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Abstract—Tensor factorization has been proved as an efficient
unsupervised learning approach for health data analysis, espe-
cially for computational phenotyping, where the high-dimensional
Electronic Health Records (EHRs) with patients history of
medical procedures, medications, diagnosis, lab tests, etc., are
converted to meaningful and interpretable medical concepts.
Federated tensor factorization distributes the tensor computation
to multiple workers under the coordination of a central server,
which enables jointly learning the phenotypes across multiple
hospitals while preserving the privacy of the patient information.
However, existing federated tensor factorization algorithms en-
counter the single-point-failure issue with the involvement of the
central server, which is not only easily exposed to external attacks,
but also limits the number of clients sharing information with
the server under restricted uplink bandwidth. In this paper, we
propose CiderTF, a communication-efficient decentralized gen-
eralized tensor factorization, which reduces the uplink commu-
nication cost by leveraging a four-level communication reduction
strategy designed for a generalized tensor factorization, which
has the flexibility of modeling different tensor distribution with
multiple kinds of loss functions. Experiments on two real-world
EHR datasets demonstrate that CiderTF achieves comparable
convergence with the communication reduction up to 99.99%.

Index Terms—Tensor Factorization, Decentralized Optimiza-
tion, Federated Learning, Communication efficient, EHRs.

I. INTRODUCTION

The widespread adoption of EHR systems has facilitated the
rapid accumulation of the patients’ clinical data from numerous
medical institutions. Yet, successfully mining the massive, high-
dimensional EHR data is a challenging task due to sparse,
missing, and noisy measurements [1], [2]. Computational phe-
notyping is the process of mapping the high-dimensional EHR
data into meaningful medical concepts, which characterize a
patient’s clinical behavior and corresponding treatments. Tensor
factorization has been proven as an efficient unsupervised
learning approach to automatically extract phenotypes without
the process of manual labeling [3]-[5].

Recently, federated tensor factorization [6]—[8] has been
developed as a special distributed tensor factorization paradigm
which not only parallelizes the tensor computation, but is also
able to preserve the data privacy by distributing the horizontally
partitioned tensors to multiple medical institutions to avoid
direct data sharing, and aims to learn the shared phenotypes
through joint tensor factorization without communicating the
individual-level data. Moreover, with the participation of
different data sources, federated tensor factorization also helps

mitigate the bias of analyzing data from single source, and
achieves better generalizability.

Under the federated learning settings, the central server is
the most important computation resource as it is in charge of
picking clients to communicate at each iteration, aggregating
the clients’ intermediate results, and updating the global model.
However, a single server might have several shortcomings: 1)
limited connectivity and bandwidth, which restricts the server
from collecting data from as many clients as possible; 2)
vulnerability to malfunctions, which can cause inaccurate model
updates, or even learning failures; and 3) exposure to external
attacks and malicious adversaries, which can lead to sensitive
information leakage. Therefore, traditional federated tensor
factorization usually suffers from the bottleneck of the central
server regarding the limited communication bandwidth and is
exposed to high risk of single-point-failure. To avoid relying on
the server as the only source of computation, decentralization
has been proposed as a solution to this single-point-failure
issue [9], [10]. Decentralized federated learning is designed
without the participation of the central server, while each client
will rely on its own computation resources and communicate
only with its neighbors in a peer-to-peer manner. Besides the
necessities of a decentralized communication topology, it is
also worth noting that the network capacity between clients are
usually much smaller than the datacenter in many real-world
applications [11]. Therefore it is necessary that the clients
communicate the model updates efficiently with limited cost.

In this paper, we study the decentralized optimization
of tensor factorization under the horizontal data partition
setting, and propose CiderTF, a Communication-efflcient
DEcentralized geneRalized Tensor Factorization algorithm
for collaborative analysis over a communication network. To
enable more flexibility on choosing different loss functions
under various scenarios, we extend the classic federated tensor
factorization into a more generalized tensor factorization.
To the best of our knowledge, this paper is the first one
proposing a decentralized generalized tensor factorization, let
alone considering the decentralized setting with communication
efficiency. Our contributions are briefly summarized as follows.

First, we develop a decentralized tensor factorization frame-
work which employs four levels of communication reduction
strategies to the decentralized optimization of tensor factoriza-
tion to reduce the communication cost over the communication
network. Second, we further incorporate Nesterov’s momentum
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TABLE I
SYMBOLS AND NOTATIONS USED IN THIS PAPER

Symbol Definition
x, X, X Vector, Matrix, Tensor
Xcd> Mode-d matricization of X
[l £1-norm
|17 Frobenius norm
® Hadamard (element-wise) multiplication
O] Khatri Rao product
o Outer product
(-, Inner product

into the local updates of CiderTF and propose CiderTF_m,
in order to achieve better generalization and faster convergence.
Third, we conduct comprehensive experiments on both real-
world and synthetic datasets to corroborate the theoretical
communication reduction and the convergence of CiderTF.
Experiment results demonstrate that CiderTF achieves com-
parable convergence performance with the communication
reduction of 99.99%.

II. PRELIMINARIES AND BACKGROUND

In this section, we summarize the frequently used definitions
and notations. For a D-th order tensor X € RTtX-*Ip the
tensor entry indexed by (i1, ..., ip) is denoted by the MATLAB
representation X (i1, ...,ip). Let Z denote the index set of all
tensor entries, |Z| = Iy = HdD:l I;. The mode-d unfolding
(also called matricization) is denoted by X 4s € RI¢xn/la
Detailed background knowledge can be found in [12].

Definition II.1. (MTTKRP). The MTTKRP operation stands
for the matricized tensor times Khatri-Rao product. Given a
tensor Y € RI><xIp jts mode-d matricization is Y g,
[Aqy, ..., Apy| is the set of CP factor matrices. Hy €
RIn/TaxR j5 defined as

H; = A(D) ©...0 A(d+1) © A(dfl)... O] A(l),

where © is the Khatri-Rao product. The MTTKRP operation
can thus be defined as the matrix product between Y .4~ and
Hd as Y<d> . Hd.

Definition I1.2. (GCP). Generalized CP (GCP) [13] extends
the classic CP by using the element-wise loss function to
support other loss functions. The objective function of GCP is

arg mmF (A, X) Zf(fl , X(1))
i€l
R

st. A= ZA(l)(:,

i=1

ey
Z) 0...0 A(D)(Z,i),

GCP not only preserves the low-rank constraints as CP
decomposition, it also enjoys the flexibility of choosing
different loss functions according to different data distributions
by leveraging the elementwise objective function. For example,
for data indexed by i € Z with Gaussian distribution, we use
least square loss to model it, which in turn yields the classic

CP decomposition:

Fquare (A7), X (4)) = (A(i) — X(3))>. 2)
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On the other hand, for binary data indexed by ¢ € Z, we can
use Bernoulli-logit loss to fit it:

Jiogit(A(7), X (i) = log(1 + A(i)) = X(D)A().  B3)

Ring topology (left) and star topology (right).

Fig. 1.

III. PROPOSED METHOD
A. Problem Formulation

In the decentralized tensor factorization setting, the com-
munication topology is represented by an undirected graph

=(V,&),where V := {1,2, ..., K} denotes the set of clients
participating in the communication network. Each node k in the
graph represents a client. The neighbors of client % is denoted
as Ny := {(k,7) : (k,j) € E}. There is a connectivity matrix
W € REXE the (k,j)-th entry wg; € [0,1],V(k,j) € € in
which denotes the weights of edge (k,j) € € and measures
how much the client k is impacted by client j.

Each client in the decentralized communication graph will
hold a local tensor fXIk, which can be seen as the horizontal
partition of a global tensor X. The aim for the decentralized
federated learning is to jointly factorize the local tensors xXF to
get the globally shared feature factor matrices A (g, ..., A(py,
and the individual mode factor matrices A]‘“'1 from all clients.
The objective function for the decentralized generalized tensor
factorization is shown as

K
argmin F(A,X"),

(A, AD)) by
st. A= A(l) o...

“
o A(py,

which can be further extended to other multiblock optimization
problems which are not limited to tensor factorization [14].

B. CiderTF

1) Overview: We propose CiderTF, a decentralized ten-
sor factorization framework which achieves communication
efficiency through four levels of communication reduction. At
the element-level, we utilize sign compressor [15], [16] for
gradient compression to reduce the number of bytes transmitted
between clients by converting the partial gradient from the
floating point representation to low-precision representation.

Definition IIL.1. (Sign Compressor) For an input tensor
x € RY, its compression via Sign(-) is Sign(x) = |x||1/d -
sign(x), where sign takes the sign of each element of x.

At the block-level, we apply the randomized block coordinate
descent [17]-[19] for the factor updates, which only requires
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Algorithm 1 CiderTF

Input: Input tensor X, constant learning rate ~[t], A[0], A*[0] =
A[0,vk = 1,..,K, randomized block sampling sequence
de[0], ..., de[T7], event-triggering threshold A[¢];

1: for t =0,...,7 do

2:  On Each Client Nodes k£ € 1, ..., K:

3:  if d = d(g)[t] then

4: Compute stochastic gradient de) [t] by eq. (6);

s Abyl+ 3] = Ak~ 0GE 1)

6: if (¢ mod 7) # O then

7: No communication: N
Alylt+1] = Afylt+ 3. A (d) [t +1] = Al [t]:

8: else

9: forjeNkdeo

10; i AL [0+ 3]~ Al I 2 AR )2 then

11: Ayl :Compress(A(d) [t + 5] — ALy lt]);

12: else

13: Alplt] =0k g

14: end if

15: Send A(d) [t] to all j and receive A(d)[ ] from all j,

where j € Nk,

16: A§d> [t+1] = A{, NUE A(d) [t];

17: end for .

18: (d) [t+1] = A(d) [t+%]+QZ]’eNk wkj(A{d) [t+1]—
A(d) [t +1]);

19: end if

20:  else if d # d¢[t] then R

21: A_(d) [t+1] = Al [t Al [t +1] = Al [t]:

22:  end if

23: end for

sampling one mode from all modes of a tensor for the update
per round and communicating only one mode factor updates
with the neighbors. At the round-level, we adopt a periodic
communication strategy [20]-[22] to reduce the communication
frequency by allowing each client to perform 7 > 1 local update
rounds before communicating with its neighbors. In addition,
at the communication event-level, we apply an event-triggered
communication strategy [23], [24] to boost the communication
reduction at the round level.

The detailed algorithm is shown in Algorithm 1 with the key
steps annotated. In CiderTF, each client k € [K] maintains
the local factor matrices A"'d from each mode d =1, ..., D.
The goal is to achieve consensus on the feature mode factor
matrices A* d) Vd = 2, ..., D. Therefore, besides the local factor
matrices, each client also need to maintain the estimation
of the local factor matrices A’ 4 from both itself & and its
neighbors N, (j € N U k). The sequence of the randomized
sampling blocks for every round ¢ = 1,...,T is denoted as
d¢[0], ..., de[T]. At every round for the sampled block d¢[t],
each client checks for the triggering condition for every 7
iterations at the communication round (line 10). The triggering
threshold is set to be At]. When the difference between the
updated factor and the local estimation is larger than the
threshold, each client will send and receive the compressed
updates to its neighbors. While if the triggering condition is
not satisfied, then the clients will just communicate a matrix
of zero instead (line 10-14). After receiving the compressed

updates from all its neighbors, each client will first update the
local estimation of the factor matrices AJ [t +1],j e Ny Uk
(line 16), and conduct the consensus step and update the local
factors A, [t + 1] through the decentralized consensus step
(line 18). At the non-communication round, each client will
just keep updating the local factor matrices (line 6-7). For the
rest of the blocks not selected, they will remain the same at
the last round (line 20-22).

2) Optimization: At each iteration, each client £ first need
to compute the GCP gradient as the partial derivative with
regard to the factor matrix A’(“d) using the MTTKRP operator

OF(AMXY) L g
TTaAk (4 <d> ’ ®)
OAT, [1]

where H’; denotes the Khatri-Rao product of mode d of the
factor matrices as is shown in definition II.1.

AF (AF Xk
oA, [1]
requires O(R H(?:l 1,;) time complexity and is the bottleneck
of the gradient based optimization for tensor factorization,
especially for EHR tensors where each dimension can be
very large. Fiber sampling technique [18], [25] randomly
samples |Sy| fibers from mode d. This provides efficient
formation of Y* ,_ as Y%, (:,S,) and efficient computa-
tion of HY to only compute the Hadamard product (®) of
the certain rows (s-th) of the factor matrices at time t as
Hj(s,:) = A](Cl)('iv D@ ®Aé€d_1)(i§717 ) ®A?d+1)(i§+1, :
)®.. ®A( D) (2%, ) (the row indices are obtained from the index
mapping {75, ...,i%},s € Sg). Therefore, we can use local
partial stochastic gradient G’(“d) [t] as an unbiased estimation
OF(AF,XF)
é)A’c )[t]
the fiber sampling technlque as

Gyl =

Fiber Sampling. Computing the full gradient

of the gradient , which is efficiently computed with

Yo (5 S Hy (S, ), ©)

Block randomization. We utilize the block randomization [18]
to further improve the computation efficiency by randomly
selecting a mode to update at each round. Specially for
CiderTF, we always keep the patient mode (the 1-st mode)
securely at local to avoid directly sharing patient related
information, thus when dg¢ [t] = 1, we skip the communication
of this round and only update the local patient mode factors.
This not only improves the computation efficiency, but also
reduces the communication cost at the block level.

C. CiderTF_m: CiderTF with Nesterov’s momentum

We further propose CiderTF_m with Nesterov’s momen-
tum incorporated in the local SGD update step to speedup the
convergence and achieve less total communication bits. After
computing the partial stochastic gradient G ( d)[ ] (line 4), we
update the momentum velocity component as

Gyt + EX nlt }M(@[ 1] @)

Mécd) [t] [ }
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where (3 is the momentum parameter. The intermediate factor
matrix will be updated as

L= AK [ - A [0(GE, [ + M, 1)

—-|=A 8
2] ®
D. Complexity Analysis

A@ﬁ+

We analyze the complexity from the perspective of compu-
tation, communication, and memory cost. For computation
complexity, the per-iteration computational complexity of
CiderTF for each client is O(% (3.0, I)R|S|). CiderTF
reduces a lower bound of 1 — =55~ communication. The total
communication reduction is 99.99% compared with the full
precision decentralized SGD based on experimental results.
CiderTF has the memory complexity of O(|S|+5 25:1 13).
Please refer to [12] for more detailed complexity analysis.

IV. EXPERIMENT
A. Experimental Settings

1) Datasets: We conduct experiments on two real-world
large volume, publicly available and de-identified datasets,
MIMIC-III [26] and CMS [27], and a synthetic dataset with
similar sparsity (see [12] for more detail). We follow the
rules in [6] and select the top 500 diagnoses, procedures, and
medications of the most frequently observed records to form
the tensors with patient mode 34,272, 125,961, and 4000 for
MIMIC-III, CMS, and Synthetic data, respectively.

2) Baselines: We consider the following centralized ten-
sor factorization baselines: i) GCP [28] as the baseline of
generalized tensor factorization; ii) BrasCPD [18] as the com-
putation efficient tensor factorization baseline; iii) Centralized
CiderTF, CiderTF with K = 1 and error-feedback.

We also implement the decentralized version SGD under the
non-convex settings as the decentralized baselines, since there
is no existing decentralized tensor factorization framework. 1)
D-PSGD [10], [29] as a pure decentralized SGD version; ii)
SPARQ-SGD [24] as a decentralized communication-efficient
stochastic gradient descent baseline; iii) D-PSGDbras can be
considered as D-PSGD with block randomization.

3) Parameter Settings: Experiments are performed on two
objective functions including Bernoulli-logit loss to fit the
binary data (eq. 3) and Least Square Loss to fit the data with
Gaussian distribution (eq. 2). We use a fixed learning rate ~[¢],
which is determined through searching the grid of powers of 2.
We follow the rules in [24] to set the triggering threshold A[t].
The detailed parameter settings, additional experiment results
(more datasets, ablation study, etc.) can be found in [12].

B. Result Analysis

We form a decentralized communication topology as a ring,
and have a default of eight workers with data horizontally
partitioned and distributed evenly across all the eight clients.

1) Comparison to the Baselines: From fig. 2, we have four
major observations. I) CiderTF converges to comparable
losses as the centralized baselines. These results empirically
validate the convergence of CiderTF. II) CiderTF has less
communication cost without sacrificing the convergence.
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CiderTF takes 99.99% less communication cost than D-
PSGD, 75% less communication cost than SPARQ-SGD and
99.92% less than D-PSGDbras to achieve the same loss.
II) CiderTF is computationally efficient. CiderTF is
computationally efficient compared with GCP and D-PSGD (fig.
2) due to fiber sampling and block randomization. CiderTF
is also slightly more efficient than BrasCPD thanks to the
decentralized data distribution which helps parallelize the local
tensor factorization. IV) Nesterov’s momentum can offer
CiderTF_m faster convergence, leading to less overall
communication cost. CiderTF_m requires less epochs to
converge (fig. 2), which in turn reduce the total communication
bytes with little sacrifice of the accuracy.

2) Impact of Topology: We test CiderTF on ring topology
and star topology with the same number of workers (fig. 1).
From fig. 3, we observe that different topologies do not affect
the convergence, which means that CiderTF can generalize
to different kinds of communication topologies. Fig. 3 also
illustrates that two topologies enjoy similar computation time
due to the same number of workers, while star topology has
less communication cost because the total degree of the star
topology is less than the ring topology.

3) Scalability: Moreover, we test the scalability of
CiderTF. By increasing the number of clients from K =8
to K = 16 and K = 32, we observe linear scalability in the
computation time (fig. 4 left) without sacrificing the accuracy.
However, as the number of clients increases, the communication
cost will increase accordingly (fig. 4 right). Therefore, there
exists a computation-communication trade-off when increasing
the number of clients involved in the decentralized tensor
factorization framework.

C. Case Study on MIMIC-III

We conduct a case study on MIMIC-III to evaluate the
extracted phenotypes from both quantitative and qualitative
perspectives. From the quantitative aspect, we use the Factor
Match Score (FMS) [30] to measure the similarity of the factor
matrices of CiderTF with BrasCPD. FMS ranges from 0
to 1 with the best possible value of 1. Fig. 5 indicates that
CiderTF achieves comparable FMS as the baselines with
much less computation time and communication cost.

From the the qualitative perspective, we evaluate the quality
of the phenotypes by patient subgroup identification ability.
Following the precedent set in [5], we first identify the
top three phenotypes according to the phenotype importance
factor \.. We then group the patients by assigning each
according to the largest value among the top 3 along the
patient representation vector, and use tSNE to map the patient
representation into two-dimensional space. Fig. II shows that
CiderTF (7 = 8) achieves comparable patient subgroup
identification ability as the centralized baseline BrasCPD.
While with the same communication cost, CiderTF achieves
better clustered subgroups than the decentralized baseline
SPARQ-SGD. In addition, the top 3 phenotypes extracted by
CiderTF (table III) are clinically meaningful and interpretable
as annotated by a pulmonary and critical care physician.
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Fig. 2. Bernoulli-logit Loss (1-2 columns) and Least Square Loss (3-4 columns) with vs. time and communication for CMS (top) and MIMIC-III (bottom).
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Fig. 3. Bernoulli-logit Loss for ring topology (solid lines) and star topology
(dashed lines) with respect to time and communication for MIMIC-III data.
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Fig. 4. Bernoulli-logit loss with respect to time and communication for
MIMIC-III data with 8, 16, and 32 workers for local update rounds 7 = 4, 8.

V. CONCLUSION

In this paper, we propose CiderTF, which is the first
decentralized generalized tensor factorization framework. It
employs aggressive communication reduction techniques and
maintains low computational and memory complexity without
sacrificing the accuracy. Experiments show that CiderTF

[~>—DSGD —>—DSGDbras —— GiderTF (r=2) CiderTF (r=4) —— CiderTF (7=6) —— CiderTF (r=8)|
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Fig. 5. Factor Match Scores (FMS) with respect to time and communication.

TABLE II
TSNE VISUALIZATION OF THE PATIENT SUBGROUP IDENTIFICATION WITH
THE EXTRACTED PHENOTYPES. EACH POINT REPRESENTS A PATIENT
WHICH IS COLORED ACCORDING TO THE HIGHEST-VALUED COORDINATE IN
THE PATIENT REPRESENTATION VECTOR AMONG THE TOP 3 PHENOTYPES
EXTRACTED BASED ON THE FACTOR WEIGHTS

Ar =A@ GO A Gl [[AD) Gl -

SPARQ-SGD
3.2 x 10°

CiderTF (1t = 8)
Total: 3.2 x 10°

BrasCPD

preserves the quality of the extracted phenotypes and con-
verges to similar points as the decentralized SGD baselines
with theoretical guarantees. Future works include developing
asynchronized communication and variance reduced techniques
to the decentralized paradigm.
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Other and unspecified angina pectoris
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P2: Respiratory failure

Dx

Acute respiratory failure, Hypoxemia,
Contusion of lung without mention of
open wound into thorax
Disruption of internal operation (surgical) wound

Non-invasive mechanical ventilation

Px

Continuous invasive mechanical ventilation for less than
96 consecutive hours
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P3: Intracranial hemorrhage or cerebral infarction
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Dx Cerebral artery occlusion
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Px

Control of hemorrhage
Med Ticagrelor, Atorvastatin Calcium

Authorized licensed use limited to: Emory University. Downloaded on June 14,2022 at 23:04:15 UTC from IEEE Xplore. Restrictions apply.



