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ABSTRACT

Various phenomena such as viruses, gossips, and physical objects
(e.g., packages and marketing pamphlets) can be spread through
physical contacts. The spread depends on how people move, i.e.,
their mobility patterns. In practice, mobility patterns of an entire
population is never available, and we usually have access to lo-
cation data of a subset of individuals. In this paper, we formalize
and study the problem of estimating the spread of a phenomena
in a population, given that we only have access to sub-samples of
location visits of some individuals in the population. We show that
simple solutions that estimate the spread in the sub-sample and
scale it to the population, or more sophisticated solutions that rely
on modeling location visits of individuals do not perform well in
practice. Instead, we directly model the co-locations between the
individuals. We introduce PollSpreader and PollSusceptible, two
novel approaches that model the co-locations between individuals
using a contact network, and infer the properties of the contact net-
work using the sub-sample to estimate the spread of the phenomena
in the entire population. We analytically show that our estimates
provide an upper bound and a lower bound on the spread of the dis-
ease in expectation. Finally, using a large high-resolution real-world
mobility dataset, we experimentally show that our estimates are
accurate in practice, while other methods that do not correctly ac-
count for co-locations between individuals result in entirely wrong
observations (e.g, premature prediction of herd-immunity).
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1 INTRODUCTION

Phenomena that Spread through Contact. Viruses spread across
a population through contacts and so do news, gossips, ideas and
habits. Packages are passed between individuals when they meet
to reach a destination. Physical contacts are responsible for such
phenomena passing from one individual to another. Their spread,
defined as how many people in a given population the phenome-
non reaches, impacts our day to day lives, with COVID-19 as an
on-going exhibit. Since the spread of such phenomena happens
through contacts, it primarily depends on people’s mobility patterns
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(e.g., how people move in a city and meet others), as well as the
characteristics of the phenomenon which determine how it can be
passed on from one person to another, or the diffusion model (e.g.,
the probability of transmission from one person to another given
that they are co-located). The mobility pattern determines when
and where contacts happen, while the diffusion model determines
how a phenomenon spreads when there are contacts.
Role of Mobility Patterns. Mobility patterns play a fundamental
role in the spread of any phenomena in a population and its analysis.
To shed more light on their role we consider two aspects of mobility.
(1) Visits form the location sequence of an individual which contain
the information about the locations an individual has been to. (2) Co-
locations between multiple individuals, a by-product of their visits,
which contain the information on the contacts between individuals.
The spread of a phenomena in a population depends on the second
aspect, i.e., co-locations, since it determines which individuals were
in contact and able to pass an item between them. This simple
observation informs much of our later discussions.
Benefits of Analyzing Spread. The spread of the phenomena
discussed has significance for both policy making and personal
decision making. Given access to the mobility pattern of all individ-
uals in a population and a diffusion model, we can simulate how a
phenomena spreads in the population. This can be used to identify
hotspots, compute location and individual risk-scores [8, 22, 31] and
study various interventions or what-if scenarios [6, 13, 14, 16, 21].
For instance, in the case of COVID-19, we can model the impact of
wearing a mask as a change in the diffusion model (e.g., by lowering
the probability of a transmission during a contact), and see how
the spread differs from not wearing a mask, as done in [9]. Having
access to the mobility patterns for different cities at different times,
allows us to perform these studies at a high resolution, e.g., for
specific neighbourhoods and time periods.
Mobility Patterns of a Population. The benefits discussed above
can only be materialized if we have access to mobility patterns for an
entire population. However, that is not feasible in practice. Location
sequences can be collected through cell-phones, but it is difficult, if
not impossible, to convince every individual to share their location
with a single entity. Nevertheless, running simulations with millions
of users and billions of locations is computationally demanding.
Meanwhile, location data of subsets of individuals, obtained
through their cell-phones, has become available. For instance, Ve-
raset [2], a data-as-a-service company, provides anonymized popu-
lation movement data collected through GPS signals of cell-phones
across the US. Such datasets provide high-resolution and detailed
mobility patterns of parts of the population, but will likely never
contain the entire population. It is important to be able to fully and
correctly utilize such datasets to analyze the spread of a phenome-
non over an entire population.
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Problem of Up-Sampling. In this paper, we formalize and study
the problem of estimating the spread of a phenomena in a popula-
tion, given access to sub-samples of location visits of individuals
in the population. Our goal is to estimate how many people in the
whole population a phenomenon will reach, given a diffusion model
and sample visits of the population. For instance, by observing only
a portion of the population in a city, solving this problem allows
us to estimate how much COVID-19 will spread under different
intervention strategies (e.g., if people wear or do not wear masks)
for the entire population.

Existing Solutions and Challenges. A simple solution to the
problem is to consider the spread in the sub-sampled population,
and then scale the estimation to the whole population. However, we
observed that such an approach vastly underestimates the spread
because it ignores the co-locations between the unobserved indi-
viduals and the sampled individuals. In fact, the main challenge in
solving the problem is accurately modeling co-locations between
unobserved individuals and sampled individuals. We observed in
our experiments that when this is not done accurately, the estima-
tion can provide wrong infection patterns, e.g., estimating that the
spread is stopping when the spread is actually increasing. This is
because the underestimation gets amplified over time. For instance,
underestimating the number of people who are currently infected
in a population leads to further underestimating how many people
the disease can be transmitted to in the future.

An alternative approach is to model the visits of the unobserved
individuals using the visits of the sampled individuals, and use
that model to infer co-locations between unobserved and sampled
individuals. For instance, an approach can be to generate synthetic
location trajectories, e.g., using [12, 26], based on the observed lo-
cation sequences to create a larger dataset that contains both real
and synthetic location sequences. However, we observed that this
indirect formation of co-locations from synthetic location data has
two limitations. First, the co-locations cannot be formed accurately
because our model needs to generate extremely accurate synthetic
locations, within a few meters (to generate correct co-locations),
and for long periods of time (to be able to track infected individuals
correctly). In addition, creating synthetic locations corresponding
to real-world populations explodes the data size, rendering simula-
tions at scale impractical. A detailed discussion of these methods is
provided in Section 5 and we experimentally evaluated a represen-
tative of such approaches in Section 4 which confirmed the above
observations.

Effectively, due to lack of access to individual location data, agent
based simulations that are used to assess various interventions for
containing the spread of a disease [6, 13, 14, 16, 21], utilized across
the world for the COVID-19 pandemic, use fixed contact matrices to
generate co-locations between individuals. These contact matrices
contain, at an aggregate level, the rate of contacts between different
compartments in the population (e.g., the rate of contacts between
people of age 10 with people of age 50 in a population), and are
created through surveys and interviews in various parts of the world
[25, 29, 30]. In the absence of individual location data, such contact
matrices can be useful for studying the spread in a population at
an aggregate level (e.g. for a country). However, since the contact
matrices are static, i.e., do not change with time, and are created at
an aggregate level, they do not take into account the spatiotemporal
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changes in mobility (e.g., change in mobility on a day-to-day basis,
or for different neighbourhoods in a city). Thus, they cannot be
used to provide accurate estimate of the spread at a particular
point in time and space. We believe using real location data and
an accurate method for estimating the spread can help empower
the above-mentioned studies to better understand the impact of
different interventions.

Our Approach. We rigorously study the problem of up-sampling.
Our approach is to statistically estimate the probability of a sampled
individual getting infected. Such an estimate needs to take into
account the probability of a sampled individual getting infected
by unobserved individuals. Rather than modeling location visits of
an individuals, from which co-locations can be indirectly inferred,
we directly model co-locations between individuals. This follows
our observation that the extra information associated with location
visits (e.g., their exact Geo-coordinates and their entire sequence) is
unnecessary for modeling co-locations, while modeling such extra
information makes the model less accurate.

Our methods use a time-varying contact network [32] to model
the co-location between individuals. The general approach is to
use some statistics of the contact network, that can be estimated
from sub-sampled individuals, to estimate the spread. We discuss
two different ways this can be done. Our first approach, called
Polling the Spreader, or PollSpreader, does this from the spreaders
view: by modeling how many individuals a person can transmit the
phenomena to. We observe that estimating statistics for this kind of
modeling is difficult over long periods. Thus, we discuss our second
approach, called Polling the Susceptible, or PollSusceptible, where
we estimate the spread from a different perspective: we model
different ways the phenomena can be transmitted to a particular
individual. Using this approach, we provide lower and upper bounds
on the spread of the phenomena in the whole population from the
sub-sample. We experimentally observed that our estimates follow
closely the spread in the whole population. Furthermore, our results
show that the pattern of spread can be completely misjudged (e.g.,
showing early herd-immunity by mistake) if the co-locations are
not estimated accurately.

Contributions and Organization. In this paper, we

o Define the problem of estimating spread through sub-sampled
visits (Section 2);

e Present two novel methods, PollSpreader and PollSusceptible,
that solve the problem accurately (Section 3);

o Theoretically study the problem and provide lower and upper
bound estimates of the number of infected people in the
population over time using PollSusceptible; and

o Experimentally show that our estimations are accurate in
practice. (Section 4)

Furthermore, Sections 5 and 6 discuss the related work and our
conclusion, respectively.

2 PROBLEM DEFINITION

We study the problem of the spread, across a population, of a phe-
nomenon that passes from one person to another through their
co-location. We assume only a sub-sample of the population are
observed, and our goal is to estimate the number of individuals in



Figure 1: Diffusion Model

the true population who become subjected to the phenomenon. We
next define the terminology used, summarized in Table 1.
Mobility Pattern. We consider a population consisting of n in-
dividuals. For each individual, a visit provides the location of the
individual at a particular point in time. Associated with each indi-
vidual, u, is a visit sequence or location sequence, which is a sequence
of the location of their visits over times. For two consecutive visits,
c and ¢’ of an individual at times ¢ and ¢/, we assume the individ-
ual is at location specified by ¢ from time ¢ to ¢’. Given the visit
sequence of u, we define [, to be a function returning the location
of u at any point in time, i.e., for any ¢, I, (t) = (x}, y¥) where x}
and yy' are the coordinates of the location of u at time ¢. We abuse
the notation and also refer to [, as u’s visit sequence. Diffusion
Model. Here we discuss how diffusion occurs over the population.
For ease of discussion, and without loss of generality, we adopt a
terminology commonly used when a disease spreads in a popula-
tion and in particular the SIR model [20] which is commonly used
in epidemiology. The model is shown in Figure 1. Each individual
is in either the Susceptible (S), Infected (I) or Recovered (R) com-
partment. We refer to the compartment an individual belongs to
as their status. Recovered individuals are assumed to be immune
to the disease (or deceased), and thus will not contract the disease
anymore. Infected individuals are either able to spread the disease
(called Infected and Spreading, or IS) or they are not (called Infected
and not Spreading, or INS). Susceptible individuals can contract
the disease from Infected and Spreading individuals. After an S
individual, u, contracts the disease at time ¢, u immediately become
INS. Then, at time ¢ + t7g, where tg is a positive number sampled
from some distribution Org, u becomes IS. Furthermore, at time
t + tg, where tg is a positive number larger than t;g and sampled
from some distribution ®g, u becomes R.

Consider a Susceptible individual, u, and an Infected and Spread-
ing individual, v, and their corresponding visit sequences [, and
ly. At any time, t, with probability p = f (I, Iy, t), u contracts the
disease from v, where f (I, I, t) is an application-dependent and
user-defined function. The function f(ly, I, t) determines the prob-
ability of transmission of the disease from one person to another
depending on the location of the individuals. Intuitively, there can
be a non-zero probability of transmission when two individuals are
close enough spatially for a long enough duration.

Individuals are initially infected based on some probability distri-
bution. At time zero, a vector ¢ is sampled from a distribution ©;p;,
where ¢ € {0,1}" and the i-th element of ¢ determines whether
the i-th individual in the population is initially infected or not. An
initially infected user becomes INS, and transition to IS and R states
following the same procedure discussed above.
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Notation Meaning
Ds Prob. of an individual begin sampled
Ors Distribution of time it takes to become IS
Or Distribution of time it takes to become R
Oinit Distribution of initial infections
1rs Time it takes to become IS
LR Time it takes to become R
dmax Max. distance for transmission
tmin Min. duration for transmission
Dinit Prob. of an initial infection
Pinf Prob. of infection given a contact
Su R. v. denoting if u is sampled
X} R. v. denoting if u gets infected until time ¢
f)i Estimate of P(X/ = 1) from sub-sample
N(u,Gs,t), Ny Neighbourhood of u in Gs
N,f N(u,Gsz) \ A (“\” is set difference operator)
EI Estimate for the Up-Sampled Infected Count

Table 1: Table of Notations

Problem Statement. Our goal is to estimate the extent of the
spread over the population from just observing the visit sequences
of a sub-sample of the population. Specifically, consider a population
U of n individuals and a set S € U, where S is sampled from U
uniformly at random. Each individual is sampled independently
and with probability p;. We use the term sub-sampled population
to refer to the set S and whole population to refer to U. We refer to
individuals in U \ S as unobserved individuals.

Definition 2.1 (Up-Sampling Infected Count Problem). Give a sub-
sampled population, S, and the parameters of the diffusion model,
for any given time t, the Up-Sampling Infected Count Problem
is to return the expected number of individuals who have gotten
infected in the whole population, U, until time .

EI; denotes any estimation of the answer to the Up-Sampling
Infected Count Problem. Solving the analogously problem for other
compartments (e.g., Susceptible or Recovered) will be similar, and
thus we focus only on estimating the number of Infected individuals.

3 ESTIMATING THE SPREAD

Solving Up-Sampling Infected Count Problem would have been
trivial had we had access to the true status of the sub-sampled indi-
viduals. If we knew exactly k; of the sub-sampled individuals are
infected at time ¢ (or knew their exact probability of being infected),
then an unbiased estimate of the number of infected individuals
in the population would have been k—i However, except for t = 0,
obtaining the correct value of k; is difficult, since a sampled individ-
ual may get infected by individuals who were not sampled. In this
section, we first discuss a concrete diffusion model and introduce
the necessary terminology (Section 3.1) and illustrate the difficulty
of obtaining such an estimate with two naive solutions (Sections 3.2
and 3.3). We then present our methodology (Section 3.4) and discuss
its generalization to other diffusion models (Section 3.5).



3.1 Terminology and Diffusion Model

Diffusion Model. For ease of discussion and concreteness, we
present our methodology on a diffusion model with the following
parameter setting. The parameters Ors (time to spreading) and ©yg
(time to recovery) are set to a distribution that returns yys and
1R respectively with probability 1, i.e. they are deterministic. Fur-
thermore, ©;y;; (initial infections) is set such that every individual
is initially infected independently with probability p;yi;. Finally,
f(Iy, Iy, t) is defined as follows. Intuitively, if an IS and an S indi-
vidual are within d;,4x of each other for at least t,,i,, then the IS
individual will infect the S individual with probability p;, s, for
user-defined parameters p;, 1 dmax and tpmin. More formally, con-
sider the time t; when the co-location between u and v starts. That
is, d(Iy(t1),ly(t1)) is at most the parameter dy,qx and that right
before t1, d(1, (1), ly(t)) > dmax- Let t2 be the timestamp when the
co-location between u and v ends. That is, t; is the first timestamp
after t; such that d(l,(t2), ly(t2)) > dmax. If the duration of the co-
location, i.e., the time difference from ¢ to t1, is at least a parameter
tmin, then f(lu, lo, t1) = pinf, for the parameter p;, ¢ denoting the
probability of infection. f (I, Iy, t) = 0 for all other timestamps. We
use the term contact to refer to co-locations within a distance dp,qx
that last for at least t,,j,, units of time.

Terminology. For an individual u, the indicator random variables
Su is equal to 1 if u is sampled and X/ is equal to 1 if u gets in-
fected at a time less than or equal to t. We refer to infections that
were caused by transmission through k individuals starting from
an initial infections as k-hop infections. That is, for a sequence of
individual < vg, 01,02, ...,0; >, we call an infection a k-hop infec-
tion if the individual v} was infected by vr_;, vr_; was infected by
vk_o and so on, and that vy was an initial infection (patient zero).

3.2 First Attempt: Scaling

Our first simple solution is to use Monte Carlo simulation to esti-
mate the spread of the disease in the sub-sampled population.

Methodology. Given a sub-sample, the randomness in the spread
is due to the randomness both in the initial infections and the
transmissions. To simulate the spread, a number of individuals are
initially infected according to ©;y;s. Then, the visit sequences of the
individuals are used to determine contacts between IS individuals
and S individuals, and for every such contact the S individuals gets
infected with probability p;, r. At time ¢, define k; to be the number
of people that are infected in the simulation. We run the simulation
r times, obtaining the estimate k;' for time ¢ from the i-th run. We

return pls % as our estimate of expected number of infections at
time ¢. Here % is for taking the mean of the r simulations, and p%
is for scaling up from the sub-sample to the full population.

Analysis. Such an estimate provides a biased estimate of the ex-
pected number of infections that occur after the initial infections.
It specifically underestimates the number of infections for any time
t > 0. To analyze the accuracy, for a specific run of the simulation,
let X Itl be a random variable denoting if an individual u gets infected
by other sampled individuals until time ¢. Then, the estimate, EI; is

1 )
El = — Z SuX! (1)
ps &
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Figure 2: Modeling distribution of visits for an individual u.
For ease of display, we do not show latitude.

First, note that at time ¢t = 0, the estimate is unbiased. That is,

taking the expected value of Eq. 1 for ¢ = 0, we obtain E[Squ]
E[Su]E[)A(Z] = ps X pinir and the expected number of infections in
the whole population is n X pjpi;. Thus, the estimate pi D SuXS,

is an unbiased estimate of the number of infections at time ¢ = 0.
However, consider )A(,t‘ for t > 0. Observe that P(X; = 1) can
be less than P(X! = 1). This is because, with some probability,
individuals with whom u has contacts may not be sampled, reducing
the probability of u getting infected from the sampled individuals.
In terms of the Monte Carlo simulation, this can be seen as the case
of false negatives. That is, even assuming initial infections and the
transmission are deterministic, u may get infected from someone
in the whole population, but may not get infected from anyone in
the sub-sample, because the transmission of the disease to u in the
whole population is through unobserved individuals.
Observations. Our experiments show that this underestimation is
significant, amplified because it cascades through multi-hop infec-
tions (e.g., second-hop infections are underestimated, which in turn
makes the estimate of third-hop infections worse). Simply scaling
up to the full population does not work, which we show in the
experiments in Section 4. This observation suggests that we need
to account for the visit sequence that were lost when sub-sampling.

3.3 Second Attempt: Location Modeling

3.3.1 Framework. Section 3.2 illustrates the need for accounting for
the unobserved individuals. Our framework to do so is to estimate
P(X} = 1). We denote by p!, an estimate of P(X}, = 1). To solve the
issues arising in Section 3.2, we need to account for the unobserved
individuals when calculating p’,. This differs from our first attempt
in how we model the unobserved individuals to calculate p,. After
we obtain p?, for all sub-sampled individuals, our final estimate is

1
El; = — ) S,p!
= oy Qi

Comparing Eq. 2 with Eq. 1, the main difference in this approach is
the flexibility it allows in estimating P(X}, = 1).

()

3.3.2  Second Attempt: Density-Based Estimation. Our second at-
tempt models the distribution of the visits of the unobserved in-
dividuals to calculate the probability of a sub-sampled individual
being infected by unobserved individuals.



Methodology. Our approach follows four steps: (1) Modeling the
visit probability distribution of the unobserved population, (2) cal-
culating the probability of u getting infected by a single visit of an
unobserved individual when u is in a particular cell, (3) estimating
probability of u getting infected when it’s in a particular cell, and
(4) estimating P(X}, = 1) by taking into account past visits of u.

Step (1), Modeling Visit Distribution: We discretize time and space
using a grid. We use a uniform grid across space, but a per user grid
across time. That is, for each user, we model the visit distribution
with a different histogram, but all the histograms model the same
distribution, i.e., the distribution of the check-ins of all the individ-
uals. The grid across time uses event-based discretization for each
individual. In particular, for an individual u, let C =< to, t1,... >
be the sequence of times we have observed a visit. According to
the discussion in Section 2, u is in the same location during time
t; to tiy1 for all i. Thus, for user u, we discretize time based on
C. The choice of griding for time simplifies our analysis as every
visit now corresponds to a cell, but other griding strategies can be
similarly applied. For each grid cell (t,1, j), let nz,; j be the number
of observed visits that fall into that cell, where we also count the
individuals who are already in the cell g = (¢, i, j) when u enters
the cell, to account for infections happened through individuals
already in the cell. Figure 2 shows the grid used for modeling for
an individual u, where n; ; j is calculated by counting the number
of blue circles. Note that for different individuals, we will have
different horizontal partitioning in the figure. We define

nti,j
it jr M

prij = ®)
to model the probability of a visit falling into the cell (¢, i, j). Fur-
thermore, we assume visits inside a cell are distributed uniformly
in space. In this step, we do not model the amount of time that an
observed individual v (blue dot in Figure 2) is in the cell.

Step (2), Prob. of Infection from a Single Visit: Consider a visit c,
corresponding to a grid cell g = (¢, i, j) of a sampled susceptible
individual, u. Assume we know that a visit ¢’ by some unobserved
infected individual happens when u is in g. We need to calculate
the probability of ¢’ being within dpqayx of ¢ and lasting for at least
tmin- Let per be the probability that ¢’ causes u to get infected and
Plong_enough the probability of a co-location lasting at least tmin.

2

nd

m

SPrij X o
Pe=Prij cell area

ax

©

X Plong_enough
2
where Z9mex g the probability of co-location given that the visits

cell area

are in the same cell (ignoring the edge cases where co-locations hap-

md?
max. calculates

pen from two different cells). In Figure 2, py; j X _2e
the probability of a new blue circle (visit by others) falling within
the dashed line of the red rectangle (within dy,4x of location of u)
for a particular time. We model the duration an individual stays at
a location with an exponential random variable, 50 pjong_enough is
the probability of the random variable being more than .

Step (3), Prob. of Infection in a Cell: If there are N visits by
unobserved infected users for the duration that u is in the cell,

probability of the user getting infected during that time period is

®)

pr=1-(1-p)Ne
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To estimate N, we estimate (a) the number of unobserved IS
individuals, Nis and (b) the average number of visits per IS indi-
vidual N¢ per1s- Then we estimate No = Nis X N¢ per1s. For (a),
assume that the current time is ¢. An IS individual must have been
infected some time between t — yys and ¢t — ug. We use our esti-
mate of the number of infected individuals for times ¢ — ps and
t — pg to calculate the number of current IS individuals. For (b),

Y ineis
we use N¢ per1s = sa) B

, where }}; ; ny; ; is the total number
of observed visits during the time u is in cell g, and we scale it
by pls to get to the whole population (here we have assumed that
the average number of visits per IS individuals is the same as the
average number of visits for all individuals).

Step (4), Prob. of Infection until current time: If u enters N; cells
until time ¢, the probability of u getting infected until time ¢ is

N
p=1-]]a-p
i=0

Observations. We experimentally observed that this approach still
leads to underestimation (see Section 4). This happens for two
reasons. First, on one hand, there are inevitable inaccuracies in
modeling the visits spatially due to modeling assumptions. For
instance, the use of a grid assumes locations that are spatially close
have similar visit density. This may not be true in practice, because
for instance a church may exist in a residential area. Although
this may be possible to address by increasing the granularity of
the grid cells, doing so will require a large set of sampled users to
avoid over-fitting (as otherwise a visit will have zero probability of
falling into most gird cells). On the other hand, to accurately model
co-locations, a model that is accurate to within a few meters is
needed. Second, the temporal correlations between the visits needs
to be modeled. For instance assume that an infection happens in
a particular grid-cell, g at time ¢. It means that an unobserved IS
user, v, was in g at time ¢. This changes the probability distribution
of the locations where v can be at time ¢ + 1. Overall, both points
imply that an approach that aims to up-sample the infection data by
modeling the location sequences requires a very precise modeling
of the location sequences both spatially and temporally. We present
accuracy results from this model in Section 4.

An interesting observation is that our end-goal is to use the
model of the location sequences to find possible co-locations be-
tween individuals. That is, the spatial information associated with
a location sequence is only a means to an end, but is not necessary.
Instead, we can directly model the possible co-locations.

(6)

3.4 Third attempt: Co-location Modeling

Motivated by the above observations, we directly model the contacts
between the individuals. We present two approaches that provide
bounds on the expected spread of the disease in the population.
Our first approach, PollSpreader, models the problem from the
spreaders’ view, i.e., aims at calculating how many people will
get infected given a number of spreaders (Section 3.4.2). Although
this approach works well when modeling first-hop infections, up-
sampling for multi-hops becomes difficult. Therefore, we present
our second approach, PollSusceptible, which looks at the problem
from the susceptible view, e.g., directly calculates the probability
of a susceptible individual getting infected (Section 3.4.3). Both



Figure 4: A cut on the network (Red: Initial infections,
White: Rest of the individuals)

approaches use a time-dependent contact network which we first
describe in Section 3.4.1. For the sake of space, we discuss the time
and space complexity of our algorithms in our technical report [36].

3.4.1 Dynamic Contact Network. We use a dynamic weighted di-
rected graph to model contacts between individuals. For the con-
tacts from time s until ¢, we build a graph Gs; = (V, Es;), where V
contains a node for every individual and Es ; contain edges between
users for whom there exists a co-location between during the time
period [s, t]. Furthermore, the weight on the edge (u,v), denoted
by wu, 0, is the probability that v gets infected from u given that u is
infected at time s. Figure 3 shows an example of a contact network.
We use CA}S,t = (V E;,t) to refer to a contact network built from a
sub-sample. és’t has fewer nodes than Gg ;.

3.4.2  PollSpreader: Up-Sampling using Spreaders’ View. We study
how many first-hop infections can occur based on an initial number
of infections. Our approach follows the framework of Section 3.3.1,
and we aim at calculating p!,. We first explain how the contact
network can be used to do this if we have access to the entire pop-
ulation. Then, we discuss how the approach can be adjusted when
we only observe a sub-sample of the population. Finally, we discuss
the difficulty in extending the approach to multi-hop infections.
We refer to this method as Polling the Spreader or PollSpreader.
Calculating !, from the Whole Population . Assume we have
access to the whole population. Our approach works as follows. (1)
We calculate the total number of contacts between initial infections
and the susceptible population. Then, (2) we use that to estimate
the probability of a susceptible individual getting infected.

Step (1), Calculate Number of Infectious Contacts: We estimate the
number of infection events, informally defined as when an initially
infected user, v, has contact with an individual v who was not
initially infected. Formally, define the infection random variable
Ifw as an indicator random variable which is equal to one if u is an
initially infected person and u infects v until time ¢ given that no
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other individual infects v. We call I}, , = 1 an infection event. Our
goal is to estimate how many infection events occur in total in the
whole population by calculating E[},, , I,i’z,].

Calculating E[Y,, , I ,] can be formulated as estimating the
expected total weight of the edges crossing a random graph cut
on the graph Gy ;. Figure 4 shows how this is done for a specific
realization of initial infections, where Figure 4 is obtained by a
random selection of initial infections from Figure 3, that is, the red
nodes are randomly selected initial infections. Any such random
selection defines a cut on the graph for every timestamp. The goal
is to estimate the expected number of edges crossing such a cut.
Specifically, consider the following random cut, where a node is in

cut corresponds to an initialization of the infections. Given a cut,
the expected number of infection events until time ¢ is equal to
the total weight of the edges crossing the cut from I to S (for each
different ¢, we consider the cut on a different graph, as Go ; changes
with time). Thus, the expected number of infection events is equal
to the expected total weight of the edges crossing the cut from I
to S. For every edge (u,v), assign the random variable Z,, , to be
equal to wy,, if u € I and v € S, and zero otherwise. We have that

E[Zu,v] = pinit X (1 _Pinit) X wWyp (7)
and the expected total weight of the edges crossing the cut is
E[Z Iﬁ,u] = eﬁ = Z Pinit X (1 = pinit) X wy g ®)
u,0

(u,0) €Eq;

Step (2), Estimating f); from Infection Events: We assume the in-
fection events occur uniformly at random across the susceptible
population, or in other words, the edges from I fall uniformly at ran-
dom over the nodes in S. Although more sophisticated modelling
approaches may be possible, we observed that this assumption
works well in practice. Thus, given Z,, , for all u and v, the proba-
bility of a node in S having at least one edge incident on them is
1-(1- ﬁ)zzuv”. We estimate this quantity by 1 — (1 — ﬁ)eé.
Finally, an individual either gets infected initially (with probability
Pinit), or does not get infected initially but gets infected through
contact with u. Thus, we estimate probability of getting infected as
1 el
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Calculating f); from the Sub-Sampled Population . An advan-
tage of this modelling is how easily it can be adjusted when we
only have access to a sub-sample of the population. In Eq. 9, we
only need to be able to estimate E[e.]. To do so, we slightly modify

p

t = pinit + (1= pini) (1 - (1

our graph cut formulation. Specifically, let I be the set of nodes
that are sampled and initially infected, and let § be the set of nodes
that are sampled and not initially infected. Furthermore, let Z,, , be
equal to wy, ifu € Tand v € S, and zero otherwise. We have that

E[Zu,v] = P_z X pinit X (1 _Pinit) X Pu,v (10)
Comparing Eq. 10 with Eq. 7, we observe that adjusting for sampling
can now be done just by scaling. Thus, an unbiased estimate of the
So

. . Zu U
total expected number of edges crossing the cut is 2“”—2

E[) I, =¢
u,0

s

Z Pinit X (1= pinit) X wyp  (11)

(u,0)€Eo;

_1
p3



Algorithm 1 Calculating Prob. of Transmission Through a Path,
calc_prob_transmision(s, t)

Require: Sequence of k + 1 individuals, s, s =< vg, v1, ..., v > and
infection time of vy, t;
Ensure: P(T! = 1|v gets infected at ¢;)
1: if k == 0 then
2 return 1
3 s < i1+ ps
4 IR <t + R
5: Cypop., < list of contacts between vy and vy_; from ;5 to tg
ordered by time
pe—0
: for ¢; in ¢y g, do
tc < time c; occurs
Pinf_by_c < calc_prob_transmision(< vo, ..., vg_1 >, tc)
P < P+ Pinf by ¢ X Pinf X (1 _Pinf)l_l
return p

v ® N

10:
11:

Algorithm 2 Calculating Prob. of Infection by a Path,
calc_prob_inf (s, t7)

Require: Sequence of k + 1 individuals, s, s =< v, v1, ..., v} > and
current time t

Ensure: Lower and upper bounds estimates of P(T! = 1)

1 Pnot | < 1

: Pnot u < 1 .

: for o’ in N(vg, Goy) \ {vo, ... vx} do

Po 1 Pr_u < calc_prob_inf (< vy, ..., v, 0" >)

Pnot 1 < Pnot I X (1=pv_u)

Prnot_u < Pnot_u X (1 _Pu'il)

: Pstarts_at_u, < calc_prob_transmision(s,0)

: ﬁl €« Pstarts_at_v, T (1 _Pstarts_at_vk) x(1- (Pnot_u)Cu)

. Dy < Dstarts_at_vp + (1= Pstarts at o) X (1= (Pnotil)cl)

return p;, p,

- I R - N N NS N

-
<

Our final estimate simply replaces e’ in Eq. 9 with éZ.

Challenge for Multi-Hop Infections. The main challenge asso-
ciated with this method is generalizing it to more than one-hop
neighbours. The contact network can be generalized to a reach-
ability network [32], such that there is an edge from a node u to
another node v if u can infect v through multi-hop infections. How-
ever, taking sampling into account becomes difficult, because the
probability of an edge being sampled now depends on which of the
intermediary nodes are sampled, and the number of k-hop paths
from u to v in the population. Thus, we need to accounts for all pos-
sible multi-hop paths containing unobserved secondary infections.

3.4.3  PollSusceptible: Up-Sampling using Susceptibles’ View. To ac-
count for unobserved secondary infections, here, we directly model
the probability of a susceptible person getting infected. This is our
second graph-based approach, which proved to be the most accurate
in our experiments. By making some independence assumptions,
this allows us to naturally model multi-hop infections. We refer to
this method as Polling the Susceptible or PollSusceptible.
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Calculating p; from the Whole Population. We again start by
assuming we have access to the entire population and use the same
contact network discussed before. The general idea is to observe
that an individual, u, who got infected was either initially infected,
or got infected through some of its contacts that are modeled by
the contact network. If u got infected through a contact, v, the same
logic recursively applies. That is, v was either initially infected or got
infected through a contact. To state this formally, we first introduce
more terminology, then discuss the case of getting infected through
neighbours and finally detail the recursion step.

Neighbourhood Terminology and Notation. Recall that the contact
network represents, for each individual, u, if they are infected,
whom they can infect and with what probability. Consider v €
N(u,Gs), where N(u,Gs ;) is the set of neighbours of u, that is
the set of nodes, v, in G ; such that there is an edge from u to v in
Gst. N(u, Gst) represents the set of possible first-hop infections
caused by u, given that u starts spreading the disease at time s and
recovers at time t. We use the notation Ny, to refer to N(u, Gs )
when the contact network in question is clear from the context, and
we use the notation N{;\, for some set A, to denote N(u,Gs;) \ A.

Calculating ﬁzo through first-hop neighbours. Our goal is as be-
fore, calculating f)f)o for all users vy following the framework of
Section 3.3.1. To do so, for individuals vy and v1, let Tzfo’vl be the
indicator random variable equal to one if the disease is transmitted
from v1 to vg until time t. Now, the event that v does not get in-
fected until time ¢, X50 = 0, can be decomposed as the intersection
of two events: one that vy does not get infected initially, Xzﬁo =0,
and that vg does not get infected by any of its contacts until time
t, written as T, ,, = 0 for all o € Ny,. The idea can be illustrated
using Figure 3. For instance, for E to get infected until time 3, it
either has to be initially infected, or not initially infected but get
infected from B, C or D. Using this formulation, the probability that
0o gets infected until time ¢ is

Phy = Pinit + (1= pinit) (1 = P(Ty , =0,¥o1 € Ny)  (12)

Pay
where the two events of vg either gets initially infected (first term),
or it does not get initially infected but gets infected through trans-
mission (second term) are accounted for. Denote pg =P(T} o =
0,VYo1 € Ny,) for ease of reference. Here, we make the modeling
assumption that the random variables X}, , are independent for
all v € Ny,. Using the assumption,

[ P10 =0

01 ENy,

P (13)
we acknowledge that this may not be necessary true for multi-hop
infections, but we observed that the introduced error is negligible
in practice per our experiments (see Section 4).

Combining Egs. 12 and 13, the problem of calculating [)20 is now
reduced to calculating P(T;, ,, = 0) for each ;.

Recursion for Multiple Hops. To calculate P(T} , =0), a similar
logic can be recursively applied. Tzfo,vl = 0 can occur only if v; is
initially infected, or if it is infected by another one of its neighbours.
Continuing with our example, in Figure 3, for E to be infected by
D until time 3, D must have either been infected initially or gotten



infected from A, F or G. Also note that for E to be infected by B
until time 2, B must have gotten infected initially. Specifically, let

T3, 0.0, be the random variable equal to one if vy gets infected until

time ¢ by v who gets infected by vy, v3 € Nzivo ) We write

P(Tzfg,v1 =1)= PinitP(Tzfo,ul = 1|X31 =1+
(1= pinie)(1 = l_[ P(TL , ) =0)) (14)
Uy ENgfo}

More generally, P(Tst = 1), when s =< vy, ..., 0} > can always be
recursively calculated as

P(Tst =1) = pinit P(Tst = 1|X2k =1)+

full-path transmission

(1 =pinid1 = [] P(TLy,, =0)
vk“eN’-jk_/—/
recursion

(15)

where s, 03,1 denotes the concatenation of v, to s. A simple base-
case for the recursion is when all the neighbours of vy are already
on the path from v to vy (in practice when estimating the spread
until time ¢, we are generally able to stop the recursion based on
the number of hops. This is because we know the time it takes for
a given disease to be transmitted during each hop, and thus the
number of hops that can happen until time ¢ can be estimated).

The term labeled recursion in Eq. 15 shows the recursive calcula-
tion. The term labeled full-path transmission is the probability of
transmission happening given a complete path, e.g., the path starts
with a patient zero, v, who was initially infected and continues
until vg. The probability of a full-path transmission can be calcu-
lated by considering the contacts between every pair of individuals,
v; and v;_1, on the path as explained below. Before explaining the
details of this calculation, note that using Egs. 15 and 13, we can
calculate Eq. 12, which provides our estimate of pf)o,

Calculating Probability of Full-path Transmissions. Algorithm 1
shows how this is done. The idea is to divide the event T} = 1, for
s =< 0o, ..., U >, into a set of mutually exclusive events and sum
up the probabilities of the events to calculate the final probability.
Let ¢ » be the list of contacts between u and v ordered by time, let
W (u,v,¢,t;), for ¢ € ¢y, denote the event that u infects v through
contact ¢ given that u was infected at time ¢;. Observe that the
event E = (T} = 1|X2k =1) is the same as E = Ug; Tst\vk =
1 A W(vg, 01, ¢i, 0)) and that each event is mutually exclusive
(because an individual can get infected at most once), where s \ v
is the sequence of elements in s excluding vy. Note that

CCop.o_y

P(T! =1 AW (vg, 01, ¢1,0)) =

P(T},, = UW (0k, vk—1, ¢, 0)) X P(W (0k, 01, i, 0))
—

(1=ping) "' Xping

recursion

The first term is calculated recursively. To calculate the second term,
recall that ¢; is the i-th contact between vy and vg_; since vg_;
became IS. Thus, for v;_; to become infected through c;, it has to
be true that none of the previous i — 1 contacts caused infection, and
that ¢; did. Since each of the events are independent, the probability
of this happening can be calculated as (1 — p,-,,f)i_1 X Pinf-

1564

Calculating p; from the Sub-Sample Population. Now assume
we only have access to a sub-set of the population. Calculating full-
path transmission probabilities can be done in the same way as
before (Alg. 1). However, not all the neighbours of a user vy are
sampled. That is, in Eq. 12, we do not have access to N (vg, Go ¢ ), but
only its sub-sample N (v, Go,¢). Thus, we need to adjust Eq. 13 to
estimate pf,\g from our sub-samples. We denote by ﬁgg = P(Tzfo,z,1 =
0,Y0; € N(vg, éO,t)), ie., f)g this is our estimate ofp% from the
sub-sampled population. The challenge in making such an estimate
is that we are estimating the product across a population using
a sub-sample. Providing unbiased estimates of summations using
sub-samples can be easily achieved by merely scaling the sample
statistic, but such an approach does not work for estimating prod-
ucts. This is because there is no simple relationship between E [f)gg ]
and pg . Instead, to be able to compute reliable estimates, we pro-
vide lower and upper bounds on pf,\g as discussed in the following
theorem. The theorem makes use of the quantity pmin, which is
the largest number such that ppin < P(T}}, = 0), and is a bound
on the probability of transmission.

THEOREM 3.1. Letcy = pis We have that

E[( P(T}, o, = 0)%)] < pyy
01 €N (09,Go,t)

2
. I i
Furthermore, let ¢, be the solution to c;ps + M

R Iw, we have that
[1

01 €N (09,Go,¢)

=1 If

=

Ps

P(TY, 5, = 0)%21)%]

Proof Sketch. We take the log ofp% = [1o,eN(00,Gor) P(Tzfo,v1 =
0) and use Jensen’s inequality and Hoeffding’s lemma to bound it.
Full proof available in our technical report [36]. O

Theorem 3.1 gives us estimates that bound p% from above and
below on expectation. However, due to sub-sampling we do not have
access to P(Tzfosv1 = 0) exactly. We recursively apply Theorem 3.1
to obtain lower and upper bounds on P(T}; , = 0), and then use
those in the statement of the theorem. Thus, when modeling multi-
hop infections, Theorem 3.1 is recursively applied. Furthermore, in
practice, we estimate p,in from our observations (we estimate the
maximum number of co-locations, nmqx, between two individuals
from the sub-sample, then estimate pmin as (1 — pjr)"mex).

Final Algorithm. Alg. 2 depicts our final algorithm to find lower
and upper bounds on p!, for an individual. This is obtained by
calling calc_prob_inf (< u >,t). The base case for Alg. 2 is when s
contains all the nodes (the algorithm will not enter the for loop in
that case), although a more efficient base case is to also consider
the time t and check whether there is a non-zero probability that
adding another hop (i.e., line 4) will be able to spread the disease
to vg until time ¢t. This is possible because it takes prs for every
infected individual to spread the disease, and thus, if there are k
hops on the sequence < vy, ..., g >, it takes at least k X yyg for the
disease to spread from v} to vo.



3.5 Generalizing the Diffusion Model

Our methods are applicable to other diffusion models as long as they
satisfy the following requirements. First, initial infections need to
be independent. Although we have so far assumed this probability
to be the same and pjp;; for all individuals, the method can be easily
modified to use probability pjnisy for each individual u, i.e., the
initial probabilities do not have to be the same for all individuals.

Second, consider the function f(ly, I, t) that defines probability
of transmission for two location sequences. For our PollSpreader,
f(Iy, 1y, t) is only used to calculate the edge weights of the contact
network. Thus, the only requirement is for it to be possible to
calculate the probability of transmission from time s to time ¢ from
f(ly, Iy, t) if u is infected at time s. For PollSusceptible, observe that
the formulation in Alg. 2 does not depend on the function f, but
Alg. 1 is dependent on the specific transmission model. Here, f
needs to be a function that can be used to evaluate P(Tzfo,vl,.--,vk
1|og gets infected at ¢;). This is also the case for ©1g and Oyg.

Although our framework is general enough to be able to handle
different diffusion models, the efficiency of the calculation can be
an obstacle for complex distributions. For instance, Alg. 1 in line 5
takes advantage of the fact that only certain contacts between time
trs and tR can cause transmission, which is in turn because fg
and tg are deterministically calculated (in lines 3 and 4). However,
modifying ©rg and ©jg will require checking all contacts between
vy and vj._; when there is a non-zero probability that vy, is IS.

4 PERFORMANCE EVALUATION
4.1 Experimental Methodology

We ran our experiments on a machine running Ubuntu 18.04 LTS
equipped with an Intel i9-9980XE CPU (3GHz) and 128GB RAM.
Datasets. We consider two datasets. Our first dataset is the Veraset
dataset. Veraset [2] is a data-as-a-service company that provides
anonymized population movement data collected through loca-
tion measurement signals of cell-phones across the US. We were
provided access to this dataset for December 2019. The dataset
consists of location signals of cell-phone devices, where each lo-
cation signal is considered to be a visit, as defined in Section 2.
Each record in the dataset consists of anonymized_device_id,
latitude, longitude, timestamp and horizontal_accuracy. We
assume each anonymized _device_id corresponds to a unique indi-
vidual. We discard any location signal with horizontal_accuracy
of worse than 25 meters. For a single day in December, there are
2,630,669,304 location signals across the US. Each location signal
corresponds to an anonymized_device_id and there are 28,264,106
distinct anonymized _device_ids across the US in that day. Figure
5 shows the number of daily location signals recorded in the month
of Dec. 2019 in the area of Manhattan, New York. Figure 6 shows
the distribution of location signals across individuals in Manhattan
in Dec. 2019. A point (x, y) in Figure 6 means that x percent of the
individuals have at least y location signals in the month of Dec.
We use three subsets of this dataset containing 20,000 individuals
in San Francisco, Manhattan and Cook (which contains Chicago)
counties. Unless otherwise stated, we consider this 20,000 individu-
als as the entire population, based on which the ground-truth spread
is calculated (our algorithms are given access to visits of only a
subset of these individuals to perform their estimation). These areas
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Figure 5: No. location signals
per day for Manhattan

Figure 6: Distribution of lo-
cation signals for Manhattan

were used since their different co-location patterns is expected to
lead to differences in the disease spread with the same diffusion
model. Specifically, for San Francisco, Manhattan and Cook coun-
ties, the average number of daily co-locations per individual (i.e.
the count of the total number of co-locations in a day divided by
the number of individuals) is 2.95, 1.72 and 0.23, respectively.
We also use Gowalla [1], a publicly available dataset to allow for
reproducability. Gowalla contains visits of users obtained from a
social network over several months across the US. Since the data is
very sparse, we select a 20 day period with the largest number of
visits and 20,000 individuals. It contains 6, 760, 928 visits.
Algorithms. We compare the performance of the algorithms dis-
cussed in Section 3.1. Scale is the algorithm discussed in Section
3.2, Density was discussed in Section 3.3.2, PollSpreader in Sec-
tion 3.4.2 and PollSus_L and PollSus_U are the lower and upper
bounds, respectively, from the method PollSusceptible discussed
in Section 3.4.3. We use Density as a surrogate for approaches that
generate synthetic trajectories, e.g. [12, 26], where they model the
probability distribution of location sequences of the individuals. In
contrast to [12, 26], Density allows for directly calculating the prob-
ability of co-locations, while [12, 26] rely on sampling to be able to
find possible co-locations. For Density, we use a grid of 100x100 to
discretize the space (results in width of each cell for Manhattan and
San Francisco to be about 100m and for Cook county about 500m).
Metrics and Evaluation. For each dataset, we calculate the ground-
truth using Monte-Carlo simulation. This is done by simulating the
spread of the disease in the entire population for whom we have
data, i.e., for Veraset dataset, the 20,000 individuals. We run the sim-
ulation 10 times and take the average. To evaluate each algorithm,
we sample each individual independently and with probability ps,
for ps € {0.025,0.05,0.1,0.2} to create random sub-samples of the
population. For each algorithm, we measure mean absolute error
(MAE) in the estimation from the ground truth. This is done by, for
each set of samples, measuring the difference between the ground
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truth and the estimation. We also measure the bias in each estima- the accuracy of our methods and a more comprehensive evaluation
tion, calculated by taking the average of 10 runs for each algorithm of our method on different diffusion models.
and calculating its difference with the ground truth.
Parameter Setting. We use the diffusion model discussed in Sec- . . .
i & W SEH 4.2 Results with COVID-19 Diffusion Model
tion 3.1. Unless otherwise stated, the parameter setting is as shown ) )
in Table 2, referred to as COVID-19 diffusion model, designed to 4.2.1  Error and Bias. Figures 7 (a), (b) show the performance of

the algorithms on the San Francisco dataset. First, we observe that
PollSus_L provides very low error and bias, even when only 2.5%
of the population is sampled, and thus can be used to estimate the
spread accurately. PollSus_U performs well for higher sampling
rates while Scale and Density perform poorly as they fail to adjust
for infections that happen from unobserved individuals. Scale also
has a higher variance compared with the other methods, which is a

mimic the spread of COVID-19. We set yi1s to 5 days similar to the
mean incubation period reported in [23]. The work in [17] reports
“Infectiousness was estimated to decline quickly within 7 days”, so
we set pg to pys + 7. We set tyipn to 15 min as mentioned by [33].
Finally, we mention that our technical report [36] contains com-
plimentary experimental results on the impact of sampling bias on
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result of the randomness of the Monte-Carlo simulation (the other
algorithms are deterministic given a sub-sample).

Furthermore, Figures 7 (c), (d) show the results on the Gowalla
dataset. For our experiments on Gowalla, we set dp;4x to about 110m
and p;, ¢ = 0.1, since otherwise we observed very few co-locations
and infections. We observe similar trends as before with PollSus_L
and PollSus_U performing the best. we remove Density from our
experiments from here onwards due to its poor performance.

4.2.2  Daily Infected Numbers across Counties

Up-sampling with Known Ground-Truth. The goal of this ex-
periment is to examine, for different spread patterns, how closely
the estimations follow the ground truth. As before, we have as-
sumed the 20,000 individuals to be the true population based on
which the ground-truth is calculated. Figures 8 (a), (b) and (c) show
the number of infected people per day for Manhattan, Cook and
San Francisco counties respectively. The shaded area shows one
standard deviation above and below the mean. The drop in the
number of infections on day 13 in the figures is due to our choice
of ur = 12, since all 200 initial infections recover by then.

Overall, the spread of the disease is correlated with the average
number of daily co-locations per individuals, where the spread of
the disease ends after the initial infections in Cook county, but it
lasts longer in Manhattan and in San Francisco. We observe the idea
of herd-immunity in Figures 8 (b), where the virus stops spreading
well before all the people in the population are infected. The pattern
is different for Manhattan and San Francisco, with the number of
cases in Manhattan remaining at a steady level, while increasing
in San Francisco (this is interesting from an epidemiology per-
spective, because it shows that herd immunity is dependent on
the co-location pattern for a population, given the same disease).
We also see that PollSus_L and PollSus_U follow the ground-truth
closely in all the datasets and throughout the studied period. Poll-
Spreader follows ground-truth but mainly up-to day 10, as after
that an adjustment for multi-hop infections is required which Poll-
Spreader does not take into account. Scale accurately estimates the
initial infections, as discussed in Section 3.2, but does not account
for its false negatives, which gradually deteriorate its performance.

Here, we have assumed the 20,000 individuals to be the true
population. However, the real-world population of each of the coun-
ties is larger (20,000 is about 0.39% of the real-world population
of Cook county and about 2.27% of the real-world population of
San Francisco). As a result the spread shown does not necessarily
follow the real-world number of infections. Furthermore, since the
real-world population of the counties differ, a relative comparison
across the counties for the real-world number of infections is also
not justified, as the up-sampling procedures would be different.
Up-Sampling to Real World. This experiment shows how our
method can be applied in the real world. We consider our entire
dataset, consisting of 20,000 users in each of the cities, as a sub-
sample of each city’s entire population. 20,000 is about 2.27%, 1.25%
and 0.39% of the populations of San Francisco, Manhattan and Cook
county, respectively, and these values are used as the sampling
probability. For all the counties, we set pini; so that the expected
number of initial infections is 350 people. Furthermore, we reduce
Pinf = 0.001 and dmax ~ 2m as otherwise number of infections
would have been too large. For clarity, we only present the results of
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PollSus_L, the best algorithm in the previous experiments. Figure 8
(d) shows the estimate of the spread for the counties. The esti-
mates show an increasing trend for all the counties, with number
of infected in San Francisco and Manhattan being the highest.
Note that we do not have access to ground truth infection values
to be able to evaluate the accuracy of the estimates (because our
location dataset is from Dec. 2019, which is before the spread of
COVID-19 in the considered counties). However, we can observe
that the exponential growth trend matches the intuition and the
real-world observations of the spread of COVID-19, with denser
counties having a larger number of infections. Importantly, the
patterns in Figure 8 (d) are different from Figure 8 (a), (b) and
(c), which showed the spread of the disease fading for Manhattan
and Cook counties. This emphasises the importance of correct
estimation procedures, as the patterns observed in a sub-sample
can be very different from the patterns in the true population.

4.3 Results with other Diffusion Models

4.3.1 Varying p;,r. We vary p, ¢ from 0.01 to 0.1 to see how it
impacts the spread. p;;, ¢ determines the probability of the disease
spreading from one person to another given a co-location and can
be used to model different transmission scenarios, e.g., low pj, ¢
values can be for the case when people are wearing a mask and
larger value for when they aren’t. Figure 9 (a) shows the impact of
increasing p;, r. Comparing Figure 9 (a) and Figure 8 (c) shows how
increasing the probability of transmission increases the spread of
the disease. Overall, the general trends are the same as before, with
PollSus_L and PollSus_U closely following Ground-Truth. More-
over, in Figure 9 (a), PollSpreader shows a herd immunity pattern,
where the infections initially increase and then start decreasing af-
ter a certain time, while the true number of infections is increasing.
This is also true for Scale, where the underestimation is amplified
over time, i.e., underestimating the number of current infections
leads to further underestimating the number of future infections.

4.3.2  SARS and Flu Diffusion Models

SARS. To simulate the spread of SARS, we increase yys to 7 and
HR to 14 to reflect how viral load peaks during the second week of
infection [7, 27], as opposed to COVID-19, where the peak is earlier
[5]. The result of this experiment is shown in Figure 8 (b) (lines
labeled Ground-Truth, PollSus_U and PollSus_L).

Furthermore, we consider the observation in [7] that “Low rate
of viral shedding in the first few days of illness meant that early
isolation measures would probably be effective”, to study a possible
intervention scenario. Specifically, we consider the scenario that
people are isolated early after experiencing symptoms, which can
be modeled by reducing the value of yg. In the real world, this
happens for SARS due to high rates of hospitalization [28]. We set
UR to 10 days, considering that average duration of symptoms onset
to hospital admission was 3.8 days [11], and that the incubation
period can be up to 7 days [28]. Lines labelled GT, U and L in Figure
8 (b) show the results of the algorithms Ground-Truth, PollSus_U
and PollSus_L, respectively, on this diffusion model. PollSus_L and
PollSus_U follow Ground-Truth closely in both scenarios. Note
that such an intervention policy may not be effective for COVID-
19, because the transmission of COVID-19 often happens before
individuals experience symptoms [17]. Furthermore, because of



higher rates of hospitalization for SARS, people tend to be in the
hospital when they are the most infectious [7, 28]. These explain
reaching herd immunity for SARS in Figure 4.3 (b), but not for
COVID-19 in Figure 8 (c), which is consistent with the real world.
Flu. For the spread of Flu, we set yys to 2 and pg to 7, based on [4],
where viral shedding peaks at day 2 and lasts for at most 5 days.
Furthermore, we set p;,y = 0.005, since the basic reproduction
number of Flu is lower than that of COVID-19 [10] (in our diffusion
model, given the mobility pattern, the basic reproduction number
is directly correlated with p;;, ). Figure 9 (c) show the results for
the spread of Flu. Overall, the performance of the algorithms is the
same as on COVID-19 and SARS. We observe that, without any
interventions, Flu spreads more slowly than COVID-19 and SARS.

4.3.3 Extended COVID-19 Diffusion Model. We also experimented
with extending the diffusion model to see how it impacts our esti-
mates. Specifically, we incorporated the idea that the probability of
infection during a contact increases with the duration of the contact,
and decreases with the distance between individuals [3, 15, 18, 24].
So far we have assumed that an infection happens with probability
Pinf if an individual is within distance at most dj,4y for the dura-
tion of at least t,in (see Section 3.1) of an IS individual. We extend
this definition so that an infection happens with probability p;;, ¢ if
an individual is within distance at most d}, ,, for the duration of
at least ¢t} . or within distance at most d2, 4, for the duration of
at least trznin
at least t?nin' We set d}, .. = 2m, d%,,,. = 4m and d3,,,. = 8m and
trlm.n = 15min, trzm.n = 30min and tf’nin = 60min. Figure 9 (d) shows
the result for this experiment. The trends are similar to before, but
the spread of the disease is faster than that shown in Figure 8 (c),

as the diffusion model accounts for more transmission scenarios.

or within distance at most d>,,, for the duration of

5 RELATED WORK

Related work fall into three categories: (1) synthetic trajectory
creation, (2) contact matrices and synthetic co-location creation
and (3) agent-based simulation modeling the spread of a disease.

Synthetic Trajectory Generation. Various methods have been
proposed to generate location trajectories of people [12, 19, 26, 34].
Recent work [12, 26] use GANSs [35] to model the distribution of
the trajectories, learned from the available samples. This method
can be applied to our problem by sampling new trajectories from
the learned model and simulating the spread in the new population
(which contains synthetic users). The simulation of [12] follows this
approach, but in a discretized space. A contact factor is introduced
(set to a fixed value) to model the rate of co-locations between
people within the same cell. This is similar to our baseline, Density
(see Section 3.3.2), which discretizes the space (the contact factor

Ceﬁz%), and such discretization is also done in [26].

Overall, there are multiple problems with these approaches. (1)
Locations need to be modeled accurately to within a few meters and
for long periods. This is a challenging task, and discretizing space,
done to improve the quality of the location trajectory, makes the
quality of the co-locations worse, as we observed in our experiments.
(2) Mobility patterns change over time and in different cities, and
the approaches need to learn different models for each of them. (3)
They need large number of samples for training a neural network

. . TT
1n our case 1s
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and they provide no theoretical guarantees on their estimation. (4)
Synthetic trajectories increase the data size, which in turn requires
larger computational power to estimate the spread. Our approach
circumvents issue (1) by directly looking at co-locations, (2) can be
directly applied to any time and location, (3) provides theoretical
guarantees on its estimates and (4) performs estimation on the
sub-sampled population which requires less computational power.
Synthetic Contact Generation. Contact matrices [25, 29, 30] are
commonly used to simulate contact between individuals in a pop-
ulation. They provide aggregate level (e.g., for an entire country)
contact information between different compartments in the popu-
lation (e.g., rate of contacts between people of different ages) and
they are estimated through surveys and diaries. However, they do
not change with time and are not available for specific cities or
areas, which limits their usefulness for studying the spread at a
particular time and in a specific area. They furthermore do not take
into account the differences in individual mobility patterns, and
consider the population as multiple monoliths. Our work addresses
the above issue by using location sequences of the individuals for
specific periods of time and in a specific area. Finally, although more
sophisticated synthetic graph generation methods, e.g., [37], exist,
we are unaware of any that do this for physical contacts. That is, the
generated graph should correspond to physical co-locations, and
be accurate for multiple weeks. We also note that such an approach
would still not solve issues (2) and (3) mentioned above.
Agent-Based Simulations. Agent-based simulations [6, 13, 14, 16,
21] exhibit a use-case of our methodology, where spread of a disease
is studied under different diffusion models and for different mobility
patterns. Such simulations currently rely on fixed contact matrices
which limits their focus and accuracy and do not allow for study of
the spread at a specific time and for a particular area. Our approach
can be readily used to address such inaccuracies using real data.

6 CONCLUSION

We studied the problem of estimating the spread of a virus, or other
phenomena that can be transmitted through physical contact, in a
population by having access only to a subsample of the population.
We observed that modeling co-locations of the individuals, and not
their locations, allows for accurate estimations. To that end, we pro-
vided two methods, PollSpreader and PollSusceptible, that estimate
properties of a contact network to calculate the spread in the origi-
nal population. We theoretically showed that our estimates provide
lower and upper bounds on the spread in the original population,
and experimentally showed that they are close to the ground-truth
in practice. Future work includes using our estimates to study dif-
ferent intervention strategies and studying the problem by relaxing
independence and uniformity assumptions on sampling.
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