."mmunlty Journal

Sectlon Mathematical & Computational Biology

researcharTicte . AN efﬁCient algorithm for

_ewised  @Stimating population history
from genetic data

Cite as

Alan R. Rogers (2022) An
efficient algorithm for estimating A| an R RO gers 1

population history from genetic
data, Peer Community Journal,

2:¢32.  Volume 2 (2022), article e32

Correspondence  https://doi.org/10.24072 /pcjournal.132

rogers@anthro.utah.edu

Pger-review Ab St ra Ct

Peer reviewed and

recommended by The Legofit statistical package uses genetic data to estimate parameters describing pop-

PCI Mathematical & ulation history. Previous versions used computer simulations to estimate probabilities,
Computational Biology, an approach that limited both speed and accuracy. This article describes a new deter-
https://doi.org/10.24072/pci. ministic algorithm, which makes Legofit faster and more accurate. The speed of this
mcb.100003 algorithm declines as model complexity increases. With very complex models, the de-

This article is licensed
under the Creative Commons
Attribution 4.0 License.

<
>

MERSENNE

terministic algorithm is slower than the stochastic one. In an application to simulated

(; data sets, the estimates produced by the deterministic and stochastic algorithms were

essentially identical. Reanalysis of a human data set replicated the findings of a previous
study and provided increased support for the hypotheses that (a) early modern humans
contributed genes to Neanderthals, and (b) a "superarchaic” population (which separated
from all other humans early in the Pleistocene) was either large or deeply subdivided.

1 Dept. of Anthropology, University of Utah, USA

, ‘ A A A V‘
Peer Community Journal is a member of the & Av VAA ol Av‘
Centre Mersenne for Open Scientific Publishing v A
http: // www.centre-mersenne.org/ v A ‘ V A A ‘
A AV A AN N A

A v
e-ISSN 2804-3871 A AA A YN y - v


http://www.centre-mersenne.org/
mailto:rogers@anthro.utah.edu
https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.24072/pci.mcb.100003
https://orcid.org/0000-0003-3987-3346
https://doi.org/10.24072/pcjournal.132

2 Alan R. Rogers

1. Introduction

Legofit is a publicly-available statistical package that uses genetic data to estimate the his-
tory of size, subdivision, and gene flow within a set of populations. Because it ignores the within-
population component of genetic variation, it avoids the need to estimate parameters describ-
ing recent population history and is able to focus on a deeper time scale. It operates by fitting
models of history to the frequencies of “nucleotide site patterns,” which describe the sharing of
derived alleles by subsets of populations. In recent publications, it has shown that Neanderthals
and Denisovans separated earlier than previously thought, that their ancestors endured a bot-
tleneck in population size, and that these ancestors interbred with a preexisting “superarchaic”
population, which had inhabited Eurasia since early in the Pleistocene. It has also confirmed a
variety of results first obtained by other methods [23, 21, 24].

Legofit's estimation procedure evaluates the fit of model to data at many sets of parameter
values. In previous versions of Legofit, each evaluation required a lengthy computer simulation.
These calculations were feasible because they could be done in parallel. Nonetheless, Legofit
was most useful on high-performance computing clusters. This stochastic algorithm also limited
the accuracy with which models could be fit to data.

This article describes a new deterministic algorithm, which increases both speed and accu-
racy. With the simulated data discussed below, the deterministic algorithm is over 1600 times as
fast as the stochastic one. Because of its greater accuracy, it also provides a better fit of model
to data and improves Legofit’s ability to discriminate among models.

2. Methods

The new algorithm involves two novel components. The first of these involves a well-known
Markov chain [25, 8, 28] that is seldom used because of the numerical difficulties. Below, sec-
tion 2.3 shows a way around these difficulties. The new algorithm also relies on two results
describing how descendants are partitioned among ancestors. One of these (Eqn. 7) is old and
the other (Egn. 8) new. Before discussing these, however, let us review the basics of Legofit. As
in previous publications, | use capitalization to distinguish the Legofit package from the legofit
program within that package.

2.1. Model of population history.

Fig. 1 shows a gene tree embedded within a network of populations. In Legofit, the population
network is modeled as a set of connected segments, each with a simple history. Each segment
describes a single randomly-mating population, during an interval of constant population size.
The root segment has no parent, and tip segments have no children. All other segments have
at least one parent and one child. Segments that receive gene flow have two parents: one for
native ancestors and the other for immigrants. Most segments have finite length, but the root
segment is infinite.

The population history in Fig. 1 could be modeled using the network of segments in Fig. 2.
Note that the branch ending at Y in Fig. 1 has three segments (y, y1, and y2) in Fig. 2. This is
because that branch is interrupted by two episodes of gene flow, and gene flow can occur only
at the ancient end of a segment. Thus, segment y extends from the present back to the first
episode of gene flow, y1 extends from the first episode to the second, and y2 extends from the
second episode back to the separation of populations X and Y.

The size of population Y cannot be estimated, because there is never more than a single
lineage within Y. At time zero, there is a single haploid sample, because Y is a population that
has been sampled. This lineage may derive from segment dO, from n2, or from y2. But there is
no way, under this model of history, for any of the segments that compose Y to contain more
than one lineage. Consequently, no coalescent events are possible within Y, and its population
size does not affect site pattern frequencies. This population size is therefore treated as a fixed
constant rather than a parameter to be estimated.

On the other hand, segment n2 may contain either 1 or 2 lineages. It will always contain at
least 1 lineage, which is ancestral to the lineage sampled in segment n. In addition, it may contain

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://github.com/alanrogers/legofit
https://doi.org/10.24072/pcjournal.132

Alan R. Rogers 3

Figure 1 - Population network with embedded gene tree. A mutation on the solid red
branch would generate site pattern yn (shown in red at the base of the tree). One on the
solid blue branch would generate ynd. “0” and “1” represent the ancestral and derived
alleles. Key: X, Africa; Y, Eurasia; N, Neanderthal; D, Denisovan. After Rogers [21, Fig. 1].

xynd

Xy nd

y2 n2 d

Figure 2 - Network of segments used in legofit analysis. Squares represent seg-
ments from which we have “observed” (i.e. simulated) data. Arrows indicate ancestor-
descendant relationships, and dashed lines represent gene flow. Segments in the same
row need not be contemporary.

the lineage sampled in segment y. Consequently, population size in segment n2 is an estimable
parameter.

In order to reduce the parameter count, it is possible to specify that several segments share
a single population-size parameter.

2.2. Nucleotide site patterns.

Legofit works with the frequencies of nucleotide site patterns, which are illustrated in Fig. 1.
A nucleotide site exhibits the yn site pattern if random nucleotides drawn from populations Y
and N carry the derived allele, but those drawn from other populations carry the ancestral allele.
Fig. 1 shows the gene genealogy of a particular nucleotide site, embedded within the network of
populations. A mutation on the red branch would generate site pattern yn, whereas one on the

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

4 Alan R. Rogers

blue branch would generate ynd. Mutations elsewhere would generate other site patterns. The
gene genealogy will vary from locus to locus, so averaging across the genome involves averaging
across gene genealogies. We are interested in the properties of such averages.

Let B; represent the length in generations of the branch generating site pattern /. | employ the
“infinite sites” model of mutation [10], which assumes that the mutation rate is small enough that
we can ignore the possibility of multiple mutations on any given branch. Under this assumption,
a polymorphic site exhibits pattern i with probability

E[Bi]
>jea E[B]]
where E[B;] is the expected length of the branch generating site pattern /, and Q is the set of

site patterns under study [21, Eqn. 1]. Previous versions of Legofit used coalescent simulations
to estimate these expectations. The sections that follow describe a deterministic algorithm.

(1) Pi =

2.3. The matrix coalescent.

The new algorithm is based on a model that calculates the probability that there are k ances-
tral lineages at the ancient end of a segment, given that there are n descendant lineages at the
recent end. This model also calculates the expected length of the interval within the segment
during which there are k lineages, where 1 < k < n. The model employs a continuous-time
Markov chain, which begins with n haploid lineages at the recent end of the segment. As we
trace the ancestry of this sample into the past, the original sample of n lineages falls to n — 1,
then n — 2, and so on until only a single lineage is left, or we reach the end of the segment.

The number, n, of descendants equals 1 for tip segments. For ancestral segments, n may take
several values with different probabilities. The legofit program sums across these possibilities,
weighting by probability.

This Markov chain is well known ([25, appendix I]; [8]; [28]) but seldom used, because accu-
rate calculations are difficult with samples of even modest size. Legofit, however, is designed for
use with small samples. Furthermore, it is possible (as shown below) to factor the calculations
into two steps, one of which can be done in exact arithmetic and only needs to be done once at
the beginning of the computer program. Numerical error arises only in the second step, and as
we shall see, that error is small.

Within a segment, the population has constant haploid size 2N, although 2/ can vary among
segments. (“Haploid” population size is twice the number of diploid individuals.) It will be con-
venient to measure time backwards from the recent end of each segment in units of 2N gen-
erations. On this scale, time is v = t/2N, where t is time in generations. Let x(v) denote the
column vector whose ith entry, x;(v), is the probability of observing i lineages at time v, where
1 < i < n.lignore the absorbing state x{, so that indices of arrays and matrices range from 2
to n. Because there are n lineages at time zero (the recent end of the segment), the initial vector
equals x(0) = [0, ..., 0,1] 7. At time v [28, Eqn. 8],

(2) x(v) = CE(v)Rx(0)

Here, E(v) is a diagonal matrix of eigenvalues whose ith diagonal entry is e=#", where ; =
i(i—1)/2.C = [c;] and R = [r;;] are matrices of column eigenvectors and row eigenvectors, both
of which are upper triangular. They are calculated by setting diagonal entries equal to unity, and
then applying [28, p. 1642],

i(i+1) .
ij = Citlyj T — : =j—-1..,2
o = o (G 6n) T
JU-1)
rij = rij—1X ( . -
’ ’ JU=1)—i(i=1)
Let m(v) denote the vector whose kth entry, m,(v), is the expected duration (in units of 2N

generations) of the interval during which the segment contains k lineages, within a segment of
length v. This vector equals

(3) m(v) = B} (x(v) — x(0))

>, j=i+1,..,n

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers

where

B2 B
B — _53

Bn

*Bn
Egn. 3 holds not only for finite segments, but also when v — co. In the infinite case, x(c0) = 0,
because we are considering only the transient states (x», ..., x,), which disappear in the long run.
Eqgn. 3 is easy to calculate, because B~! has a simple form. For the case of n = 4,

=1/ =1/B2 —1/B2
B~!= ( —1/Bs —1/53) .

—1/Ba4

This model presents challenging numerical issues. To deal with these, let us re-organize the
calculations to do as much as possible in exact arithmetic. | illustrate this re-organization using
the case of n = 3, for which Egn. 2 becomes

=y ) ((f %) (0 1))
:(1 —3/2 ( ~Bav _%3V> (3{2)
(5RO ()
R

(4) = Gw(v)

where w(v) = (e 2", %) T is a vector of eigenvalues, G = C diag(Rx(0)) is a matrix of column
eigenvectors with columns scaled by the entries of vector Rx(0), and diag(Rx(0)) is a diagonal
matrix whose main diagonal equals the vector Rx(0). The matrix G can be calculated in exact
rational arithmetic. This is done at the beginning of the computer program for each possible
value of n, and the resulting values are stored for later use.

Next, substitute (4) into (3) to obtain

(5) m(v) =z + Hw(v)

where z = —B~1x(0) = (1/82,...,1/B,) ", and H = B™1G, both of which can be calculated in
advance for each possible value of n, using exact arithmetic. For example, if n = 3,

= (1)) + (57 47 (5)

In an infinite segment, Eqn. 5 is simply m(co) = z.

This algorithm calculates x,(v) and my(v) only for k = 2,3, ..., n. Values for k = 1 are ob-
tained by subtraction: x;(v) = 1—->"}_, xk(v),and my(v) = v—>"}_, mk(v). Finally, to re-express
my(v) in units of generations, define

(6) Li(t,2N) = 2Nmy(t/2N)

where t is the length of the current segment in generations, and 2N is its haploid population
size. Lx(t,2N) is the expected duration in generations of the interval during which the current
segment contains k lineages.

Several of the quantities in this algorithm—G, H, and z—are calculated in exact rational arith-
metic. Although there is no roundoff error, these calculations will overflow if nis too large. With
32-bit signed integers, there is no overflow until n > 35. This is more than enough for Legofit,

Peer Community Journal, Vol. 2 (2022), article e32

https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

6 Alan R. Rogers

which requires that n < 32, so that site patterns can be represented by the bits of a 32-bit
integer.

Roundoff error does occur in this algorithm, because all quantities are eventually converted to
double-precision floating point during the calculation of Egns. 4 and 5. To assess the magnitude
of this error, | compared results to calculations done in 256-bit floating-point arithmetic, using
the Gnu MPFR library [7]. | considered values of v ranging from O to 9.5 in steps of 0.5, and
also v — oo. The maximum absolute error is 3.553 x 10715 when n = 8; 2.700 x 10~13 when
n = 16; and 1.543 x 10~8 when n = 32. These errors are all much smaller than those of Legofit’s
stochastic algorithm.

The theory just described allows us to calculate the probability that n descendants have k < n
ancestors in some previous generation. To relate this theory to the frequencies of site patterns,
we must discuss how the coalescent process partitions descendants among ancestors.

2.4. Partitioning descendants among ancestors.

A “segment” is an interval within the history of one subpopulation. Let n represent the number
of descendant lineages at the recent end of the segment, and let k < n represent the number of
ancestral lineages at some earlier point within the segment. The theory in section 2.3 calculates
the probability of k at any time within the segment and also provides the expected length of the
subinterval containing k lines of descent.

For all segments except the root, we need both of these quantities. We need the expected
lengths of subintervals, because these lengths measure the opportunity for mutation. In addition,
we need to assign a probability to each of the ways in which the set of descendants can be par-
titioned among ancestors at the ancient end of the segment. These partitions and probabilities
are used in calculations on earlier segments within the network.

For the root segment, we still need the expected lengths of subintervals. But because there
are no earlier segments to worry about, we don'’t need to assign probabilities to partitions. This
is fortunate, because the number of set partitions increases rapidly with the size of the set [11,
p. 418], and the set of descendants is largest in the root segment.

To address these needs, | present two algorithms. One sums across partitions of the set of
descendants and is used in all segments except the root. The other avoids this sum and is used
only at the root.

2.4.1. Summing across set partitions. Section 2.3 calculated the expected length of the interval
during which there are k ancestors, given that there are n descendants at the recent end of the
segment. If a mutation strikes one ancestor, it will be shared by all descendants of that ancestor.
The subset comprising these descendants corresponds to a nucleotide site pattern.

Suppose that at some time in the past there were k ancestors. These ancestors partition
the set of descendants into k subsets. Let xq, x, ..., xx denote the sizes of the k subsets, i.e.,
the numbers of descendants of the k ancestors. The conditional probability, given k, of such a
partition is [3, theorem 1.5, p. 11]

n—1 - n -
) AZk!(k—l) <X1,...,Xk>

The left side of table 1 shows all ways of partitioning a set of 4 descendants among 2 ances-
tors along with the probability of each partition. The descendants of each ancestor define a
nucleotide site pattern. For example, the first partition is “1112,” which says that the first three
descendants share a single ancestor. A mutation in this ancestor would be shared by these de-
scendants, and so the descendants correspond to a site pattern.

This result is used in an algorithm that calculates (a) all possible partitions of descendants
at the ancient end of the segment along with their probabilities, and (b) the contribution of the
current segment to the expected branch length of each site pattern. The algorithm loops first
across values of k, where 1 < k < n. For each k, it loops across set partititions using Ruskey's
algorithm [11, pp. 764-765]. The probability that a given partition occurs at the ancient end of a
segment, given the set of descendants at its recent end, is the product of x,(t/2N) (Egn. 2) and

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers 7

Table 1 - Set partitions, integer partitions, and their probabilities, for the case in which
n =4 and k = 2. Under “set partitions,’ the value in position j of each string is the index
of the ancestor of descendant j. Thus, “1122" means that descendants 1 and 2 descend
from one ancestor, whereas 3 and 4 descend from another. Ancestors are numbered in
order of their appearance in the list of descendants. Integer partitions are discussed in
section A.2 of the appendix.

Set Integer
partitions Pr | partitions Pr

1112 1/6 3+1 2/3

1121 1/6

1211 1/6

1222 1/6

1122 1/9| 2+2 1/3

1212 1/9

1221 1/9

A (Egn. 7). Each partition also makes a contribution to the expected branch length associated
with k site patterns—one for each ancestor. That contribution is the product of L,(t, 2N) (Eqn. 6)
and A (Eqgn. 7). These contributions are summed across partitions and segments to obtain the
expected branch length of each site pattern.

2.4.2. A faster algorithm for the root segment. Consider the event that a particular set of d de-
scendants (and no others) descend from a single ancestor in some previous generation, given
that there were k ancestors in that generation. This event is of interest, because a mutation in
this ancestor would be shared uniquely by the d descendants. The probability of this event is

®) Qo — 1 ifk=1
FTAKIEHEH T k>t

To justify this result, consider first the case in which k = 1. This requires that all n descendants
descend from a single ancestor, so d must equal n. There is only one way this can happen, and
because the probability distribution must sum to 1, it follows that Qg = 1. The result for kK > 1
is derived in appendix A.

Example 1. Suppose k = n. In this case, each ancestor has 1 descendant, so d = 1, and Qs ,,
must equal 1. Equation 8 agrees:

1 1
n—2\(n-1 n 1
Ql,n—”(n_2><n_1> <1> :nxlxlx;:I

Example 2. Suppose that kK = n — 1. In this case, we are reckoning descent from the previous
coalescent interval, in which there were n — 1 ancestors. Consider first the case in which d = 1.
Among the n descendants, 2 derive from an ancestor that split, and n— 2 derive from one that did
not split. This implies that Q; ,—1 equals (n — 2)/n, the probability a random descendant derives
from an ancestor that did not split.

The case of d = 2 is also easy. There are (3) ways to choose 2 descendants from n, and
only one of these pairs derives from a single ancestor in the previous coalescent interval. Thus,

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

8 Alan R. Rogers

Q1= (’2’)71. Equation 8 confirms both of these results:

-1 -1
N

= (DX (-2 x e x (a2

-1 -1
o - () 0
-1 -1
= (n—l)xlxn11x<g> :<,27>

Example 3. We can also evaluate Egn. 8 by comparing its results to Egn. 7. Table 1 shows all
partitions and their probabilities for the case in which k = 2 and n = 4. Notice that subsets of
sizes 1, 2, and 3 have probabilities 1/6, 1/9, and 1/6. Egn. 8 yields identical values:

~1 /-1
2\ (3 4 1 1
Q2 = 2<0><1> <1> :2><1><§><Z:1/6
~1 /-1
1\ (3 4 1 1
Qo = 2(0)(1) <2> :2XIX§X6:1/9
~1 /-1
0\ /(3 4 1 1
Qs = 2<0><1> (3) :2X1X§XZ:1/6

In the root segment, the program uses the following algorithm: Loop first across values of k,
where 1 < k < n. For each k, loop across values of d. If k = 1, then d = n. Otherwise, d can
take any integer value such that 1 < d < n— k + 1. For each d, calculate Q4 using Eqn. 8, and
loop across ways of choosing d of n descendants, using algorithm T of Knuth [11, p. 359]. Each
such choice corresponds to a nucleotide site pattern. Add QuxL«(t, 2/N) to the expected branch
length associated with this site pattern.

2.5. Simulated data sets.

To evaluate the new algorithm, | used 50 data sets simulated with msprime [?], using the
model in Fig. 1, which is identical to that used in a previous publication [21]. Each simulated
genome consisted of 1000 chromosomes, each with 2 x 10° nucleotide sites. Each simulated
data set consisted of 4 genomes, one each from populations X, Y, N, and D, which represent
the African, European, Neanderthal, and Denisovan populations. XY is the population ancestral
to X and Y, ND is that ancestral to N and D, and XYND is that ancestral to X, Y, N, and D. The
mutation rate was 1.4 x 108 per base pair per generation, and the recombination rate was 10~
per base pair per generation.

The time parameters in the simulation model, expressed in generations, are as follows:

Txynp = 25920 separation of XY and ND

Tnp = 15000 separation of N and D
Txy = 3788 separationof X and Y
Tp = 1734 age of Denisova fossil
Tao = 1760 age of Altai Neanderthal fossil
T, = 1897 time of Neanderthal admixture
T. = 1896 time of Denisovan admixture
Admixture proportions are:
m, = 0.05 fraction of segment y2 derived from n2
m. = 0.025 fraction of segment y derived from dO

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers

4600 5200
o
<
o
S
©
[aN]
S
S S
)O% )
Q &
B - ®
2 95
o :3
3 Jodke
~ o
L) o
[Ye)
»
ﬁ 3
o
[Te)
©
o
S
= S
a 8
O
o
N
o
S
(o)
3
o
o
S
8 <
N
Te)
o
o
o
<
o
- 3
TTTTTTT 8
0.040 1884 1896 6500 9500 2000 6000 40000 63500

Figure 3 - Scatter plot of each parameter against each other, based on 50 simulated data

sets.

Population sizes are expressed as “haploid” counts, which represent twice the number of diploid
individuals. These parameters are:

2Nxynp
2Nxy

2Nnp
2Ny
2Np
2Nx
2Ny

64964.1
44869.2
5000
9756.8
5000
20000
20000

ancestral population XYND
population ancestral to X and Y
population ancestral to N and D
Neanderthal population, N
Denisovan population, D
modern African population, X
modern European population, Y

Simulation code is in section S1 of Supplementary Information [22]. Simulation results are in

the archive [20].

Peer Community Journal, Vol. 2 (2022), article e32

https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

10 Alan R. Rogers

2.6. Analysis of simulated data.

The data analysis pipelines for the deterministic and stochastic algorithms are detailed in
sec. S2 of Supplementary Information [22]. In both cases, the analysis was based on a model of
history specified by the input file a.1go (sec. SB.1 of Supplementary Information [22]). This file
defines the network of segments shown in Fig. 2.

Several of the parameters of the simulation model were treated as fixed constants, because
their values have no effect on expected site pattern frequencies: 2Nx, 2Ny, T, and T.. Another
parameter, Txynp, was fixed at its true value to calibrate the molecular clock. The remaining 11
parameters were estimated.

For both algorithms, data analysis involved 5 stages. In stage 1, legofit was run on each
of 50 simulated data sets. Each run produced two output files: a .legofit file, which contains
parameter estimates, and a . state file, which records the state of the optimizer at the end of the
run. The optimizer uses the differential evolution algorithm [17]. This algorithm maintains a swarm
of points, each of which represents a guess about the values of the free parameters. There are
ten times as many points as free parameters, as recommended by Price, Storn, and Lampinen
[17].

Although differential evolution is good at finding global optima, it is possible that some of the
stage 1 runs will get stuck on different local optima. Stage 2 is designed to avoid this problem.
Each job in stage 2 begins by reading all 50 of the . state files produced in stage 1, and sampling
among these to construct a swarm of points. This allows legofit to choose among local optima.

Figure 3 plots pairs of free parameters after stage 2 of the analysis. Each sub-plot has 50
points, one for each simulated data set. Several pairs of parameters are tightly correlated, and
these correlations reflect “identifiability” problems: different sets of parameter values imply al-
most identical site pattern frequencies. To ameliorate this problem, stage 3 of the analysis uses
the pclgo program to perform a principal components analysis, which re-expresses the free vari-
ables in terms of uncorrelated principal components (PCs). In previous publications [23, 21, 24],
we used this step to reduce the dimension of the analysis, by excluding components that explain
little of the variance. However, excluding dimensions can introduce bias, especially in the pres-
ence of identifiability problems, so | chose here to retain the full dimension. Even without any
reduction in dimension, re-expression in terms of PCs improves the fit of model to data, because
it allows legofit to operate on uncorrelated dimensions.

Stages 4 and 5 are like stages 1 and 2, except that the free variables are re-expressed in terms
of PCs.

The program uses KL divergence [13] to measure the discrepancy between observed and
predicted site pattern frequencies. Minimizing KL divergence is equivalent to maximizing multi-
nomial composite likelihood. The optimizer stops after a fixed number of iterations or when the
difference between the best and worst KL divergences falls to a pre-determined threshold. This
threshold was 3 x 107° for the deterministic algorithm and 2 x 10~ for the stochastic algorithm.
This difference reflects the fact that the deterministic algorithm is capable of much greater pre-
cision.

2.7. Analysis of speed as a function of model complexity.

As model complexity increases, the number of states increases. This reduces the speed of
the deterministic algorithm and increases memory usage. To study this effect, | used the legosim
program, which calculates the site pattern frequencies implied by a given model. | studied a series
of models without migration or changes in population size. The models differed in the number
of populations, which ranged from four to nine. Timings were done on a 2018 MacBook Air.

2.8. Analysis of real data.

| used the deterministic algorithm to replicate the analysis of Rogers, Harris, and Achenbach
[24]. (Data sets and analysis files are in directory xyvad of the archive [20].) That paper stud-
ied modern human sequence data from Europe and Africa [15], along with three high-coverage

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers 11

Figure 4 - A population network including four episodes of gene flow. Upper case letters
(X, Y, N, D, and S) represent populations (Africa, Europe, Neanderthal, Denisovan, and
superarchaic). Greek letters label episodes of admixture.

archaic genomes: two Neanderthals (Altai [19] and Vindija [18]), and one Denisovan [16]. It an-
alyzed these data under eight different models, all of which are based on the history in Fig. 4.

In that figure, capital roman letters refer to populations: X is Africa, Y is Europe, N is Ne-
anderthal, D is Denisovan, and S (for “superarchaic” [19]) is a population that separated from
all other humans early in the Pleistocene. Greek letters label episodes of admixture. Episode
o refers to admixture from Neanderthals into Europeans, 8 to admixture from superarchaics
into Denisovans [27, 26, 19, 18, 12], v to admixture from early moderns into Neanderthals [12],
and ¢ to admixture from superarchaics into the “neandersovan” ancestors of Neanderthals and
Denisovans [24].

Following Rogers, Harris, and Achenbach [24], | considered eight models, all of which include
a, and including all combinations of 3, v, and/or ¢. | label models by concatenating Greek letters.
For example, a8 is the model that includes « and 5 but not v and ¢. This analysis is described in
section S3 of Supplementary Information [22].

3. Results and Discussion

| used both algorithms—one deterministic and the other stochastic—to fit 50 simulated data
sets. In each case, this involved 200 runs of the legofit program—4 for each of 50 data sets—
and 1 run of pclgo. Altogether, the deterministic version of this analysis took 18.7 CPU minutes.
Because these calculations were parallelized, the elapsed time was only 1.7 minutes. Using the
stochastic algorithm, the same analysis took 514.8 CPU hours, or 11.4 hours of elapsed time.
For this model, the deterministic algorithm is 1654 times as fast as the stochastic one.

These timings were done on a node at the Center for High Performance Computing (CHPC)
at the University of Utah, using 96 parallel threads of execution. To get a sense of how long these
calculations would take on a less powerful computer, | did one run of legofit on a 2018 MacBook
Air, using the deterministic algorithm with 2 threads. That took 26.2 seconds of CPU time or 13.7
seconds of elapsed time. By comparison, the CHPC node did this job in 12.4 seconds of CPU
time, or 1 second of elapsed time. The high-performance node is nearly 14 times as fast as the
MacBook Air, implying that the full analysis would take 24 minutes on the MacBook Air. Thus,
the deterministic algorithm makes Legofit feasible on small computers.

Figure 5 shows the residual error in site pattern frequencies under the two algorithms. Resid-
uals are substantially smaller under the deterministic algorithm because of its greater accuracy.

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers

Stochastic algorithm

X- X 0 oGP OO o
y y 0 0d 6> ©
n- n
d- d- o
c Xy- c Xy T D o
o Xxn- o xn-
% xd- % xd-
S s m
5 v 5 v
nd- nd- o 8 DO
xyn- xyn-
xyd- xyd-
xnd- xnd- 6&
ynd- ¢ s ynd- Se
-0.001 0.000 0.001 -0.001 0.000 0.001
Observed Minus Fitted Frequencies Observed Minus Fitted Frequencies

Figure 5 - Residual error of deterministic and stochastic algorithms, based on 50 simu-
lated data sets. Each circle refers to a different simulated data set.

Deterministic
— — — Stochastic
15
Execution
time 10
(sec)
5 R
0 —
{ T T T T ]
4 5 6 7 8 9
Populations

Figure 6 - Execution time of legosim, excluding system calls, in models without migration.
For the stochastic algorithm, each run used two million iterations.

When parameters are estimated by computer simulation, each additional decimal digit of preci-
sion requires a 100-fold increase in the number of iterations. This imposes a limit on the accuracy
of the stochastic algorithm, even with the fastest computers.

To estimate site pattern frequencies, both algorithms integrate over the states of the sto-
chastic process. The number of states increases with model complexity, so both algorithms are
slower when the model is complex. Figure 6 illustrates the effect on speed. In complex models,
the stochastic algorithm is faster than the deterministic one.

Figure 7 shows the parameter estimates from the 50 data sets (blue dots) along with the true
parameter values (red crosses). The two algorithms behave similarly. It does not appear that the
smaller residual error of the deterministic algorithm (Fig. 5) translates into more accurate param-
eter estimates. This is probably because most of the spread in the parameter estimates reflects
the identifiability problems seen in Fig. 3. To understand this effect, note the tight correlation
between Txy and 2Nxy in Fig. 3. This correlation exists because it is hard to distinguish the case
in which 2Nxy is large and Txy small from that in which the opposite is true. Because of this
ambiguity, both parameters exhibit large uncertainties in Fig. 7.

Peer Community Journal, Vol. 2 (2022), article e32

https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers 13

Deterministic algorithm Stochastic algorithm
Mo S 0 Mo- ‘gl
me- - m- S
Mg+ Me- | @ Mg, + M-

My — Mg My — M-
0.00 0.02 0.04 0.06 0.08 0.04 0.06 0.08
Admixture Fraction Admixture Fraction
To- @ To- @
TA- @ Ta- @
Tho- @ To -
Txy- Q i Txy- iEy ¢
100 200 300 400 100 200 300 400
Thousands of Years Thousands of Years
2Np- ) 2Np- S
2Ny- @ 2Ny- @
2NND' ‘ 2NND' . )
2Nyy- (. 2Nyy- YEEREE
2NxyND- & 2Nono- &
20000 40000 60000 20000 40000 60000
Haploid Population Size (2N) Haploid Population Size (2N)

Figure 7 - Parameter estimates from 50 simulated data sets, using the deterministic and
stochastic algorithms. Blue circles are estimates and red crosses are the true parameter
values.

Some bias is evident in these estimates. For example, the estimates of m,, tend to be a little
low and those of m, a little high [21]. This reflects the negative correlation between these pa-
rameters that can be seen in Fig. 3. Because the two source populations (N and D) are so similar,
they are hard to distinguish. We get a better estimate of the sum (m,, + m.) than of the difference
(my — m¢). There is also some bias in 2Np and 2Ny. In spite of these biases, the swarms of es-
timates tend to enclose the true parameter values, so the biases in these estimates are modest
compared with their uncertainties. It should not, however, be assumed that this will always be
the case.

To illustrate the new algorithm in a full-scale analsis of real data, | replicated the analysis of
Rogers, Harris, and Achenbach [24]. Table 2 shows the CPU time used by each algorithm in anal-
ysis of the eight models in that publication. For this set of models, the deterministic algorithm
is always faster, but its execution time ranges across several orders of magnitude. These exe-
cution times are not strictly comparable, because they involve several compute clusters, which
vary in processor speed. These differences are minor, however, compared with the enormous
differences in run time seen in table 2.

To choose among models, | used the bootstrap estimate of predictive error, “bepe” [21, 4,
5]. This method uses variation among data sets (the real data plus 50 replicates generated by a
moving-blocks bootstrap [14]) to approximate variation in repeated sampling. It fits the model
to one data set and then tests this fit against all the others. Table 3 uses all models to compare
the bepe values calculated by the deterministic and stochastic algorithm. In all cases, the deter-
ministic algorithm yields a smaller bepe value than the stochastic algorithm, indicating a better
fit of model to data. The order of the eight models, however, is the same. Because the deter-
ministic algorithm yields smaller bepe values, one should use the same algorithm (stochastic or
deterministic) for all models in any analysis. Otherwise, model selection will be biased in favor
of deterministic results because of their smaller bepe values.

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

14

Alan R. Rogers

Table 2 - CPU time expended in analysis of each model from Rogers, Harris, and Achen-
bach [24]. Each analysis involves 204 runs of legofit and 1 run of pclgo. Elapsed times
were much shorter, because calculations were done in parallel. “Acceleration” is the ratio
of execution speed in the deterministic model to that in the stochastic model. Models
are arranged in order of increasing execution time with the deterministic algorithm.

log,, seconds

Model Deterministic Stochastic Acceleration
o 1.60246  5.94980 22250.5
af 2.60384 5.81015 1608.1
ay 2.83806 5.94417 1276.8
afy 3.67736  6.03901 230.0
ad 442860 6.16730 54.8
aBé 486285 6.04239 15.1
ayd 547544  6.14022 4.6
afvyo 6.04505 6.20171 1.4

Table 3 - Bootstrap estimate of predictive error (bepe) values and bootstrap model av-
erage (booma) weights, based on the data of Rogers, Harris, and Achenbach [24]. Values
for the stochastic algorithm are also from that publication. Models are arranged in order
of decreasing bepe values.

Deterministic Stochastic

Model bepe weight bepe weight
a 1.13 x 107 0 1.16 x 107 0
ad 0.82 x 107° 0 0.87 x 107 0
ary 0.61 x 107 0 0.62 x 107° 0
ayé 040 x 107° 0 0.44 x 107 0
af 0.14 x 107° 0 0.18 x 10 0
afy  0.14 x 1076 0 0.17 x 1076 0
afd  011x107° 002 015x107° 0.16
afyé  0.10x107% 098 0.13x10°° 0.84

When several models provide reasonable descriptions of the data, it is better to average
across models than to choose just one. This allows uncertainty about the model itself to be
incorporated into confidence intervals. For this purpose, Legofit uses bootstrap model averaging,
“booma” [2, 21]. The booma weight of the ith model is the fraction of data sets (including the
real data and 50 bootstrap replicates) in which that model “wins,’ i.e. has the lowest value of
bepe. The weights of all models are shown in table 3.

The new analysis, using the deterministic algorithm, replicates the main result of Rogers,
Harris, and Achenbach [24]: that the most complex model («3~4) is preferred over all others.
The strength of this preference, however, is stronger under the deterministic algorithm. The
2nd-place model (a36) gets 16% of the weight with the stochastic algorithm but only 2% with
the deterministic one. The greater precision of the deterministic algorithm apparently improves
Legofit’s ability to discriminate among models. The difference between these models is that a5~d
includes gene flow from early modern humans into Neanderthals, as proposed by Kuhlwilm et al.
[12]. The current results strengthen the case for this hypothesis.

The model-averaged estimates of all parameters are shown in table S1 of Supplementary In-
formation [22]. The two algorithms provide similar estimates, but there are two differences. First,
the deterministic algorithm provides an unrealistic estimate of Txy, the separation time of Euro-
peans and Africans. This estimate—323 generations, or about 9000 y—is clearly too small. This
may indicate that something is missing from the model or that identifiability problems have intro-
duced bias. Further work would be needed to evaluate these alternatives. Second, the estimate
of Ns is even larger—over 700,000—with the deterministic algorithm than with the stochastic

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers

15

one. This supports our previous suggestion that the superarchaic population was large or deeply
subdivided [24].

4. Conclusions

Legofit's new deterministic algorithm increases both speed and accuracy. The increase in ac-
curacy results in smaller residual errors and better discrimination between alternative hypothe-
ses. It has no large effect on confidence intervals, however, because these are primarily measur-
ing uncertainty arising from statistical identifiability problems. The increase in speed is dramatic
with models of small to moderate complexity and makes Legofit practicable on laptop comput-
ers. The deterministic algorithm slows dramatically, however, as models increase in complexity.
For very complex models, the stochastic algorithm is still needed.

The deterministic algorithm replicated all the findings of Rogers, Harris, and Achenbach [24].
Because of its greater accuracy, it provided stronger support for the hypothesis that early mod-
ern humans contributed genes to Neanderthals [12]. It also strengthened the evidence that the
superarchaic population was large or deeply subdivided [24].

Legofit is open source and freely available at https://github.com/alanrogers/legofit.

Acknowledgements

| thank Greg Martin for comments on appendix B, Elizabeth Cashdan for editorial sugges-
tions, and those who reviewed the manuscript for PCl Mathematical and Computational Biology.
Analysis files are archived at OSF [20]. A preprint version of this article has been peer-reviewed
and recommended by Peer Community In Mathematical and Computational Biology (https://doi.
org/10.24072/pci.mcb.100003).

Data, script, and code availability

Analysis files are archived at https://doi.org/10.17605/0SF.10/74BJF.

Conflict of interest disclosure

| declare no financial conflict of interest. | am a recommender for PCl Mathematical and
Computational Biology.

Funding

This work was supported by NSF BCS 1638840, NSF BCS 1945782, and the Center for High
Performance Computing at the University of Utah.

Supplementary information availability

Supplementary Information is available at https://doi.org/10.5281/zenodo.6615163.

Appendix A. The probability that d of n descendants derive from 1 of k ancestors

Eqn. 8 presents a formula for Qg, the probability that a particular set of d descendants,
chosen from a total of n, derives from a single unspecified ancestor, given that there were k
ancestors in that ancestral generation. If k = 1, Qg = 1 as explained above. The result for k > 1
can be derived in two different ways.

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://github.com/alanrogers/legofit
https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.24072/pci.mcb.100003
https://doi.org/10.17605/OSF.IO/74BJF
https://doi.org/10.5281/zenodo.6615163
https://doi.org/10.24072/pcjournal.132

16 Alan R. Rogers

A.1. Short argument.

Suppose that some ancestor has d descendants. The probability that a particular group of d
descendents derives from this ancestor is 1/(7), where (7)) is the number of ways of choosing d
descendants from a total of n. If r ancestors have d descendants each, the probability of descent
from one of these is r/([). In reality, r is a random variable, and the probability becomes Qux =
E[r]/(]), where E[r] is the expected value of r.

To derive E[r], number the ancestors from 1 to k, and let y; represent the number of descen-
dants of the ith ancestor, where y; > 0 and " y; = n. | will refer to a particular set of values,

Y1, -, Yk as an allocation of descendants among ancestors. The number of such allocations is

(Z:}) [6, pp. 38-39]. Furthermore, each allocation has the same probability, (Z:i)fl, under the
coalescent process [3, p. 13]. The k ancestors are statistically equivalent, which implies that
E[r] = >k, Pr{y; = d} = kPr{y; = d} for an arbitrary ancestor i. If this ancestor has d de-

scendants, there are (", ;") ways, each with probability (Zj)_l, to allocate the n— d remaining

descendants among the k — 1 remaining ancestors. Thus Pr{y; = d} = (", %, ") (Z:i)_l, and Qux
equals the expression in Eqn. 8.

A.2. Longer argument.

The k ancestors define a partition of the set of descendants into k subsets, each correspond-
ing to a different ancestor. Let x1, xo, ..., x, denote the sizes of the k subsets, i.e., the numbers
of descendants of the k ancestors. The probability of such a partition is given above in Eqn. 7.
Suppose that a set of d descendants (and no others) derive from a single ancestor in interval k.
This can happen only if x; = d for some i. The ancestors are numbered in an arbitrary order, so
let us set x, = d and rewrite Eqn. 7 as

A— Kl n—1 ! n - n—d !
T k—1 d X1y oee s Xk—1

To calculate Qgx, we need to sum this quantity across all ways to partition the set of n — d
remaining descendants into k — 1 subsets.

This is not the same as summing across values of x;, because each array of x; values may
correspond to numerous partitions of the set of descendants. This is illustrated in table 1, where
the left side lists the 7 ways of partitioning a set of 4 descendants among 2 ancestors, along
with the probability of each partition as given by Eqn. 7. The first four set partitions have equal
probability, because each one divides the descendants into subsets of sizes 3 and 1, and the x;
values of these partitions therefore make equal contributions to Egn. 7. Similarly, the last three
set partitions have equal probability, because each divides the ancestors into two sets of size 2.
These two cases: 3+ 1 = 4 and 2 + 2 = 4 are the two ways of expressing 4 as a sum of two
positive integers. Eqn. 7 implies that all set partitions corresponding to a given integer partition

have equal probability.
There are (X1 _’?_’;‘:71)/ [1,, cm! set partitions for a given partition of the integer n—d into k—1
summands [1, theorem 13.2, p. 215]. In this expression, c,, is the number of times m appears
among xi, ..., xxk—1. Multiplying this into A and summing gives

) Que = k!(Zj)_l <Z>_IZ(H cm!)l

where the sum is over ways of partitioning n — d into kK — 1 summands. Appendix B shows that

this sum equals (”;i;l)/(k — 1) Substituting into Eqn. 9 reproduces Eqn. 8.

Appendix B. An identity involving integer partitions

The partition of a positive integer n into k parts can be written as n = Zf‘:l x;, where the
x; are positive integers. This same partition is also n = }_; ic;, where ¢; is the number of times i

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.24072/pcjournal.132

Alan R. Rogers 17

appears among the x; values. In other words, ¢; is the multiplicity of i in the partition. In terms
of these multiplicities, k = 3" ¢;. This appendix will show that

(10) Z(HC"!>1 - k1'<::1>

where the sum is across all partitions of an integer n into k parts.

This identity follows from the fact that there are ({_1) ways to put n balls into k boxes so
that no box is empty [6, pp. 38-39]. Let us call each of these an “allocation” of balls to boxes.
For each allocation, there is a corresponding partition of the integer n into k parts. The number
of allocations often larger than the number of partitions. For example, there are (f) = 2 ways to
put 3 balls into 2 boxes, **|* and * | *x, where the stars represent balls and the bar separates
boxes. Both allocations, however, correspond to a single partition, 3 = 2 + 1, of the integer 3.
For a given integer partition, ¢, ¢, ..., there are k!/ [] ¢;! distinct ways to allocate balls to boxes.
(This is the number of ways to reorder the boxes while ignoring the order of boxes with equal
numbers of balls.) The sum of this quantity across partitions must therefore equal (Zj) Dividing
both sides by k! produces identity 10. Greg Martin posted a different proof of this identity on
StackExchange.

References

[1] George E. Andrews. The Theory of Partitions. Reading, MA: Addison Wesley, 1976.

[2] Steven T Buckland, Kenneth P Burnham, and Nicole H Augustin. “Model Selection: an In-
tegral Part of Inference”. In: Biometrics 53.2 (1997), pp. 603-618. DOI: 10.2307/2533961.

[3] Richard Durrett. Probability Models for DNA Sequence Evolution. 2nd. New York: Springer,
2008. DOI: 10.1007/978-0-387-78168-6.

[4] Bradley Efron. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-
Validation”. In: Journal of the American Statistical Association 78.382 (1983), pp. 316-331.
DOI: 10.1080/01621459.1983.10477973.

[5] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. New York: Chap-
man and Hall, 1993. DOI: 10.1007/978-1-4899-4541-9.

[6] William Feller. An Introduction to Probability Theory and Its Applications. 2nd. Vol. Il. New
York: Wiley, 1971.

[71 Laurent Fousse et al. “MPFR: A Multiple-Precision Binary Floating-Point Library with Cor-
rect Rounding”. In: ACM Transactions on Mathematical Software 33.2 (2007), 13-es. ISSN:
0098-3500. DOI: 10.1145/1236463.1236468.

[8] RC Griffiths and Simon Tavaré. “The Age of a Mutation in a General Coalescent Tree”. In:
Stochastic Models 14.1-2 (1998), pp. 273-295. DOI: 10.1080/15326349808807471.

[9] Jerome Kelleher, Alison M Etheridge, and Gilean McVean. “Efficient Coalescent Simulation
and Genealogical Analysis for Large Sample Sizes”. In: PLoS Computational Biology 12.5
(2016), pp. 1-22. DOI: 10.1371/journal .pcbi. 1004842,

[10] Motoo Kimura. “The Number of Heterozygous Nucleotide Sites Maintained in a Finite
Population Due to Steady Flux of Mutation”. In: Genetics 61 (1969), pp. 893-903. DOI:
10.1093/genetics/61.4.893.

[11] Donald E. Knuth. The Art of Computer Programming: Volume 4A, Combinatorial Algorithms.
Part 1. New York: Addison-Wesley, 2011. ISBN: 0-201-03804-8.

[12] Martin Kuhlwilm et al. “Ancient Gene Flow from Early Modern Humans into Eastern Ne-
anderthals”. In: Nature 530.7591 (2016), pp. 429-433. ISSN: 1476-4687. DOI: 10.1038/
naturel6544.

[13] Solomon Kullback and Richard A Leibler. “On Information and Sufficiency”. In: The Annals
of Mathematical Statistics 22.1 (1951), pp. 79-86.

[14] Regina V. Liu and Kesar Singh. “Moving Blocks Jacknife and Bootstrap Capture Weak De-
pendence”. In: Exploring the “Limits” of the Bootstrap. Ed. by Raoul LePage and Lynne Billard.
New York: Wiley, 1992, pp. 225-248.

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://math.stackexchange.com/questions/938280/on-multiplicity-representations-of-integer-partitions-of-fixed-length
https://doi.org/10.2307/2533961
https://doi.org/10.1007/978-0-387-78168-6
https://doi.org/10.1080/01621459.1983.10477973
https://doi.org/10.1007/978-1-4899-4541-9
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1080/15326349808807471
https://doi.org/10.1371/journal.pcbi.1004842
https://doi.org/10.1093/genetics/61.4.893
https://doi.org/10.1038/nature16544
https://doi.org/10.1038/nature16544
https://doi.org/10.24072/pcjournal.132

18 Alan R. Rogers

[15] Swapan Mallick et al. “The Simons Genome Diversity Project: 300 Genomes from 142
Diverse Populations”. In: Nature 538 (2016), pp. 201-206. ISSN: 1476-4687. DOI: 10 .
1038/nature18964.

[16] Matthias Meyer et al. “A High-Coverage Genome Sequence from an Archaic Denisovan
Individual”. In: Science 338.6104 (2012), pp. 222-226. DOI: 10.1126/science. 1224344,

[17] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Berlin: Springer Science and Business Media, 2006. ISBN:
978-3-540-20950-8.

[18] Kay Prifer et al. “A High-Coverage Neandertal Genome from Vindija Cave in Croatia”. In:
Science 358.6363 (2017), pp. 655-658. DOI: 10.1126/science.aa01887.

[19] Kay Prufer et al. “The Complete Genome Sequence of a Neanderthal from the Altai Moun-
tains”. In: Nature 505.7481 (2014), pp. 43-49. DOI: 10.1038/nature12886.

[20] Alan R. Rogers. “An Efficient Algorithm for Estimating Population History from Genetic
Data”. In: Open Science Framework (2021). Code and data for an article of the same name
published in Peer Community Journal. DOI: 10.17605/0SF.I0/74BJF.

[21] Alan R. Rogers. “Legofit: Estimating Population History from Genetic Data”. In: BMC Bioin-
formatics 20 (2019), p. 526. DOI: 10.1186/s12859-019-3154-1.,

[22] Alan R. Rogers. “Supplementary Information for “An efficient algorithm for estimating pop-
ulation history from genetic data™. In: Zenodo (2022). DOI: 10.5281/zenodo.6615163.

[23] Alan R. Rogers, Ryan J. Bohlender, and Chad D. Huff. “Early History of Neanderthals and
Denisovans”. In: Proceedings of the National Academy of Sciences, USA 114.37 (2017), pp. 9859-
9863. DOI: 10. 1073/pnas.1706426114.

[24] Alan R. Rogers, Nathan S. Harris, and Alan A. Achenbach. “Neanderthal-Denisovan Ances-
tors Interbred with a Distantly-Related Hominin”. In: Science Advances 6.8 (2020), eaay5483.
DOI: 10.1126/sciadv.aay5483.

[25] Simon Tavaré. “Line-of-Descent and Genealogical Processes, and their Applications in Pop-
ulation Genetics Models”. In: Theoretical Population Biology 26 (1984), pp. 119-164. DOI:
10.1016/0040-5809 (84)90027-3.

[26] P.J. Waddell. “Happy New Year Homo erectus? More Evidence for Interbreeding with Ar-
chaics Predating the Modern Human/Neanderthal Split”. In: ArXiv 1312.7749 (2013). DOI:
10.48550/arXiv.1312.7749.

[27] Peter J Waddell, Jorge Ramos, and Xi Tan. “Homo denisova, Correspondence Spectral Anal-
ysis, Finite Sites Reticulate Hierarchical Coalescent Models and the Ron Jeremy Hypothe-
sis”. In: ArXiv 1112.6424 (2011). DOI: 10.48550/arXiv.1112.6424.

[28] Stephen Wooding and Alan R. Rogers. “The Matrix Coalescent and an Application to Hu-
man SNPs”. In: Genetics 161 (2002), pp. 1641-1650. DOI: 10.1093/genetics/161.4.
1641.

Peer Community Journal, Vol. 2 (2022), article e32 https://doi.org/10.24072/pcjournal.132


https://doi.org/10.1038/nature18964
https://doi.org/10.1038/nature18964
https://doi.org/10.1126/science.1224344
https://doi.org/10.1126/science.aao1887
https://doi.org/10.1038/nature12886
https://doi.org/10.17605/OSF.IO/74BJF
https://doi.org/10.1186/s12859-019-3154-1
https://doi.org/10.5281/zenodo.6615163
https://doi.org/10.1073/pnas.1706426114
https://doi.org/10.1126/sciadv.aay5483
https://doi.org/10.1016/0040-5809%2884%2990027-3
https://doi.org/10.48550/arXiv.1312.7749
https://doi.org/10.48550/arXiv.1112.6424
https://doi.org/10.1093/genetics/161.4.1641
https://doi.org/10.1093/genetics/161.4.1641
https://doi.org/10.24072/pcjournal.132

