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A B S T R A C T

In this work, we propose a data-driven robust model predictive control (DDRMPC) framework that utilizes
stem water potential (SWP) as a basis for effective irrigation control of high value-added crops. By linearizing
and discretizing a nonlinear dynamic model of water dynamics, we develop a state-space model that predicts
the dynamic state of SWP. In the model, soil, root, and stem are the three compartments to describe current
water status of the system. In addition, evapotranspiration and precipitation are the driving force and the
water inlet, respectively. A robust optimal control problem is formulated to maintain SWP above a safe level
to avoid detrimental effects on crops. To describe the uncertainty within prediction errors of evapotranspiration
and precipitation, a data-driven approach is adopted, which achieves a desirable tradeoff between constraint
satisfaction and water saving. Meanwhile, it is shown that the proposed DDRMPC ensures both feasibility
and stability. A case study based on almond tree is carried out to showcase the effectiveness of the DDRMPC
strategy relative to on–off control, certainty equivalent MPC and robust MPC. In particular, the control of tree
stem water potential through DDRMPC can reduce the water consumption by 7.9% compared with on–off
control while maintaining zero probability of constraint violation.
1. Introduction

In the era of increasing water demand caused by population ex-
pansion and economic growth, enhancing irrigation efficiency is an
important task because 70% of freshwater withdrawals are routinely
used for agriculture whereby irrigation consumes the most (United
Nations World Water Assessment Programme, 2018). In addition, water
supply in some area is also limited because of climate change and
drought, thereby further highlighting the importance of irrigation ef-
ficiency (Vörösmarty, Green, Salisbury, & Lammers, 2000). In addition
to saving valuable water resources, improving irrigation efficiency can
increase the production and crop yield. The higher yield per unit of
irrigation water, the more profit gained by farmers. Traditional irriga-
tion strategies attempt to maintain soil moisture above a certain level
by using open-loop or closed-loop control systems (Romero, Muriel,
García, & Muñoz de la Peña, 2012). The open-loop irrigation strategy
ollows the planned irrigation schedule according to daily weather, soil
ater-holding capacity, crop species, and the recent irrigated amount.
lthough such a strategy could be easily implementable, it does not
apture the state of soil in real-time. On the other hand, closed-loop
rrigation strategies such as on–off control and model predictive control

∗ Corresponding author.

(MPC) adjust the irrigation amount according to the real-time soil
status, thus leading to improved irrigation efficiency (Delgoda, Malano,
Saleem, & Halgamuge, 2016).

A significant disadvantage of controlling soil moisture is that,
growth performance is in fact impacted by stem water potential (SWP)
other than the soil moisture level. Although for some plants, there is
a relationship between SWP and soil moisture level because water in
a tree is absorbed through soil, delay would occur due to the time
required for water to move from soil to stem. Soil moisture level
could also have a large departure from SWP for some plants that have
strong dependence on atmospheric conditions (Mccutchan & Shackel,
1992). Hence, directly controlling SWP would be a better approach to
avoid these disadvantages and could make irrigation more efficient,
especially for some high value-added plants and crops. In order to
collect feedback measurements of SWP for closed-loop control, a sensor
like the micro-tensiometer could be implemented inside the stem of a
tree, see e.g. Pagay et al. (2014). In this case, a closed-loop control
system for controlling SWP is thus of special interest.

MPC is an effective strategy among many feedback control ap-
proaches that utilizes prediction of state evolution to optimize future
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system behavior under certain constraints and has been well adopted
in various applications (Gallego, Merello, Berenguel, & Camacho, 2019;
Galuppini, Magni, & Raimondo, 2018; Garcia, Prett, & Morari, 1989;
hen, Lim, & Shi, 2020; Weizmann, Görges, & Lin, 2018; Xi, Li, &
in, 2013). It is also a desirable framework for irrigation control
ecause water potential dynamics is slow and the system model in-
orporates disturbances and constraints that can be derived from first
rinciples models. Disturbances in irrigation control are mainly related
o weather, including precipitation and evapotranspiration. Therefore,
eather forecast could serve as a helpful tool to predict disturbances,

educe water consumption and improve irrigation efficiency. There are
everal studies that demonstrated the advantages of MPC over conven-
ional methods in irrigation control (Delgoda et al., 2016; Romero et al.,

2012; Shang, Chen, Stroock, & You, 2019). However, the imperfection
of weather forecast might make plants suffer from water stress. For
example, when weather forecast indicates an expected heavy rain to-
morrow, MPC may choose not to irrigate today to save water. However,
it is likely that no rain occurs at all tomorrow. As a consequence, SWP
would drop below an acceptable level, leading to a reduced crop yield
or poor crop quality. Therefore, uncertainty within weather forecast
error is a major challenge for implementing MPC for effective irrigation
control.

To tackle the uncertainty of weather forecast errors, robust MPC
(RMPC) acts as a viable option (Bemporad & Morari, 1999). This
approach first uses a bounded uncertainty set to characterize the sup-
port of uncertainty, and then utilizes RMPC to ensure that SWP will
not violate the constraints during the control horizon for all weather
forecast errors within the uncertainty set. Although RMPC could pre-
vent SWP from dropping significantly, it may lead to over-conservative
regulation actions because the geometry of uncertainty set fails to com-
pactly capture the distribution of weather forecast errors. On the other
hand, over-conservative control actions are not favorable, since more
water consumption is required in this case with reduced efficiency.
To reduce the conservatism of RMPC, data-driven robust optimization
capturing the high-density region of uncertainties in decision-making
has established itself as an effective approach to monitoring, control,
and optimization of industrial processes (Shang & You, 2019), and has
also been widely adopted in various applications in process operations
and control (Gao, Ning, & You, 2019; Kusiak, Li, & Zhang, 2010; Moro,
Cortez, & Rita, 2014; Ning & You, 2018a, 2018b, 2019; Pidsley et al.,
2013).

Most existing studies on MPC for irrigation control do not consider
robustness, given that uncertain disturbances could deviate SWP from
the optimal condition (Lozoya, 2014; McCarthy, Hancock, & Raine,
2014; Romero et al., 2012). RMPC was adopted in Delgoda et al.
(2016), but the possibility of over-conservatism due to the oversized
uncertainty set is not considered. The issue of over-conservatism was
addressed in Shang et al. (2019). However, controlling soil moisture
level is not as direct as controlling SWP. Thus, to fill the knowledge gap,
the goal of this work is to develop a novel RMPC framework for irriga-
tion control that can (a) control SWP to prevent plant from water stress
and/or crop damage while balancing between irrigation amount mini-
mization and controlling the constraint violation; (b) effectively hedge
against uncertain disturbances from weather forecast errors including
precipitation and evapotranspiration errors; and (c) leverage the value
of historical weather forecast data to reduce over-conservatism.

In this work, we propose a novel data-driven robust MPC (DDRMPC)
framework for controlling SWP that minimizes the water consumption
and ensures the constraint on SWP not being violated by uncertainty
of disturbances. The state-space model of water dynamics in soil–root–
plant system is first formulated to describe the evolution of water
potentials in the near future with precipitation and evapotranspiration
forecast being considered. The three compartments, soil, root, and
stem, describe the water status of the system. Precipitation replenishes

water in the soil, which is further absorbed by the root of a tree thereby
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alleviating water stress. Evapotranspiration is the driving force in soil–
root–plant system and could lead to tree water stress when evapotran-
spiration is too heavy. Soil, root, and stem can hold water and repel
water flow in the sense that they can be viewed as ‘‘capacitors’’ or ‘‘re-
sistors’’ in the system. In order to tackle the computation burden caused
by the nonlinearity of the water dynamics, the nonlinear state-space
model is further linearized and discretized. In addition, to address the
infeasibility issue of controlling SWP, constraints on SWP are softened
by introducing slack variables. Next, historical weather forecast data
and historical weather measurement data are collected for the calcu-
lation of weather forecast errors. Data-driven uncertainty sets are then
constructed by adopting support vector clustering (SVC) with weighted
generalized intersection kernel (WGIK) (Shang, Huang, & You, 2017).
The data-driven uncertainty sets can be seamlessly incorporated into
RMPC to alleviate over-conservatism and enhance irrigation efficiency.
The affine disturbance feedback (ADF) policy (Goulart, Kerrigan, &
Maciejowski, 2006) is utilized to provide tractable approximations of
the optimization problem in DDRMPC, which can be solved effectively
by off-the-shelf solvers. The stability issue of the proposed control
scheme is also addressed formally. A case study using real weather data
to simulate almond tree water potential in Arbuckle, California, USA,
is presented to demonstrate the DDRMPC result comparing with on–off
control, certainty equivalence MPC (CEMPC), and RMPC approaches.

The main contributions of this paper are summarized below:

• A novel DDRMPC framework for irrigation control through SWP
capable of handling uncertain disturbances of weather forecast
errors;

• A formal stability guarantee of the DDRMPC framework for irri-
gation control;

• A real-world case study utilizing historical weather data to control
SWP of an almond tree located in Arbukle, California, USA;

• Comprehensive comparisons among rule-based control, CEMPC,
RMPC, and DDRMPC approaches on SWP control.

The paper is organized as follows: Section 2 presents the dynamic
model for water potentials of soil–root–plant system and a brief intro-
duction to on–off control. MPC strategies are set up for regulating SWP
in Section 3. In Section 4, a simulation of controlling SWP is served as a
case study of the proposed control strategies, and the simulation results
of different control strategies are discussed. Section 5 summarizes the
conclusion.

Notations and Definitions: N𝑖∶ 𝑗 is the set of consecutive nonnegative
integers {𝑖,… , 𝑗}. The p-norm of a matrix is denoted by ‖⋅‖𝑝. ⊗ denotes
the Kronecker product operator. The m-dimensional identity matrix
is denoted by 𝑰𝑚, and 𝟏𝑚 denotes the m-dimensional vector with all
elements being ones.

2. Preliminaries

2.1. System description

Measuring the amount of water in a system is useful to understand
the current state of that system. The most common way to measure
the water status in plant systems is by water potential (Jones, 2013).
Water potential is the potential energy of water compared to pure
water, of which the water potential is assigned to zero. When a plant
encounters water stress, its SWP would be more negative than normal
condition. Therefore, SWP is a measure to quantify the water stress of a
plant. Most plants obtain water from soil, and the path of water starts
from soil and roots to stems. To develop a water dynamic model for
soil–root–plant system, water flow passing soil, root, and stem can be
modeled in a way analogous to electrical circuits (Jones, 2013). Soil,
root, and stem can contain water and resist water flow such that these
compartments serve as either ‘‘capacitors’’ or ‘‘resistors’’ in the system.

The dynamics of soil water potential can be described by the following
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nonlinear ordinary differential equation (ODE) (Bittelli, Campbell, &
Tomei, 2015):
𝑑𝜓𝑠𝑜𝑖𝑙
𝑑𝑡

= 1
𝑅𝑟𝑜𝑜𝑡(𝜓𝑠𝑜𝑖𝑙)𝐶𝑠𝑜𝑖𝑙(𝜓𝑠𝑜𝑖𝑙)

(𝜓𝑟𝑜𝑜𝑡 − 𝜓𝑠𝑜𝑖𝑙) +
𝐼𝑅(𝑡)

𝐶𝑠𝑜𝑖𝑙(𝜓𝑠𝑜𝑖𝑙)
(1)

where 𝜓𝑠𝑜𝑖𝑙 and 𝜓𝑟𝑜𝑜𝑡 are water potentials of soil and root, respectively.
𝑠𝑜𝑖𝑙 is the ‘‘capacitance’’ of soil, respectively. 𝑅𝑟𝑜𝑜𝑡 is the ‘‘resistance’’ of
oot. Both 𝑅𝑟𝑜𝑜𝑡 and 𝐶𝑠𝑜𝑖𝑙 are dependent on 𝜓𝑠𝑜𝑖𝑙 because their properties
re described by certain nonlinear functions (Zhu, 2020). The addition
f precipitation and irrigation rate is denoted by IR, which is the
ater inflow. The soil is treated as a single compartment in the spirit
f parsimony to avoid over fitting our data. Additionally, the plant
tself, with its roots distributed throughout the volume of soil, tends to
aintain uniformity of water potential (Caldwell, Dawson, & Richards,
998).

The dynamics of root water potential is given by Bittelli et al. (2015)

𝑑𝜓𝑟𝑜𝑜𝑡
𝑑𝑡

= 1
𝑅𝑠𝑡𝑒𝑚𝐶𝑟𝑜𝑜𝑡

(𝜓𝑠𝑡𝑒𝑚 − 𝜓𝑟𝑜𝑜𝑡) +
1

𝑅𝑟𝑜𝑜𝑡(𝜓𝑠𝑜𝑖𝑙)𝐶𝑟𝑜𝑜𝑡
(𝜓𝑠𝑜𝑖𝑙 − 𝜓𝑟𝑜𝑜𝑡) (2)

where 𝜓𝑠𝑡𝑒𝑚 is stem water potential. 𝑅𝑠𝑡𝑒𝑚 is the ‘‘resistance’’ of stem.
𝐶𝑟𝑜𝑜𝑡 is the ‘‘capacitance’’ of root.

Finally, the dynamics of stem water potential is described as Bittelli
et al. (2015),
𝑑𝜓𝑠𝑡𝑒𝑚
𝑑𝑡

= 1
𝑅𝑠𝑡𝑒𝑚𝐶𝑠𝑡𝑒𝑚

(𝜓𝑟𝑜𝑜𝑡 − 𝜓𝑠𝑡𝑒𝑚) −
𝐸𝑇 (𝑡)
𝐶𝑠𝑡𝑒𝑚

(3)

where 𝐶𝑠𝑡𝑒𝑚 is the ‘‘capacitance’’ of plant stem. The evapotranspiration
rate is denoted by ET and can be estimated with the Penman–Monteith
equation using weather data (Bittelli et al., 2015). Evapotranspiration,
i.e. the sum of evaporation and plant transpiration from the canopy
to the atmosphere, is the driving force of the Resistor–Capacitor (RC)
circuit-like model, and the evaporation from bare soil or vegetation
surrounding the tree of interest is omitted. Basically, the variations of
evapotranspiration follow a daily pattern. After sunrise, air temperature
and solar radiation increases, and then the plant opens the stomatal
valves in its leaves to capture carbon dioxide while losing water va-
por to the atmosphere. These and other weather factors (e.g. relative
humidity and wind velocity) and plant characteristics (e.g. growing
stage and plant type) all make evapotranspiration during the daytime
significantly heavier than that at night.

By combining (1)–(3), the ODE model can be represented as,

𝒙̇ = 𝑨(𝒙)𝒙 + 𝑩𝑢(𝒙)𝑢 + 𝑩𝑣(𝒙)𝒗 + 𝑩𝑤(𝒙)𝒘 (4)

where x is the vector of state variables, which consists of water
potentials of soil, root, and stem. u is the control input, which is the
irrigation rate. v is the vector of deterministic disturbances, which
are evapotranspiration rate and precipitation rate. w is the vector of
uncertain disturbances, which are forecast errors of evapotranspiration
rate and precipitation rate.

{

𝑨 (𝒙) ,𝑩𝑢 (𝒙) ,𝑩𝑣 (𝒙) ,𝑩𝑤 (𝒙)
}

are system
matrices dependent on water potentials, which involve nonlinearity,
because capacitances and resistances are functions of water potentials.

The availability of direct measurement of system states is criti-
cal in irrigation control. Soil water potential measurement has been
extensively studied in literature and could be realized by many de-
vices (Campbell, 1988). Beyond that, root water potential measurement
is more difficult than soil water potential measurement and has at-
tracted less attentions. Nevertheless, root water potential could still
be measured by certain techniques such as using screen-caged ther-
mocouple psychrometers (Oosterhuis, 1987). SWP measurement could
be realized by using micro-tensiometer or a more conventional way
of pressure chamber (Choné, Van Leeuwen, Dubourdieu, & Gaudillère,
2001; Pagay et al., 2014). The probe is installed at approximately one
meter above ground in the main stem (trunk) of the tree in this work.
However, the height of the device in modest scale plants will not have
a significant impact on the measurement of SWP because gravitational

potentials are negligible (0.01 MPa for 1 m) relative to the typical
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potentials generated by transpiration (∼1 MPa). In this work, all system
states are assumed to be measurable directly thanks to these existing
sensors and devices. Therefore, the need to reconstruct current state by
building state observers is alleviated.

2.2. On–off control

Most modern irrigation systems use open-loop control by setting up
the irrigation at certain time intervals scheduled in advance (Romero
et al., 2012). Therefore, there is no feedback on water deficits or
surpluses. In contrast, closed-loop systems could collect information on
plant water status and make response. The on–off control strategy is one
of the simplest closed-loop irrigation control strategies with widespread
usage in practice. The on–off control strategy of SWP adjusts irrigation
amount once the difference between stem water potential and the
minimum acceptable stem water potential 𝜓min is detected to be less
than a threshold 𝛿. When the condition is satisfied, controller applies a
constant amount of water 𝑢on to soil; otherwise, there is no irrigation
action at all. In this way, a threshold 𝛿 serves as a tuning parameter to
prevent SWP from dropping below 𝜓min, where plants are considered
to suffer from water stress and the crop growth and quality could be
affected. The control law can be expressed as Flügge-Lotz (1953)

𝑢𝑘 =

{

𝑢on, if 𝜓𝑠𝑡𝑒𝑚,𝑘 − 𝜓min ≤ 𝛿

0, if 𝜓𝑠𝑡𝑒𝑚,𝑘 − 𝜓min > 𝛿
(5)

Even though on–off control has been an effective strategy in soil
moisture control, there is a significant challenge in controlling SWP due
to a large settling-time of plant dynamics. Because there is a significant
time delay for water to flow from soil into tree, water potential could
still tend to decline at the beginning of irrigation.

3. The proposed DDRMPC method

MPC is a control strategy that optimizes the control objectives
over a prediction horizon while respecting the constraints set for state
variables and input variables. One of its characteristics is the capability
of handling effects of disturbances and of controlling inputs in the
near future. After solving the optimization problem for the current
state, control inputs for current state will be implemented and the
same procedure again will be repeated at the next sampling instance.
MPC could be useful in our scenario, because the evapotranspiration
rate and the precipitation rate in the near future could be forecasted
by collecting sufficient amount of data from the weather station. In
addition, the large settling-time issue in on–off control strategy of SWP
can be effectively addressed by implementing MPC because the time
for water to be absorbed from soil to stem is described implicitly by the
prediction of future system states, provided that the prediction horizon
is sufficiently long for the time-delay. However, the nonlinearity of
the soil–root–plant water dynamic model is an issue for solving the
optimization problem that needs to be handled.

3.1. Linearization and discretization of model

Computational efficiency becomes a critical concern when it comes
to solving the nonlinear optimization problem in DDRMPC because
the system is a nonlinear ODE model. Some studies show that certain
types of nonlinear robust optimization problems could be solved by
off-the-shelf solvers after reformulations; however, computation burden
remains high when the dimension of the uncertainty is high (Leyf-
fer, Menickelly, Munson, Vanaret, & Wild, 2020; Yuan, Li, & Huang,
2018). The high dimensionality of uncertainties in the present study
is resulted from the uncertainty of forecast errors considered through-
out the entire prediction horizon H. Therefore, the linearization and
discretization strategies are adopted in our DDRMPC framework to
alleviate the computation burden caused by the nonlinear model and

the high-dimensional uncertainties.
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To address the nonlinearity issue, we first linearize (4) at the point
(𝑥0, 𝑢0, 𝑣0, 𝑤0) as a pragmatic approach, where 𝑥0 are the initial water
potentials. Although an equilibrium point is commonly chosen as the
operating point when linearizing a nonlinear system, in this work,
uncertainties exist on the right-hand side of (4). Hence, the equilibrium
point could not be found. The linearized continuous-time state-space
model is given by,

𝒙̇ = 𝑨𝑐𝒙 + 𝑩𝑢,𝑐𝑢 + 𝑩𝑣,𝑐𝒗 + 𝑩𝑤,𝑐𝒘 + 𝑪𝑐 (6)

where
{

𝑨𝑐 ,𝑩𝑢,𝑐 ,𝑩𝑣,𝑐 ,𝑩𝑤,𝑐 ,𝑪𝑐
}

are system matrices derived from (4).
The system model is then discretized using the Euler method, which

is an inexact discretization scheme. The system model can now be
approximately represented by a linearized discrete-time state-space
model shown as,

𝒙𝑘+1 = 𝑨𝑑𝒙𝑘 + 𝑩𝑢,𝑑𝑢𝑘 + 𝑩𝑣,𝑑𝒗𝑘 + 𝑩𝑤,𝑑𝒘𝑘 + 𝑪𝑑 (7)

where 𝒙𝑘 ∈ R𝑛𝑥 , 𝑢𝑘 ∈ R𝑛𝑢 , 𝒗𝑘 ∈ R𝑛𝑣 , 𝒘𝑘 ∈ R𝑛𝑤 , k is the time index, and
{

𝑨𝑑 ,𝑩𝑢,𝑑 ,𝑩𝑣,𝑑 ,𝑩𝑤,𝑑 ,𝑪𝑑
}

are system matrices derived from (6) without
much difficulties.

The state-space model can then be formulated into the following
compact expression given a prediction horizon H :

𝐱 = 𝐀𝑥0 + 𝐁𝐮𝐮 + 𝐁𝐯𝐯 + 𝐁𝐰𝐰 + 𝐂 (8)

where 𝐱 =
[

𝑥𝑇1 … 𝑥𝑇𝐻
]𝑇 , 𝐮 =

[

𝑢𝑇0 … 𝑢𝑇𝐻−1
]𝑇 , 𝐯 =

[

𝑣𝑇0 … 𝑣𝑇𝐻−1
]𝑇 ,

𝐰 =
[

𝑤𝑇0 … 𝑤𝑇𝐻−1
]𝑇 are vectors for the state-space model in compact

form. System matrices in compact form are given by

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴𝑑

𝐴𝑑
2

⋮

𝐴𝑑
𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐁𝐮 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝑢,𝑑 0 ⋯ 0

𝐴𝑑𝐵𝑢,𝑑 𝐵𝑢,𝑑 ⋯ 0

⋮ ⋮ ⋱ ⋮

𝐴𝑑
𝐻−1𝐵𝑢,𝑑 𝐴𝑑

𝐻−2𝐵𝑢,𝑑 ⋯ 𝐵𝑢,𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐁𝐯 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝑣,𝑑 0 ⋯ 0

𝐴𝑑𝐵𝑣,𝑑 𝐵𝑣,𝑑 ⋯ 0

⋮ ⋮ ⋱ ⋮

𝐴𝑑
𝐻−1𝐵𝑣,𝑑 𝐴𝑑

𝐻−2𝐵𝑣,𝑑 ⋯ 𝐵𝑣,𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐁𝐰 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵𝑤,𝑑 0 ⋯ 0

𝐴𝑑𝐵𝑤,𝑑 𝐵𝑤,𝑑 ⋯ 0

⋮ ⋮ ⋱ ⋮

𝐴𝑑
𝐻−1𝐵𝑤,𝑑 𝐴𝑑

𝐻−2𝐵𝑤,𝑑 ⋯ 𝐵𝑤,𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐂 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐶𝑑

𝐶𝑑
2

⋮

𝐶𝑑
𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

The linearized discrete-time state-space model in (8) is now ready to
be integrated in the MPC framework as constraints. The compact form
of the state-space model would become a convenient expression for
system state constraints that appear in the following section.

3.2. CEMPC

CEMPC, which is the simplest MPC strategy, handles disturbances
by replacing them by some predicted values and does not explicitly
consider uncertainty in the MPC optimization formulation. In our MPC
framework for irrigation control, CEMPC simply replaces disturbances
by the values of weather forecast. In this way, uncertain disturbances 𝒘
in the problem, viz. the forecast errors, are neglected. The MPC problem
is therefore simplified to a deterministic control problem. Although
CEMPC is a suboptimal policy due to the presence of uncertain distur-
bances, it still finds widespread applications due to its implementation
simplicity (Marquis & Broustail, 1988; Perez, Tzeng, & Goodwin, 2000).

The irrigation control goal is to minimize total water consumption.
Therefore, the objective function can be intuitively defined as

𝐽 =
𝐻−1
∑

𝑢𝑖 (10)

𝑖=0

r

4

where H is the control horizon.
Among three system states (i.e. water potentials of soil, root, and

stem), only SWP is controlled as the primary objective. Hence, con-
straints on system states are that SWP should be above a minimum
acceptable water potential 𝜓min to prevent water stress for all SWP in a
given prediction horizon H. However, sometimes hard constraints could
result in infeasible solutions due to disturbances or limitations of con-
trol inputs. In this case, introducing a slack variable 𝜀 allows constraints
to be slightly violated in order to get a consistently feasible solution for
the optimization problem, but the penalty of the violation should be
incorporated in the objective function to minimize the violation (Qin
& Badgwell, 2003). In this work, the slack variable is added to soften
the constraint on SWP. The slack variable in the objective function is
squared to punish harder if SWP violates the constraint more. The state
constraints are now defined as

𝜓𝑠𝑡𝑒𝑚,𝑘 ≥ 𝜓min − 𝜀, 𝑘 ∈ N1∶ 𝐻 (11)

where 𝜓𝑠𝑡𝑒𝑚,𝑘 is SWP at 𝑘th time step, 𝜓min is the minimum acceptable
SWP, and 𝜀 is the nonnegative slack variable. After softening system
state constraints, the objective function (10) becomes

𝐽 =
𝐻−1
∑

𝑖=0
𝑢𝑖 +

𝐻
∑

𝑖=0
𝜌𝜀2𝑖 (12)

where 𝜌 is the constraint violation penalty weight balancing between
two conflicting objectives. Besides constraints on SWP, constraints on
control input should also be considered because there is a limitation for
control input. The control input at 𝑘th time step is bounded by,

0 ≤ 𝑢𝑘 ≤ 𝑢max, 𝑘 ∈ N0∶ 𝐻−1 (13)

where 𝑢max is the maximum of the irrigation rate when a faucet is
at the full-on position, and the minimum is zero. Unlike state system
constraints, softening control input constraints is unreasonable because
the maximum and minimum of irrigation rate could not be violated.
Thus, control input constraints are inevitably hard. Eq. (11) and (13)
an then be combined in succinct expressions as

𝑥𝐱 ≤ 𝐠𝑥 + 𝜺,𝐆𝑢𝐮 ≤ 𝐠𝑢, 𝜺 ≥ 0 (14)

here 𝐆𝑥 = 𝑰𝐻 ⊗
[

−1 0 0
]

and 𝐠𝑥 = 𝟏𝐻 ⊗
[

−𝜓min 0 0
]𝑇

re coefficient matrix and vector in water potential constraints, 𝐆𝑢 =
𝐻 ⊗

[

−1 1
]𝑇 and 𝐠𝑢 = 𝟏𝐻 ⊗

[

0 𝑢max
]𝑇 are coefficient matrix and

ector in irrigation rate constraints, and 𝜺 is the vector of nonnegative
lack variables. The deterministic optimization problem of the CEMPC
ramework is formulated as

in
𝐮,𝜀

𝐽 =
𝐻−1
∑

𝑖=0
𝑢𝑖 +

𝐻
∑

𝑖=0
𝜌𝜀2𝑖

s.t. 𝐱 = 𝐀𝑥0 + 𝐁𝐮𝐮 + 𝐁𝐯𝐯 + 𝐂
𝐆𝑥𝐱 ≤ 𝐠𝑥 + 𝜺

𝐆𝑢𝐮 ≤ 𝐠𝑢
𝜺 ≥ 0 (15)

After the prediction horizon H is initialized, the procedure of
EMPC framework at each time step k is summarized as follows:

• Step 1. Collect the current water potentials 𝑥𝑘.
• Step 2. Linearize and discretize state-space model at 𝑥𝑘 to obtain

the linearized discrete-time state-space model (8).
• Step 3. Solve the optimization problem (15) to obtain control

input sequence u.
• Step 4. Implement the first control input 𝑢0 to the system.

.3. RMPC

Forecast errors of weather forecast need to be considered and are

egarded as uncertain disturbances in our RMPC problem. Forecast
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errors in this work consist of precipitation and evapotranspiration,
and their distributions can be assumed to be similar within a few
years when forecast accuracy does not have large improvement. Hence,
the forecast error distributions of a specific year can be captured by
the empirical distributions in the previous year. Historical evapotran-
spiration forecast errors could be calculated by 𝑤𝐸𝑇 = 𝑣̃𝐸𝑇 − 𝑣̂𝐸𝑇
where 𝑣̃𝐸𝑇 is the historical evapotranspiration measurement, and 𝑣̂𝐸𝑇
is the historical forecast for evapotranspiration. Similarly, historical
precipitation forecast errors could be calculated by 𝑤𝑃𝑅 = 𝑣̃𝑃𝑅 − 𝑣̂𝑃𝑅
where 𝑣̃𝑃𝑅 is the historical precipitation measurement, and 𝑣̂𝑃𝑅 is the
istorical forecast for precipitation.

RMPC guarantees constraint satisfaction for the worst case of the
ounded disturbances (Bemporad & Morari, 1999). Because MPC typ-
cally operates in a receding horizon fashion, the sequent control
ctions are essentially dependent on previous uncertainty, leading to
n infinite-dimensional optimization problem. In order to ensure the
ractability of the RMPC problem, ADF policy is adopted, and control
nput 𝑢𝑘 is parameterized according to the past disturbances (Goulart
t al., 2006). The past disturbance sequence w could be calculated as
he difference between the predicted and actual states at each step. The
ontrol inputs are then parameterized as

(𝐰) = 𝐡 +𝐌𝐰 (16)

here

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ0

ℎ1

⋮

ℎ𝐻−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟎 𝟎 ⋯ 𝟎

𝑀1,0 𝟎 ⋯ 𝟎

⋮ ⋮ ⋱ ⋮

𝑀𝐻−1,0 ⋯ 𝑀𝐻−1,𝐻−2 𝟎

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(17)

ecome decision variables of the control problem. The lower triangular
tructure of M could assure the causality of ADF policy.

The optimization problem in RMPC is shown as follows, which is a
‘robustified’’ version of (15):

min
,𝐌,𝜺

𝐽 =
𝐻−1
∑

𝑖=0
ℎ𝑖 +

𝐻
∑

𝑖=0
𝜌𝜀2𝑖

s.t. 𝐆𝑥
[

𝐀𝑥0 +
(

𝐁𝐮𝐌 + 𝐁𝐰
)

𝐰 + 𝐁𝐮𝐡 + 𝐁𝐯𝐯 + 𝐂
]

≤ 𝐠𝑥 + 𝜺,∀𝐰 ∈ 
𝐆𝑢 [𝐌𝐰 + 𝐡] ≤ 𝐠𝑢,∀𝐰 ∈ 

𝜺 ≥ 0 (18)

hich be solved efficiently with the ADF policy adopted. In robust
ptimization and RMPC, the budgeted uncertainty set has been mostly
sed (Bertsimas & Sim, 2004),

∈  =
{

𝐰 |‖𝐰‖ 1 ≤ 𝛺
}

(19)

here 𝛺 is the budget parameter that is used to adjust the conser-
atism. A larger value of 𝛺 implies a bigger size of the uncertainty
et. However, the generic budgeted set cannot accurately capture the
ncertainty distribution and is thus prone to over-conservatism (Bert-
imas, Gupta, & Kallus, 2018). In the following section, we discuss a
ore sophisticated strategy for handling uncertainty in RMPC.

.4. Uncertainty sets formulation based on data-driven approach

The uncertain disturbance w, as an important ingredient in
DRMPC (Bertsimas et al., 2018), can be characterized by an uncer-

ainty set  . There are several data-driven approaches to uncertainty
et construction, including SVC with WGIK (Ben-Hur, Horn, Siegel-
ann, & Vapnik, 2001; Shang et al., 2017), statistical hypothesis

ests (Bertsimas et al., 2018), Dirichlet process mixture model (Ning
You, 2017), copula (Zhang, Jin, Feng, & Rong, 2018), principal com-

onent analysis with kernel density estimation (Ning & You, 2018a),
robability density contours (Zhang et al., 2018), to name just a few.
hese mentioned approaches can all serve as the uncertainty set basic
5

ngredients for DDRMPC. Furthermore, the resultant uncertainty set is
polytope that can be parameterized as 𝐷 = {𝐰 |𝑓 (𝐰) ≤ 𝜃 }.

Uncertainty sets of evapotranspiration and precipitation in this work
re formed by SVC with WGIK approach. The minimal sphere radius
apturing data could be solved by SVC approach, and WGIK proposed
n Shang et al. (2017) is implemented when solving the dual form of
VC optimization problem, which is well suited for robust optimization
ue to its piecewise-linearity. By following similar approaches in Shang
t al. (2019) and Chen, Sim, and Sun (2007), uncertainty set for
vapotranspiration is formed as

𝐸𝑇 ∈ 𝐷𝐰𝐸𝑇 =

{

𝐰𝐸𝑇
|

|

|

|

|

∑

𝑖∈SV
𝛼𝑖
‖

‖

‖

𝐐𝐸𝑇 (𝐰𝐸𝑇 − 𝐰𝐸𝑇 (𝑖))‖‖
‖1

≤ 𝜃

}

(20)

here 𝐐𝐸𝑇 is the weighting matrix obtained from the covariance matrix
f 𝐰𝐸𝑇 . Model parameters

{

𝛼𝑖
}

and uncertainty set parameters 𝜃 are
etermined after solving the dual form of SVC using WGIK. Since
20) is a polytope, solving the resultant robust optimization problem
ould be accomplished without difficulties. The details of constructing
ncertainty set with SVC and WGIK is introduced in Appendix.

The formulation of uncertainty set to describe precipitation is
lightly different from the previous one because precipitation is always
onnegative. Therefore, precipitation forecast errors have dependency
n the precipitation forecast value. For example, when precipitation
orecast is 0 mm for the next hour, precipitation forecast error can only
e nonnegative. However, when precipitation forecast is 10 mm for the
ext hour, precipitation forecast error could be -10 mm as the lowest,
hich represents no rainfall in the end. In addition, the distribution
f precipitation forecast errors is asymmetric around zero. To handle
symmetry in robust optimization, the approach in Chen et al. (2007)
s adopted. The technique is to decompose the uncertainty into forward
eviation 𝐰+

𝑃𝑅 and backward deviation 𝐰−
𝑃𝑅, shown as:

𝑃𝑅 = 𝐄𝐰+
𝑃𝑅 − 𝐅𝐰−

𝑃𝑅, (21)

𝐰𝑃𝑅 = 𝐰+
𝑃𝑅 − 𝐰−

𝑃𝑅 ∈ 𝐷𝐰𝑃𝑅 , 0 ≤ 𝐰+
𝑃𝑅,𝐰

−
𝑃𝑅 ≤ 1 (22)

where 𝐄 = diag{𝑒1,… , 𝑒𝐻} and 𝐅 = diag{𝑓1,… , 𝑓𝐻} contain scaling
parameters. The difference between E and F helps capturing the asym-
metry in 𝐰𝑃𝑅. 𝐰𝑃𝑅 can be regarded as the ‘‘primitive uncertainty’’ and
is governed by a homogeneous distribution that can be described by an
SVC-based uncertainty set:

𝐷𝐰𝑃𝑅 =

{

𝐰𝑃𝑅
|

|

|

|

|

∑

𝑖∈SV
𝛼𝑖
‖

‖

‖

𝐐𝑃𝑅(𝐰𝑃𝑅 − 𝐰𝑃𝑅
(𝑖))‖‖

‖1
≤ 𝜃

}

(23)

In this way, the SVC-based precipitation uncertainty set can be shown
as

𝐷𝐰𝑃𝑅 =

⎧

⎪

⎨

⎪

⎩

𝐰𝑃𝑅
|

|

|

|

|

|

𝐰𝑃𝑅 = 𝐄𝐰+
𝑃𝑅 − 𝐅𝐰−

𝑃𝑅

𝐰+
𝑃𝑅 − 𝐰−

𝑃𝑅 ∈ 𝐷𝐰𝑃𝑅 , 0 ≤ 𝐰+
𝑃𝑅,𝐰

−
𝑃𝑅 ≤ 1

⎫

⎪

⎬

⎪

⎭

(24)

3.5. DDRMPC

The optimization problem of DDRMPC is based on the uncertainty
set captured by SVC with WGIK discussed in the previous section to
reduce over-conservatism. To ensure the tractability of the DDRMPC
problem, ADF policy is adopted and the optimization problem is pre-
sented as:

min
𝐡,𝐌,𝜀

𝐽 =
𝐻−1
∑

𝑖=0
ℎ𝑖 +

𝐻
∑

𝑖=0
𝜌𝜀2𝑖

s.t. 𝐆𝑥
[

𝐀𝑥0 +
(

𝐁𝐮𝐌 + 𝐁𝐰
)

𝐰 + 𝐁𝐮𝐡 + 𝐁𝐯𝐯 + 𝐂
]

≤ 𝐠𝑥 + 𝜺,∀𝐰 ∈ 𝐷𝐰

𝐆𝑢 [𝐌𝐰 + 𝐡] ≤ 𝐠𝑢,∀𝐰 ∈ 𝐷𝐰

𝜺 ≥ 0 (25)

The optimization problem can now be converted into a convex opti-
mization problem by using the robust counterpart (Gorissen, Yanıkoğlu,



W.-H. Chen, C. Shang, S. Zhu et al. Control Engineering Practice 113 (2021) 104841

o
b

a
r
T
l
(
s
i
c
v
o
s
o
c
s
i

S
c
s
D
t
o
r
w
M

4

4

b
s
h
i
w
i
t

f
i

w
c

a
r
z
w
{

v
a
o
t

w
i

& den Hertog, 2015). The worst-case maximization problem on the
SVC-based precipitation uncertainty set is given by,

max
𝐰+
𝑃𝑅 ,𝐰

−
𝑃𝑅

𝐚𝑇𝐰+
𝑃𝑅 + 𝐛𝑇𝐰−

𝑃𝑅

s.t.
∑

𝑖∈SV
𝛼𝑖
‖

‖

‖

𝐐𝑃𝑅(𝐰+
𝑃𝑅 − 𝐰−

𝑃𝑅 − 𝐰𝑃𝑅
(𝑖))‖‖

‖1
≤ 𝜃

0 ≤ 𝐰+
𝑃𝑅,𝐰

−
𝑃𝑅 ≤ 1 (26)

This problem can be reformulated into its dual problem (Shang et al.,
2019)

min
𝝁𝑖 ,𝝀𝑖 ,𝐫,𝐬,𝜂

∑

𝑖∈SV

(

𝝁𝑖 − 𝝀𝑖
)T 𝐐𝑃𝑅𝐰𝑃𝑅

(𝑖) + (𝐫 + 𝐬)𝑇 𝟏 + 𝜂𝜃

s.t.
∑

𝑖∈SV
𝐐𝑃𝑅

(

𝝁𝑖 − 𝝀𝑖
)

+ 𝐫 ≥ 𝐚
∑

𝑖∈SV
𝐐𝑃𝑅

(

𝝀𝑖 − 𝝁𝑖
)

+ 𝐬 ≥ 𝐛

𝝁𝑖 + 𝝀𝑖 = 𝜂 ⋅ 𝛼𝑖 ⋅ 𝟏,∀𝑖 ∈ SV

𝝁𝑖,𝝀𝑖, 𝐫, 𝐬 ≥ 𝟎, 𝜂 ≥ 0 (27)

where 𝝁𝑖, 𝝀𝑖, r, s, 𝜂 are the Lagrange multipliers. Following the similar
line, the worst-case performance in evapotranspiration uncertainty set
can also be found from the dual problem. Hence, constraints in (25)
can be reconstructed into multiple linear inequalities and equalities.
Since the objective function in (25) is convex, one can reformulate the
riginal DDRMPC optimization problem into a convex problem that can
e solved by off-the-shelf solvers efficiently.

For hard-constrained MPC, the feasibility cannot be always guar-
nteed, which means that the controller may drive system states to a
egion where the optimal control problem has no feasible solutions.
herefore, it is important in practice to guarantee that the control prob-

em remains feasible all the time. Obviously, the optimization problem
25) underlying the proposed soft-constrained DDRMPC is always fea-
ible. When the hard-constrained robust control problem is infeasible,
t implies that constraints on system states are not satisfied even when
ontrol inputs have been pushed to the limit. The introduction of slack
ariables always preserves the feasibility of the problem. The feasibility
f the second robust constraint is also guaranteed because one could
imply choose 𝐌 = 𝟎 and h satisfying 𝐆𝑢𝐡 ≤ 𝐠𝑢, ensuring the feasibility
f the problem. Another issue is the stability of the proposed soft-
onstrained DDRMPC. The stability is guaranteed for the proposed
oft-constrained DDRMPC. However, the proof is technical, so we defer
t to Appendix.

Fig. 1 shows the architecture of the DDRMPC framework in the
WP control problem. First, uncertainty sets for forecast errors are
onstructed offline from the difference between historical weather mea-
urement and historical weather forecast. Next, for each time step k,
DRMPC solves the optimization problem (25) given current water po-

entials and weather forecast data in prediction horizon H. Afterwards,
nly the control input in the first time step is implemented to the soil–
oot–plant system, and this procedure is repeated for each time step,
hich is also known as receding horizon control (Kwon & Han, 2006;
attingley, Wang, & Boyd, 2011).

. Case study on simulated almond tree

.1. Problem description

In this section, we perform a closed-loop simulation case study
ased on weather data collected at Arbuckle, California, USA. The
imulation time horizon in this case study is two months. For a compre-
ensive comparison, on–off control, CEMPC, RMPC, and DDRMPC are
mplemented. The irrigation control goal is to minimize water usage
hile maintaining the SWP above −15 bar, which is a critical value

ndicating moderate stress and could stop plant growth for almond
rees (Fulton, Grant, Buchner, & Connell, 2014). Hence, the constraint
6

or SWP, 𝜓min, is set to −15 bar for all control strategies. For the control
nput constraint, 𝑢max is set as 0.0014 L/s.

In the case study, the threshold 𝛿 is set as -12 bar for on–off control,
hich is the minimum value that can achieve zero violation. This

ould be determined according to Figs. 2 and 3. Among all thresholds
that result in zero violation shown in Fig. 3, on–off control with the
threshold 𝛿 being -12 bar and the irrigation rate 𝑢on at 0.0012 L/s
consumes the least cumulative irrigation. These values are therefore
chosen as an appropriate threshold and irrigation rate for on–off control
to compare with other control strategies.

Fig. 4 shows ET and precipitation rates at Arbuckle, California, USA
in March and April 2017. The ET rate has a diurnal dynamic and the
maximum ET rates of each day only have slight differences. On the
other hand, precipitation does not occur every day. However, when
precipitation occurs, the precipitation rate could be much higher than
the ET rate values. Fig. 5 compares nonlinear system trajectory with
linearized system trajectory under 6 h of sampling time. Although there
are some errors between linearized system trajectory and nonlinear sys-
tem trajectory, the linearized system model could capture the diurnal
dynamics of the stem water potential.

A series of values are attempted for budget parameter 𝛺 ∈
{

0, 10−5,
5 × 10−5, 10−4

}

in RMPC to investigate the tradeoff between robustness
nd performance. When 𝛺 = 0, RMPC provides no allowance for
obustness and will be the same as CEMPC. When 𝛺 = 10−4, RMPC has
ero violation percentage so the value is chosen for RMPC to compare
ith other control strategies. Similarly, a set of penalty weights 𝜌 ∈
10−6, 10−5, 10−4, 10−3

}

are used in DDRMPC, and 𝜌 = 10−4 gives zero
iolation percentage for DDRMPC. Since CEMPC, RMPC, and DDRMPC
ll contain penalty weight in the optimization problems, the same value
f penalty weight 𝜌 = 10−4 is shared over these control strategies such
hat a fair comparison could be made.

Uncertainty is tackled in this case by collecting both historical
eather data and historical weather forecast data from March to June

n both 2016 and 2017 from Meteogram Generator (0000). The length
of each time step is set as 6 h, which is appropriate because the system
is a slow dynamic process. The prediction horizon H has 4 intervals,
which means that weather forecast data looking 24-hour ahead are
collected. The linearized discrete-time state-space model is adjusted to
the sampling time. Uncertainty sets for evapotranspiration and precip-
itation can be obtained from the data in 2016, which contain 489 data
points with 4 intervals for both uncertainty sets. At each instance, the
robust control problem is formulated based on the linearized model
of the nonlinear dynamical system (8). Evapotranspiration rate ET is
estimated by the simple model in Hargreaves and Samani (1985)

𝐸𝑇 = 0.00023 ⋅𝐾𝑐 ⋅ 𝑅𝐴 ⋅ 𝑇𝐷0.5(𝑇 + 17.8) (28)

where 𝐾𝑐 is an evapotranspiration coefficient that Alta fescue grass
is taken as reference crop (Hargreaves & Samani, 1985). RA is the
extraterrestrial solar radiation. TD stands for annual average daily
temperature difference. T is the mean temperature in degree Celsius.
To calculate RA for every 6 h, the distribution of solar radiation in
each day can be estimated according to latitude and the day of the
year (Guo, 2017). By taking reference evapotranspiration and almond
tree evapotranspiration coefficient from Allen (1998), the almond tree
evapotranspiration amount can be estimated. This estimation model
is merely a simple example to estimate evapotranspiration by using
temperature and extraterrestrial solar radiation. Indeed, other factors
such as wind speed, relative humidity, and cloud cover could be
further utilized to enhance prediction accuracy (Cai, Liu, Lei, & Pereira,
2007; Glenn, Huete, Nagler, Hirschboeck, & Brown, 2007; Sumner &
Jacobs, 2005). The control problems in the case study are solved by
YALMIP toolbox (Lofberg, 2004). Table 1 reports the computational
complexities of solving optimization problems in CEMPC, RMPC, and
DDRMPC. DDRMPC is significantly more complicated than CEMPC and
RMPC because of the Lagrange multipliers introduced to transform the
infinite-dimensional problem into its robust counterpart. Nevertheless,
the DDRMPC optimization problem could still be calculated rapidly due
to constraints and inequalities being all linear.
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Fig. 1. DDRMPC structure for controlling stem water potential control.
Fig. 2. Heat map of cumulative irrigation amount (L) with different thresholds and irrigation rates in on–off control.
Fig. 3. Heat map of violation percentage (%) with different thresholds and irrigation rates in on–off control.
.2. Performance criteria

Total water consumption is an important criterion to evaluate the
ontrol performance. Besides water usage, the length of total time when
he water potential constraint is violated may also cause concerns for
he health and productivity of trees. Crops might not grow well or may
ven be damaged if SWP is below −15 bar. To evaluate this deviation
uantitatively, we calculate the percentage of time that SWP drops
nder −15 bar. We note that the time frequency of water potential
7

constraint violation could not accurately reveal the severity of poor
control performance. Even when the SWP is below −15 bar for the same
length of time, the water potential that is even more negative will be
more harmful to the tree. Therefore, the third performance criterion we
consider is the integral of deviation in water potential over time, which
is the area below the constraint. Similar to thermal comfort violation
in the building climate control presented in Sturzenegger, Gyalistras,

Morari, and Smith (2016), SWP violation amount is calculated as the
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Fig. 4. ET and precipitation rates at Arbuckle, California, USA in March and April 2017.
Fig. 5. Comparison of nonlinear system trajectory and linearized system trajectory under 6 h of sampling time.
m

able 1
omparison of computational performance between CEMPC, RMPC, and DDRMPC in
erms of number of variables, number of constraints, and average CPU time.

Criteria Control strategies

CEMPC RMPC DDRMPC

Number of variables 17 53 2197

Number of constraints 21 77 2949

Average CPU time (s) 0.19 0.21 0.58

area below −15 bar, which is described by
∑

𝑘
max(𝑥min − 𝑥𝑘, 0) (29)

There are more criteria that can be considered to evaluate the per-
formance such as crop qualities or amount of runoff flow, but some
might require professional knowledge in plant biology and is beyond
the scope of this paper.

4.3. Results and discussion

Fig. 6 shows both daily irrigation amount and cumulative irrigation
amount for on–off control, RMPC, and DDRMPC. We note that there is
 i

8

a significant difference of daily irrigation amount between the three
control strategies. For instance, RMPC is the only control strategy
that irrigates on day 28, but it does not irrigate on day 18 when
the two other strategies choose to irrigate. Despite the differences of
daily irrigation decisions between on–off control, RMPC, and DDRMPC,
cumulative irrigation amounts of the three control strategies are rather
similar. Note that DDRMPC consumes the least amount of water while
on–off control irrigates the most. The result confirms the advantage of
utilizing data of weather forecast errors to improve irrigation efficiency.
Furthermore, the fact that RMPC consumes more irrigation amount
than DDRMPC indicates that DDRMPC could successfully alleviate
over-conservatism.

Figs. 7 and 8 present the water potential dynamic profiles of each
control strategy in March and April 2017. The performance of CEMPC
and DDRMPC approach the limit of mild stress, which is −15 bar. When
SWP stays below −15 bar, an almond tree is under moderate stress and
plant growth may stop. However, SWP controlled by CEMPC violates
the constraint occasionally, while DDRMPC does not violate it at all.
This is because CEMPC neglects weather forecast errors; when weather
forecast error is significant (e.g., less precipitation than forecasted or
larger evapotranspiration than forecasted), SWP under CEMPC would
drop below −15 bar and could be harmful to almond tree growth and
almond yield. Figs. 7 and 8 also show that on–off control fluctuates

ore intensively than the other three strategies. This characteristic
s mainly due to the inflexibility of on–off control, which could only
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Table 2
Comparison of performance results between on–off control, CEMPC, SP Tracking MPC, RMPC, and DDRMPC
in terms of cumulative irrigation amount, violation percentage, and violation amount.

Criteria Control strategies

On–off CEMPC SP Tracking MPC RMPC DDRMPC

Cumulative irrigation amount (L) 404.3 349.4 385.5 387.2 372.1

Violation percentage (%) 0 14.5 0 0 0

Violation amount (bar-h) 0 249.5 0 0 0
Fig. 6. Daily and cumulative irrigation amount results in March under on–off control, RMPC, and DDRMPC.
rrigate at a constant rate, 0.0012 L/s, or does not irrigate for the entire
ime step. Therefore, overshooting is more likely to occur when on–off
ontrol is implemented. Another factor is that on–off control in this
ork does not utilize weather forecast. As a result, it is possible that
hen SWP drops to the threshold for on–off controller to trigger the

rrigation action, it starts to rain, which leads to unnecessary water
pplication. As shown in Figs. 7 and 8, control profiles of RMPC

and DDRMPC show similar trends and no constraint violation occurs
for both strategies. The major difference is that the control profile
of DDRMPC is much closer to the limit, −15 bar. This result shows
that the data-driven uncertainty sets play a crucial role in reducing
conservatism while maintaining zero constraint violation.

Table 2 reports the irrigation control results of on–off control,
CEMPC, set-point (SP) tracking MPC, RMPC, and DDRMPC in terms of
three performance criteria. SP tracking MPC, which is similar to CEMPC
but with a carefully tuned set-point, is included to provide a further
comparison. The SP is chosen as −13.5 bar to achieve zero violation
percentage. All control strategies except CEMPC achieve zero constraint
violation. Among four control strategies without constraint violations,
DDRMPC consumes the least amount of water, while on–off control
consumes the most irrigation amount. The reason is that DDRMPC inte-
grates weather forecast data and information into controller design, but
on–off control does not account for any weather forecast information.
On the other hand, CEMPC makes good use of the weather forecast such
that it could save water if a rain would be expected in the near future.
However, CEMPC leads to some constraint violations because errors
always exist in weather forecast. Although SP tracking MPC has zero
violation percentage, it still consumes more water than DDRMPC. In
addition, SP requires a careful tuning in order to achieve zero constraint
violation.

The advantages of DDRMPC are demonstrated through these com-
parisons. DDRMPC consumes the least amount of water among those
9

control strategies with zero constraint violation. In addition, DDRMPC
does not need as much tuning as on–off control to achieve zero vio-
lation. Hence, DDRMPC could exploit the data and lead to a desirable
balance between saving water and avoiding water potential violation.

5. Conclusion

In this work, we proposed a DDRMPC framework that could effec-
tively control SWP under the uncertainty of weather forecast errors.
Instead of controlling soil moisture level, irrigation control based on the
water potential inside a tree became a possible method. A state-space
model that could capture water dynamics in soil–root–plant system was
first formulated. Soil, root, and stem were the three compartments to
describe water status of the system. Precipitation in the system was
the water inflow, and evapotranspiration was the driving force in the
system. Soil, root, and stem also served as ‘‘capacitors’’ or ‘‘resistors’’
in the system. Next, the state-space model was linearized to reduce
computation burden caused by nonlinear robust optimization. To avoid
SWP from dropping to the level indicating moderate water stress for a
plant, a robust optimal control problem was formulated. SVC approach
with WGIK was adopted to describe the uncertainty within evapotran-
spiration and precipitation forecast errors. Optimal irrigation decisions
balancing between irrigation amount and constraint satisfaction could
then be determined by solving the DDRMPC optimization problem
at each time step. The stability issue was also formally addressed.
From the simulation results of the case study on almond trees, it was
shown that the proposed DDRMPC framework followed the diurnal
evapotranspiration pattern, and that DDRMPC outperformed on–off
control, CEMPC, and RMPC due to its ability to capture uncertainties
in weather forecast errors. Although system states could be measured
directly in this work, a state observer is required in general process
control settings in the absence system states measurements. The sta-
bility of the DDRMPC scheme in the presence of state observer will
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Fig. 7. Stem water potential dynamic profiles in March under on–off control, CEMPC, RMPC, and DDRMPC.
Fig. 8. Stem water potential dynamic profiles in April under on–off control, CEMPC, RMPC, and DDRMPC.
be further investigated in future work. Another potential limitation
of the proposed approach is that the current work only focuses on
controlling the SWP of a single tree. However, when the SWP of more
trees needs to be controlled on a farm, the soil water potential of
each tree would be different. This limitation would also be further
investigated in future work. Lastly, the DDRMPC framework in this
work adopted a linearized model. A nonlinear DDRMPC framework,
which could deal with nonlinear models, remains an unsolved research
challenge and would be subject to future work.
10
Nomenclature

A System matrix of system states in compact form

𝐁𝐮 System matrix of control inputs in compact form

𝐁𝐯 System matrix of deterministic disturbances in compact form

𝐁𝐰 System matrix of uncertain disturbances in compact form

C System matrix of values derived from Euler’s method in
compact form
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𝐶𝑟𝑜𝑜𝑡 Root capacitance

𝐶𝑠𝑜𝑖𝑙 Soil capacitance

E Diagonal matrix containing scaling parameters for forward
deviation

ET Evapotranspiration rate

F Diagonal matrix containing scaling parameters for backward
deviation

𝐆𝑥 Coefficient matrix for water potential constraints in compact
form

𝐆𝑢 Coefficient matrix for irrigation rate constraints in compact
form

𝐠𝑥 Coefficient vector for water potential constraints in compact
form

𝐠𝑢 Coefficient vector for irrigation rate constraints in compact
form

H Prediction horizon

h Vector of decision variables for parameterizing u

IR Irrigation rate

k Index of time steps

M Matrix of decision variables for parameterizing u

Q Weighting matrix for weighted generalized intersection
kernel

𝑅𝑟𝑜𝑜𝑡 Root resistance

𝑅𝑠𝑡𝑒𝑚 Stem resistance

u Control inputs in compact form

𝑢 Control inputs

𝑢max Irrigation rate when faucet at full-on position

𝑢on Irrigation rate when on–off control at ‘‘on’’ position

v Deterministic disturbances in compact form

𝑣 Deterministic disturbances

𝑣̃𝐸𝑇 Historical evapotranspiration measurement

𝑣̃𝑃𝑅 Historical precipitation measurement

𝑣̂𝐸𝑇 Historical evapotranspiration forecast

𝑣̂𝑃𝑅 Historical precipitation forecast

 Uncertainty set

w Uncertain disturbances in compact form

w Uncertain disturbances

x System states in compact form

x System states

𝑥min Minimum value acceptable for system states

𝛼 Lagrange multipliers for support vector clustering dual
problem

𝛿 Threshold in on–off control
11
𝜀 Slack variable

𝜃 Support vector clustering parameters

𝜓min Minimum value acceptable for stem water potential

𝜓𝑟𝑜𝑜𝑡 Root water potential

𝜓𝑠𝑜𝑖𝑙 Soil water potential

𝜓𝑠𝑡𝑒𝑚 Stem water potential
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Appendix A. Support vector clustering with weighted generalized
intersection kernel

SVC is an unsupervised kernel learning approach that finds a sphere
with minimal radius to capture the majority of data samples. A nonlin-
ear mapping function 𝝓(𝐰) is used to map data samples w from a set
 to a high-dimensional features space. The optimization problem to
find the sphere is shown as:

min
𝐜,𝑅,𝜉

𝑅2 + 1
𝑁𝜈

𝑁
∑

𝑖=1
𝜉𝑖

s.t. ‖

‖

𝝓(𝐰𝑖) − 𝐜‖
‖

2 ≤ 𝑅2 + 𝜉𝑖, 𝑖 = 1,… , 𝑁

𝜉𝑖 ≥ 0, 𝑖 = 1,… , 𝑁 (30)

here c is the center point of the sphere, R is the radius of the sphere,
nd

{

𝜉𝑖
}

are slack variables. Slack variables are introduced here to
llow some outliers not to be enclosed by the sphere. The violations
f the outliers are penalized in objective function, and the level of
enalization can be adjusted by the regularization parameter 𝜐. The
ual problem of (30) is shown as:

in
𝜶

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝛼𝑖𝛼𝑗𝐾(𝐰(𝑖),𝐰(𝑗)) −

𝑁
∑

𝑖=1
𝛼𝑖𝐾(𝐰(𝑖),𝐰(𝑗))

s.t. 0 ≤ 𝛼𝑖 ≤ 1∕𝑁𝜈, 𝑖 = 1,… , 𝑁
𝑁
∑

𝑖=1
𝛼𝑖 = 1 (31)

where 𝜶 are Lagrange multipliers, and 𝐾
(

𝐰(𝑖),𝐰(𝑗)) = 𝝓(𝐰(𝑖))𝑇𝝓(𝐰(𝑖))
is the kernel function. All data samples can be classified into interior
points, boundary points, and outliers according to their locations. If a
data sample is an interior point, 𝛼𝑖 = 0. For boundary points, 0 < 𝛼𝑖 <
1∕𝑁𝜐. Outliers would have 𝛼𝑖 = 1. The index set of support vectors,
which are boundary points and outliers, can be defined as

SV =
{

𝑖|𝛼𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑁
}

(32)

and the index set of boundary points is shown as

BSV =
{

𝑖|0 < 𝛼𝑖 < 1, 1 ≤ 𝑖 ≤ 𝑁
}

(33)

Some common kernel functions such as radial basis function kernel
and polynomial kernel contain nonlinear terms and robust optimiza-

tion problems that incorporates the uncertainty set would become
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intractable. To tackle the intractability issue, weighted generalized
intersection kernel (WGIK) can be adopted (Shang et al., 2017):

𝐾(𝐰, 𝐯) = 𝐿 − ‖𝐐(𝐰 − 𝐯)‖1 (34)

where matrix 𝐐 = 𝜮− 1
2 and 𝛴 is the covariance matrix of w. Another

kernel parameter L does not affect the solution
{

𝛼𝑖
}

as long as it is
sufficiently large and could be determined by w as well.

The data-driven uncertainty set using WGIK can be presented as a
olytope

(𝑣,) =

{

𝐰|
∑

𝑖∈SV
𝛼𝑖
‖

‖

‖

𝐐(𝐰 − 𝐰(𝑖))‖‖
‖1

≤ 𝜃

}

(35)

where

𝜃 =
∑

𝑖∈SV
𝛼𝑖
‖

‖

‖

𝐐(𝐰(𝑖′) − 𝐰(𝑖))‖‖
‖1
, 𝑖′ ∈ BSV (36)

and (𝑣,) can be further expressed as a series of linear inequalities

(𝑣,) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑤

|

|

|

|

|

|

|

|

|

|

|

∃𝐯𝑖 1 ≤ 𝑖 ≤ 𝑁

s.t.
∑

𝑖∈SV
𝛼𝑖𝟏𝑇 𝐯𝑖 ≤ 𝜃,

−𝐯𝑖 ≤ 𝐐(𝐰 − 𝐰(𝑖)) ≤ 𝐯𝑖, 1 ≤ 𝑖 ≤ 𝑁

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(37)

where
{

𝐯𝑖
}𝑁
𝑖=1 are auxiliary variables introduced to eliminate 1-norm

functions. The main advantage of the introduced data-driven uncer-
tainty is that it is a polytope so the tractability of robust optimization
problem can be assured with (37).

Appendix B. Stability guarantee

The stability of the proposed soft-constrained DDRMPC is an issue.
It is known that the stability of stochastic system (6) relies on the
system matrix A. When A is Schur-stable, the mean-square stability
sup
𝑘∈N0

E
{

‖

‖

𝑥𝑘‖‖
2
}

<∞ can be ensured with bounded inputs and bounded

covariance of w (Paulson, Buehler, Braatz, & Mesbah, 2020). If there
is at least one eigenvalue of A outside the unit circle, then the mean-
square stability cannot be ensured. The only case that needs to be
tackled is a Lyapunov stable matrix A. In this case, it suffices to consider
an orthogonal A, i.e. ATA = I (Chatterjee, Hokayem, & Lygeros, 2011).
Towards this goal, we first define 𝑋nom as the set of initially feasible
states for nominal DDRMPC problem,

𝑋nom =
{

𝑥0|∃𝐡 such that (24) is feasible and 𝜺 = 0
}

.
Some standing assumptions are then made as follows.

Assumption 1. The stochastic process
{

𝑤𝑘
}

𝑘∈N0
satisfies

supE
{

‖

‖

𝑤𝑘‖‖
4
}

= 𝐶4 <∞ (38)

Assumption 2. For the maximal control input 𝑢max in DDRMPC con-
roller, there exists a constant 𝑟 > ‖

‖

𝐵𝑤‖‖2 ⋅ sup
𝑘∈N0

E
{

‖

‖

𝑤𝑘‖‖
}

such that

‖

‖

𝐴𝑥𝑘 + 𝐵𝑢𝑢max
‖

‖

− ‖

‖

𝑥𝑘‖‖ ≤ −𝑟, ∀𝑥𝑘 ∉ 𝑋nom (39)

Notice that different from generic robust control techniques, we do
ot place a bounded assumption upon 𝑤𝑘. This is because 𝑤𝑘 represents
he prediction error, which depends on a particular prediction model
nd is likely to be excessively large. Rather, Assumption 1 requires
hat the fourth moment of

{

𝑤𝑘
}

𝑘∈N0
is finite, which is not restrictive.

Assumption 2 postulates that the controller is capable of steering the
nominal system states towards origin. This can be interpreted as the
improvement, as measured by r, must overcome the disturbance effect
by exceeding the largest expectation of ‖

‖

𝐵𝑤‖‖2 ⋅ ‖‖𝑤𝑘‖‖. The constraint
in Assumption 2 is not required to be satisfied throughout the whole
time, but it must be satisfied when ‖

‖

𝑥𝑘‖‖ is large and the problem in
(25) without soft-constraints is infeasible.
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Lemma 1 (Pemantle & Rosenthal, 1999). Assume
{

𝜂𝑘
}

𝑘∈N0
is a se-

quence of random variables upper bounded by 𝜂max, and let
{

𝜁𝑘
}

𝑘∈N0
=

{

𝜂max − 𝜂𝑘
}

𝑘∈N0
, which is a sequence of nonnegative random variables on

some probability space (𝛥, ,P) and can be regarded as a stochastic process.
Let

{

𝑘
}

𝑘∈N0
be any filtration to which

{

𝜁𝑘
}

𝑘∈N0
is adapted. Suppose that

there exist constants 𝑏 > 0, and 𝑍,𝑀 < ∞, such that 𝜁0 < 𝑍, and for all
𝑘,

E
{

𝜁𝑘+1 − 𝜁𝑘 ||ℱ𝑘
}

≤ −𝑏 on the event
{

𝜁𝑘 > 𝑍
}

, and (40)

E
{

|

|

𝜁𝑘+1 − 𝜁𝑘||
4
|

|

𝜁0,… , 𝜁𝑘
}

≤𝑀 (41)

Then there exists a constant 𝛾 = 𝛾 (𝑏,𝑍,𝑀) > 0 such that sup
𝑘∈N0

E
{

𝜁2𝑘
}

< 𝛾.
Details of the proof can be found in Pemantle and Rosenthal (1999)

nd are omitted here. Now we are ready to establish the stability
uarantee.

heorem 1 (Mean-Square Stability). Suppose that admissible control inputs
re bounded sup

ℎ∈𝐹𝑢
‖ℎ‖ = 𝑟ℎ < ∞, and Assumptions 1 and 2 are satisfied,

hen for all initial states 𝑥0 there always exists a constant 𝛾 > 0 such that
he closed-loop system admits the mean-square boundedness:

sup
∈N0

E
{

‖

‖

𝑥𝑘‖‖
2
}

= 𝛾 <∞ (42)

roof. The condition (40) is to be verified first. A non-negative stochas-
ic process is defined as

{

𝜁𝑘 = ‖

‖

𝑥𝑘‖‖
}

𝑘∈N0
. Since 𝑋nom

𝐻 is bounded, we set
= sup
𝑥∈Xnom

‖𝑥‖ <∞. On the event 𝜁𝑘 ≥ 𝑍, we have

{

𝜁𝑘+1 − 𝜁𝑘|𝖥𝑘
}

= 𝖤
{

‖

‖

𝐴𝑥𝑘 + 𝐵𝑢𝑢max + 𝐵𝑤𝑤𝑘‖‖ − ‖

‖

𝑥𝑘‖‖ |𝖥𝑘
}

≤ 𝖤
{

‖

‖

𝐴𝑥𝑘 + 𝐵𝑢𝑢max
‖

‖

+ ‖

‖

𝐵𝑤𝑤𝑘‖‖ − ‖

‖

𝑥𝑘‖‖ |𝖥𝑘
}

≤ −𝑟 + 𝖤
{

‖

‖

𝐵𝑤𝑤𝑘‖‖ |𝖥𝑘
}

≤ −𝑟 + ‖

‖

𝐵𝑤‖‖2 ⋅ sup
‖𝑤𝑘‖

𝖤
{

‖

‖

𝑤𝑘‖‖
}

(43)

𝑘+1 =
(

𝐴𝑇
)𝑘+1 𝑥𝑘+1

=
(

𝐴𝑇
)𝑡 𝑥𝑘 +

(

𝐴𝑇
)𝑘+1 [𝐵𝑢𝑢max + 𝐵𝑤𝑤𝑘

]

= 𝑦𝑘 +
(

𝐴𝑇
)𝑘+1 [𝐵𝑢𝑢max + 𝐵𝑤𝑤𝑘

]

(44)

Meanwhile, because ‖

‖

𝑦𝑘‖‖
2 = 𝑦𝑇𝑘 𝑦𝑘 = 𝑥𝑇𝑘𝐴

𝑘 (𝐴𝑇
)𝑘 𝑥𝑘 = 𝑥𝑇𝑘 𝑥𝑘 =

𝑥𝑘‖‖
2, we have ‖

‖

𝑦𝑘‖‖ = ‖

‖

𝑥𝑘‖‖. According to the triangle inequality
‖

‖

𝑦𝑘+1 − 𝑦𝑘‖‖ ≤ ‖

‖

𝑦𝑘+1‖‖ − ‖

‖

𝑦𝑘‖‖ ≤ ‖

‖

𝑦𝑘+1 − 𝑦𝑘‖‖, it holds that |

|

‖

‖

𝑦𝑘+1‖‖ −
‖

‖

𝑦𝑘‖‖||
4 ≤ ‖

‖

𝑦𝑘+1 − 𝑦𝑘‖‖
4, which indicates that:

𝜁𝑘+1 − 𝜁𝑘||
4

= |

|

‖

‖

𝑦𝑘+1‖‖ − ‖

‖

𝑦𝑘‖‖||
4

≤ ‖

‖

𝑦𝑘+1 − 𝑦𝑘‖‖
4

= ‖

‖

‖

(𝐴𝑇 )𝑘+1
[

𝐵𝑢𝑢max + 𝐵𝑤𝑤𝑘
]

‖

‖

‖

4

= ‖

‖

𝐵𝑢𝑢max + 𝐵𝑤𝑤𝑘‖‖
4

≤
(

‖

‖

𝐵𝑢‖‖2 ⋅ ‖‖𝑢max
‖

‖

+ ‖

‖

𝐵𝑤‖‖2 ⋅ ‖‖𝑤𝑘‖‖
)4

≤
(

‖

‖

𝐵𝑢‖‖2 ⋅ 𝑟𝑢 + ‖

‖

𝐵𝑤‖‖2 ⋅ ‖‖𝑤𝑘‖‖
)4

(45)

Therefore, one obtains E
{

|

|

𝜁𝑘+1 − 𝜁𝑘||
4
|𝜁0,… 𝜁𝑘

}

≤ E
{(

‖

‖

𝐵𝑢‖‖2 ⋅ 𝑟ℎ +
‖

‖

𝐵𝑤‖‖2 ⋅ ‖‖𝑤𝑘‖‖
)4
}

. Because of the boundedness of the fourth moment
f ‖

‖

𝑤𝑘‖‖, it can be easily deduced that there exists a constant 𝑀 =
(

‖

‖

𝐵𝑢‖‖2 , 𝑟ℎ, ‖‖𝐵𝑤‖‖2 , 𝐶4
)

> 0 such that E
{(

‖

‖

𝐵𝑢‖‖2 ⋅ 𝑟ℎ + ‖

‖

𝐵𝑤‖‖2 ⋅
‖𝑤 ‖

)4
}

≤𝑀 , which yields the condition Eq. (41). Now all constants

‖ 𝑘‖
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H

J

K

K

L

L

L

M

M

M

M

M

N

S

S

S

U

V

W

X

Y

Z

Z

{𝑏,𝑍,𝑀} are well-defined. Note that 𝑥0 implies 𝜁0 = ‖

‖

𝑥0‖‖ < 𝑍.
Therefore, in the light of Lemma 1, there exists a constant 𝛾 =
𝛾 (𝑏,𝑍,𝑀) > 0 such that sup

𝑘∈N0

E
{

‖

‖

𝑥𝑘‖‖
2
}

= sup
𝑘∈N0

E
{

𝜁2𝑘
}

< 𝛾. This

completes the proof. □
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