white oaks using AISA Eagle models, we 
found important wavelengths clustered within the 400–425 nm, 
700–770 nm, and 925–980 nm regions. From these, wavelengths located 
at 420 nm and around 725 nm and 940 nm where also important in 
AVIRIS-NG VNIR models. In AVIRIS-NG VSWIR models, the importance 
of these VNIR regions remained high, but several regions within the 
SWIR range showed similar degree of importance. Within the SWIR, the 
important wavelengths were clustered at 1200 nm, 1440 nm, around 
1490–1550 nm, and around 1700 nm. When differentiating healthy red 
oaks from diseased red oaks using AISA Eagle models, important 
wavelengths appeared at 725–750 nm and across the 800–980 nm re
gion of the VNIR range. Wavelengths located around 725 nm, at 810 nm, 
860, around 950 nm, and at 980 nm where also important in AVIRIS-NG 
VNIR models. AVIRIS-NG VSWIR models also identified as important 

Fig. 2. A stepwise phylogenetic classification approach enhanced detection of oak wilt in red oaks. Models that included both VNIR and SWIR wavelengths (AVIRIS- 
NG VSWIR) showed better prediction capacity than models including VNIR only. The short-wave infrared (SWIR) range is responsible for the increased predictive 
performance of AVIRIS-NG VSWIR relative to AVIRIS-NG VNIR PLS-DA models in the direct and phylogenetic modeling approaches. Blue and red circles represent 
correct and incorrect classifications, respectively. The size and colour intensity of the circle represent the average percentage of classifications into each group based 
on the 25% of data withheld from 10,000 model-fitting iterations, one standard deviation is shown in parentheses. Grey boxes describe the overall predictive 
performance for a given approach and dataset. Red and blue circles in colored inset boxes above each phylogenetic model describe the performance of the steps 
within the phylogenetic model at discriminating oaks (gold), red oaks (red), and diseased red oaks (purple), respectively. The number of components used for each 
model or model step (O = oaks, R = red oaks, D = diseased) is given at the top left corner of the plot (see Appendices S3, S4, and S5 and Table S3 for detailed 
performance of the phylogenetic steps). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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wavelengths around 810 nm and 970 nm, but also identified important 
wavelengths within the SWIR range such as wavelengths around 1160 
nm, 1260 nm, 1600 to 1750 nm, 1975 to 2050 nm and 2350 to 2400 nm. 

Most importantly, the twenty most important wavelengths for detection 
of oaks, red oaks, and diseased red oaks rarely overlapped in the AVIRIS- 
NG VSWIR models (Fig. 3). This was not the case for AISA Eagle models 
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Fig. 3. The twenty most important wavelengths—based on variable importance in projection (VIP)—differed among steps discriminating oaks (gold) from other 
species, red oaks (red) from white oaks, and diseased red oaks (purple) from healthy red oaks, and among models using either VNIR range (AISA Eagle) or both VNIR 
and SWIR ranges (AVIRIS-NG VSWIR). Vertical lines with numbers indicate wavelengths used in spectral indices associated with photosynthetic capacity (green), 
photoprotective pigment content (yellow), and water status (blue) that showed significant differences between healthy and oak wilt-infected trees. Numbers indicate 
spectral indices SIPI (1), PRIM4 (2), TCARI/OSAVI (3), CMS (4), SRSIF (5), CRI700 (6), VOG2 (7), CI (8), RDVI (9), SR (10), NDWI (11), WBI (12), WBI-SWIR (13), 
PRIm1 (14), CCI (15). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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where most of the important wavelengths for red oak detection were the 
same than for diseased red oak detection. 

3.4. Declines in photosynthetic capacity and water status signal oak wilt 

Overall, spectral indices calculated from the AISA Eagle dataset 
collected during July showed slightly more pronounced differences be
tween healthy and diseased red oaks than those calculated from the 
AVIRIS-NG dataset collected in August (Fig. 4). However, confidence 
intervals overlapped between both sensors for all photosynthetic and 
water status indices. Spectral indices associated with canopy photo
synthetic capacity showed significant differences between healthy and 
diseased red oaks for both sensors and time periods. Within the AISA 
Eagle dataset, all indices associated with photosynthetic capacity were 
significantly different between healthy and diseased red oaks (Table S5). 
Within the AVIRIS-NG dataset, all indices associated with photosyn
thetic capacity except NPCI were significantly different between healthy 
and diseased red oaks. Most spectral indices associated with photo
protective stress only showed significant differences between healthy 
and diseased red oaks during the earliest flight (AISA Eagle). Those that 
were always significant—Photochemical Reflectance Index (PRIm4) and 
Carotenoid Reflectance Index (CRI700)—share wavelengths with 
indices of photosynthetic capacity, such as the SR and Transformed 
Chlorophyll Absorption in Reflectance Index/Optimized Soil-Adjusted 
Vegetation Index (TCARI/OSAVI) indices. Indices associated with can
opy water status also showed significant differences between healthy 
and diseased red oaks. The effect sizes of the differences were compa
rable to those of indices associated with photosynthetic capacity. 

4. Discussion 

The negative impacts of oak wilt and its rate of spread across North 
American ecosystems calls for detection tools that accurately identify 
trees affected by oak wilt at landscape scales (Haight et al., 2011; Hulcr 
and Dunn, 2011; Juzwik et al., 2011). We show that PLS-DA models 
developed from airborne spectroscopic imagery can detect oak wilt- 
infected red oaks. We demonstrate an approach to identify oak wilt- 
infected red oaks, which takes advantage of the physiological and 
phylogenetic information embedded in their reflectance spectra (Cav
ender-Bares et al., 2016; Meireles et al., 2020a). By first differentiating 
oaks from non-oaks, and then identifying red oaks—which are highly 
susceptible to rapid disease development—classification models based 
on spectral reflectance data can be used to distinguish oak-wilt affected 
and healthy red oaks with high accuracy. We also found that spectral 
indices associated with plant photosynthesis, water status, and photo
protective pigments are potentially sensitive to disease progression 
through physiological decline. Spectral indices also provide a mecha
nistic basis for understanding and tracking the physiological changes 
that allow classification models to detect oak wilt and are consistent 
with findings from other oak decline systems (Encinas-Valero et al., 
2021). 

4.1. Including short wave infrared reflectance improves model accuracy 

Including SWIR wavelengths in spectral reflectance models increases 
oak wilt detection accuracy. We observed higher oak wilt detectability 
in direct AVIRIS-NG SWIR and VSWIR than direct AISA Eagle and 
AVIRIS-NG VNIR models. Direct PLS-DAs using AVIRIS-NG VNIR 
showed similar performance to that of AISA Eagle VNIR models (Fig. 2). 
We can therefore attribute the greater performance of direct AVIRIS-NG 
VSWIR models to the addition of SWIR wavelengths. Direct AISA Eagle 
models rely on many of the same wavelengths to distinguish red oaks 
from white oaks and to distinguish diseased and healthy red oaks 
(Fig. 3). As such, they often misclassify diseased red oaks as white oaks 
(Fig. 2, Appendix S4). However, even direct models show much higher 
accuracy when both VNIR and SWIR ranges are included (AVIRIS-NG 

VSWIR). The additional information-rich SWIR wavelengths allow 
models to use different wavelength regions to distinguish oaks from 
other species, red oaks from white oaks, and diseased red oaks from 
healthy red oaks (Fig. 2). Consequently, the critical wavelengths to 
identify oaks, red oaks, and diseased red oaks overlap less, which re
duces the chances of confusion among classes (Fig. 3 and validation 
steps in Appendices S3 & 4). Most likely, including SWIR reflectance 
provides temporally stable spectral features containing phylogenetic 
information associated with plant structural traits (Cavender-Bares 
et al., 2020; Meireles et al., 2020a) that serve to reduce misclassification 
of diseased red oaks as white oaks and other species. Indeed, we find that 
the SWIR wavelengths were more often represented than VNIR wave
lengths in oak models and as represented as VNIR wavelengths in red 
oak models (Fig. 3). In particular, 17 and 11 of the most important 
wavelengths for identifying oaks and red oaks, respectively, fell within 
the SWIR range. The SWIR was also important for distinguishing 
diseased from healthy red oaks. Among the most important SWIR 
wavelengths were those associated to plant water content and leaf 
chemistry such as protein, sugars, lignin, and cellulose content (Asner 
et al., 2018; Fourty et al., 1996). Signals in these SWIR wavelengths 
agree with the physiological processes that occur in trees showing oak 
wilt symptoms. Leaves first wilt and then become brown, dry, and 
eventually die. During the process of wilting and drying, both leaf water 
content and photosynthesis decline (Fallon et al., 2020) leading to cell 
death and decay processes that affect the chemical makeup of leaves. 
Accordingly, spectral indices known to respond to changes in photo
synthetic activity, water content, and pigment pools were able to 
differentiate diseased from healthy red oaks (Fig. 4, see below). Based on 
our results, the SWIR range appears to contain disease-specific and 
phylogenetic information highly relevant to detecting symptoms of oak 
wilt and to identifying its hosts. Hence, similar to previous work 
combining VNIR reflectance with SIF or thermal data (Zarco-Tejada 
et al., 2018, 2016), when SWIR wavelengths are combined with VNIR in 
oak wilt detection models, detection rates are maximized. 

4.2. A multi-step phylogenetic approach increases accuracy 

Partitioning the classification process into simple binary steps within 
a phylogenetic framework reduces potential misclassification and in
creases model accuracy. We used a hierarchical classification approach 
(Allen and Walsh, 1996; Townsend et al., 2009; Wolter et al., 1995) 
aimed towards distinguishing the more susceptible red oaks from white 
oaks and other species that are less susceptible to oak wilt. During the 
first step, phylogenetic models distinguish between oaks and other 
species because the reflectance spectrum shows phylogenetic conser
vatism among the oaks (Cavender-Bares et al., 2016; Cavender-Bares, 
2019), including those infected by oak wilt. The model is not required to 
distinguish between healthy and diseased conspecifics in this first step, 
thus simplifying the task. Reducing the number of potential classes be
comes increasingly important as the individuals become more phylo
genetically related—and hence more phenotypically similar—which 
makes correct classification more challenging (Meireles et al., 2020b). 
Removing non-oak species significantly reduces variation in phyloge
netically conserved regions of the spectra, allowing the model to be 
trained on spectral differences that distinguish white and red oaks and 
subsequently on the spectral variation that distinguishes diseased and 
healthy red oaks. Because of these filtering steps, the disease detection 
algorithm is highly accurate (84%; Fig. 2, appendix S5) and significantly 
more accurate than a single-step, direct approach. While the phyloge
netic approach gains complexity in terms of number of steps, each bi
nary classification step is simple and requires few independent 
components. Although each step generates classification errors that 
propagate through the modeling pipeline, these errors are captured by 
the overall performance metrics, indicating that the increase in accuracy 
gained through the phylogenetic filtering outweighs the propagated 
errors. The phylogenetic approach increases accuracy by reducing the 
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number of classes to compare while inclusion of the SWIR range in
creases accuracy by increasing the number of informative wavelengths. 

While the PLS-DA models are sensor-specific (Table S4), the benefits 
of implementing a stepwise phylogenetic approach or using the widest 
range of wavelengths possible do seem common across hyperspectral 
products. Implementing a stepwise phylogenetic approach boosted 
model performance to a similar extent in models that had the same range 
of wavelengths (i.e., AISA Eagle and AVIRIS-NG VNIR models). Simi
larly, reducing the range of wavelengths in AVIRIS-NG models to the 
VNIR range reduced model performance to similar values observed in 
AISA Eagle models. The similar performance between datasets from 
different sensors and time periods could suggest that the benefits of 
adding SWIR wavelengths and a stepwise phylogenetic approach are 
insensitive to sensor type or time of the year. Furthermore, despite the 
sensor-specificity of the models, several wavelengths were commonly 
highlighted as important across sensor types in oak, red oak, and 
diseased red oak models (Fig. S3, see results section). These wavelengths 

were located around the green band and close to the red edge in case of 
the oak model. In the case of the red oak and diseased red oak models, 
shared wavelengths were also close to the red edge, and representative 
of starch and water content (Curran, 1989). 

Our results highlight that species classification is critical for 
increasing model accuracy for a simple reason: if the disease is host- 
specific, modeling can be more tractable by detecting potential hosts 
first. Future studies should test whether phylogenetic models with 
simple binary classification steps such as the one used here make disease 
detection models generic enough to be applicable across different sites 
and years. 

4.3. Targeted spectral indices help understand physiological changes 
associated with oak wilt disease 

Diseased red oaks were more easily differentiated from healthy red 
oaks by spectral reflectance indices associated with photosynthetic 

Fig. 5. A typical oak wilt pocket observed through different combinations of spectral indices using the 2016 AVIRIS-NG data. A tree killed by oak wilt during 2015 
can be observed at the center of the oak wilt pocket in true colour (red as 640 nm, green as 550 nm, and blue as 470 nm) (A). Three diseased trees stand next to it that 
cannot be detected with true colour images. However, they become apparent through spectral indices associated with photosynthetic function and water status 
placed (B–I) on the red (R), green (G), and blue (B) channels. Both dead and diseased trees are surrounded by an outer ring of healthy trees. See Table S1 for index 
abbreviations. Several combinations are suitable for this purpose and, as such, our combinations are just some examples of many possible ones. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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activity (Carter and Knapp, 2001; Vogelmann et al., 1993; Zarco-Tejada 
et al., 2002) and water status (Ceccato et al., 2001; Serrano et al., 2000; 
Ullah et al., 2014) than by photoprotective pigment content indices. 
Indices based on photoprotective pigment only differentiated diseased 
trees from asymptomatic trees in July or when they included wave
lengths also associated with photosynthetic activity (Figs. 3 & 4). These 
results suggest that oak wilt infection in adult trees in natural ecosys
tems first triggers changes in photoprotective pigments (similar to holm 
oak decline caused by Phytopthora spp fungal infection and drought, 
Encinas-Valero et al., 2021) followed by declines in photosynthetic rate, 
stomatal conductance, and water content just as in greenhouse red oak 
seedlings infected with oak wilt (Fallon et al., 2020). Our results uncover 
an important temporal pattern in physiological decline: photoprotective 
pigment content ceases to be a good predictor of oak wilt by the end of 
summer. By July, indices of photoprotective pigment content showed 
somewhat similar sensitivity to oak wilt than indices of photosynthetic 
capacity or water status (Fig. 4). At early stages, both tylose production 
(in response to infection) and plugging of vessels by metabolites of the 
fungus are likely to have contributed to diminished water transport. In 
turn, reduced transpiration and stomatal closure induced by reduced 
water supply is expected to have caused photosynthetic decline (Fallon 
et al., 2020) and abnormally increased photoprotective pigment content 
to deal with light stress resulting from reduced photosynthesis. By 
August, healthy trees may also have increased photoprotective pigment 
content as summer drought becomes more prevalent and photosynthesis 
is partially impaired. Yet, diseased trees have likely experienced greater 
water deficit due to tylose formation and their photosynthetic capacity 
and water status is impaired to a greater extent than drought-stressed 
but uninfected trees. This would explain why photosynthetic capacity 
indices still distinguished diseased and healthy red oaks and why water 
status indices showed greater overall sensitivity to oak wilt than 
photosynthetic activity indices by August (Fig. 4). The fact that, 
photosynthetic and water status indices showed similar performance 
between sensors suggests that normalized spectral indices should be 
comparable and applicable across sensor types to some degree due to 
their underlying mechanistic basis. The results are consistent with 
experimental work indicating that photosynthesis is the first physio
logical process to decline as stomata shut down (Fallon et al., 2020) 
followed by water content as vessel occlusion develops and the fungus 
damages cell walls and membranes (e.g., through pathogen-produced 
toxins) leading to dehydration and tissue death (Oliva et al., 2014). 
While other studies have proposed the use of machine learning algo
rithms to identify tree species and the use of spectral indices to detect 
plant diseases (Abdulridha et al., 2019; Ghosh et al., 2014; Iordache 
et al., 2020; Pontius, 2014; Tang et al., 2021), we see potential in 
coupling both. Pairing phylogenetic approaches to map oak wilt pres
ence with photosynthetic activity and water status indices can provide 
powerful tools to delineate oak wilt centers across areas of the land
scape. The steps would entail first mapping red oaks (Fig. S4) -and 
diseased red oaks if possible- and then combining spectral indices 
associated with photosynthetic and water status, or indices that use oak- 
wilt sensitive wavelengths to detect potential oak wilt pockets (Fig. 5). 
Pockets of affected trees may show a center-outward radial gradient 
with dry dead trees at the center, dehydrated and photosynthetically 
impaired trees in the middle, and trees with slightly lower photosyn
thetic capacity than expected around the edge of the pocket (i.e., early 
disease development phase) (Figs. 5, S4, S5 & S5). The step of dis
tinguishing oaks and red oaks from other species across the landscape is 
highly advantageous for forest managers on its own as it allows them to 
identify areas at high risk of infection in which to apply spectral indices 
for further diagnostic. Hence, phylogenetic spectral models paired with 
indices is a novel approach to predict the risk of disease spread based on 
the abundance of red oaks across the landscape and the stage of disease 
development based on physiological status, thus allowing managers to 
better assess risk of spread and adjust the magnitude of their in
terventions accordingly (Pontius and Hallett, 2014). 

5. Conclusions 

Remote detection greatly enhances the ability of managers to pre
vent the enormous ecological and economical damage caused by inva
sive species (Juzwik, 2000; Poland et al., 2021). Airborne spectroscopic 
imagery enables landscape-level detection of diseases caused by inva
sive pathogens, like oak wilt, due to the phylogenetic and physiological 
information embedded in spectral reflectance. SWIR wavelengths 
increased model accuracy by enabling detection of disease-specific 
hosts, a critical step in identifying forested areas vulnerable to infec
tion. Additionally, inference of the physiological basis of oak wilt 
symptom development using spectral indices associated with known 
spectral features points to the potential to delineate oak wilt centers 
using remote sensing products that monitor canopy photosynthetic ca
pacity and water status such as VOG2, SIPI, SRSIF, CMS, CI, RDVI, WBI, 
and NDWI among others. Importantly, in our study landscape detection 
was made possible by coupling airborne spectroscopic imagery with 
traditional knowledge from taxonomic and disease experts and high 
precision ground GPS reference data. While landscape detection of oak 
wilt will facilitate the task of detecting infected trees, there is still much 
work to do. Future studies should assess whether PLS-DA models will be 
general enough to detect oak wilt across years and sites and whether the 
physiological basis of oak wilt symptom development will be sufficient 
to make accurate inferences about the presence of new oak wilt in
fections. Further investigation of the physiological changes that 
accompany disease progression using experimental approaches may also 
provide the link to scale spectral detection to regional scales via 
spaceborne platforms. The work done here points to the benefit of 
research that might lead to an “optimal” remote sensing system 
(airborne or satellite) for detecting invasive diseases. We hope that our 
research motivates such work. 
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Zarco-Tejada, P.J., González-Dugo, M.V., Fereres, E., 2016. Seasonal stability of 
chlorophyll fluorescence quantified from airborne hyperspectral imagery as an 
indicator of net photosynthesis in the context of precision agriculture. Remote Sens. 
Environ. 179, 89–103. https://doi.org/10.1016/j.rse.2016.03.024. 

Zarco-Tejada, P.J., Camino, C., Beck, P.S.A., Calderon, R., Hornero, A., Hernández- 
Clemente, R., Kattenborn, T., Montes-Borrego, M., Susca, L., Morelli, M., Gonzalez- 
Dugo, V., North, P.R.J., Landa, B.B., Boscia, D., Saponari, M., Navas-Cortes, J.A., 
2018. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant- 
trait alterations. Nat. Plant 4, 432–439. https://doi.org/10.1038/s41477-018-0189- 
7. 

G. Sapes et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0034-4257(22)00075-X/rf0470
http://refhub.elsevier.com/S0034-4257(22)00075-X/rf0470
http://refhub.elsevier.com/S0034-4257(22)00075-X/rf0470
https://doi.org/10.3389/fpls.2013.00097
https://doi.org/10.3389/fpls.2013.00097
https://doi.org/10.2134/jeq2002.1433
https://doi.org/10.2134/jeq2002.1433
https://doi.org/10.1016/j.rse.2016.03.024
https://doi.org/10.1038/s41477-018-0189-7
https://doi.org/10.1038/s41477-018-0189-7

	Canopy spectral reflectance detects oak wilt at the landscape scale using phylogenetic discrimination
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 Airborne data collection and tree survey
	2.3 Canopy spectra extraction
	2.4 Statistical analyses
	2.5 PLS-DA mapping

	3 Results
	3.1 Tree species identities can be predicted from canopy spectral reflectance
	3.2 Spectral reflectance models detected diseased red oaks
	3.3 VNIR and SWIR ranges are both important in detecting oak wilt
	3.4 Declines in photosynthetic capacity and water status signal oak wilt

	4 Discussion
	4.1 Including short wave infrared reflectance improves model accuracy
	4.2 A multi-step phylogenetic approach increases accuracy
	4.3 Targeted spectral indices help understand physiological changes associated with oak wilt disease

	5 Conclusions
	Author contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


