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ABSTRACT2

Phenomenological R-matrix has been a standard framework for the evaluation of resolved3
resonance cross section data in nuclear physics for many years. It is a powerful method for4
comparing different types of experimental nuclear data and combining the results of many5
different experimental measurements in order to gain a better estimation of the true underlying6
cross sections. Yet a practical challenge has always been the estimation of the uncertainty on7
both the cross sections at the energies of interest and the fit parameters, which can take the8
form of standard level parameters. Frequentist (�2-based) estimation has been the norm. In this9
work, a Markov Chain Monte Carlo sampler, emcee, has been implemented for the R-matrix10
code AZURE2, creating the Bayesian R-matrix Inference Code Kit (BRICK). Bayesian uncertainty11
estimation has then been carried out for a simultaneous R-matrix fit of the 3He(↵, �)

7Be and12
3He(↵, ↵)

3He reactions in order to gain further insight into the fitting of capture and scattering13
data. Both data sets constrain the values of the bound state ↵-particle asymptotic normalization14
coefficients in 7Be. The analysis highlights the need for low-energy scattering data with well-15
documented uncertainty information and shows how misleading results can be obtained in its16
absence.17

Keywords: keyword, keyword, keyword, keyword, keyword, keyword, keyword, keyword18

1 INTRODUCTION

Phenomenological R-matrix has been the standard analysis tool for cross section data that exhibit19
overlapping yet resolved resonances for many years (Lane and Thomas, 1958). It is used extensively20
to evaluate data for applications (e.g. the ENDF/B-VIII.0 evaluation (Brown et al., 2018)), to perform21
extrapolations to low, unobserved energies in nuclear astrophysics (e.g. Azuma et al. (2010); Descouvemont22
et al. (2005)), and to extract level parameters for nuclear structure (ENSDF, 2022). In all cases, it provides23
a reaction framework in which experimental information of various different types can be combined to24
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improve estimates of the true cross sections. One challenging aspect of this type of analysis has been25
reliable uncertainty propagation.26

Traditionally, data have been fitted using �2 minimization, with uncertainties being estimated using one of27
two methods. The first is using partial derivatives and the assumption that the quantity of interest is related28
linearly with the parameters of the model. The second is the assignment of confidence intervals based29
on some ��2 value. The assumption of linearity is often a poor one and the second method can become30
tedious or impossible to implement for a complicated model. Additional limitations are that one must31
assume Gaussian uncertainties on the input data and there is almost no ability to include prior information32
about the parameters. It is known that �2 methods may lead to biased results and/or underestimated33
uncertainties in data evaluations (Smith et al., 2007). The reason for these issues is understood to be34
incomplete documentation or modeling of systematic uncertainties. While systematic uncertainties are35
a difficult subject in any approach, they are much easier to model and implement using the Bayesian36
methods described below. Finally, we would like to point out that a mixed approach is possible, where �237
minimization is combined with a Monte Carlo simulation of some uncertainties. This method was used by38
deBoer et al. (2014) in a previous analysis of 3He(↵, �)

7Be and 3He(↵, ↵)
3He.39

Bayesian methods are increasingly becoming the standard for performing Uncertainty Quantification40
in physical sciences and engineering in general, and theoretical nuclear physics in particular (Schindler41
and Phillips, 2009; Furnstahl et al., 2015a,b; Zhang et al., 2015; Melendez et al., 2017; Wesolowski et al.,42
2019; Neufcourt et al., 2020a, 2019; King et al., 2019; Melendez et al., 2019; Filin et al., 2020; Drischler43
et al., 2020a,b; Premarathna and Rupak, 2020a; Zhang et al., 2020; Filin et al., 2021; Schunck et al., 2020;44
Neufcourt et al., 2020b; Everett et al., 2021; Catacora-Rios et al., 2021; Reinert et al., 2021; Phillips et al.,45
2021; Wesolowski et al., 2021; Schnabel et al., 2021; Xu et al., 2021; Cao et al., 2021; Hamaker et al., 2021).46
In contrast to a traditional �2-minimization they offer the opportunity to examine the entire probability47
distribution for parameters of interest, rather than focusing on the values that maximize the likelihood.48
Perhaps equally important, in a Bayesian approach it is straightforward—mandatory even—to declare and49
include prior information on the parameters of interest. Bayesian methods, combined with the possibility50
to use Markov Chain Monte Carlo sampling to explore a high-dimensional parameter space, allow one to51
introduce additional parameters without fear of computational instabilities caused by shallow �2 minima.52
The use of MCMC sampling also makes uncertainty propagation straightforward, as we will demonstrate53
here. And a Bayesian framework is—to our knowledge—the only option if one wishes to incorporate a54
rigorous formulation of theory uncertainties into the statistical analysis. In this work, Bayesian uncertainty55
quantification is implemented by pairing the R-matrix code AZURE2 (Azuma et al., 2010; Uberseder56
and deBoer, 2015) with the MCMC Python package emcee (Foreman-Mackey et al., 2013). The pairing57
is facilitated by a Python interface BRICK (Bayesian R-matrix Inference Code Kit), enabling Bayesian58
inference in the context of R-matrix analyses.59

To benchmark this code, it has been applied to the analysis of the 3He(↵, �)
7Be and 3He(↵, ↵)

3He60
reactions. The 3He(↵, �)

7Be reaction is a key reaction in modeling the neutrino flux coming from our61
sun (Bahcall and Ulrich, 1988). It also plays a role in Big Bang Nucleosynthesis (BBN) (Cyburt et al., 2016).62
The reaction cross section is dominated by the direct capture process, but also has significant contributions63
from broad resonances (see Fig. 1). In recent years, high-precision measurements of this reaction have been64
performed, using direct �-ray detection (Kontos et al., 2013; Brown et al., 2007; Costantini et al., 2008),65
the activation method (Singh et al., 2004; Brown et al., 2007; Carmona-Gallardo et al., 2012; Costantini66
et al., 2008; Bordeanu et al., 2013), and a recoil separator (Di Leva et al., 2009). Additional higher energy67
measurements have also been made recently by Szücs et al. (2019), but are outside the energy range of the68
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Figure 1. Level diagram of 7Be up to the proton separation energy.

present analysis. Using these high precision measurements, several analyses have been made to combine69
these data sets and extrapolate the cross section to low energies using pure external capture (Adelberger70
et al., 2011), R-matrix (deBoer et al., 2014), effective field theory (Zhang et al., 2020; Premarathna and71
Rupak, 2020b), a modified potential model (Tursunov et al., 2021), and ab initio calculations (Nollett,72
2001; Neff, 2011; Dohet-Eraly et al., 2016; Vorabbi et al., 2019). These several recent analyses make this73
reaction an ideal case for benchmarking since they employ both more traditional and Bayesian uncertainty74
estimation methods.75

As the energies pertinent to solar fusion and BBN the 3He(↵, �)
7Be cross section has a large contribution76

from external capture, 3He(↵, ↵)
3He data, through its constraints on the scattering phase shifts, should77

also provide an additional source of constraint on the low-energy extrapolation. This type of combined78
analysis has been reported in deBoer et al. (2014), but there it was found that the available scattering data79
of Barnard et al. (1964) was inconsistent with the capture data, perhaps because of incomplete uncertainty80
documentation in the former. With this in mind, new measurements of the 3He(↵, ↵)

3He cross section81
were recently reported by Paneru et al. (2022).82

In this work, a Bayesian uncertainty analysis is performed on an R-matrix fit to the low energy83
3He(↵, �)

7Be (Kontos et al., 2013; Costantini et al., 2008; Brown et al., 2007; Singh et al., 2004; Bordeanu84
et al., 2013; Di Leva et al., 2009) and 3He(↵, ↵)

3He (Barnard et al., 1964; Paneru et al., 2022) data.85
The Paneru et al. (2022) data is a new measurement performed with the Scattering of Nuclei in Inverse86
Kinematics (SONIK) detector. The sensitivity of the fit to the scattering data is the main focus, examining87
the differences resulting from the two different scattering data sets considered. The mapping of the posterior88
distributions of the fit parameters, cross sections, phase shifts, and scattering lengths gives new insights89
into the dependence of these quantities to the input scattering data.90
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2 WHAT IS BRICK?

BRICK is a python package that acts as an interface between the AZURE2 (Azuma et al., 2010; Uberseder91
and deBoer, 2015) R-matrix code and an MCMC sampler. It is not a replacement for AZURE2 nor is it92
intended to be. The primary functionality that it provides is a user-friendly way to sample parameters that93
have already been set up with the AZURE2 graphical user interface (GUI) to be varied.94

2.1 AZURE295

AZURE2 is a multilevel, multichannel, R-matrix code (open source) that was developed under the Joint96
Institute for Nuclear Astrophysics (JINA) (Azuma et al., 2010; Uberseder and deBoer, 2015). While97
the code was created primarily to handle the added complexity of charged-particle induced capture98
reactions (deBoer et al., 2017), also has capability for a wide range of other types of reaction calculations.99
The code is primarily designed to be used by way of a GUI, but can also be executed in a command line100
mode for batch processes (Uberseder and deBoer, 2015). The code stores all of its setup information in a101
simple text input file. While this file is usually edited by way of the GUI, it can also be modified directly.102
This may be desirable for batch type calculations, as are being used here.103

AZURE2 primarily uses the alternative R-matrix parameterization of Brune (2002). It has two main104
advantages. The first is that it eliminates the need for the boundary conditions present in the classical105
formalism of Lane and Thomas (1958). The second is that the remaining fit parameters become the observed106
level parameters. The remaining model parameters are the channel radii which are fixed at 4.2 fm in this107
analysis.108

A key advantage in using the parameterization of Brune (2002) for the fitting of low energy capture109
reactions is that level parameters for bound or near threshold resonances can be more directly included in110
the R-matrix analysis (Mukhamedzhanov and Tribble, 1999; Mukhamedzhanov et al., 2001). The use of111
the Bayesian uncertainty estimation further facilitates the inclusion of uncertainty information for these112
parameters. This provides an improved method for communicating the level structure information gained113
from transfer reaction studies into an R-matrix analysis in a statistically rigorous way.114

2.2 Implementation115

2.2.1 Overview116

The role of BRICK in our R-matrix calculations is to act as a mediator. It maps proposed parameters —117
both R-matrix parameters and normalization factors — from an MCMC sampler to AZURE2 and R-matrix118
predictions from AZURE2 back to the sampler. First, it accepts proposed points in parameter space, ✓,119
from the sampler — in this analysis we use emcee (Foreman-Mackey et al., 2013) — and packages120
them into a format that AZURE2 can read. Then it reads the output from AZURE2 and presents it as a list.121
Each item of the list contains the predictions, µ(✓), and data, y and �, corresponding to a specific output122
channel configuration. The likelihood, represented in Fig. 2 by L, can then be calculated according to123
the user’s choice; the Gaussian likelihood chosen for this work is given below in Eq. (2). Accompanied124
by prior distributions, ⇡, one can readily construct a Bayesian posterior, P . Prior distributions chosen in125
this analysis are given in Section 3.2. The posterior value, or rather its logarithm ln P , is passed back to126
emcee. Finally, based on the ln P value, the MCMC algorithm decides to accept or reject the proposed127
point, proposes a new ✓, and the process repeats. A diagram is provided in Fig. 2 to illustrate the qualitative128
functionality of the different software packages. The process described above starts at the orange rectangle129
labeled “emcee”.130
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Figure 2. Representation of the different roles of emcee, BRICK, and AZURE2 in the Bayesian analysis
presented below. The asterisk in the emcee rectangle indicates the starting point of the process.

2.2.2 Details131

BRICK is built such that different samplers can be used. The analysis presented in this paper uses emcee,132
so the details provided in this section will be somewhat specific to it.133

When initializing an instance of an EnsembleSampler, the most relevant argument is log prob fn,134
the function that returns the logarithm of the probability. One of the advantages of emcee is that it allows135
the practitioner to perform arbitrary calculations inside that probability function. That function must meet136
only two requirements: (1) take an array of floating point numbers that represents the vector in parameter137
space and (2) return a floating point number that represents the logarithm of the probability associated with138
that array. In between those two steps, one is free to perform whatever calculations one needs. This can be139
seen on the left-hand side of Fig. 2. The parameter-space vector, ✓, is output from emcee. The logarithm140
of the probability at that point, ln P , is subsequently input to emcee. In this sense, emcee is well-suited141
to the implementation of “black-box” physics models where one has limited access to the source code.142

The primary tasks that BRICK accomplishes are (1) translating ✓ into a format that AZURE2 can read143
and (2) reading the output from AZURE2 such that a ln P value can be easily calculated. The means of144
accomplishing these tasks relies on the command-line interface (CLI) to AZURE2, which is accessible145
when installed on Linux machines. The CLI options available to AZURE2 are well documented in the146
manual (Uberseder and deBoer, 2015). The most critical argument is the input file, typically accompanied147
by the file extension .azr. This input file contains all of the necessary information to perform an R-matrix148
calculation with a given set of parameters. It is generated when the R-matrix and data models are built with149
the commonly used GUI, which AZURE2 provides. BRICK is not built to replace that GUI. It accompanies150
AZURE2 by allowing the user to bring their AZURE2-prepared R-matrix model over and sample what151
was previously optimized. Accordingly, the default behavior of BRICK is to respect the choices made by152
the user in the AZURE2 GUI. If a parameter is fixed in AZURE2, it is fixed in BRICK. If it is varied in153
AZURE2, it is sampled in BRICK.154

BRICK accesses the AZURE2 CLI through the Python module subprocess. But prior to that, BRICK155
must map the values in ✓ to the proper locations in the input file. This is accomplished by reading the156
<levels> and <sectionsData> sections of the input file. BRICK reads the appropriate parameters157
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and flags looking for varied parameters. As they are found, their locations are stored. When a new ✓ is158
proposed, BRICK creates a new input file and maps the values in ✓ to the varied parameter locations. Then159
AZURE2 is called with the newly generated input file. The output from AZURE2 is written to a sequence of160
files in the output directory by default. Those files are read and the predictions, µ, and experimental data,161
y, are extracted. A likelihood is then constructed. Under the assumption that the uncertainties associated162
with y are uncorrelated and normally distributed, this is a multivariate Gaussian distribution. Accompanied163
by a list of prior distributions corresponding to the preexisting knowledge of the sampled parameters, a164
posterior is finally constructed and passed back to emcee.165

Initially, this process was built in a single-threaded manner. As emcee is a ensemble sampler, efficient166
exploration of the posterior relies heavily on many, simultaneous walkers. In order to scale this beyond the167
most basic calculations, we modified our implementation to allow each walker to write its own input file168
and read from its own output directory. Inside the log-probability function, there is no access to any kind169
of walker identifier, so each walker generates a file-space that is uniquely identified by an eight-character170
random string. This allows each walker to work independently, so on systems where many cores are171
available, each walker can have a dedicated core. Or at least the time spent waiting for CPU time is172
minimized. This also allows for an increased number of walkers, which is a common tactic used to decrease173
autocorrelation time.174

3 APPLICATION TO 3He(↵, ↵)
3He AND 3He(↵, �)

7Be

3.1 The R-matrix model175

The starting point for the R-matrix model used here was that of deBoer et al. (2014). In that work, ten176
levels were used with three particle pairs (3He+↵, 7Be+�0, and 7Be+�1) for a total of 16 R-matrix fit177
parameters. Initial MCMC calculations showed that a 7/2� background level used in deBoer et al. (2014)178
was not statistically significant, and was thus dropped from the calculation. This already demonstrated one179
of the powerful feature of this type of MCMC analysis, it provided a clear identification of redundant fit180
parameters. Likewise, we verified that the exact placement of many of the background levels did not effect181
the fit results, as long as they were placed at sufficiently high energies. The exception to this was the 5/2�182
background level, placed at 7 MeV. Because there are two real levels at Ex = 6.73 and 7.21 MeV in 7Be,183
this background level needed to be placed close to their energies. It was found that this single background184
level was sufficient to model both the contributions from these levels and additional higher energy 5/2�185
levels. The R-matrix model used here thus consisted of nine levels, three particle pairs, and 16 R-matrix fit186
parameters as summarized in Table 1.187

3.2 Priors on R-matrix parameters188

Because this is a Bayesian analysis, we must choose priors for all R-matrix parameters. We have chosen189
to employ uninformative, uniform priors. However, the signs of the reduced width amplitudes (that is190
the interference solution), which are implemented in AZURE2 by the signs of the partial widths, were191
determined by the initial best �2 fit using AZURE2. In this case, a unique interference solution was found.192
This may not always be the case: sometimes other interference solutions may be possible. The emcee193
sampler may then not be able to easily find these other interference solutions in the parameter space. It194
seems to be likely that in cases where different interference solutions are possible, each one will require a195
separate emcee analysis.196
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Table 1. Sampled parameters in the R-matrix model. Numbers indicate that the level energies were fixed.
A distribution indicates that the corresponding parameter was sampled. The subscripts ↵ and � indicate
the exit particle pair — scattering and capture, respectively. Capture particle pairs are distinguished by
ground (0) and excited (1) 7

Be states. The signs of the partial widths and ANCs indicate the signs of the
corresponding reduced width amplitudes. The second column, E�, is given in excitation energy relative to
the ground state.

J⇡ E� (MeV) Widths and ANCs Prior Distributions
1/2� 0.4291 C1 U(1, 5MeV)

1/2� 21.6 �↵ U(�200, 200MeV)

1/2+ 14
�↵ U(0, 100MeV)

��,0 U(0, 10MeV)

��,1 U(�10, 10keV)

3/2� 0 C0 U(1, 5MeV)

3/2� 21.6 �↵ U(�100, 100MeV)

3/2+ 12
�↵ U(0, 100MeV)

��,0 U(�10, 10keV)

��,1 U(�3, 3keV)

5/2� 7 �↵ U(0, 100MeV)

5/2+ 12 �↵ U(0, 100MeV)

��,0 U(�100, 100MeV)

7/2� U(1, 10MeV)
�↵ U(0, 10MeV)

��,0 U(0, 1keV)

One common circumstance where a Bayesian analysis will improve on previous uncertainty estimates is197
in the ability to give priors for bound state level parameters determined from transfer studies. Unfortunately,198
in the case of the 7Be system, there is limited information available for the bound state ↵-particle ANCs.199
A recent first measurement has been reported by Kiss et al. (2020), but the ANCs are rather discrepant200
from those found from this and past R-matrix analyses of capture data. This inconsistency has not been201
investigated here, but needs to be addressed in future work. If reliable bound-state ANC determinations202
become available, that are independent of the capture and scattering data, it provides a path to further203
decrease the uncertainty in the low energy S-factor extrapolation. One could also adopt priors on the ANCs204
from ab initio calculations, although we have not done so.205

It is also tempting to implement more constraining priors into the R-matrix analysis from a compilation206
like the National Nuclear Data Center or the TUNL Nuclear Data Project (Tilley et al., 2002). However,207
great care must be taken to understand the source of the values and uncertainties when weighted averages208
are used to determine adopted values for level parameters in these compilations. In particular, past analysis209
of the data being fit in the R-matrix analysis may be a contributor to the evaluation values. Thus blindly210
using evaluation level parameters and uncertainties can lead to double counting and an erroneous decrease211
of uncertainties. It is for this reason that uniform priors on parameters are adopted in the present analysis.212
The posterior shapes then clearly stem solely from the data sets considered in the R-matrix analysis.213

The priors for the R-matrix parameters used in this work are listed in Table 1. In all but one case, level214
energies are fixed. The exception is the 7/2� level energy which corresponds to the lowest lying 7/2�215
resonance. The lowest 1/2� and 3/2� levels and the 7/2� level are the only levels inside or below the216
energy range covered by the analyzed data. All other levels are background levels. For more details of217
the choices made in formation of the R-matrix model, see Paneru (2020). The distribution formed by the218
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product of these R-matrix priors and priors on the parameters introduced in the next section is the overall219
prior ⇡ shown in Fig. 2.220

3.3 Modeling systematic errors in the data221

3.3.1 Common-mode errors222

AZURE2 provides a method for the inclusion of a common-mode error for each data set using a modified223
�2 function224

�2
=

NsetsX

↵=1

0

@
N↵X

j=1

(f(x↵,j) � c↵n↵y↵,j)2

(c↵n↵�↵,j)
2 +

((c↵ � n↵)/n↵)
2

�2cexp,↵

1

A , (1)

where c↵ is the normalization fit parameter, n↵ is the starting normalization which is set to 1 in the225
present analysis, f(x↵,j) is the differential scattering cross section form the R-matrix, y↵,j is the data226
point value, �↵,j is the combined statistical and point-to-point uncertainty of a data point, and �cexp,↵ is227
the fractional common-mode uncertainty of the data set. The additional term in the �2 function is derived228
by making the approximation that the common-mode systematic uncertainty has a Gaussian probability229
distribution (D’Agostini, 1994). The accuracy of this approximation is often unclear (Smith et al., 2007).230

Common-mode errors are implemented in the present analysis in BRICK, outside of AZURE2, i.e., the231
common-mode errors are applied to the AZURE2 output. In BRICK the R-matrix parameter set ✓R is232
augmented by a set of normalization factors f↵ and energy shifts, �E,↵. (At present energy shifts are233
only implemented for scattering data.) The overall parameter set ✓ is then the union of the set ✓R and234
{f↵,�E,↵}. The likelihood L is formed as a product of standard Gaussian likelihoods for each data point,235
but with normalization factors applied to the AZURE2 predictions µ:236

L /

NsetsY

↵=1

N↵Y

j=1

exp

 
�

(yj↵ � f↵µ(xj↵; ✓R))
2

2�2
j↵

!
, (2)

where we have omitted overall factors that do not affect the parameter estimation. Here xj↵ represents the237
kinematics of the jth data point in data set ↵. For scattering data sets, xj↵ defines the energy and angle238
at which the measurement was made. In those cases exclusively, �E,↵ is added to the energy. �j↵ is the239
combined statistical and point-to-point uncertainty of the corresponding datum, yj↵. N↵ is the number of240
points in data set ↵, and the product over ↵ runs over all the sets that have independent common-mode241
errors.242

The priors on the f↵’s are specified by the BRICK user. If a Gaussian prior centered at 1 with a width243
equal to the common-mode error reported in the original experimental publication is employed for the244
f↵’s, then the product of that prior on the normalization factors and the likelihood Eq. (2) has the same245
maximum value as the “extended likelihood” corresponding to Eq. (1), that is used to estimate the f↵’s in246
the frequentist framework implemented in AZURE2.247

In our analysis of the 3He(↵,↵)3He and 3He(↵,�)7Be reactions, we adopted such a Gaussian prior,248
truncated to exclude negative values of the cross section. We used a different f↵ for each energy bin in the249
SONIK data, detailed in Section 4.2, with the widths of the prior given by the common-mode errors stated250
in Table 2. The common-mode error associated with the Barnard data, described in Section 4.1, is taken to251
be 5%. The width of the priors for the f↵’s to be applied to the capture data, discussed in Section 4.3, are252
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Energy (keV/u) No of Data Points Common-Mode Errors
239 17 6.4
291 29 7.6
432 45 9.8
586 46 5.7
711 52 4.5

873(1) 52 6.2
873(2) 52 4.1
1196 52 7.7
1441 53 6.3
1820 53 8.9

Table 2. Common-mode errors associated with the SONIK measurements.

Data Set Total Capture Branching Ratio �common (%)
Seattle, (Brown et al., 2018) 8 pts [0.57, 2.17 MeV] 8 pts [0.57, 2.17 MeV] 3

Weizmann, (Singh et al., 2004) 4 pts [0.74, 1.67 MeV] - 3.7
LUNA, (Costantini et al., 2008) 7 pts [0.16, 0.30 MeV] 3 pts [0.17, 0.30 MeV] 3.2
ERNA, (Di Leva et al., 2009) 47 pts [1.23, 5.49 MeV] 6 pts [1.93, 4.55 MeV] 5

Notre Dame, (Kontos et al., 2013) 17 pts [0.53, 2.55 MeV] 17 pts [0.53, 2.55 MeV] 8
ATOMKI, (Bordeanu et al., 2013) 5 pts [2.58, 4.43 MeV] - 6

Table 3. Details of the capture data considered in this work: number of data points, energy ranges, and
common-mode errors (�common). Energies are given the laboratory frame.

specified by the common-mode errors listed in Table 3. All normalization-factor priors are of the form253

T (0, 1)N(1, �2
f↵) , (3)

where254

T (a, b) =

(
1 [a, b]

0 otherwise ,
(4)

and N(µ, �2
) represents a Gaussian distribution centered at µ with a variance of �2.255

3.3.2 Energy shifts256

BRICK also has the capability of estimating (overall) beam-energy shifts in a particular data set. This is257
implemented as another parameter to be estimated�E,↵. This parameter affects all the AZURE2 evaluations258
for data set ↵. BRICK implements the energy shift by generating a different input and data files for each259
value of �E,↵ under consideration. The flowchart of Fig. 2 is thus not strictly accurate when this feature is260
included. Gaussian priors were defined, centered at zero, on possible energy shifts for the SONIK data and261
the Barnard data. The widths of the priors are based on information in the original papers, as summarized262
in Sections 4.1 and 4.2. For the SONIK data, the energy-shift parameter’s prior has a standard deviation of263
3 keV, based on the energy uncertainty quoted in Paneru et al. (2022). Barnard et al. (1964) cites a much264
larger uncertainty of 20-40 keV, depending upon the energy. The standard deviation of the prior on the �E265
parameter is taken to be 40 keV for this data set, a much larger value than for the SONIK data. It should be266
noted that the energy uncertainty for the Barnard data set is not a constant, but it is not possible to improve267
our modeling of this uncertainty due to the lack of documentation of its origin.268
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4 DATA SETS

4.1 Barnard et al. (1964) 3He-↵ elastic scattering269

Measurements of the elastic scattering products resulting from a 3
He beam incident on a 4

He target were270
reported in 1964 by Barnard et al. (1964), for 2.4  E[

3
He, lab]  5.7 MeV (1.4  Ec.m.  3.3 MeV).271

The experiment provides excitation functions of differential cross section at eight center-of-mass (c.m.)272
angles covering 31.55

�
 ✓[3He, lab]  91.94

� (54.77
�

 ✓c.m.  140.8�). The systematic uncertainty273
in the measurements is estimated to be 5%. Detailed point-to-point uncertainties are not given, but are274
stated to be about 3%. The measurements are subject to a significant energy uncertainty, estimated to be275
20 keV below E[

3
He, lab] = 4 MeV and 40 keV above that energy. It was also noted by the authors that276

their beam energy was only reproducible to the level of 20 keV. In total, there are 646 data points collected277
at 577 unique energies. The data were obtained from EXFOR in the fall of 2021 and converted into the278
laboratory frame when necessary. All eight angles were included. The previous analysis by deBoer et al.279
(2014) omitted the largest angle.280

4.2 Paneru et al. 3He-↵ elastic scattering281

A new measurement of 3He+↵ elastic scattering was performed at TRIUMF using the SONIK (Connolly,282
2015; Paneru, 2020) target and detector system. SONIK was filled with 4He gas maintained at a typical283
pressure of 5 Torr bombarded with 3He with a beam intensity of about 1012 pps. Elastic scattering cross284
sections were measured at nine different energies from Ec.m. = 0.38–3.13 MeV. SONIK covers an angular285
range of 30

� < ✓c.m. < 139
�—a markedly larger range than previous measurements. The detectors in286

SONIK were arranged such that they observed three different points, termed interaction regions, in the gas287
target along the beam direction. When the beam traversed the gas target it lost energy, so the bombarding288
energy, and therefore the scattering energy, was slightly different in each of the three interaction regions.289

As we will explore further below, the results for the differential scattering cross section from this290
measurement are consistent with previous determinations but have better precision. The data also extend to291
markedly lower energies. The uncertainties with this measurement are well quantified and are presented292
in Paneru et al. (2022). A separate normalization uncertainty is determined for each beam energy. These293
normalization uncertainties range from 4.1-9.8 %.294

4.3 3He(↵, �) data295

The data selection (Kontos et al., 2013; Costantini et al., 2008; Brown et al., 2007; Singh et al., 2004;296
Bordeanu et al., 2013; Di Leva et al., 2009) for the 3He(↵, �)

7Be reaction for this work follows that297
of previous recent works (Adelberger et al., 2011; deBoer et al., 2014; Zhang et al., 2020; Cyburt and298
Davids, 2008). Note that the LUNA measurements of Gyürky et al. (2007) and Confortola et al. (2007) are299
collected in Costantini et al. (2008). The combined data sets cover a wide energy range from Ec.m. = 94300
to 3130 keV, but still remain below the proton decay threshold. Older data are not included due to a long301
history of discrepancies, which manifested as differences between experiments that used either direct302
detection of �-rays or the activation technique. More recent measurements have achieved consistency303
resulting from improved experimental techniques by performing consistency check measurements using304
both direct detection of �-rays and the activation technique (Adelberger et al., 2011). Details about the305
capture data sets, including common-mode errors for cross sections, are listed in Table 3.306
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4.4 Data Models307

Two distinct data models are analyzed here, DCS and DCSB, where C indicates the inclusion of the308
capture data described in Sec. 4.3, S indicates the inclusion of the SONIK data described in Sec. 4.2, and B309
indicates the inclusion of the Barnard data described in Sec. 4.1. DCSB is a more complete data model in310
the sense that it includes more data and would naively be considered the “best” data model. But, there are311
notable effects when the data of Barnard et al. (1964) are included that are highlighted and discussed in312
Section 5.313

5 RESULTS

The results of our analysis are presented here in two subsections. The first discusses results in the energy314
regime of the data that was analyzed. The second computes extrapolated quantities — observables that lie315
in energy regimes outside those covered by the analyzed data.316

5.1 Fits to data317

First we examine the extent to which our results match experimental data. We do this by comparing318
predicted and measured observables.319

5.1.1 Capture Data320

Figure 3 shows the total capture S-factor data alongside bands representing 68% intervals from the321
analyses of both data models, DCSB and DCS. For energies above 400 keV both analyses give very similar322
results. However, below that energy, the DCS analysis provides a more “natural” agreement with data —323
see the normalization factor posteriors and the associated discussion below. The LUNA data in particular324
discriminate between the two data models. The fit to the CSB data includes a normalization factor for325
the LUNA data that differs from 1 by about three times the stated common-mode error, cf. below. The326
normalization factors are not applied to the data in Fig. 3, which is why the CSB band sits well below the327
LUNA data.328

The branching ratio, defined as the ratio of the excited-state cross section to the ground-state cross section,329
results for both data models—DCS and DCSB—are shown in Fig. 4. The most prominent differences330
between the DCSB and DCS results occur near the upper and lower ends of the energy range. However, in331
the context of the experimental uncertainties, these differences are not significant. Over the entire energy332
range, the predictions from DCS and DCSB overlap at the 1-� level.333

5.1.2 Scattering Data334

The differential cross sections from the SONIK (Paneru et al., 2022) and Barnard et al. (1964)335
measurements are shown in Figs. 5 and 6, respectively, with the predictions from our analyses. In all cases,336
both analyses reproduce the data to high accuracy. However, the DCS analysis results in a much lower337
�2/datum at max ln P : 0.72 for the SONIK (Paneru et al., 2022) data vs. 0.95 for the DCSB analysis of the338
SONIK + Barnard (Barnard et al., 1964) data sets.339

5.2 Parameter Distributions340

Separate corner plots for each data model are provided in the Supplemental Material. There are notable341
differences in several R-matrix parameters. In particular, the DCS ANCs are significantly larger and their342
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Figure 3. Total capture S factor from Seattle (Brown et al., 2018) (blue circles) Weizmann (Singh et al.,
2004) (green squares), LUNA (Costantini et al., 2008) (orange diamonds), ERNA (Di Leva et al., 2009)
(red, downward-pointing triangles), Notre Dame (Kontos et al., 2013) (purple, upward-pointing triangles),
and ATOMKI (Bordeanu et al., 2013) (black stars) data sets are shown with reported error bars. DCSB and
DCS results are shown with blue and green bands, respectively. The band indicates 68% intervals. The
solid, blue line indicates the median prediction from the DCSB analysis. The dashed, green line indicates
the median prediction from the DCS analysis. Normalization factors have not been applied to either the
theory prediction or data, so estimates of the extent to which BRICK’s fit agrees with the different data sets
are not straightforward to make from the figure.

posterior distributions are noticeably wider. The DCS analysis also produces a significantly smaller ratio of343
ANCs, C1/C0. This is consistent with the smaller branching ratios at low energies shown in Fig. 4.344

The DCS partial ↵ widths in the 1/2+, 3/2+, and 5/2+ channels are smaller and separated by more than345

two standard deviations from the DCSB widths. The distributions for �(5/2
+)

�,0 seem to indicate opposite346

signs. The DCSB E
(7/2�)
x posterior is markedly smaller and narrower, and the constraints on �(7/2

�)
↵ from347

DCSB are dramatically tighter. This is presumably due to the much larger amount of data in the vicinity348
of the 7/2� resonance that is present in the Barnard et al. (1964) data set. It is also worth noting the349
“non-Gaussian” behavior of several of these distributions—a characteristic that would be difficult to identify350
in a typical analysis that assumed linear propagation of uncertainties around a minimum of the posterior351
pdf. Using Gaussian approximations and linearizing would likely underestimate uncertainties in the case of352

�
(3/2+)
�,0 , for example.353

All parameters shown in Fig. 7 are well-constrained. By comparing to the prior distributions listed354
in Table 1, one can see the dominance of the data’s influence over the information in the prior: all355

Frontiers 12



Odell et al. Performing Bayesian analyses with AZURE2 using BRICK

0.0 0.5 1.0 1.5 2.0 2.5

E (MeV, c.m.)

0.3

0.4

0.5

B
ra

n
ch

in
g

R
at

io

Figure 4. The branching ratio predictions are shown alongside the four analyzed branching ratio data
sets: Seattle (Brown et al., 2018), LUNA (Costantini et al., 2008), ERNA (Di Leva et al., 2009), and Notre
Dame (Kontos et al., 2013). Colors, symbols, and line styles are the same as Fig 3. Bands indicate 68%
intervals.

posterior distributions are markedly narrower than the priors chosen. As discussed in Sec. 3.2, several356
R-matrix-model iterations were taken to remove redundant parameters.357

The correlation matrix of the R-matrix parameters is shown in Fig. 8. The figure represents an358
approximation of the full information contained in the corner plot given in the Supplemental Material.There,359
significant, often-nonlinear, correlations are observable between several pairs of R-matrix parameters. In360
particular, the influence of the ANCs over the entire R-matrix parameter space, either directly or indirectly,361
means that it is very important for scattering data to have well-defined uncertainties over its full energy362
range.363

The normalization factors applied to the theory predictions for each of the total capture data sets are364
shown for both data models in Fig. 9. The comparison reveals good agreement between DCS and DCSB for365
all but the LUNA data set (Costantini et al., 2008)—the lowest-energy capture data set in our analysis.366
The DCS analysis yields a normalization factor for these data that is very close to 1. In contrast, the367
DCSB analysis requires that the LUNA data be shifted by nearly 10%. (Recall from Eq. (2), that f is applied368
to the theory prediction, and so an f > 1 corresponds to a systematic error that reduces the experimental369
cross section and uncertainties.) To put this in perspective, the LUNA collaboration estimates their common-370
mode error at 3.2%. Because the LUNA data set is the lowest capture data set, this disagreement between371
the DCS and DCSB analyses corresponds to a significant difference in the extrapolated S(0) of these two372
analyses.373
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Figure 5. Angular dependence of the differential cross sections of Paneru et al. (2022) are shown relative
to the Rutherford prediction with grey x’s and error bars. Each panel includes the measurements from
three interaction regions (Paneru, 2020). Bands indicate 68% intervals. Green bands are generated for the
analysis of DCS . Blue bands correspond to DCSB .

The normalization factors applied to the theory predictions for each of the SONIK energies are shown374
in Fig. 10. When the data of Barnard et al. (1964) are included in the analysis, the SONIK normalization375
factors are significantly larger. This effect is systematically apparent at lower energies. In more than half376
the cases, the DCSB and DCS results are inconsistent with each other. For eight out of ten SONIK energies,377
the normalization factor obtained from the fit is within the common-mode error estimated by the SONIK378
collaboration. Note that the common-mode error in this experiment was estimated to be different at different379
beam energies (Paneru, 2020) 1. This is represented in Fig. 10 by the varying heights of the grey bands,380
which are priors in accord with these experimentally assigned common-mode errors, see Table 2.381

The posteriors for fBarnard and the energy shifts for both the Barnard et al. (1964) and SONIK (Paneru382
et al., 2022) data sets (see Sec. 3.3) are shown in Fig. 11. The result for fBarnard is 1.002

+0.003
�0.002: well within383

the estimated systematic uncertainty of 5% given in Barnard et al. (1964). A shift of 19.26
+2.90
�2.51 keV in the384

energies reported in Barnard et al. (1964) is found, but this result is consistent with the energy uncertainty385
estimates ranging from 20-40 keV given in that paper. However, even such a clearly nonzero shift does386
not seem to significantly impact extrapolated quantities. Finally, the SONIK energy shift indicated by our387
analyses is 1.59

+2.43
�1.81 keV. This result matches very well with the reported energy uncertainty estimate of388

3 keV. The prior for this parameter was a normal distribution centered at 0 keV with a 1-� width of 3 keV.389
The primary difference between the posterior and the prior for this parameter is the loss of probability in390

1 We use slightly different common-mode uncertainty estimates in our prior definitions than those listed in (Paneru, 2020). This update will be reflected in a
forthcoming publication by the SONIK collaboration (Paneru et al., 2022)
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Figure 6. Differential cross section as a function of energy as reported in Barnard et al. (1964), shown as
grey x’s with error bars. Blue bands represent the 68% intervals generated from the DCSB analysis.

the negative energy region. If any energy shift in the SONIK data (Paneru et al., 2022) is necessary, it is391
positive, but since 0 keV is well within one standard deviation, there is strong evidence for no shift.392

The ANCs corresponding to the two bound 7
Be states are of particular interest for extrapolating threshold393

quantities. First, we point out that the inclusion of scattering data significantly reduces the uncertainty394
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Figure 7. R-matrix parameter comparison between DCS (green) and DCSB (blue) analyses.

of the ANCs. Our posterior is much narrower than that obtained using capture-only data in Zhang et al.395
(2020). This highlights the importance of scattering data in constraining bound-state properties and the396
amplitudes associated with transitions to them.397

Second, the choice of scattering data set matters. The C1 results from analyzing DCS and DCSB are398
discrepant at the 1-� level. The C0 results disagree by approximately 2-�. The contrast is highlighted399
in Fig. 12 where the squares C2

1 and C2
0 are compared. The differing values directly impact the S-factor400

extrapolations discussed below.401
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Figure 8. Correlation matrix of R-matrix parameters for the DCS analysis. Parameter chains are centered
at zero and scaled to one prior to the computation. The strongest correlations (anti-correlations) are
highlighted with lighter (darker) colors.

5.3 Extrapolated quantities402

The Coulomb-modified effective range function is given in Hamilton et al. (1973) and van Haeringen403
(1977) as404

K(E) = k2`+1 ⌘2`

�2(` + 1)
u`(⌘)

⇥
C2
0 (⌘) cot �` + 2⌘h(⌘)

⇤
, (5)

where k is the relative momentum, ` is the angular momentum, ⌘ is the Sommerfeld parameter, � is the405
gamma function, u`(⌘) is given by406

u`(⌘) =
�
2
(2` + 2)C2

`

(2⌘)2`C2
0

, (6)
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Figure 9. The normalization factors applied to the total cross section predicted by our R-matrix model
are compared for each of the total capture data sets (Seattle (Brown et al., 2018) Weizmann (Singh et al.,
2004), LUNA (Costantini et al., 2008), ERNA (Di Leva et al., 2009), Notre Dame (Kontos et al., 2013),
and ATOMKI (Bordeanu et al., 2013)). DCSB (blue) and DCS (green) results are shown together for each
data set.

with407

C` =
(`2 + ⌘2)1/2

`(2` + 1)
C`�1 , (7)

C0 =


2⇡⌘

e2⇡⌘ � 1

�1/2
, (8)

h(⌘) =
1

2
[ (1 + i⌘) + (1 � i⌘)] � ln ⌘ , (9)

and  representing the digamma function (Humblet, 1985). This effective range function is an analytic408
function of E (or k2) near E = 0. From the phase shifts, obtained with BRICK, calculated over a range of409
low momenta, one can fit the scattering length, a0, and effective range, r0, according to the low-energy410
expansion411

K(E) = �
1

a0
+

r0
2

k2 + . . . (10)

Our calculation involves 70 equally spaced phase shifts over a range of low energies from 0.57 keV to412
3.93 MeV. The results are used to evaluate the effective range function defined by Eq. (5). The energy413
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Figure 10. Summaries of the normalization factor posteriors for each SONIK (Paneru et al., 2022) data set
are shown for DCSB (blue) and DCS (green). Error bars represent 68% quantiles. Grey-shaded rectangles
indicate the uncertainties reported in (Paneru, 2020).
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Figure 11. Posteriors of the normalization factor applied to the Barnard data and the energy shifts
introduced to the Barnard et al. (1964) and SONIK (Paneru et al., 2022) data sets. The Barnard normalization
factor is applied to the theory prediction. Energy shifts are presented in keV. These results were obtained
exclusively with the DCSB data model.

dependence is then fit to Eq. (10) using a non-linear least squares fit. In addition to a0 and r0 defined in Eq.414
(5), the shape parameter at O(k4) was fit to ensure a better determination of a0 and r0.415
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Figure 12. The two-dimensional posterior of the squares of the ANCs, C0 and C1. Results for DCS are
shown in green and for DCSB in blue. The EFT analysis of capture data of Zhang et al. (2020) extracted the
ANC values shown in red, and in the analysis of Barnard et al. (1964) and capture data of deBoer et al.
(2014) the ANCs were fixed at the location indicated by the purple, dashed lines.

The results from DCSB and DCS are shown in Fig. 13. As in the ANC comparison, they are strikingly416
discrepant. The naive expectation would be that DCSB distributions would be smaller subsets of the417
DCS distributions. For many relevant quantities, this is not the case.418

Figure 14 shows a comparison of the scattering lengths obtained from the DCS and DCSB analyses. A419
comparison to Zhang et al. (2020), also included in Figure 14, reveals the impact of including scattering data:420
the inclusion of scattering data drives the median downward and constrains the uncertainties significantly.421
A summary of these posteriors is given in Table 4.422

The DCSB scattering length and effective range are both smaller and more tightly constrained. One might423
have expected that with more data—and more data at lower energies—this extrapolated quantity would424
become more tightly constrained. The two-dimensional posteriors shown in Fig. 13 seem to lie on the same425
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Figure 13. a0-r0 correlation for both DCSB (blue) and DCS (green) data models.

line or band that defines the correlation between a0 and r0, though two extended posteriors is not sufficient426
to define such a line.427

The total capture S factor at zero energy was extrapolated by evaluating the S factor at 100 evenly428
spaced points between 1 to 100 keV, constructing a cubic-polynomial interpolation function to represent429
the calculations, and evaluating that function at zero energy. Errors from the interpolation/extrapolation430
process are negligible when compared to contributions from parameter uncertainties. The results are shown431
alongside previous results in Fig. 15. As expected from the different low-energy behaviors shown in Fig. 3,432
the DCS and DCSB results are discrepant, only overlapping at the 2-� level. The inclusion of the Barnard433
et al. (1964) data reduces the uncertainty in S(0) and pulls the entire distribution downward, outside the434
uncertainties of the DCS analysis. This effect is not seen in (deBoer et al., 2014) because the ANCs in435
that analysis were not varied freely. The DCSB result is discrepant with the DCS results and those reported436
in (deBoer et al., 2014) and (Zhang et al., 2020). A summary of these posteriors is given in Table 4.437

Insights into the relevance of parameters can be obtained by examining the correlations between them. In438
Fig. 16, the correlations between S(0) and a0, C2

1 and C2
0 are shown. While the DCS and DCSB results are439

discrepant in several astrophysically relevant cases, the discrepancy is consistent, and this figure exposes,440
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Figure 14. a0 posteriors obtained from DCS (green) and DCSB (blue) analyses. The result from Zhang
et al. (2020) is shown in red.

Analysis S(0) (keV b) a0 (fm) r0 (fm)
DCS 0.539

+0.011
�0.012 36.59

+0.55
�0.53 1.033

+0.003
�0.003

DCSB 0.495
+0.008
�0.008 32.32

+0.18
�0.18 1.004

+0.001
�0.001

deBoer et al. (2014) 0.542
+0.023
�0.017 — —

Zhang et al. (2020) 0.578
+0.015
�0.016 50.36

+6.02
�7.50 0.974

+0.025
�0.027

Table 4. A summary of the posteriors of the extrapolated quantities. Where possible, results from other
anlayses are included.

to a large extent, why: the ANCs, particularly the ground-state ANC, strongly correlates with S(0). The441
Barnard et al. (1964) data more tightly constrain these parameters at smaller values, and this directly lowers442
the predicted S(0) extrapolation.443
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Figure 15. Extrapolated S(0) posteriors from the analyses of both DCSB (blue) and DCS (green) data
models. Previous results from Zhang et al. (2020) (red) are deBoer et al. (2014) (orange) are also
summarized here for comparison.

6 CONCLUSIONS

We have described and applied the Bayesian R-matrix Inference Code Kit (BRICK), which facilitates444
communication between the phenomenological R-matrix code AZURE2 (Azuma et al., 2010) and a Markov445
Chain Monte Carlo (MCMC) sampler such as emcee (Foreman-Mackey et al., 2013). It thereby enables446
MCMC sampling of the joint posterior probability density function (pdf) for the R-matrix parameters and447
normalization factors. With samples that represent such a posterior in hand, the computation of the pdf for448
any quantity that can be calculated in the R-matrix formalism is straightforward.449

While BRICK is a general tool, we have also provided an example of its application to an R-matrix450
fit of 3He-↵ scattering and the 3He(↵, �)

7Be capture reaction data, in order to make inferences about451
the 7Be system. This application was partly motivated by the availability of a new 3He-↵ scattering data452
set obtained using the SONIK detector at TRIUMF (Paneru, 2020) following the suggestion of deBoer453
et al. (2014). These data have more carefully quantified uncertainties than a previous measurement by454
Barnard et al. (1964). Our study shows this motivation was well justified, finding discrepant values455
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for extrapolated quantifies when the data of Barnard et al. (1964) were included. Our analysis of the456
SONIK data shows consistency between them and capture data, producing an S factor in accord with457
analyses of capture data alone: our final DCS (capture + SONIK data) result for the S-factor at zero458
energy is S(0) = 0.539

+0.011
�0.012 keV b. When the Barnard et al. (1964) data were included in the analysis,459

the DCSB results produced significantly lower ANCs and S(0) extrapolation. Indeed, the DCSB analysis460
produces values for S(E) at c.m. energies of 10–20 keV that can only be reconciled with the LUNA461
data (Costantini et al., 2008) if the normalization of these data is adjusted by 2–3 times the quoted462
common-mode error.463

This emphasizes the importance of detailed uncertainty quantification when data sets are to be used for464
accurate inference of extrapolated quantities, where Barnard et al. (1964) does not include these kinds of465
details regarding the experiment. This makes the tension between the Barnard et al. (1964) and SONIK466
data regarding S(0) difficult to resolve, thus the Barnard et al. (1964) data may need to be omitted from467
future evaluations. We emphasize, though, that these previous data were invaluable in advancing our468
understanding of the 7Be system to its current state, but data with more well defined uncertainties are469
needed for current applications.470

Zhang, Nollett, and Phillips pointed out that the s-wave 3He-↵ scattering length is correlated with this471
result (Zhang et al., 2020). The DCS analysis produces a0 = 36.59

+0.55
�0.53 fm. Premarathna and Rupak472

simultaneously analysed capture data and 3He-↵ phase shifts in EFT and found a0 = 40
+5
�6 fm (Model A473

II of Premarathna and Rupak (2020a))—in good agreement with this number. However, it disagrees by474
2� with the a0 extracted using EFT methods from capture data alone by Zhang et al. (2020): a0 = 50

+6
�7.475

Recently Poudel and Phillips (2021) performed an EFT analysis of the SONIK data, using priors on the476
7Be ANCs from the capture analysis of Zhang et al. (2020), and extracted a0 = 60 ± 6 fm—even further477
away from the results of this R-matrix analysis.478

Improvements in the analyses presented here could occur if there were:479

• Better documentation of the energy dependence of systematic uncertainties in published data sets.480
The Bayesian formalism that underlies BRICK allows systematic uncertainties with any correlation481
structure to be incorporated into the analysis.482

• Improved understanding of the way theory uncertainties in the phenomenological R-matrix formalism483
affect the extrapolation of data.484

• Detailed modern data with full uncertainty quantification in the vicinity of the 7/2� resonance. This485
may help resolve some of the ambiguities in results between the DCS and DCSB analyses.486

• Ab initio constraints, e.g., on ANCs could be incorporated in the analysis.487

• Data from transfer reactions that provided complementary information on the 7Be ANCs.488

Future applications of BRICK could include posteriors for astrophysical reaction rates. This would489
enhance BRICK’s utility as a tool for performing detailed uncertainty quantification on nuclear490
reactions, especially those of astrophysical interest. AZURE2 already includes the necessary functionality.491
Implementing this feature ought to be a straightforward process.492
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Bordeanu C, Gyürky G, Halász Z, Szücs T, Kiss G, Elekes Z, et al. Activation measurement of the610
3He(↵, �)

7Be reaction cross section at high energies. Nuclear Physics A 908 (2013) 1–11. doi:https:611
//doi.org/10.1016/j.nuclphysa.2013.03.012.612
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Figure 16. Two-dimensional posteriors are presented for the analyses of both DCSB (blue) and DCS (green)
data models. The “anchor” parameter is S(0). The top panel gives its correlation with a0. The middle
(bottom) panel corresponds to the square of the excited- (ground-) state ANC.

Frontiers 30


	Introduction
	What is BRICK?
	AZURE2
	Implementation
	Overview
	Details


	Application to 3He(a,a) and 3He(a,g)
	The R-matrix model
	Priors on R-matrix parameters
	Modeling systematic errors in the data
	Common-mode errors
	Energy shifts


	Data sets
	Bar64 3He-alpha elastic scattering
	Paneru et al.  elastic scattering
	  data
	Data Models

	Results
	Fits to data
	Capture Data
	Scattering Data

	Parameter Distributions
	Extrapolated quantities

	Conclusions

