

RESEARCH IN CONTEXT

Nitrogen concentration and physical properties are key drivers of woody tissue respiration

Andrea C. Westerband^{1,*,o}, Ian J. Wright^{1,2}, Allyson S. D. Eller¹, Lucas A. Cernusak³, Peter B. Reich^{4,2}, Oscar Perez-Priego¹, Shubham S. Chhajed¹, Lindsay B. Hutley⁵ and Caroline E. R. Lehmann^{6,7}

¹Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia, ²Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia, ³College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia, ⁴Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA, ⁵Research Institute for the Environment and Livelihoods, Charles Darwin University, NT 0909, Australia, ⁶Tropical Diversity, Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK and ⁷School of Geosciences, University of Edinburgh, Edinburgh EH9 3FF, UK

*For correspondence. Email: andreawesterband@gmail.com

Received: 1 December 2021 Returned for revision: 25 January 2022 Editorial decision: 25 February 2022 Accepted: 2 March 2022 Electronically published: 4 March 2022

- Background and Aims Despite the critical role of woody tissues in determining net carbon exchange of terrestrial ecosystems, relatively little is known regarding the drivers of sapwood and bark respiration.
- Methods Using one of the most comprehensive wood respiration datasets to date (82 species from Australian rainforest, savanna and temperate forest), we quantified relationships between tissue respiration rates (R_d) measured *in vitro* (i.e. 'respiration potential') and physical properties of bark and sapwood, and nitrogen concentration (N_{mass}) of leaves, sapwood and bark.
- Key Results Across all sites, tissue density and thickness explained similar, and in some cases more, variation in bark and sapwood $R_{\rm d}$ than did $N_{\rm mass}$. Higher density bark and sapwood tissues had lower $R_{\rm d}$ for a given $N_{\rm mass}$ than lower density tissues. $R_{\rm d}$ – $N_{\rm mass}$ slopes were less steep in thicker compared with thinner-barked species and less steep in sapwood than in bark. Including the interactive effects of $N_{\rm mass}$, density and thickness significantly increased the explanatory power for bark and sapwood respiration in branches. Among these models, $N_{\rm mass}$ contributed more to explanatory power in trunks than in branches, and in sapwood than in bark. Our findings were largely consistent across sites, which varied in their climate, soils and dominant vegetation type, suggesting generality in the observed trait relationships. Compared with a global compilation of leaf, stem and root data, Australian species showed generally lower $R_{\rm d}$ and $N_{\rm mass}$, and less steep $R_{\rm d}$ – $N_{\rm mass}$ relationships.
- Conclusions To the best of our knowledge, this is the first study to report control of respiration—nitrogen relationships by physical properties of tissues, and one of few to report respiration—nitrogen relationships in bark and sapwood. Together, our findings indicate a potential path towards improving current estimates of autotrophic respiration by integrating variation across distinct plant tissues.

Key words: Autotrophic respiration, CO₂ efflux, metabolic nitrogen, physical properties, sapwood respiration, stem respiration, structural nitrogen, tissue density, tissue thickness, woody tissue respiration

INTRODUCTION

Autotrophic respiration is the dominant contributor to terrestrial ecosystem respiration ($68 \pm 3\%$; Campioli *et al.*, 2016) and, as such, it is likely to be an important driver of variation in net carbon exchange of these ecosystems under a changing climate (Duffy *et al.*, 2021). In a global analysis of forest species, respiration from leaves, above-ground woody tissues (sapwood and bark) and roots of saplings and mature trees were estimated to contribute 39 ± 4 , 22 ± 3 and $38 \pm 4\%$ to autotrophic respiration, respectively (Campioli *et al.*, 2016). In this study we investigated drivers of respiration for two of those three categories: leaves and above-ground woody tissues.

Understanding the main drivers of autotrophic respiration is crucial to modelling ecosystem carbon fluxes. Leaf 'dark' respiration ($R_{\rm d}$) in terrestrial biosphere models is typically represented as a function of temperature and either leaf tissue nitrogen (N) concentration ($N_{\rm mass}$) or photosynthetic capacity (Atkin *et al.*, 2017). A positive relationship between leaf N and $R_{\rm d}$ has been demonstrated extensively, within (Ryan, 1995; Reich *et al.*, 1996; Vose and Ryan, 2002) and among species (Reich *et al.*, 1998; Wright *et al.*, 2006; Atkin *et al.*, 2015). The strong dependence on $N_{\rm mass}$ is indicative of the major contribution of protein turnover to leaf $R_{\rm d}$ [ca. 10–60 % but as high as 90 % (Penning de Vries, 1975; De Visser *et al.*, 1992; Amthor, 2000; Cannell and Thornley, 2000)] but is also indicative of

other metabolic processes that scale with $N_{\rm mass}$, such as synthesis and phloem loading of photosynthates. Other main contributors to leaf $R_{\rm d}$ are the energetic costs associated with maintaining ionic gradients between cellular compartments, turnover of lipid membranes, protecting the photosynthetic apparatus against damage from high light and repairing damage when this does occur (Amthor, 2000; Cannell and Thornley, 2000; Millar *et al.*, 2003).

The drivers of woody tissue respiration are considerably less understood but, again, N (amino acids and soluble proteins) is thought to play a central role, as do various metabolic processes [e.g. conversion and storage of non-structural carbohydrates (NSCs)] occurring in the living cells of sapwood and inner bark (Penning de Vries, 1975; Ryan, 1991; Reich et al., 2008). The inner bark, i.e. the secondary phloem, consists of multiple metabolically active layers including the parenchymatous cortex and the phellogen (or cork cambium) which, in turn, gives rise to the outer bark. The inner bark is associated with the transport and storage of photosynthates and secondary compounds, while the outer bark, which includes only dead cells, offers mechanical stability, reduced water loss and protection from fire, physical injury and pathogens (Paine et al., 2010; Rosell, 2016, 2019). Compared with sapwood, the paucity of knowledge regarding bark physiology and ecology is surprising given that - at least in trees - the total bark surface area per unit ground area may be as high as ca. 30-50 % of the total leaf surface area (Whittaker and Woodwell, 1967), which could have important consequences for stand-level gas exchange.

From relevant studies of woody tissue respiration (Sprugel, 1990; Pruyn et al., 2002a, b, 2003; Cavaleri et al., 2006; Spicer and Holbrook, 2007a; Katayama et al., 2014), the following key generalities emerge: respiration (per mass or volume) of inner bark is up to an order of magnitude higher than that of sapwood; respiration tends to decrease from the outer layers inwards; heartwood respiration is low but not zero; and sapwood respiration rates are generally higher in branches than in main trunks. There are various causal factors that explain these spatial patterns. First, concentrations of N and NSCs are generally higher in inner bark than in sapwood, and are higher in the outer sapwood than in the inner sapwood (Pruyn et al., 2005; Rodríguez-Calcerrada et al., 2015). Non-structural N compounds, i.e. amino acids and soluble proteins, also accumulate more in outer sapwood relative to inner sapwood (El Zein et al., 2011). Ray parenchyma cells, which transport NSCs and nutrients in and out of storage and have high respiratory activity relative to other cell types, are more active in outer than in inner sapwood (Gartner et al., 2000). Lastly, inner sapwood is probably more oxygen limited than outer sapwood. Oxygen to the sapwood is supplied by the transpiration stream (xylem sap flow) and can vary with stem position (Eklund, 2000), and - compared with the inner sapwood – the outer sapwood is in closer proximity to the metabolically active vascular cambium (which separates bark from sapwood) and to the bark itself: O₂ diffuses inwards through lenticels in the bark and may also be generated via bark cortical photosynthesis (Cernusak et al., 2006).

Commonly, woody tissue respiration is measured as the efflux of CO₂ (or sometimes O₂ influx) using chambers attached directly to the surfaces of tree trunks (boles), i.e. over the bark (Ryan *et al.*, 1995, 1996; Cernusak *et al.*, 2006). CO₂ efflux measured this way is comprised of several fluxes (Teskey *et al.*,

2017): sapwood respiration, bark respiration, bark photosynthesis [e.g. in twigs but also in boles, for some smooth-barked species (Cernusak and Hutley, 2011; Rosell et al., 2015)] and, importantly, flux from CO₂ dissolved in the xylem sap. This last flux can be positive ($C\tilde{O}_2$ arriving from the roots; Bloemen et al., 2013) or negative (CO₂ transported to leaves), and quite sizeable. For this reason, stem CO₂ efflux is often measured at night or at dawn, when xylem flow is minimal. Partitioning the observed CO₂ efflux among various woody tissues (sapwood and bark) and processes is certainly possible, but challenging (McCree, 1986; Ryan et al., 1995, 1996; Stockfors and Linder, 1998; Cernusak et al., 2006; Pérez-Priego et al., 2014). An alternative approach (used in this study) is to measure CO₂ efflux on sapwood or bark material excised from trees using an increment borer or hammer and chisel (Pruyn et al., 2002a, b, 2003, 2005; Spicer and Holbrook, 2005, 2007a, b). In that literature, the measured quantity is sometimes referred to as 'respiration potential', recognizing that factors such as O₂ limitation (Spicer and Holbrook, 2007a) or transpiration-related CO₂ transport would be disrupted using this method, and therefore gas exchange rates might be somewhat different from that which would be measured in situ. Importantly, respiration rates on sampled material remain stable over time, and potential 'wounding' effects from coring are thought to be minimal (Pruyn et al., 2002b).

To date, most studies of sapwood or bark respiration consider relatively few species, and rarely consider more than one vegetation type. This is reasonable given that measurements are technically demanding, and that many previous studies have focused on quantifying effects of season, plant age, nutritional status and sampling position. In contrast, here we sought to identify broad trends across a large suite of species and sites. We quantified sapwood, bark and leaf respiration, and relevant tissue properties including N concentration, but also tissue density and bark thickness, as few studies have investigated their effects on stem respiration (but see Bowman et al., 2005). We include a broad range of angiosperm species from three contrasting vegetation types and climate regions in Australia: tropical savanna, tropical rainforest and temperate open forest. Our research questions were as follows. (1) Are there consistent differences between tissues in these physical and physiological properties? (2) What are the scaling relationships between respiration and N across leaves, sapwood and bark? Are the relationships similar for terminal branches and main trunks? (3) Is variation in sapwood and bark respiration also influenced by tissue density and thickness? These properties are implicated in multiple ecological and physiological functions. (4) Across sites that differ in their dominant vegetation types and climates, do we observe similarities in physical and physiological properties, including respiration-N relationships? Are the respiration-N relationships observed in this study distinct or convergent with those reported in a global data compilation (Reich et al. 2008)? (5) Which traits, individually or in combination, explain the most variation in branch and trunk respiration?

To the best of our knowledge, Reich *et al.* (2008) have published the only broadscale compilation of respiration data for woody tissues. The focus of that study was on investigating the generality of respiration—N relationships among tissues (roots, stems – including terminal branches and trunks – and leaves) and plant groups (angiosperms and gymnosperms). While the

stem component of that dataset was relatively small (16 species –mostly gymnosperms – and 380 observations), by combining those data with our own we sought to establish a general narrative about the trait drivers of tissue respiration rates.

MATERIALS AND METHODS

Sites, species and tissue selection

We sampled species from three vegetation types/regions in Australia. (1) Temperate open forest (hereafter temperate forest) on low fertility sandstone substrates near Sydney (New South Wales). Data were pooled from two nearby sub-sites: one in Kuring-gai Chase National Park (see Wright et al., 2001 for site details) and another in remnant native vegetation on Macquarie University campus. Mean annual temperature (MAT) is 17.2 °C and mean annual precipitation (MAP) is 1220 mm. (2) Low and high elevation tropical rainforests in northern Queensland (Bradford et al., 2014; Gray et al., 2019). The high elevation sub-sites were located in and around Danbulla National Park (elevation ca. 1200 m, MAT 20.4 ° C, MAP 1800 mm; predominantly granite parent material); the low elevation sub-site is near Cape Tribulation [elevation 15 m, MAT 24.3° C, MAP 3500 mm; soil is colluvium from metamorphic origin (Liddell, 2015)]. (3) Tropical savanna on infertile sandy soil in Howard Springs Nature Reserve, 30 km east from Darwin (Wright et al., 2019), MAT 27.6° C, MAP 1736 mm.

Temperate forest species were sampled from February to May 2013, savanna species in June 2013 and tropical rainforest species in May 2014. Between-site differences may thus include contributions from somewhat different mixes of maintenance vs. growth respiration at each site, although our sampling scheme was designed to capture the slower growth period of the year. Expanding on this point, temperate forest species were sampled from late February to May 2013 (autumn); in this region, the peak growth period is spring. Savanna species were sampled in June 2013, in the dry season (peak growth occurs during the wet season, i.e. November-March). Tropical rainforest species were sampled in May 2014, the beginning of the coolest time of year (May-August). At the temperate forest and savanna sites, woody tissues were sampled at a standard height (1 m; 'trunk' data) as well as on terminal branches of a standard diameter (1 cm; 'branch' data). For rainforest species, we sampled trunk data only. Only mature individuals were included. Several study species from temperate forest are shrubs without a single dominant bole; for these, the sampled data were treated as coming from both branches and trunks (see 'Statistical analysis'). In total, we studied 82 species (Supplementary data Appendix 1), sampling 3-8 individuals of most species but 1-2 individuals for the rainforest species Apodytes brachystylis, Citronella smythii, Cryptocarya angulata, Dysoxylum pettigrewianum and Myrsine porosa.

Branches were cut from plants, re-cut underwater (to minimize gas entering the water column), transported back to the lab with the cut end submerged and stored at 20 °C with the cut end submerged for up to 3 d but discarded if the leaves became wilted (preliminary studies made on temperate forest species indicated sapwood and bark *R* values were stable for at least 3 d). Trunk

material (sapwood and bark) was sampled with a 0.5 cm diameter increment borer (temperate forest) or hammer and chisel (savanna and tropical rainforest). When using the hammer and chisel, the sample was taken to a depth of ca. 1 cm from the surface of the sapwood, excluding inner sapwood. When using the increment borer, three cores were collected per individual, these being the same plants for which we collected branch tissue. The cores were collected ca. 1 m above the ground and to variable depths, but we used only the outer 1–1.5 cm, excluding any dark heartwood prior to the respiration measurements. Pith was only found in branches, and not all branches contained pith, which was removed when present. In short, all sapwood samples contained only outer sapwood. The sapwood samples were wrapped in damp paper towels, sealed in plastic bags and placed in a cooler with ice for transport back to the laboratory. Bark samples included both inner and outer bark (Romero, 2014), i.e. all tissues outside the vascular cambium, including the secondary phloem, the secondary cortex and the periderm.

Bark and sapwood respiration measurements

Respiration ($R_{\rm d}$) was measured on excised portions of bark and sapwood for both branch and trunk. At least 2 h before beginning measurements, ca. 15 cm long sections were cut from branches and the ends immediately wrapped in parafilm (Pechiney Plastic Packaging, IL, USA). Bark and sapwood tissues from terminal branches were carefully separated and placed in individual, darkened, translucent chambers at 20 °C to allow $\rm CO_2$ dissolved in water in the portions of newly exposed tissues to off-gas and the $\rm CO_2$ efflux to return to equilibrium. As for trunk material, cores were separated into bark and sapwood components and allowed to acclimate in individual chambers at 20 °C for at least 1 h before measurements were made.

R_d of woody tissues was measured using a LI-6400 portable gas exchange system (LI-COR Inc., Lincoln, NE, USA) with custom-built cuvettes made of transparent PVC pipe cut length-wise, with neoprene gaskets affixed to the cut sides and around the interior circumference of the pipe at both ends (Supplementary data Appendix 2). This produced two pieces that could be placed on either side of a branch and sealed together using Velcro straps. An inlet fitting was attached at one end and an outlet fitting at the other to ensure sufficient mixing of air within the cuvette. The sample line of the LI-6400 was cut and the cuvette placed inline such that air in the sample line coming from the console passed through the cuvette before entering the clean, empty and sealed leaf chamber. This allowed us to set the flow to $300-500 \mu \text{mol s}^{-1}$, to control the humidity, to use the CO₂ mixer to set the reference CO₂ concentration to 400 ppm and to match the sample and reference IRGAs for each measurement as though we were measuring leaves. To measure branch $R_{\rm a}$, cuvettes of either 5 or 7 cm length were attached near the centre of the 15 cm branch, with woody tissue extending on both sides. For measuring trunk $R_{\rm d}$, cuvette ends were sealed with clay plugs. The three cores per individual taken from the temperate forest species were combined in the cuvette to generate enough biomass for an accurate respiration measurement, given their small size, whereas this was not necessary with the savanna samples extracted via hammer and chisel.

A fine-wire thermocouple was placed on the surface of the sample in the cuvette, using the leaf thermocouple port on the head of the LI-6400 for continuous monitoring of sample temperature. Air temperature was adjusted to maintain a tissue temperature (T) of ca. 20 °C. Where necessary, $R_{\rm d}$ measurements were standardized to 20 °C (R_{20}) using the equation:

$$R_{\rm d} = R_{20} Q_{10}^{(T-20)/10} \tag{1}$$

where $R_{\rm d}$ is measured respiration at a temperature that differed from 20 °C, and Q_{10} was set to 2.2. This Q_{10} temperature was the average value across many measurements reported by Acosta *et al.* (2007). $R_{\rm d}$ measurements per unit volume of bark and sapwood were converted to a mass basis (nmol g⁻¹ s⁻¹) using the densities of bark and sapwood calculated from the volume displacement method (see 'Bark and sapwood properties').

Leaf respiration measurements

Leaf $R_{\rm d}$ for the savanna species was measured in June 2013, except for the deciduous species *Terminalia ferdinandiana* (leafless at the time), for which $R_{\rm d}$ data were taken from Eamus and Prichard (1998). Rainforest species were measured in October 2013. For temperate forest species we measured *Callistemon salignus*, *Casuarina glauca*, *Corymbia maculata*, *Eucalyptus racemosa* and *Syncarpai glomulifera* in March 2014 and used data measured by P.B.R. and I.J.W. for *Acacia suaveolens*, *Corymbia gummifera*, *Eucalyptus australasius*, *E. haemostoma*, *Grevillea speciosa*, *Hakea dactyloides*, *H. teretifolia*, *Persoonia levis* and *Phyllota phylicoides* (Wright *et al.*, 2001).

The new measurements of leaf $R_{\rm d}$ were made using an LI-6400 portable gas exchange system equipped with a broadleaf cuvette containing a red–blue LED light source. Leaf temperature was set to 25 °C, the standard temperature for leaf $R_{\rm d}$, and reference cell CO₂ concentration to 400 ppm for all measurements. Relative humidity ranged between 50 and 75 % with the flow rate adjusted to maintain this range. Leaves were typically measured within 3 h of the branches being excised and were dark-adapted for at least 30 min within the cuvette prior to $R_{\rm d}$ measurements. Area basis respiration measurements were converted to a dry mass basis (leaf $R_{\rm d}$, nmol g⁻¹ s⁻¹) via leaf mass per area (LMA), itself calculated from scanned leaves ovendried at 60–70 °C for a minimum of 5 d. Leaf $R_{\rm d}$ measurements were standardized to 20 °C using eqn (1), facilitating comparisons across tissues, sites and previously published studies.

Bark and sapwood properties

Tissue density and N concentration were measured on 1 cm long sections of the branch, adjacent to those used for $R_{\rm d}$ measurements. Section volume (g cm⁻³) was determined using the water displacement method, then the bark was removed and the volume determined for the sapwood plus pith. Finally, when present, the pith was removed to determine the volume of the sapwood alone, and the volume of the bark was determined by subtracting the intact volume from the sapwood volume. Callipers were used to measure the thickness and diameter of all sapwood and bark samples.

The volume of trunk bark and trunk sapwood samples used for $R_{\rm d}$ measurements was also determined by water displacement. Samples were dried at 60 °C for 5 d and weighed. Density was calculated as volume per dry mass. Tissue N concentration ($N_{\rm mass}$, %) was measured using a Leco CHN elemental analyser at The University of Queensland (Appleton Lab).

Statistical analyses

Using the individual replicates, variance components analysis ('vcov' function in the stats R package) indicated that a large portion of the variation in tissue $R_{\rm d}$ was at the species level (Supplementary data Appendix 3). Site explained 10–25 % of the variation for leaves and sapwood and <1 % of the variation in bark $R_{\rm d}$. For branch $R_{\rm d}$, the residual variance was larger than that of species and site combined, indicating intraspecific and intra-site variation.

As trait data tended to be right-skewed within many species, species mean values at each site were calculated as geometric means and \log_{10} transformed for use in all subsequent statistical analyses. Because leaf respiration was not measured on the same individuals for which we had branch and trunk data within the temperate forest site, we paired species means of leaf respiration with the individual replicates for sapwood and bark data.

All analyses were carried out in R v. 3.6.1 (R Development Core Team, 2017). Figures were generated using 'ggplot' in the ggplot2 package (Wickham, 2016) unless otherwise specified.

Tissue comparisons

Combining all sites, we tested for differences in $R_{\rm d}$, $N_{\rm mass}$ and physical properties across tissues (research question 1), using a nested linear mixed model (LMM) that included random effects of site and species (Supplementary data Appendix 4). We also analysed the data from each site separately, using species as a random factor, to generate pairwise comparisons at the site level. Tukey's pairwise comparisons were carried out using the 'Ismeans' and 'cld' functions in the Ismeans and multcomp packages, respectively. Post-hoc pairwise comparisons of $R_{\rm d}$, $N_{\rm mass}$, density and thickness were not conducted for the temperate forest site because samples were treated as both branch and trunk.

Trait relationships

We tested whether the strength and scaling of $R_{\rm d}$ – $N_{\rm mass}$ relationships varied across tissues (research question 2) using a combination of ordinary least squares (OLS) linear regression and LMMs, the latter of which accounted for potentially meaningful random effects of species and/or site (Supplementary data Appendix 4). From the LMMs, we extracted the marginal R^2 values corresponding to the fixed effects (Nakagawa and Schielzeth, 2013), as well as the slope coefficients. All trait relationships were visualized using the results of the LMMs rather than the OLS regression although the slope coefficients and R^2 values from the two analyses were similar in most cases (see the Results).

For models that did not meet assumptions of normality (Shapiro–Wilks P < 0.05), a visual inspection of the residual plots did not

reveal strong non-linearity or outliers (not shown), therefore we applied a normal distribution to the residual errors. Furthermore, LMMs are largely robust to violations of normality assumptions (Knief and Forstmeier, 2021), as are models with large sample sizes (Ghasemi and Zahediasl, 2012). LMMs were generated using the 'Imer' function in the lme4 package. Fixed effects of all LMMs were evaluated using a Wald test, implemented using the 'Anova' function in the car package. Slope coefficients from LMMs were extracted using the 'emtrends' function in the emmeans package. Marginal R^2 values were extracted using the 'r.squaredGLMM' function in the MuMIn package. Partial residual plots were generated using the visreg package to visualize interactions.

Explaining variation in R_d using traits

To further explore the explained variation in $R_{\rm d}$, we carried out a type of R^2 decomposition analysis using the OLS regression output. We explored how well $N_{\rm mass}$, density and thickness explained variation in $R_{\rm d}$ (research questions 3 and 5) using the R^2 values from the LMM and OLS regression models described above. Then we calculated the relative importance of each predictor and also interactions among predictors using only the OLS output. A relative importance analysis is akin to an R^2 decomposition analysis. In R^2 decomposition, one adds predictors sequentially to a regression model and measures the change in the R^2 with each added predictor. Because the order of predictors strongly influences the R^2 , we first decomposed the R^2 values from all possible model orderings and then averaged them to produce a single value (metric 'lmg') for each predictor, adjusted to sum to 1 (Grömping, 2006). One analysis (for bark and sapwood) included $N_{\rm mass}$, density and their interaction. We then considered branch and trunk bark only, for which we also had tissue thickness in addition to $N_{\rm mass}$ and density. We therefore included $N_{\rm mass}$, density, thickness and the interaction between density and thickness in that analysis. Relative importance values were calculated using the 'relaimpo' function in the relaimpo R package.

Global comparisons

To visualize Australian species within a global context (research question 4), we superimposed individual replicates from the present study onto the dataset from Reich *et al.* (2008), which contains $R_{\rm d}$ and $N_{\rm mass}$ for 287 species and 47 locations. The global dataset includes gymnosperms and angiosperms (both herbaceous and woody), and a mixture of field-sampled plants and glasshouse-grown plants (a point we return to in the Discussion). The global dataset includes some leaf data from Australia (140 observations). We compared the Australian and global datasets by testing for differences in $R_{\rm d}$ - $N_{\rm mass}$ standardized major axis slopes, using the 'sma' function in the smatr R package.

RESULTS

Variation in traits across tissues and sites

When all species and sites were included, $R_{\rm d}$, $N_{\rm mass}$, density and thickness varied strongly with tissue type (Supplementary

data Appendix 5). On average, $R_{\rm d}$ was highest in leaves, intermediate in branches and lowest in trunk tissues (Fig. 1A). Similar to $R_{\rm d}$, $N_{\rm mass}$ was highest in leaves and lower in branches and trunks (Fig. 1B). Within branches and trunks, $N_{\rm mass}$ was generally higher in bark than in sapwood (Fig. 1B). Conversely, density was generally lower in bark than in sapwood (Fig. 1C). Trunk bark was generally thicker than branch bark (Fig. 1D). Highly consistent patterns were seen within individual sites (Supplementary data Appendix 6), with the exception that trunk bark and trunk wood did not differ in $R_{\rm d}$ or $N_{\rm mass}$ for savanna species (Table 1).

Effect of tissue nitrogen concentrations on respiration rates

In general, the slope coefficients from the OLS regression and LMM analyses were similar (Table 1), although in many cases the relationships were stronger when we applied LMMs. Tissue-specific relationships between $R_{\rm d}$ and $N_{\rm mass}$ were all positive but varied considerably in strength (Table 1). Combining all data, $R_{\rm d}$ increased with $N_{\rm mass}$ (LMM slope = 0.80, $\chi^2_{\rm l}$ = 171.43, P < 0.0001, Fig. 2A) and the effect was strong (marginal $R^2 = 0.53$). While there was significant heterogeneity among tissue-specific regression slopes (LMM: $\chi^2_{\rm d}$ = 10.83, P = 0.03), they were all less than isometric (log–log slopes < 1; Table 1). For a 10-fold increase in $N_{\rm mass}$, on average $R_{\rm d}$ increased most steeply in leaves (ca. 4.5-fold increase), followed by bark (ca. 2- to 2.8-fold increase), then wood (i. 1.5-fold increase). The effect of $N_{\rm mass}$ on $R_{\rm d}$ was not statistically significant for sapwood whether we applied OLS or LMM (P > 0.05), and the effect of $N_{\rm mass}$ on $R_{\rm d}$ in stem bark was not significant when using LMM (P > 0.05).

There was no evidence that the $R_{\rm d}$ – $N_{\rm mass}$ relationship varied with site and tissue type simultaneously (a three-way interaction, P > 0.05). The $R_{\rm d}$ – $N_{\rm mass}$ relationship varied strongly with site however (two-way interaction, site × $N_{\rm mass}$: P = 0.0008). For woody tissues alone, the relationships were generally steeper and stronger for temperate forest species than for tropical rainforest or savanna species (Table 1; Fig. 3A). When we included all tissues, the $R_{\rm d}$ – $N_{\rm mass}$ relationships were more similar to one another and were slightly weaker for temperate forest species (Fig. 3B).

Effects of tissue density and thickness on sapwood and bark respiration

For bark, scaling relationships between density and $R_{\rm d}$ were similar whether we used OLS or LMM (Table 1). In contrast, relationships between sapwood density and $R_{\rm d}$ were more strongly negative when we accounted for random effects of site. Bark tissue thickness and $R_{\rm d}$ were similarly negatively related whether or not we accounted for random effects of site. Branch and trunk $R_{\rm d}$ generally decreased with increasing tissue density and thickness (Fig. 2B, C; Table 1) and the effect was moderately strong when examining patterns across sites (OLS $R^2 = 0.14-0.45$). $R_{\rm d}$ —density slopes were nearly isometric (ca. 11) for branch sapwood and trunk bark, and allometric (l>11) for branch bark, but much less steep for trunk sapwood (l<11) (Table 1). Fitted slopes indicated that, for a 10-fold increase in density, there was (on average) a 25-fold reduction in

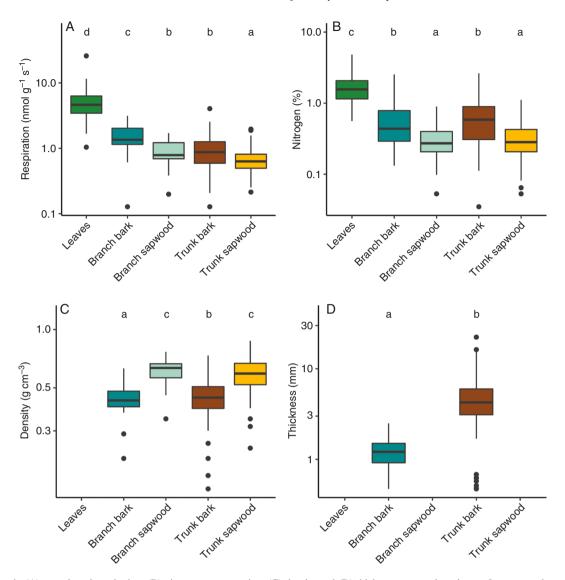


Fig. 1. Variation in (A) mass-based respiration, (B) nitrogen concentration, (C) density and (D) thickness across plant tissues. Lower case letters are *post-hoc* comparisons on mixed effect models that use species–site means, including random effects. Mixed models may detect significant differences between groups that may not be readily apparent from the boxplot.

respiration for branch bark, 10-fold for branch sapwood, 9-fold for trunk bark and 2-fold for trunk sapwood. Slope relationships between bark $R_{\rm d}$ and thickness were less than isometric (|<1|) for branches and for trunks (Table 1). For a 10-fold increase in thickness, there was a 2.2- to 2.7-fold reduction in respiration. The $R_{\rm d}$ -density relationship was consistent across tissues and sites (density × tissue × site, P > 0.05), as was the $R_{\rm d}$ -thickness relationship (P > 0.05).

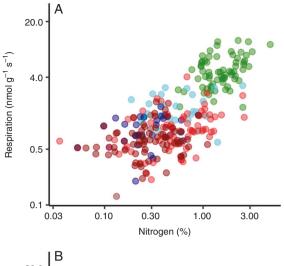
Influence of physical properties on R_d - N_{mass} relationships

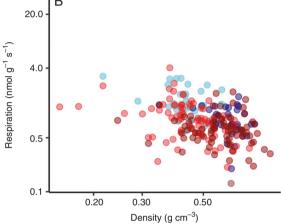
While $R_{\rm d}$ generally increased with $N_{\rm mass}$, this was more strongly so $(R_{\rm d}-N_{\rm mass}$ slopes were steeper) in higher density tissues (bark and sapwood pooled; $\chi^2_{\rm l}=3.94, P<0.05,$ Fig. 4A), and less so in thicker compared with thinner bark ($\chi^2_{\rm l}=11.45,$ P=0.001, Fig. 4B). For a given $N_{\rm mass}$, $R_{\rm d}$ was lower when tissues were thicker or denser. There was no evidence that these

two-way interactions (density or thickness $\times N_{\text{mass}}$) varied across tissues (P > 0.05) or sites (P > 0.05).

Explanatory power of traits

Regression approach Tissue density and thickness explained similar amounts of variation in $R_{\rm d}$ as did $N_{\rm mass}$, whether considering all woody tissues together or analysing each tissue separately, and whether sites were pooled or analysed separately (Table 1). The chief exception was for species at the savanna site, for which thickness explained more variation (38–59 %) in bark $R_{\rm d}$ than did $N_{\rm mass}$ (15–50 %).


Including the effects of tissue density alongside $N_{\rm mass}$, as well as their interaction, notably increased the amount of explained $R_{\rm d}$ variation (Table 1), whether considering all tissues together or separately. Indeed, this more complex model explained 76% of branch bark $R_{\rm d}$ variation for temperate forest species based


TABLE 1. Strength (R²) and direction (slopes) of relationships between nitrogen concentration (N_{mass}), density (D) and thickness (T), with mass-based respiration rates of bark

and sapwood in trunks and branches across three sites ('sites combined') and at each of three sites

		LMM: random effect of site	effect of site	OLS: sites	OLS: sites combined	OLS: sites	OLS: sites analysed separately	rately			
						Savanna		Tropical rainforest	inforest	Temperate forest	forest
Predictor(s)	Tissue	Marginal R ²	Slope ± s.e.	OLS R ²	Slope	OLS R ²	Slope	OLS R ²	Slope	OLS R ²	Slope
Nitrogen (N	All tissues	0.53	0.80 ± 0.06	0.50	0.74	0.50	0.81	0.64	06.0	0.43	0.67
SGIII	Leaves	0.22	0.58 ± 0.14	0.16	0.43	0.32	0.35	0.38	0.75	0.55	0.70
	Woody tissues	0.19	0.37 ± 0.07	0.15	0.31	0.15	0.32	0.22	0.30	0.28	0.50
	Bark	0.20	0.42 ± 0.12	0.14	0.33	0.16	0.32	0.19	0.37	0.31	0.67
	Branch bark	0.11	0.32 ± 0.29	0.13	0.34	0.004	0.04	I	I	0.30	09.0
	Trunk bark	0.22	0.39 ± 0.13	0.19	0.35	0.14	0.26	0.19	0.37	0.31	0.70
	Sapwood	90.0	0.21 ± 0.11	0.04	0.15	90.0	0.22	0.01	90.0	0.20	0.36
	Branch sapwood	0.02	0.12 ± 0.17	0.09	0.23	0.02	-0.08	I	I	0.09	0.26
	Trunk sapwood	0.05	0.19 ± 0.13	0.03	0.12	0.02	0.15	0.01	90.0	0.34	0.41
Density (D)	Woody tissues	0.19	-0.96 ± 0.13	0.16	-0.87	0.19	-1.03	0.22	-0.76	0.24	-1.22
	Bark	0.16	-1.05 ± 0.22	0.17	-1.05	0.11	-1.22	0.19	-0.67	0.27	-1.64
	Branch bark	0.19	-1.39 ± 0.51	0.20	-1.39	0.02	-0.35	ı	I	0.45	-2.20
	Trunk bark	0.18	-0.96 ± 0.23	0.18	96:0-	0.19	-1.46	0.19	-0.67	0.21	-1.36
	Sapwood	60.0	-0.72 ± 0.22	0.02	-0.31	0.20	-1.50	0.04	-0.33	0.16	-1.16
	Branch sapwood	0.10	-0.99 ± 0.46	0.12	66.0-	0.14	-0.74	I	I	0.15	-1.15
	Trunk sapwood	0.05	-0.49 ± 0.24	0.02	-0.29	0.03	-0.74	0.04	-0.33	0.19	-1.16
Thickness (T)	Woody tissues	0.12	-0.24 ± 0.07	0.12	-0.24	0.59	-0.72	0.09	-0.33	0.004	-0.04
	Branch bark	<0.0001	-0.01 ± 0.25	<0.0001	0.01	0.53	-1.16	I	I	0.01	0.19
	Trunk bark	0.05	-0.17 ± 0.09	0.05	-0.17	0.38	-0.91	60.0	-0.33	0.002	-0.03
$N_{\text{mass}} + D + N_{\text{mass}} \times D$	Woody tissues	0.25	I	0.21	I	0.28	I	0.32	I	0.31	I
200	Bark	0.27	I	0.25	I	0.28	I	0.37	I	0.44	I
	Branch bark	0.28	ı	0.30	I	0.03	I	I	I	0.76	I
	Trunk bark	0.28	ı	0.28	I	0.57	I	0.37	I	0.37	I
	Sapwood	0.14	ı	0.04	I	0.21	I	60.0	I	0.24	I
	Branch sapwood	0.10	I	0.16	I	0.20	I	I	I	0.16	I
	Trunk sapwood	0.11	I	0.04	I	0.05	I	60.0	I	0.40	I
$N_{\text{mass}} + D + T + D \times T$	Woody tissues	0.36	ı	0.37	I	0.63	I	0.37	I	0.52	I
111000	Branch bark	0.33	ı	0.37	I	0.54	I	I	I	0.55	I
	Trunk bark	0.35	ı	0.36	I	0.61	I	0.37	ı	0.53	I

Values shown are either marginal R2 from linear mixed models (LMMs) or R2 from ordinary least squares (OLS) linear regression, and slopes are the slope coefficients corresponding to the main/fixed effects. Grey font indicates no significant difference at $\alpha = 0.05$. Note, there were no branch-level data for the tropical rainforest site and no tissue thickness data for sapwood.

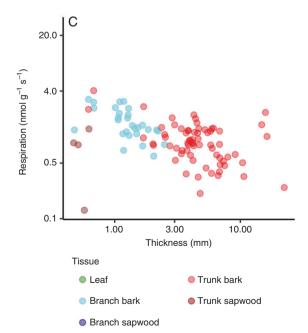


FIG. 2. Relationships between respiration and (A) nitrogen concentration, (B) tissue density and (C) thickness across tissues. Each point represents a speciessite mean. For slope relationships, see Table 1.

on the OLS regression. Similarly, including tissue density, thickness and the density × thickness interaction increased the ability to explain variation in bark $R_{\rm d}$, whether considering all sites together or separately (OLS $R^2 = 0.36$ –0.63).

Relative importance analyses Decomposing the explained variation in $R_{\rm d}$ revealed that $N_{\rm mass}$ was not the dominant contributor to the variation in $R_{\rm d}$ across all tissues. In trunk tissues, $N_{\rm mass}$ contributed slightly more (in sapwood) or a similar proportion (in bark) to the R^2 as did density, whereas in branch tissues density made a larger contribution (Fig. 5A). The $N_{\rm mass}$ × density interaction was also a substantial contributor to the R^2 for branch bark. Considering bark only (for which we also had thickness data), density contributed the most to the R^2 followed by $N_{\rm mass}$ (Fig. 5B). Thickness alone was relatively unimportant in terms of its contribution to the R^2 ; however, its interactions with tissue density had relative importance values that were similar to, or greater than, those of $N_{\rm mass}$.

Comparison of Australian data with global data

in our Australian dataset ranged between 0.01 and 4.8 % (Fig. 6A) while the global data extended as high as 5.6 % (Fig. 6B, C). R₄ values in the current study were at the lower end of the global range (Fig. 6C), between 0.08 and 27 nmol g⁻¹ s⁻¹ vs. a maximum of 71 nmol g⁻¹ s⁻¹ in the global dataset. For the current all-Australian dataset, the all-species and all-tissues R_d - N_{mass} SMA slope [1.18, confidence interval (CI) 1.13–1.24] was similar (Fig. 6C) but significantly flatter than the 'global' slope reported by Reich et al. (2008) (1.27, CI 1.24-1.30; test for slope heterogeneity: likelihood ratio $_{d.f.=1} = 7.63, P = 0.006$). Visual inspection of the 95 % confidence ellipses for the two groups (grey vs. red ellipses in Fig. 6C) suggested that the all-Australian data cloud was shifted both towards the lower left (i.e. to lower N_{mass} and lower R_{d}) and slightly downwards, towards generally lower $R_{\rm d}$ at a given $N_{\rm mass}$ (particularly in the range $N_{\rm mass}=ca.~0.2-2.0~\%$) and the upper range of $R_{\rm d}$ in the global dataset was nearly triple that of the present dataset.

DISCUSSION

Here we investigated the controls of bark and sapwood respiration $(R_{\rm d})$ in branches and trunks of 82 Australian species, also reporting data for leaves. We demonstrated generality in $R_{\rm d}$ – $N_{\rm mass}$ relationships within and across tissues, concordant with results from Reich *et al.* (2008) and previous studies. Not previously reported, species with higher density sapwood or bark tended to have lower $R_{\rm d}$ in these tissues, and bark thickness was negatively related to $R_{\rm d}$. Interactive effects were also observed: positive relationships between $R_{\rm d}$ and $N_{\rm mass}$ weakened as bark and sapwood density increased, and as bark thickness increased. We hypothesize that the effects of tissue density and thickness on respiration are indicative of variation in N pools, with higher density or thicker tissues having a higher fraction of tissue N in structure (i.e. bound within cell walls) and a lower fraction in metabolic pools. Reflecting differences in both $N_{\rm mass}$ and physical properties, respiration rates were significantly higher in leaves than in bark and sapwood, and significantly higher in terminal branches

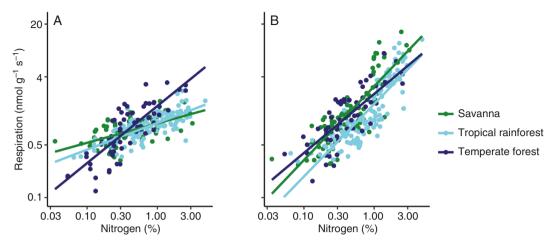


Fig. 3. Relationships between respiration rate and nitrogen concentration across sites, including (A) only woody tissues or (B) leaf, bark and sapwood tissues. Each point represents a species—site mean, and fitted lines represent linear mixed regression models. Axes are logarithmically scaled. For slope relationships, see Table 1.

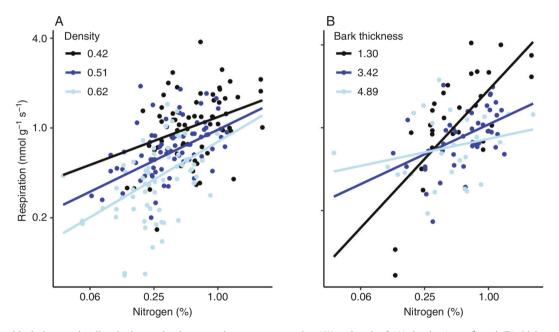


Fig. 4. Partial residual plots to visualize the interaction between nitrogen concentration (%) and each of (A) density (g cm⁻³) and (B) thickness (mm) on bark and sapwood respiration. Sapwood and bark were included in (A) while only bark is represented in (B). Colours represent different levels of thickness or density (low = black, medium = blue, high = sky blue) and correspond to the 25th, 50th (median) and 75th quartiles, respectively. Study sites have been combined, and each point represents a species–site mean.

than in main trunks. Below we synthesize our findings, placing them in the context of the global study of Reich *et al.* (2008), and discuss the utility of this work for modelling plant respiration.

Variation in nitrogen, respiration and physical properties across tissues

Nitrogen is a fundamental building block of proteins, nucleic acids, chlorophyll, co-enzymes, phytohormones and secondary metabolites (Marschner, 2012). In the present study, $N_{\rm mass}$ was highest in leaves, lowest in branches and trunks, and was consistently higher in bark relative to sapwood (Fig. 1). Patterns of

variation in respiration largely reflected those of N, decreasing from leaves to bark to sapwood. The higher $N_{\rm mass}$ and $R_{\rm d}$ in bark than in sapwood may partially reflect a higher proportion of living cells in bark (Ryan, 1990), but also (and perhaps more so) the fact that the cork cambium is an especially metabolically active tissue zone, and that many woody species have photosynthetically active bark, especially in terminal branches (Pfanz et al., 2002; Rosell et al., 2014; Cernusak and Cheesman, 2015). That seemed to be the case in our dataset: 12 of 15 temperate forest species showed unambiguous evidence of photosynthetic CO_2 refixation in bark (unpubl. data), and most of the savanna species had chlorophyll-containing tissue within the inner bark (Rosell et al., 2015).

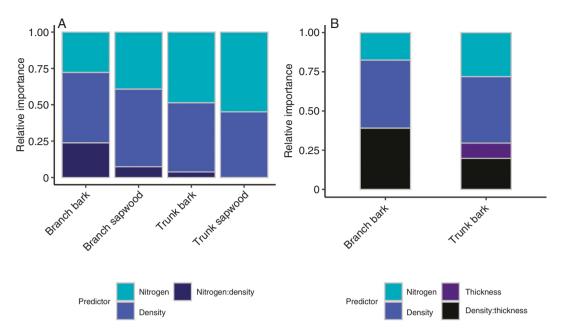


Fig. 5. The relative importance of (A) nitrogen concentration (%), tissue density (g cm⁻³) and their interaction, and (B) nitrogen concentration, tissue density, tissue thickness (mm) and the interaction between density and thickness, for bark and sapwood tissue respiration. Thickness measurements were only available for bark. Relative importance describes the contributions of individual variables to the R² of OLS linear regression models (see Table 1 for R² values).

Tissue density was higher in sapwood than in bark. This may reflect distinct functional roles (despite both tissues being derived from the vascular cambium), sapwood playing an important role in plant biomechanics and a higher density reflecting the substantial proportional contribution of fibres [e.g. averaging 45 % of sapwood cross-section in 69 Australian angiosperms (Ziemińska *et al.*, 2015)].

Bark was generally thicker on trunks than on branches, but had similar density, echoing previous reports (Paine *et al.*, 2010; Rosell *et al.*, 2015). In fire-prone ecosystems, such as the savanna and temperate forest studied here, thick outer bark is thought to primarily serve a protective function (Rosell *et al.*, 2014), while thick inner bark enhances storage of water and NSCs (Srivastava, 1964; Rosell, 2016; Rosell *et al.*, 2021).

Controls of respiration

In line with previous studies (see the Introduction), we report positive relationships between $N_{\rm mass}$ and $R_{\rm d}$, although the scaling relationships varied among tissues (Table 1). In principle, at a given $N_{\rm mass}$, a more metabolically active unit of plant tissue should exhibit higher respiration rates, resulting in a steeper $R_{\rm d}$ – $N_{\rm mass}$ relationship in that tissue. As expected, we observed a steeper $R_{\rm d}$ – $N_{\rm mass}$ slope in leaves (0.43–0.58) than in bark (0.33–0.44) and sapwood (0.15–0.21; Table 1).

Here, tissue thickness and density were both implicated as exerting some control of R_d and R_d – $N_{\rm mass}$ relationships. Thick cambium and bark may increase resistance to radial diffusion of ${\rm CO}_2$, functioning in concert with ${\rm O}_2$ limitation to constrain respiration (Steppe *et al.*, 2007) and reduce *in situ* stem efflux rates (Cavaleri *et al.*, 2006). However, here we measured R_d on small, excised tissue samples such that resistance to diffusion is

unlikely to explain the observed patterns. We hypothesize that the weaker $R_{\rm d}$ – $N_{\rm mass}$ relationship in thicker tissues results from a greater proportion of N stored and bound in cell walls [i.e. N found in structural proteins (Bao *et al.*, 1992)], and a lower proportion in physiologically active N pools (e.g. amino acids or soluble proteins). We also detected a lower $R_{\rm d}$ at a given $N_{\rm mass}$ in higher density tissues, suggesting a higher relative proportion of structural N (vs. metabolic N) therein. As already noted, higher density sapwood typically has a higher fractional contribution from thick-walled fibres. Similarly, higher bark density is positively correlated with mechanical strength, and depends strongly on the presence of thick-walled cells including fibres and sclereids (Chave *et al.*, 2009).

There was no evidence that the $R_{\rm d}$ – $N_{\rm mass}$ relationship simultaneously varied across tissues and sites (a three-way interaction), despite differences in climate and vegetation type. The relationship between $R_{\rm d}$ and $N_{\rm mass}$ was positive across all sites, although the slope was strongest for temperate forest species and shallower but similar in savanna and rainforest. Within the temperate forest we sampled a mixture of trees and shrubs (Supplementary data Appendix 1), some with particularly thin bark relative to species at the savanna and rainforest sites. Perhaps a greater proportion of bark N was structural in the savanna and rainforest species, contributing to the shallower $R_{\rm d}$ – $N_{\rm mass}$ slope observed therein.

Relative explanatory power of traits

Nitrogen is typically considered a primary determinant of respiration (Ryan, 1991; Reich *et al.*, 2008). Our results broadly support that statement, certainly when considering all tissues together, or leaves or bark. Unexpectedly, however, sapwood

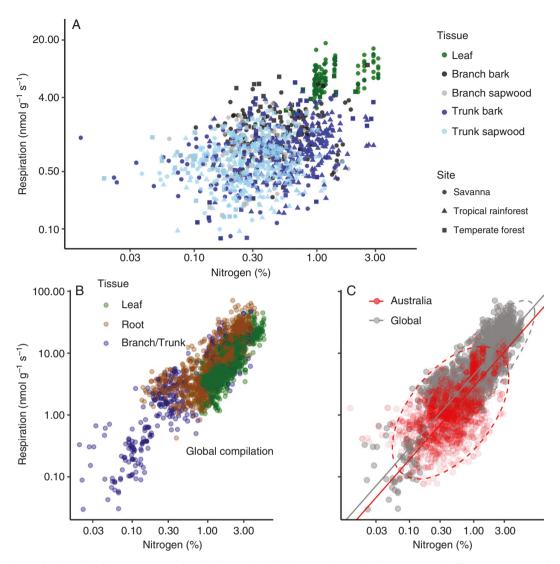


Fig. 6. Variation in respiration with nitrogen concentration, both mass-based, (A) across tissues in the present study. Shapes represent study regions within Australia. (B) Global compilation of respiration vs. nitrogen concentration for leaves, roots, trunk and branch recreated from Reich *et al.* (2008). (C) Comparison of globally compiled data and data from the present study. Each point is an individual plant, and solid lines were generated using the slopes and intercepts of the standardized major axis regression analysis. Dashed lines indicate the 95 % confidence region of each group.

 $R_{\rm d}$ and $N_{\rm mass}$ had a generally weak to negligible relationship when averaged across sites (Table 1). Within woody tissues, N, density and thickness each explained similar amounts of the variation in respiration, and in some cases clearly more so when sites were considered individually (e.g. for temperate forest, N_{mass} of trunk sapwood explained 34 % of R_{d} ; for savanna, bark thickness explained 38 % R_d variation in branches and 53 % in trunks). While it is not surprising that in combination with one another these traits explained more of the variation in stem respiration than they did individually, it is remarkable that up to 76 % of the variation in stem respiration can be explained using only N_{mass} and tissue density (Table 1). However, there were also some cases where these variables explained <10 % of the variation in R_a , and this was particularly true in trunk sapwood considered at individual sites. This may be attributable to radial variation in sapwood properties such as the proportion of living cells, and the activity of those cells. The unexplained variation might also result from varying contributions (across sites or species) of maintenance and growth respiration to measured $R_{\rm d}$, despite our sampling being undertaken at times of year with slower growth (see the Materials and Methods).

From the relative importance analyses, $N_{\rm mass}$ contributed the most towards the explained variation for trunk sapwood $R_{\rm d}$ (on the basis of the R^2), while density emerged as an equally strong, if not more important, contributing variable for the remaining tissues (Fig. 5). Considering bark only, the $N_{\rm mass}$ × density interaction was relatively important for branches but not trunks. When also considering bark thickness, we found the unexpected result that physical properties (and their interactions) were together considerably more important than $N_{\rm mass}$ in terms of their contribution to the R^2 .

In sum, our analyses suggest that further consideration of physical properties as well as interactions between N and physical properties is warranted when investigating trait drivers of R_d variation in woody tissues, particularly for bark.

Global comparisons

Placing our dataset alongside the global compilation of leaf, stem and root data from Reich et al. (2008) further demonstrated the broad generality of R_d - N_{mass} relationships across species from diverse biomes, taxonomic groups and tissues. However, the offset between confidence ellipses (Fig. 6C) deserves further comment. In part, the generally lower $R_{\rm d}$ and $N_{\rm mass}$ in the Australian dataset probably reflects a shift toward 'slower' plant economic strategies, as would be expected for sclerophyllous evergreen species occurring on generally low nutrient soils (Reich et al., 2003; Wright et al., 2004; Reich, 2014). This reasoning also accounts for the cluster of points in the global dataset at the lower range of N_{mass} and R_{d} ; all are gymnosperms and are thus expected to have slower plant economic strategies than angiosperms, and certainly have lower $N_{\rm mass}$ and $R_{\rm d}$ (Reich *et al.*, 2008). A further difference between datasets is that *ca.* 25 % of rows in the global dataset represent glasshouse-grown plants, and a further 20 % are field-sampled saplings; whereas our new dataset considered field-sampled adult plants only. Quite probably, these differences also drove the offset in the two data clouds.

Future prospects and conclusions

To accurately estimate ecosystem carbon budgets requires reliable measures of autotrophic respiration. In many cases, respiration rates of intact stems are extrapolated to whole plants using scalars such as woody tissue mass, surface area and volume (Meir et al., 2017), and via allometric relationships between branches and trees (Damesin et al., 2002). Achieving sufficient accuracy using such scaled estimates of respiration is constrained by the observation that respiration rates vary across tissue types (Pruyn et al., 2002a). We address this knowledge gap, noting that the distribution of above-ground biomass into bark vs. sapwood within stems plays a substantial underlying role in determining rates of stem efflux. It follows then, that including respiration of individual tissues may improve current estimates of stem respiration (Pruyn et al., 2002b; Vose and Ryan, 2002). Currently, it is not possible to easily measure respiration rates of individual tissues within intact stems, therefore we opted to excise tissues from intact stems and directly measure their rates of CO₂ efflux alongside their physical properties, recognizing that efflux measured on individual tissues may differ from efflux measured on intact stems. This is because O₂ may be less limiting for respiration than would naturally occur in stems, and because CO2 efflux is no longer carried away in the transpiration stream, as occurs in intact stems. Nonetheless, this method allows for greater homogenization of temperature throughout the excised tissue, which can typically constrain respiration in intact stems, and wider sampling across a range of species and environments, the latter of which is critical to establish broad generalizations. Future studies should

thus carefully weigh up the relative strengths and weaknesses of the chosen methodology.

Using this method, we showed that $N_{\rm mass}$ accounted for considerable variation in $R_{\rm d}$ across all tissues, with the two traits scaling somewhat more steeply than isometrically when considered across all species and sites (Fig. 6). Our data expand the empirical base behind this general trend, with clear utility for modelling. That said, while $N_{\rm mass}$ accounts for considerable variation in $R_{\rm d}$ of leaves and bark, this was less the case for sapwood (in contrast to the previous global analysis).

For woody tissues (sapwood and bark), tissue density emerged as an important trait explaining variation in R_a ; and for bark, thickness was also important. Interactions among these traits were, in some cases, also important. These findings – that physical properties of tissues explain additional $R_{\rm d}$ variation alongside N_{mass} , and also seemingly modulate $R_{\text{d}} - N_{\text{mass}}$ relationships – are novel in their own right. However, further, they provide potential for refining existing models of autotrophic respiration by adding separate compartments for sapwood vs. bark. For example, the process-based tree stem respiration model, TReSpire (Salomón et al., 2020), includes thickness and density of the outermost tissues (inner and outer bark) and sapwood density (i.e. xylem). A change in the thickness of outer tissues is assumed to be proportional to the stem diameter based on a non-linear allometric relationship and could be further refined to explicitly consider differences between branches and trunks.

Together with the findings of Reich *et al.* (2008), this study represents a significant step forward towards improvement of current ecosystem-scale models, by considering within-stem variation in respiration—N relationships. We include more biomes, angiosperms and species from the southern hemisphere, providing the foundation needed to characterize a fundamental biological relationship. The influence of physical properties, namely tissue density and thickness, is intriguing and only partially understood, motivating the performance of additional studies to investigate its effects on plant physiological traits.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.com/aob and consist of the following. Appendix 1: species list and sampling locations across Australia. Appendix 2: design of sampling apparatus used to measure woody tissue respiration on excised tissues. Appendix 3: variance components analysis for mass-based respiration rates across tissue types. Appendix 4: structures of linear mixed models applied in this study. Appendix 5: main effect of tissue type on mass-based respiration rate, nitrogen concentration, density and thickness from one-way ANOVA. Appendix 6: variation in mass-based respiration, nitrogen concentration, density and thickness for plant tissues across three sites.

ACKNOWLEDGMENTS

We thank Dr Matt Bradford (CSIRO, Atherton) for his assistance with plant identification in the tropical rainforest sites, and CSIRO Atherton for granting us site access. Dr Emma Gray assisted with data collection at the tropical rainforest site;

Michael Brand assisted at the savanna site. The NSW National Parks and Wildlife Service gave permission for sample collections in Kuring-Gai Chase National Park, Sydney.

FUNDING

This work was supported by the Australian Research Council (DP120103284, DP170103410) and Macquarie University. Funding to L.C. (DP0771427) and L.H. (DP0344744) supported the published savanna data. P.B.R. was supported by the National Science Foundation Biological Integration Institutes grant NSF-DBI-2021898.

LITERATURE CITED

- Acosta M, Pavelka M, Pokorný R, Janouš D, Marek MV. 2007. Seasonal variation in CO₂ efflux of stems and branches of Norway spruce trees. *Annals of Botany* 101: 469–477.
- Amthor JS. 2000. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany 86: 1–20.
- Atkin OK, Bloomfield KJ, Reich PB, et al. 2015. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist 206: 614–636.
- Atkin OK, Bahar NHA, Bloomfield KJ, et al. 2017. Leaf respiration in terrestrial biosphere models. In: Tcherkez G, Ghashghaie J, eds. Plant respiration: metabolic fluxes and carbon balance. Cham: Springer International Publishing, 107–142.
- Bao W, O'Malley DM, Sederoff RR. 1992. Wood contains a cell-wall structural protein. Proceedings of the National Academy of Sciences, USA 89: 6604–6608
- Bloemen J, McGuire MA, Aubrey DP, Teskey RO, Steppe K. 2013.
 Transport of root-respired CO₂ via the transpiration stream affects aboveground carbon assimilation and CO₂ efflux in trees. *New Phytologist* 197: 555–565.
- Bowman WP, Barbour MM, Turnbull MH, Tissue DT, Whitehead D, Griffin KL. 2005. Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO₂ efflux from stems of mature *Dacrydium cupressinum* trees. *New Phytologist* 167: 815–828.
- Bradford M, Metcalfe DJ, Ford A, Liddell M, McKeown A. 2014. Floristics, stand structure and aboveground biomass of a 25-ha rainforest plot in the wet tropics of Australia. *Journal of Tropical Forest Science* 26: 543–553.
- Campioli M, Malhi Y, Vicca S, et al. 2016. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications 7: 13717.
- **Cannell MGR, Thornley JHM. 2000.** Modelling the components of plant respiration: some guiding principles. *Annals of Botany* **85**: 45–54.
- Cavaleri MA, Oberbauer SF, Ryan MG. 2006. Wood CO₂ efflux in a primary tropical rain forest. *Global Change Biology* 12: 2442–2458.
- Cernusak LA, Cheesman AW. 2015. The benefits of recycling: how photosynthetic bark can increase drought tolerance. New Phytologist 208: 995–997.
- Cernusak LA, Hutley LB. 2011. Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of *Eucalyptus miniata*. *Plant Physiology* **155**: 515–523.
- Cernusak LA, Hutley LB, Beringer J, Tapper NJ. 2006. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. *Plant, Cell & Environment* 29: 632–646.
- Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. *Ecology Letters* 12: 351–366.
- Damesin C, Ceschia E, Le Goff N, Ottorini JM, Dufrêne E. 2002. Stem and branch respiration of beech: from tree measurements to estimations at the stand level. *New Phytologist* 153: 159–172.
- De Visser R, Spitters C, Bouma T. 1992. Energy cost of protein turnover: theorectical calculation and experimental estimation from regression of respiration on protein concentration of full-grown leaves. In: Lambers H, van der Plas LHW, eds. *Molecular, biochemical and physiological aspects of plant respiration*. The Hague: Academic Publishing, 493–508.

- Duffy KA, Schwalm CR, Arcus VL, Koch GW, Liang LL, Schipper LA. 2021. How close are we to the temperature tipping point of the terrestrial biosphere? *Science Advances* 7: eaay1052.
- Eamus D, Prichard H. 1998. A cost–benefit analysis of leaves of four Australian savanna species. *Tree Physiology* 18: 537–545.
- **Eklund L. 2000.** Internal oxygen levels decrease during the growing season and with increasing stem height. *Trees* **14**: 177–180.
- El Zein R, Maillard P, Bréda N, Marchand J, Montpied P, Gérant D. 2011. Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees. *Tree Physiology* 31: 843-854
- Gartner BL, Baker DC, Spicer R. 2000. Distribution and vitality of xylem rays in relation to tree leaf area in Douglas-fir. *IAWA Journal* 21: 389–401.
- Ghasemi A, Zahediasl S. 2012. Normality tests for statistical analysis: a guide for non-statisticians. *International Journal of Endocrinology and Metabolism* 10: 486.
- **Gray EF, Wright IJ, Falster DS**, *et al.* **2019.** Leaf: wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. *AoB Plants* **11**: plz024.
- **Grömping U. 2006.** Relative importance for linear regression in R: the package relaimpo. *Journal of Statistical Software* **17**: 1–27.
- Katayama A, Kume T, Komatsu H, et al. 2014. Vertical variations in wood CO₂ efflux for live emergent trees in a Bornean tropical rainforest. *Tree Physiology* 34: 503–512.
- Knief U, Forstmeier W. 2021. Violating the normality assumption may be the lesser of two evils. *Behavior Research Methods* 53: 2576–2590.
- Liddell M. 2015. Soil pit data, soil characterisation, far North Queensland Rainforest supersite, Daintree Rainforest Observatory, Cape Tribulation, 2006, 5th edn. TERN Australian SuperSite Network.
- Marschner P. 2012. Marschner's mineral nutrition of higher plants, 3rd edn. San Diego: Elsevier Academic Press Inc.
- McCree K. 1986. Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Functional Plant Biology 13: 33–43.
- Meir P, Shenkin A, Disney M, et al. 2017. Plant structure–function relationships and woody tissue respiration: upscaling to forests from laser-derived measurements. In: Tcherkez G, Ghashghaie J, eds. *Plant respiration: metabolic fluxes and carbon balance*. Cham: Springer, 89–105.
- Millar AH, Mittova V, Kiddle G, et al. 2003. Control of ascorbate synthesis by respiration and its implications for stress responses. *Plant Physiology* 133: 443–447.
- Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R² from generalized linear mixed-effects models. *Methods in Ecology and Evolution* 4: 133–142.
- Paine CET, Stahl C, Courtois EA, Patiño S, Sarmiento C, Baraloto C. 2010. Functional explanations for variation in bark thickness in tropical rain forest trees. *Functional Ecology* 24: 1202–1210.
- **Penning de Vries FWT. 1975.** The cost of maintenance processes in plant cells. *Annals of Botany* **39**: 77–92.
- Pérez-Priego O, Testi L, Kowalski AS, Villalobos FJ, Orgaz F. 2014. Aboveground respiratory CO₂ effluxes from olive trees (*Olea europaea* L.). *Agroforestry Systems* 88: 245–255.
- Pfanz H, Aschan G, Langenfeld-Heyser R, Wittmann C, Loose M. 2002. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. *Naturwissenschaften* 89: 147–162.
- Pruyn ML, Gartner BL, Harmon ME. 2002a. Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest. *Tree Physiology* 22: 105–116.
- Pruyn ML, Gartner BL, Harmon ME. 2002b. Within-stem variation of respiration in *Pseudotsuga menziesii* (Douglas-fir) trees. *New Phytologist* 154: 359–372.
- **Pruyn ML, Harmon ME, Gartner BL. 2003.** Stem respiratory potential in six softwood and four hardwood tree species in the central cascades of Oregon. *Oecologia* **137**: 10–21.
- Pruyn ML, Gartner BL, Harmon ME. 2005. Storage versus substrate limitation to bole respiratory potential in two coniferous tree species of contrasting sapwood width. *Journal of Experimental Botany* 56: 2637–2649.
- R Development Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- **Reich PB. 2014.** The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. *Journal of Ecology* **102**: 275–301.
- Reich PB, Oleksyn J, Tjoelker M. 1996. Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range:

- a common garden test with field-grown trees. Functional Ecology 10: 768–776.
- **Reich PB, Walters MB, Ellsworth DS, et al. 1998.** Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span a test across biomes and functional groups. *Oecologia* **114**: 471–482.
- Reich PB, Wright IJ, Cavender-Bares J, et al. 2003. The evolution of plant functional variation: traits, spectra, and strategies. *International Journal of Plant Sciences* 164: S143–S164.
- Reich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL. 2008. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. *Ecology Letters* 11: 793–801.
- Rodríguez-Calcerrada J, López R, Salomón R, et al. 2015. Stem CO₂ efflux in six co-occurring tree species: underlying factors and ecological implications. *Plant, Cell & Environment* 38: 1104–1115.
- Romero C. 2014. Bark: structure and functional ecology. Advances in Economic Botany 17: 5–25.
- **Rosell JA. 2016.** Bark thickness across the angiosperms: more than just fire. *New Phytologist* **211**: 90–102.
- Rosell JA. 2019. Bark in woody plants: understanding the diversity of a multifunctional structure. *Integrative and Comparative Biology* 59: 535-547.
- Rosell JA, Gleason S, Méndez-Alonzo R, Chang Y, Westoby M. 2014.
 Bark functional ecology: evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytologist 201: 486–497
- Rosell JA, Castorena M, Laws CA, Westoby M. 2015. Bark ecology of twigs vs. main stems: functional traits across eighty-five species of angiosperms. *Oecologia* 178: 1033–1043.
- Rosell JA, Piper FI, Jiménez-Vera C, et al. 2021. Inner bark as a crucial tissue for non-structural carbohydrate storage across three tropical woody plant communities. *Plant, Cell & Environment* 44: 156–170.
- **Ryan MG. 1990.** Growth and maintenance respiration in stems of *Pinus contorta* and *Picea engelmannii. Canadian Journal of Forest Research* **20**: 48–57.
- **Ryan MG. 1991.** Effects of climate change on plant respiration. *Ecological Applications* 1: 157–167.
- Ryan MG. 1995. Foliar maintenance respiration of subalpine and boreal trees and shrubs in relation to nitrogen content. *Plant, Cell & Environment* 18: 765–772.
- Ryan MG, Gower ST, Robert MH, et al. 1995. Woody tissue maintenance respiration of four conifers in contrasting climates. *Oecologia* 101: 133–140.
- Ryan MG, Hubbard RM, Pongracic S, Raison R, McMurtrie RE. 1996. Foliage, fine-root, woody-tissue and stand respiration in *Pinus radiata* in relation to nitrogen status. *Tree Physiology* 16: 333–343.
- Salomón RL, De Roo L, Oleksyn J, De Pauw DJ, Steppe K. 2020. TReSpire
 a biophysical TRee stem respiration model. New Phytologist 225: 2214–2230.

- **Spicer R, Holbrook NM. 2005.** Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia? *Plant, Cell & Environment* **28**: 192–201.
- Spicer R, Holbrook NM. 2007a. Effects of carbon dioxide and oxygen on sapwood respiration in five temperate tree species. *Journal of Experimental Botany* 58: 1313–1320.
- Spicer R, Holbrook NM. 2007b. Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? Plant, Cell & Environment 30: 934–943.
- **Sprugel DG. 1990.** Components of woody-tissue respiration in young *Abies amabilis* (Dougl.) Forbes trees. *Trees* **4**: 88–98.
- Srivastava LM. 1964. Anatomy, chemistry, and physiology of bark. International Review of Forestry Research 1: 203–277.
- Steppe K, Saveyn A, McGuire MA, Lemeur R, Teskey RO. 2007.

 Resistance to radial CO₂ diffusion contributes to between-tree variation in CO₂ efflux of *Populus deltoides* stems. *Functional Plant Biology* 34: 785–792.
- Stockfors J, Linder S. 1998. Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. *Tree Physiology* 18: 155–166.
- Teskey RO, McGuire MA, Bloemen J, Aubrey DP, Steppe K. 2017.
 Respiration and CO₂ fluxes in trees. In: Tcherkez G, Ghashghaie J, eds.

 Plant respiration: metabolic fluxes and carbon balance. Cham: Springer International Publishing, 181–207.
- Vose JM, Ryan MG. 2002. Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. *Global Change Biology* 8: 182–193.
- Whittaker RH, Woodwell GM. 1967. Surface area relations of woody plants and forest communities. *American Journal of Botany* **54**: 931–939.
- Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.
- Wright IJ, Cooke J, Cernusak LA, et al. 2019. Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral Ecology 44: 339–350.
- Wright IJ, Reich PB, Westoby M. 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. *Functional Ecology* 15: 423–434.
- Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821–827.
- Wright IJ, Reich PB, Atkin OK, Lusk CH, Tjoelker MG, Westoby M. 2006. Irradiance, temperature and rainfall influence leaf respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist 169: 309–319
- **Ziemińska K, Westoby M, Wright IJ. 2015.** Broad anatomical variation within a narrow wood density range a study of twig wood across 69 Australian angiosperms. *PLoS One* **10**: e0124892.