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ABSTRACT

Phenomenological R-matrix has been a standard framework for the evaluation of resolved
resonance cross section data in nuclear physics for many years. It is a powerful method for
comparing different types of experimental nuclear data and combining the results of many
different experimental measurements in order to gain a better estimation of the true underlying
cross sections. Yet a practical challenge has always been the estimation of the uncertainty on
both the cross sections at the energies of interest and the fit parameters, which can take the
form of standard level parameters. Frequentist (y2-based) estimation has been the norm. In this
work, a Markov Chain Monte Carlo sampler, emcee, has been implemented for the R-matrix
code AZUREZ2, creating the Bayesian R-matrix Inference Code Kit (BRICK). Bayesian uncertainty
estimation has then been carried out for a simultaneous R-matrix fit of the *He(a,v)"Be and
3He(a, a)He reactions in order to gain further insight into the fitting of capture and scattering
data. Both data sets constrain the values of the bound state a-particle asymptotic normalization
coefficients in “Be. The analysis highlights the need for low-energy scattering data with well-
documented uncertainty information and shows how misleading results can be obtained in its
absence.

Keywords: keyword, keyword, keyword, keyword, keyword, keyword, keyword, keyword

1 INTRODUCTION

Phenomenological R-matrix has been the standard analysis tool for cross section data that exhibit
overlapping yet resolved resonances for many years (Lane and Thomas, 1958). It is used extensively
to evaluate data for applications (e.g. the ENDF/B-VIIIL.O evaluation (Brown et al., |2018)), to perform
extrapolations to low, unobserved energies in nuclear astrophysics (e.g.|Azuma et al. (2010); Descouvemont
et al.| (2005)), and to extract level parameters for nuclear structure (ENSDF, 2022). In all cases, it provides
a reaction framework in which experimental information of various different types can be combined to
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improve estimates of the true cross sections. One challenging aspect of this type of analysis has been
reliable uncertainty propagation.

Traditionally, data have been fitted using 2 minimization, with uncertainties being estimated using one of
two methods. The first is using partial derivatives and the assumption that the quantity of interest is related
linearly with the parameters of the model. The second is the assignment of confidence intervals based
on some Ax? value. The assumption of linearity is often a poor one and the second method can become
tedious or impossible to implement for a complicated model. Additional limitations are that one must
assume Gaussian uncertainties on the input data and there is almost no ability to include prior information
about the parameters. It is known that y? methods may lead to biased results and/or underestimated
uncertainties in data evaluations (Smith et al., 2007). The reason for these issues is understood to be
incomplete documentation or modeling of systematic uncertainties. While systematic uncertainties are
a difficult subject in any approach, they are much easier to model and implement using the Bayesian
methods described below. Finally, we would like to point out that a mixed approach is possible, where >
minimization is combined with a Monte Carlo simulation of some uncertainties. This method was used by
deBoer et al. (2014) in a previous analysis of *He(«, 7)"Be and *He(«, )3He.

Bayesian methods are increasingly becoming the standard for performing Uncertainty Quantification
in physical sciences and engineering in general, and theoretical nuclear physics in particular (Schindler
and Phillips, 2009; |[Furnstahl et al., [2015a,b; Zhang et al., [2015; Melendez et al.,|2017; Wesolowski et al.,
2019; Neufcourt et al., 2020a, 2019; |King et al.,[2019; Melendez et al., 2019; |Filin et al., [2020; Drischler
et al.,[2020a)b; Premarathna and Rupak, |2020a; Zhang et al., 2020; |Filin et al.,2021; Schunck et al., 2020;
Neufcourt et al., 2020b; |[Everett et al., 2021} Catacora-Rios et al., 2021} Reinert et al., 2021} Phillips et al.,
20215 |Wesolowski et al.|[2021; Schnabel et al., 2021;[Xu et al., 2021;(Cao et al.,[2021; Hamaker et al., 2021).
In contrast to a traditional y?-minimization they offer the opportunity to examine the entire probability
distribution for parameters of interest, rather than focusing on the values that maximize the likelihood.
Perhaps equally important, in a Bayesian approach it is straightforward—mandatory even—to declare and
include prior information on the parameters of interest. Bayesian methods, combined with the possibility
to use Markov Chain Monte Carlo sampling to explore a high-dimensional parameter space, allow one to
introduce additional parameters without fear of computational instabilities caused by shallow x? minima.
The use of MCMC sampling also makes uncertainty propagation straightforward, as we will demonstrate
here. And a Bayesian framework is—to our knowledge—the only option if one wishes to incorporate a
rigorous formulation of theory uncertainties into the statistical analysis. In this work, Bayesian uncertainty
quantification is implemented by pairing the R-matrix code AZURE2 (Azuma et al., 2010; Uberseder
and deBoer, 2015) with the MCMC Python package emcee (Foreman-Mackey et al., 2013). The pairing
is facilitated by a Python interface BRICK (Bayesian R-matrix Inference Code Kit), enabling Bayesian
inference in the context of R-matrix analyses.

To benchmark this code, it has been applied to the analysis of the *He(c, v)"Be and *He(o, a)>He
reactions. The He(«, v)"Be reaction is a key reaction in modeling the neutrino flux coming from our
sun (Bahcall and Ulrich; 1988). It also plays a role in Big Bang Nucleosynthesis (BBN) (Cyburt et al., 2016).
The reaction cross section is dominated by the direct capture process, but also has significant contributions
from broad resonances (see Fig.[I)). In recent years, high-precision measurements of this reaction have been
performed, using direct y-ray detection (Kontos et al., 2013; Brown et al.,[2007; |Costantini et al., 2008),
the activation method (Singh et al.,[2004; Brown et al., 2007; Carmona-Gallardo et al., 2012; Costantini
et al.,[2008; Bordeanu et al.,|2013), and a recoil separator (D1 Leva et al., 2009). Additional higher energy
measurements have also been made recently by [Sziics et al. (2019)), but are outside the energy range of the
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Figure 1. Level diagram of "Be up to the proton separation energy.

present analysis. Using these high precision measurements, several analyses have been made to combine
these data sets and extrapolate the cross section to low energies using pure external capture (Adelberger
et al., 2011), R-matrix (deBoer et al., 2014), effective field theory (Zhang et al., 2020; Premarathna and
Rupak! [2020b), a modified potential model (Tursunov et al., 2021), and ab initio calculations (Nollett,
2001; Neft, [2011; |Dohet-Eraly et al., 2016; [Vorabbi et al., 2019). These several recent analyses make this
reaction an ideal case for benchmarking since they employ both more traditional and Bayesian uncertainty
estimation methods.

As the energies pertinent to solar fusion and BBN the 3He(c, ) "Be cross section has a large contribution
from external capture, He (v, o)3He data, through its constraints on the scattering phase shifts, should
also provide an additional source of constraint on the low-energy extrapolation. This type of combined
analysis has been reported in|deBoer et al. (2014), but there it was found that the available scattering data
of Barnard et al. (1964) was inconsistent with the capture data, perhaps because of incomplete uncertainty
documentation in the former. With this in mind, new measurements of the *He(c, o)3He cross section
were recently reported by |Paneru et al. (2022)).

In this work, a Bayesian uncertainty analysis is performed on an R-matrix fit to the low energy
3He(a, 7)7Be (Kontos et al.,|2013; |Costantini et al., 2008; |Brown et al., 2007; Singh et al., [2004; Bordeanu
et al., 2013; [Di Leva et al., [2009) and 3He(a, oz)SHe (Barnard et al., [1964; [Paneru et al., [2022) data.
The |Paneru et al. (2022) data is a new measurement performed with the Scattering of Nuclei in Inverse
Kinematics (SONIK) detector. The sensitivity of the fit to the scattering data is the main focus, examining
the differences resulting from the two different scattering data sets considered. The mapping of the posterior
distributions of the fit parameters, cross sections, phase shifts, and scattering lengths gives new insights
into the dependence of these quantities to the input scattering data.
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2 WHAT IS BRICK?

BRICK is a python package that acts as an interface between the AZURE2 (Azuma et al., 2010; Uberseder
and deBoer, 2015) R-matrix code and an MCMC sampler. It is not a replacement for AZURE2 nor is it
intended to be. The primary functionality that it provides is a user-friendly way to sample parameters that
have already been set up with the AZURE2 graphical user interface (GUI) to be varied.

2.1 AZURE2

AZURE?2 is a multilevel, multichannel, R-matrix code (open source) that was developed under the Joint
Institute for Nuclear Astrophysics (JINA) (Azuma et al., 2010; Uberseder and deBoer, 2015). While
the code was created primarily to handle the added complexity of charged-particle induced capture
reactions (deBoer et al., 2017), also has capability for a wide range of other types of reaction calculations.
The code is primarily designed to be used by way of a GUI, but can also be executed in a command line
mode for batch processes (Uberseder and deBoer, 2015). The code stores all of its setup information in a
simple text input file. While this file is usually edited by way of the GUI, it can also be modified directly.
This may be desirable for batch type calculations, as are being used here.

AZUREZ2 primarily uses the alternative [R-matrix parameterization of Brune (2002). It has two main
advantages. The first is that it eliminates the need for the boundary conditions present in the classical
formalism of |Lane and Thomas (1958). The second is that the remaining fit parameters become the observed
level parameters. The remaining model parameters are the channel radii which are fixed at 4.2 fm in this
analysis.

A key advantage in using the parameterization of Brune|(2002) for the fitting of low energy capture
reactions is that level parameters for bound or near threshold resonances can be more directly included in
the R-matrix analysis (Mukhamedzhanov and Tribblel [1999; Mukhamedzhanov et al., 2001). The use of
the Bayesian uncertainty estimation further facilitates the inclusion of uncertainty information for these
parameters. This provides an improved method for communicating the level structure information gained
from transfer reaction studies into an [R-matrix analysis in a statistically rigorous way.

2.2 Implementation
2.2.1 Overview

The role of BRICK in our R-matrix calculations is to act as a mediator. It maps proposed parameters —
both R-matrix parameters and normalization factors — from an MCMC sampler to AZURE2 and R-matrix
predictions from AZURE?2 back to the sampler. First, it accepts proposed points in parameter space, 6,
from the sampler — in this analysis we use emcee (Foreman-Mackey et al., [2013) — and packages
them into a format that AZURE2 can read. Then it reads the output from AZURE2 and presents it as a list.
Each item of the list contains the predictions, (), and data, y and o, corresponding to a specific output
channel configuration. The likelihood, represented in Fig. 2 by £, can then be calculated according to
the user’s choice; the Gaussian likelihood chosen for this work is given below in Eq. (2). Accompanied
by prior distributions, 7, one can readily construct a Bayesian posterior, P. Prior distributions chosen in
this analysis are given in Section[3.2. The posterior value, or rather its logarithm In P, is passed back to
emcee. Finally, based on the In P value, the MCMC algorithm decides to accept or reject the proposed
point, proposes a new 6, and the process repeats. A diagram is provided in Fig. 2|to illustrate the qualitative
functionality of the different software packages. The process described above starts at the orange rectangle
labeled “emcee”.
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@ // BRICK // &put .azr

emcee* ‘ AZURE2 ’

\
// BRICK %L———+results.out
/

Figure 2. Representation of the different roles of emcee, BRICK, and AZURE?2 in the Bayesian analysis
presented below. The asterisk in the emcee rectangle indicates the starting point of the process.

2.2.2 Details

BRICK is built such that different samplers can be used. The analysis presented in this paper uses emcee,
so the details provided in this section will be somewhat specific to it.

When initializing an instance of an EnsembleSampler, the most relevant argument is 1og_prob_fn,
the function that returns the logarithm of the probability. One of the advantages of emcee is that it allows
the practitioner to perform arbitrary calculations inside that probability function. That function must meet
only two requirements: (1) take an array of floating point numbers that represents the vector in parameter
space and (2) return a floating point number that represents the logarithm of the probability associated with
that array. In between those two steps, one is free to perform whatever calculations one needs. This can be
seen on the left-hand side of Fig. 2 The parameter-space vector, 6, is output from emcee. The logarithm
of the probability at that point, In P, is subsequently input to emcee. In this sense, emcee is well-suited
to the implementation of “black-box” physics models where one has limited access to the source code.

The primary tasks that BRICK accomplishes are (1) translating # into a format that AZURE2 can read
and (2) reading the output from AZURE2 such that a In P value can be easily calculated. The means of
accomplishing these tasks relies on the command-line interface (CLI) to AZURE2, which is accessible
when installed on Linux machines. The CLI options available to AZURE2 are well documented in the
manual (Uberseder and deBoer, 2015). The most critical argument is the input file, typically accompanied
by the file extension . azr. This input file contains all of the necessary information to perform an R-matrix
calculation with a given set of parameters. It is generated when the R-matrix and data models are built with
the commonly used GUI, which AZURE2 provides. BRICK is not built to replace that GUI. It accompanies
AZURE2 by allowing the user to bring their AZURE2-prepared R-matrix model over and sample what
was previously optimized. Accordingly, the default behavior of BRICK is to respect the choices made by
the user in the AZURE2 GUI. If a parameter is fixed in AZUREZ2, it is fixed in BRICK. If it is varied in
AZURE?2, it is sampled in BRICK.

BRICK accesses the AZURE2 CLI through the Python module subprocess. But prior to that, BRICK
must map the values in 6 to the proper locations in the input file. This is accomplished by reading the
<levels> and <sectionsData> sections of the input file. BRICK reads the appropriate parameters
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and flags looking for varied parameters. As they are found, their locations are stored. When a new 6 is
proposed, BRICK creates a new input file and maps the values in 6 to the varied parameter locations. Then
AZURE?2 is called with the newly generated input file. The output from AZURE?2 is written to a sequence of
files in the out put directory by default. Those files are read and the predictions, y, and experimental data,
vy, are extracted. A likelihood is then constructed. Under the assumption that the uncertainties associated
with y are uncorrelated and normally distributed, this is a multivariate Gaussian distribution. Accompanied
by a list of prior distributions corresponding to the preexisting knowledge of the sampled parameters, a
posterior is finally constructed and passed back to emcee.

Initially, this process was built in a single-threaded manner. As emcee is a ensemble sampler, efficient
exploration of the posterior relies heavily on many, simultaneous walkers. In order to scale this beyond the
most basic calculations, we modified our implementation to allow each walker to write its own input file
and read from its own output directory. Inside the log-probability function, there is no access to any kind
of walker identifier, so each walker generates a file-space that is uniquely identified by an eight-character
random string. This allows each walker to work independently, so on systems where many cores are
available, each walker can have a dedicated core. Or at least the time spent waiting for CPU time is
minimized. This also allows for an increased number of walkers, which is a common tactic used to decrease
autocorrelation time.

3 APPLICATION TO *He(c, «)>*He AND *He(a,y)"Be
3.1 The R-matrix model

The starting point for the R-matrix model used here was that of deBoer et al.|(2014). In that work, ten
levels were used with three particle pairs (*He+c, "Be+7g, and "Be+y;) for a total of 16 R-matrix fit
parameters. Initial MCMC calculations showed that a 7/2~ background level used in|deBoer et al. (2014)
was not statistically significant, and was thus dropped from the calculation. This already demonstrated one
of the powerful feature of this type of MCMC analysis, it provided a clear identification of redundant fit
parameters. Likewise, we verified that the exact placement of many of the background levels did not effect
the fit results, as long as they were placed at sufficiently high energies. The exception to this was the 5/2~
background level, placed at 7 MeV. Because there are two real levels at £/, = 6.73 and 7.21 MeV in "Be,
this background level needed to be placed close to their energies. It was found that this single background
level was sufficient to model both the contributions from these levels and additional higher energy 5/2~
levels. The R-matrix model used here thus consisted of nine levels, three particle pairs, and 16 R-matrix fit
parameters as summarized in Table

3.2 Priors on R-matrix parameters

Because this is a Bayesian analysis, we must choose priors for all R-matrix parameters. We have chosen
to employ uninformative, uniform priors. However, the signs of the reduced width amplitudes (that is
the interference solution), which are implemented in AZURE2 by the signs of the partial widths, were
determined by the initial best ? fit using AZURE2. In this case, a unique interference solution was found.
This may not always be the case: sometimes other interference solutions may be possible. The emcee
sampler may then not be able to easily find these other interference solutions in the parameter space. It
seems to be likely that in cases where different interference solutions are possible, each one will require a
separate emcee analysis.
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Table 1. Sampled parameters in the R-matrix model. Numbers indicate that the level energies were fixed.
A distribution indicates that the corresponding parameter was sampled. The subscripts o and 7 indicate
the exit particle pair — scattering and capture, respectively. Capture particle pairs are distinguished by
ground (0) and excited (1) “Be states. The signs of the partial widths and ANCs indicate the signs of the
corresponding reduced width amplitudes. The second column, £, is given in excitation energy relative to
the ground state.

J" £y (MeV) Widths and ANCs | Prior Distributions
1/27 0.4291 Ch U(1,5MeV)
1/27 21.6 | U(—200,200MeV)

s U(0,100MeV)
1/2+ 14 0 U(0,10MeV)
T U(—10, 10keV)
3/2~ 0 Co U(1,5MeV)
3/2” 21.6 . U(—100,100MeV)
'y U(0,100MeV)
3/2% 12 5o U(—10, 10keV)
'y U(—3,3keV)
5/2 7 . U(0,100MeV)
Iy U(0,100MeV
5/2" 12 T U(—(loo, 100Me)\/')
_ 'y U(0,10MeV
7/2- | U(1,10MeV) e U((O’ 1kev))

One common circumstance where a Bayesian analysis will improve on previous uncertainty estimates is
in the ability to give priors for bound state level parameters determined from transfer studies. Unfortunately,
in the case of the "Be system, there is limited information available for the bound state a-particle ANCs.
A recent first measurement has been reported by |Kiss et al.| (2020), but the ANCs are rather discrepant
from those found from this and past R-matrix analyses of capture data. This inconsistency has not been
investigated here, but needs to be addressed in future work. If reliable bound-state ANC determinations
become available, that are independent of the capture and scattering data, it provides a path to further
decrease the uncertainty in the low energy S-factor extrapolation. One could also adopt priors on the ANCs
from ab initio calculations, although we have not done so.

It is also tempting to implement more constraining priors into the R-matrix analysis from a compilation
like the National Nuclear Data Center or the TUNL Nuclear Data Project (Tilley et al.,|2002). However,
great care must be taken to understand the source of the values and uncertainties when weighted averages
are used to determine adopted values for level parameters in these compilations. In particular, past analysis
of the data being fit in the R-matrix analysis may be a contributor to the evaluation values. Thus blindly
using evaluation level parameters and uncertainties can lead to double counting and an erroneous decrease
of uncertainties. It is for this reason that uniform priors on parameters are adopted in the present analysis.
The posterior shapes then clearly stem solely from the data sets considered in the R-matrix analysis.

The priors for the R-matrix parameters used in this work are listed in Table L. In all but one case, level
energies are fixed. The exception is the 7/2~ level energy which corresponds to the lowest lying 7/2~
resonance. The lowest 1/27 and 3/27 levels and the 7/2~ level are the only levels inside or below the
energy range covered by the analyzed data. All other levels are background levels. For more details of
the choices made in formation of the R-matrix model, see Paneru (2020). The distribution formed by the
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product of these R-matrix priors and priors on the parameters introduced in the next section is the overall
prior 7 shown in Fig.

3.3 Modeling systematic errors in the data
3.3.1  Common-mode errors

AZURE2 provides a method for the inclusion of a common-mode error for each data set using a modified
x2 function

Nsets Na 2 9
Lo.i) — CaTl 1 Ch — N n
@2 3% 35 Ulras) ~ conatns)® |, ((ea = na)ina)* N
a=1 \j=1 (Canaga,j) Ceapyt

where c,, 1s the normalization fit parameter, n, is the starting normalization which is set to 1 in the
present analysis, f(zq,;) is the differential scattering cross section form the R-matrix, y, ; is the data
point value, 0,,; is the combined statistical and point-to-point uncertainty of a data point, and 0.« 18
the fractional common-mode uncertainty of the data set. The additional term in the y? function is derived
by making the approximation that the common-mode systematic uncertainty has a Gaussian probability
distribution (D’ Agostini, [1994)). The accuracy of this approximation is often unclear (Smith et al., [2007).

Common-mode errors are implemented in the present analysis in BRICK, outside of AZUREZ2, i.e., the
common-mode errors are applied to the AZURE2 output. In BRICK the R-matrix parameter set 0 is
augmented by a set of normalization factors f, and energy shifts, Ag . (At present energy shifts are
only implemented for scattering data.) The overall parameter set # is then the union of the set #p and
{fa, AE.o}. The likelihood £ is formed as a product of standard Gaussian likelihoods for each data point,
but with normalization factors applied to the AZURE2 predictions f:

Nsets Na o . 2
I o H HeXp <_ (y]oz faﬂ(xjomeR)) > : )

2
QOja

where we have omitted overall factors that do not affect the parameter estimation. Here x,, represents the
kinematics of the jth data point in data set «.. For scattering data sets, xj, defines the energy and angle
at which the measurement was made. In those cases exclusively, Ag , is added to the energy. 0j, is the
combined statistical and point-to-point uncertainty of the corresponding datum, y;. IV, is the number of
points in data set «, and the product over « runs over all the sets that have independent common-mode
errors.

The priors on the f,,’s are specified by the BRICK user. If a Gaussian prior centered at 1 with a width
equal to the common-mode error reported in the original experimental publication is employed for the
fa’s, then the product of that prior on the normalization factors and the likelihood Eq. (2) has the same
maximum value as the “extended likelihood” corresponding to Eq. (1)), that is used to estimate the f,’s in
the frequentist framework implemented in AZURE2.

In our analysis of the 3He(a,a)3He and 3He(a,7)7Be reactions, we adopted such a Gaussian prior,
truncated to exclude negative values of the cross section. We used a different f,, for each energy bin in the
SONIK data, detailed in Section with the widths of the prior given by the common-mode errors stated
in Table [2| The common-mode error associated with the Barnard data, described in Section 4.1} is taken to
be 5%. The width of the priors for the f,’s to be applied to the capture data, discussed in Section are
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Energy (keV/u) | No of Data Points | Common-Mode Errors
239 17 6.4
291 29 7.6
432 45 9.8
586 46 5.7
711 52 4.5

873(1) 52 6.2
873(2) 52 4.1
1196 52 7.7
1441 53 6.3
1820 53 8.9

Table 2. Common-mode errors associated with the SONIK measurements.

Data Set Total Capture Branching Ratio Ocommon (%)
Seattle, (Brown et al.[[2018) 8 pts [0.57,2.17 MeV] | 8pts [0.57,2.17 MeV] 3
Weizmann, (Singh et al.,|[2004) 4 pts [0.74, 1.67 MeV] - 3.7
LUNA, (Costantini et al., [2008)) 7 pts [0.16, 0.30 MeV] | 3 pts [0.17,0.30 MeV] 3.2
ERNA, (D1 Leva et al.,|[2009)) 47 pts [1.23,5.49 MeV] | 6 pts [1.93, 4.55 MeV] 5
Notre Dame, (Kontos et al.,|2013) | 17 pts [0.53, 2.55 MeV] | 17 pts [0.53, 2.55 MeV] 8
ATOMKI, (Bordeanu et al.,|2013) | 5 pts [2.58, 4.43 MeV] - 6

Table 3. Details of the capture data considered in this work: number of data points, energy ranges, and
common-mode errors (dcommon)- Energies are given the laboratory frame.

specified by the common-mode errors listed in Table 3| All normalization-factor priors are of the form

T(0,00)N(1,0%,) , 3)
where
1 |a,b]
T(a,b) = 4
(,6) {0 otherwise , @

and N (u, 0?) represents a Gaussian distribution centered at y with a variance of o2

3.3.2 Energy shifts

BRICK also has the capability of estimating (overall) beam-energy shifts in a particular data set. This is
implemented as another parameter to be estimated A, ,,. This parameter affects all the AZURE2 evaluations
for data set . BRICK implements the energy shift by generating a different input and data files for each
value of Ag , under consideration. The flowchart of Fig. |2|is thus not strictly accurate when this feature is
included. Gaussian priors were defined, centered at zero, on possible energy shifts for the SONIK data and
the Barnard data. The widths of the priors are based on information in the original papers, as summarized
in Sections 4.1|and For the SONIK data, the energy-shift parameter’s prior has a standard deviation of
3 keV, based on the energy uncertainty quoted in Paneru et al.|(2022). |Barnard et al. (1964) cites a much
larger uncertainty of 20-40 keV, depending upon the energy. The standard deviation of the prior on the AF
parameter is taken to be 40 keV for this data set, a much larger value than for the SONIK data. It should be
noted that the energy uncertainty for the Barnard data set is not a constant, but it is not possible to improve
our modeling of this uncertainty due to the lack of documentation of its origin.
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4 DATA SETS
4.1 |Barnard et al. (1964) 3He-a elastic scattering

Measurements of the elastic scattering products resulting from a 3He beam incident on a ‘He target were
reported in 1964 by Barnard et al. (1964), for 2.4 < E[3He, lab] < 5.7MeV (1.4 < Ecm. < 3.3 MeV).
The experiment provides excitation functions of differential cross section at eight center-of-mass (c.m.)
angles covering 31.55° < 9[3He, lab] < 91.94° (54.77° < 0. < 140.8°). The systematic uncertainty
in the measurements is estimated to be 5%. Detailed point-to-point uncertainties are not given, but are
stated to be about 3%. The measurements are subject to a significant energy uncertainty, estimated to be
20 keV below E[*He, lab] = 4 MeV and 40 keV above that energy. It was also noted by the authors that
their beam energy was only reproducible to the level of 20 keV. In total, there are 646 data points collected
at 577 unique energies. The data were obtained from EXFOR in the fall of 2021 and converted into the
laboratory frame when necessary. All eight angles were included. The previous analysis by deBoer et al.
(2014)) omitted the largest angle.

4.2 Paneru et al. 3He-« elastic scattering

A new measurement of 3He+« elastic scattering was performed at TRIUMF using the SONIK (Connolly,
2015; Paneru, 2020) target and detector system. SONIK was filled with “He gas maintained at a typical
pressure of 5 Torr bombarded with 3He with a beam intensity of about 10'2 pps. Elastic scattering cross
sections were measured at nine different energies from F. , = 0.38-3.13 MeV. SONIK covers an angular
range of 30° < fcm. < 139°—a markedly larger range than previous measurements. The detectors in
SONIK were arranged such that they observed three different points, termed interaction regions, in the gas
target along the beam direction. When the beam traversed the gas target it lost energy, so the bombarding
energy, and therefore the scattering energy, was slightly different in each of the three interaction regions.

As we will explore further below, the results for the differential scattering cross section from this
measurement are consistent with previous determinations but have better precision. The data also extend to
markedly lower energies. The uncertainties with this measurement are well quantified and are presented
in Paneru et al.| (2022). A separate normalization uncertainty is determined for each beam energy. These
normalization uncertainties range from 4.1-9.8 %.

4.3 3He(a,~) data

The data selection (Kontos et al., 2013; (Costantini et al., 2008; |Brown et al.,|2007; Singh et al., 2004;
Bordeanu et al., 2013; [Di Leva et al., 2009) for the 3He(a, 7)7Be reaction for this work follows that
of previous recent works (Adelberger et al., 2011; deBoer et al., [2014; Zhang et al., 2020; Cyburt and
Davids, 2008). Note that the LUNA measurements of Gyiirky et al.| (2007) and |Confortola et al. (2007) are
collected in Costantini et al. (2008). The combined data sets cover a wide energy range from F. , = 94
to 3130 keV, but still remain below the proton decay threshold. Older data are not included due to a long
history of discrepancies, which manifested as differences between experiments that used either direct
detection of ~y-rays or the activation technique. More recent measurements have achieved consistency
resulting from improved experimental techniques by performing consistency check measurements using
both direct detection of y-rays and the activation technique (Adelberger et al., 2011). Details about the
capture data sets, including common-mode errors for cross sections, are listed in Table
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4.4 Data Models

Two distinct data models are analyzed here, Dcg and Dcgp, where C indicates the inclusion of the
capture data described in Sec. S indicates the inclusion of the SONIK data described in Sec. and B
indicates the inclusion of the Barnard data described in Sec. .1, Dcgp is @ more complete data model in
the sense that it includes more data and would naively be considered the “best” data model. But, there are
notable effects when the data of Barnard et al. (1964) are included that are highlighted and discussed in
Section [3]

5 RESULTS

The results of our analysis are presented here in two subsections. The first discusses results in the energy
regime of the data that was analyzed. The second computes extrapolated quantities — observables that lie
in energy regimes outside those covered by the analyzed data.

5.1 Fits to data

First we examine the extent to which our results match experimental data. We do this by comparing
predicted and measured observables.

5.1.1 Capture Data

Figure [3 shows the total capture S-factor data alongside bands representing 68% intervals from the
analyses of both data models, Dcgp and Dcs. For energies above 400 keV both analyses give very similar
results. However, below that energy, the Dcg analysis provides a more “natural” agreement with data —
see the normalization factor posteriors and the associated discussion below. The LUNA data in particular
discriminate between the two data models. The fit to the CSB data includes a normalization factor for
the LUNA data that differs from 1 by about three times the stated common-mode error, cf. below. The
normalization factors are not applied to the data in Fig. |3} which is why the CSB band sits well below the
LUNA data.

The branching ratio, defined as the ratio of the excited-state cross section to the ground-state cross section,
results for both data models—Dcg and Dcgg—are shown in Fig. 4. The most prominent differences
between the Dcgp and Dcg results occur near the upper and lower ends of the energy range. However, in
the context of the experimental uncertainties, these differences are not significant. Over the entire energy
range, the predictions from Dcg and Dcgp overlap at the 1-0 level.

5.1.2 Scattering Data

The differential cross sections from the SONIK (Paneru et al., 2022) and Barnard et al. (1964)
measurements are shown in Figs. [5]and [6] respectively, with the predictions from our analyses. In all cases,
both analyses reproduce the data to high accuracy. However, the Dcg analysis results in a much lower
X2 /datum at max In P: 0.72 for the SONIK (Paneru et al.,|[2022) data vs. 0.95 for the Dcgp analysis of the
SONIK + Barnard (Barnard et al.,|1964) data sets.

5.2 Parameter Distributions

Separate corner plots for each data model are provided in the Supplemental Material. There are notable
differences in several R-matrix parameters. In particular, the Dcg ANCs are significantly larger and their
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Figure 3. Total capture S factor from Seattle (Brown et al., 2018) (blue circles) Weizmann (Singh et al.,
2004) (green squares), LUNA (Costantini et al., 2008) (orange diamonds), ERNA (Di Leva et al., 2009)
(red, downward-pointing triangles), Notre Dame (Kontos et al.,[2013) (purple, upward-pointing triangles),
and ATOMKI (Bordeanu et al., 2013) (black stars) data sets are shown with reported error bars. Dcgp and
Dcg results are shown with blue and green bands, respectively. The band indicates 68% intervals. The
solid, blue line indicates the median prediction from the Dcgp analysis. The dashed, green line indicates
the median prediction from the Dcg analysis. Normalization factors have not been applied to either the
theory prediction or data, so estimates of the extent to which BRICK’s fit agrees with the different data sets
are not straightforward to make from the figure.

posterior distributions are noticeably wider. The Dcg analysis also produces a significantly smaller ratio of
ANCs, (' /Cy. This is consistent with the smaller branching ratios at low energies shown in Fig.

The Dcg partial o widths in the 1/2%, 3/2T, and 5/2" channels are smaller and separated by more than

+
two standard deviations from the Dcgp widths. The distributions for F§5é2 ) seem to indicate opposite
signs. The Dcsp Eg(;/ 27) posterior is markedly smaller and narrower, and the constraints on Fg/ 27) from

Dcgsp are dramatically tighter. This is presumably due to the much larger amount of data in the vicinity
of the 7/2~ resonance that is present in the Barnard et al. (1964) data set. It is also worth noting the
“non-Gaussian” behavior of several of these distributions—a characteristic that would be difficult to identify
in a typical analysis that assumed linear propagation of uncertainties around a minimum of the posterior

pdf. Using Gaussian approximations and linearizing would likely underestimate uncertainties in the case of
3/ 27)
7,0

, for example.

All parameters shown in Fig. [7 are well-constrained. By comparing to the prior distributions listed
in Table [I, one can see the dominance of the data’s influence over the information in the prior: all
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Figure 4. The branching ratio predictions are shown alongside the four analyzed branching ratio data
sets: Seattle (Brown et al.,[2018), LUNA (Costantini et al.,[2008)), ERNA (Di Leva et al.,2009), and Notre
Dame (Kontos et al., 2013). Colors, symbols, and line styles are the same as Fig 3. Bands indicate 68%
intervals.

posterior distributions are markedly narrower than the priors chosen. As discussed in Sec. [3.2, several
R-matrix-model iterations were taken to remove redundant parameters.

The correlation matrix of the R-matrix parameters is shown in Fig. [8. The figure represents an
approximation of the full information contained in the corner plot given in the Supplemental Material. There,
significant, often-nonlinear, correlations are observable between several pairs of R-matrix parameters. In
particular, the influence of the ANCs over the entire R-matrix parameter space, either directly or indirectly,
means that it is very important for scattering data to have well-defined uncertainties over its full energy
range.

The normalization factors applied to the theory predictions for each of the total capture data sets are
shown for both data models in Fig.[9] The comparison reveals good agreement between Dcg and Dcgp for
all but the LUNA data set (Costantini et al., 2008)—the lowest-energy capture data set in our analysis.
The Dcg analysis yields a normalization factor for these data that is very close to 1. In contrast, the
Dcsp analysis requires that the LUNA data be shifted by nearly 10%. (Recall from Eq. (2), that f is applied
to the theory prediction, and so an f > 1 corresponds to a systematic error that reduces the experimental
cross section and uncertainties.) To put this in perspective, the LUNA collaboration estimates their common-
mode error at 3.2%. Because the LUNA data set is the lowest capture data set, this disagreement between
the Dcg and Dcgp analyses corresponds to a significant difference in the extrapolated S(0) of these two
analyses.
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Figure 5. Angular dependence of the differential cross sections of |Paneru et al. (2022) are shown relative
to the Rutherford prediction with grey x’s and error bars. Each panel includes the measurements from
three interaction regions (Paneru, 2020). Bands indicate 68% intervals. Green bands are generated for the
analysis of Dcg . Blue bands correspond to Dcgp -

The normalization factors applied to the theory predictions for each of the SONIK energies are shown
in Fig. [I0. When the data of Barnard et al. (1964) are included in the analysis, the SONIK normalization
factors are significantly larger. This effect is systematically apparent at lower energies. In more than half
the cases, the Dcgp and Dcg results are inconsistent with each other. For eight out of ten SONIK energies,
the normalization factor obtained from the fit is within the common-mode error estimated by the SONIK
collaboration. Note that the common-mode error in this experiment was estimated to be different at different
beam energies (Paneru, |2020) |} This is represented in Fig. @by the varying heights of the grey bands,
which are priors in accord with these experimentally assigned common-mode errors, see Table

The posteriors for fgamarq and the energy shifts for both the Barnard et al. (1964) and SONIK (Paneru
et al., 2022) data sets (see Sec. are shown in Fig. The result for fgarnard 1S 1.002f8:88§: well within
the estimated systematic uncertainty of 5% given in|Barnard et al.| (1964). A shift of 19.261’%:2(1] keV in the
energies reported in Barnard et al. (1964) is found, but this result is consistent with the energy uncertainty
estimates ranging from 20-40 keV given in that paper. However, even such a clearly nonzero shift does
not seem to significantly impact extrapolated quantities. Finally, the SONIK energy shift indicated by our
analyses is 1.59:“%:;1? keV. This result matches very well with the reported energy uncertainty estimate of
3 keV. The prior for this parameter was a normal distribution centered at 0 keV with a 1-o width of 3 keV.

The primary difference between the posterior and the prior for this parameter is the loss of probability in

! We use slightly different common-mode uncertainty estimates in our prior definitions than those listed in (Paneru, 2020). This update will be reflected in a
forthcoming publication by the SONIK collaboration (Paneru et al.,[2022)
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Figure 6. Differential cross section as a function of energy as reported in Barnard et al. (1964)), shown as
grey x’s with error bars. Blue bands represent the 68% intervals generated from the Dcgp analysis.

the negative energy region. If any energy shift in the SONIK data (Paneru et al.,|[2022) is necessary, it is
positive, but since 0 keV is well within one standard deviation, there is strong evidence for no shift.

The ANCs corresponding to the two bound “Be states are of particular interest for extrapolating threshold
quantities. First, we point out that the inclusion of scattering data significantly reduces the uncertainty
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Figure 7. R-matrix parameter comparison between Dcg (green) and Dcgp (blue) analyses.

395 of the ANCs. Our posterior is much narrower than that obtained using capture-only data in Zhang et al.
396 (2020). This highlights the importance of scattering data in constraining bound-state properties and the
397 amplitudes associated with transitions to them.

398  Second, the choice of scattering data set matters. The C results from analyzing Dcg and Dcgp are
399 discrepant at the 1-o level. The Cj results disagree by approximately 2-0. The contrast is highlighted
400 1in Fig.|12 where the squares 012 and C’g are compared. The differing values directly impact the S-factor
401 extrapolations discussed below.
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Figure 8. Correlation matrix of R-matrix parameters for the Dcg analysis. Parameter chains are centered
at zero and scaled to one prior to the computation. The strongest correlations (anti-correlations) are
highlighted with lighter (darker) colors.

5.3 Extrapolated quantities

The Coulomb-modified effective range function is given in Hamilton et al.|(1973) and van Haeringen

(1977) as

20
K(E)=k21 1T C2(n) cot &y + 2nh 5
(E) FQ(Hl)ue(n)[ G (n) cot ¢ + 2nh(n)] , (5)
where £ is the relative momentum, ¢ is the angular momentum, 7 is the Sommerfeld parameter, I" is the
gamma function, uy(n) is given by
(204 2)CF

uf(lrl) - (277)2508 ) (6)
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Figure 9. The normalization factors applied to the total cross section predicted by our R-matrix model
are compared for each of the total capture data sets (Seattle (Brown et al.,2018) Weizmann (Singh et al.|
2004), LUNA (Costantini et al.,[2008), ERNA (Di Leva et al.,[2009), Notre Dame (Kontos et al.,[2013),
and ATOMKI (Bordeanu et al.,[2013)). Dcsp (blue) and Dcg (green) results are shown together for each
data set.

with
C %Ce—u (7
G = [%}m, ®
An) = 3 W+ i)+ ¥(1—in)] ~ Iy ©

and U representing the digamma function (Humblet, [1985). This effective range function is an analytic
function of E (or k%) near £ = 0. From the phase shifts, obtained with BRICK, calculated over a range of
low momenta, one can fit the scattering length, ag, and effective range, r(, according to the low-energy
expansion

1
K(E)=——+ 252 4 .. (10)
ao 2
Our calculation involves 70 equally spaced phase shifts over a range of low energies from 0.57 keV to

3.93 MeV. The results are used to evaluate the effective range function defined by Eq. (5). The energy
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Figure 10. Summaries of the normalization factor posteriors for each SONIK (Paneru et al., 2022) data set
are shown for Dcgp (blue) and Dcg (green). Error bars represent 68% quantiles. Grey-shaded rectangles
indicate the uncertainties reported in (Paneru, [2020).
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Figure 11. Posteriors of the normalization factor applied to the Barnard data and the energy shifts
introduced to the Barnard et al. (1964) and SONIK (Paneru et al., 2022) data sets. The Barnard normalization
factor is applied to the theory prediction. Energy shifts are presented in keV. These results were obtained
exclusively with the Dcgp data model.

414 dependence is then fit to Eq. (10) using a non-linear least squares fit. In addition to ay and r( defined in Eq.
415 (5)), the shape parameter at O(k*) was fit to ensure a better determination of aq and 7.
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Figure 12. The two-dimensional posterior of the squares of the ANCs, Cj and C. Results for Dcg are
shown in green and for Dcgp in blue. The EFT analysis of capture data of Zhang et al. (2020) extracted the
ANC values shown in red, and in the analysis of Barnard et al. (1964) and capture data of deBoer et al.
(2014)) the ANCs were fixed at the location indicated by the purple, dashed lines.

The results from Dcgp and Dcg are shown in Fig.[I3. As in the ANC comparison, they are strikingly
discrepant. The naive expectation would be that Dcgp distributions would be smaller subsets of the
Dcg distributions. For many relevant quantities, this is not the case.

Figure [14 shows a comparison of the scattering lengths obtained from the Dcg and Dcgp analyses. A
comparison to Zhang et al./(2020), also included in Figure|14} reveals the impact of including scattering data:
the inclusion of scattering data drives the median downward and constrains the uncertainties significantly.
A summary of these posteriors is given in Table

The Dcgp scattering length and effective range are both smaller and more tightly constrained. One might
have expected that with more data—and more data at lower energies—this extrapolated quantity would
become more tightly constrained. The two-dimensional posteriors shown in Fig.|13|seem to lie on the same
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Figure 13. ag-rg correlation for both Dcgp (blue) and Dcg (green) data models.

line or band that defines the correlation between ag and rg, though two extended posteriors is not sufficient
to define such a line.

The total capture S factor at zero energy was extrapolated by evaluating the S factor at 100 evenly
spaced points between 1 to 100 keV, constructing a cubic-polynomial interpolation function to represent
the calculations, and evaluating that function at zero energy. Errors from the interpolation/extrapolation
process are negligible when compared to contributions from parameter uncertainties. The results are shown
alongside previous results in Fig. As expected from the different low-energy behaviors shown in Fig.
the Dcg and Dcgp results are discrepant, only overlapping at the 2-0 level. The inclusion of the |Barnard
et al. (1964) data reduces the uncertainty in S(0) and pulls the entire distribution downward, outside the
uncertainties of the Dcg analysis. This effect is not seen in (deBoer et al., 2014) because the ANCs in
that analysis were not varied freely. The Dcgp result is discrepant with the Dcg results and those reported
in (deBoer et al., 2014) and (Zhang et al., 2020). A summary of these posteriors is given in Table

Insights into the relevance of parameters can be obtained by examining the correlations between them. In
Fig. the correlations between S(0) and ay, 012 and Cg are shown. While the Dcg and Dcgp results are
discrepant in several astrophysically relevant cases, the discrepancy is consistent, and this figure exposes,
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Figure 14. a( posteriors obtained from Dcg (green) and Dcgp (blue) analyses. The result from |[Zhang
et al. (2020)) is shown in red.

Analysis S(0) (keVDb) | ap (fm) ro (fm)
Dcs o.539t§;§%é 36.59f§:§§ 1.033t§;§§§
Dcsn 0.495T 0008 | 32.327048 | 1.0047000;

deBoer et al.|(2014) O.542f8j8%§ — —
Zhang et al.|(2020) | 0.5787901% | 50.3675:92 | 0.97410-925

Table 4. A summary of the posteriors of the extrapolated quantities. Where possible, results from other
anlayses are included.

441 to a large extent, why: the ANCs, particularly the ground-state ANC, strongly correlates with S(0). The
442 Barnard et al. (1964) data more tightly constrain these parameters at smaller values, and this directly lowers
443 the predicted S(0) extrapolation.
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Figure 15. Extrapolated S(0) posteriors from the analyses of both Dcgp (blue) and Dcg (green) data
models. Previous results from Zhang et al. (2020) (red) are |[deBoer et al.| (2014) (orange) are also
summarized here for comparison.

6 CONCLUSIONS

We have described and applied the Bayesian [2-matrix Inference Code Kit (BRICK), which facilitates
communication between the phenomenological R-matrix code AZURE2 (Azuma et al.,|2010) and a Markov
Chain Monte Carlo (MCMC) sampler such as emcee (Foreman-Mackey et al., 2013). It thereby enables
MCMC sampling of the joint posterior probability density function (pdf) for the R-matrix parameters and
normalization factors. With samples that represent such a posterior in hand, the computation of the pdf for
any quantity that can be calculated in the R-matrix formalism is straightforward.

While BRICK is a general tool, we have also provided an example of its application to an R-matrix
fit of 3He-a scattering and the 3He(c, v)"Be capture reaction data, in order to make inferences about
the "Be system. This application was partly motivated by the availability of a new 3He-« scattering data
set obtained using the SONIK detector at TRIUMF (Paneru, 2020) following the suggestion of |deBoer
et al. (2014). These data have more carefully quantified uncertainties than a previous measurement by
Barnard et al. (1964). Our study shows this motivation was well justified, finding discrepant values
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for extrapolated quantifies when the data of Barnard et al. (1964) were included. Our analysis of the
SONIK data shows consistency between them and capture data, producing an S factor in accord with
analyses of capture data alone: our final Dcg (capture + SONIK data) result for the S-factor at zero
energy is S(0) = 0.539418:8%% keV b. When the Barnard et al. (1964) data were included in the analysis,
the Dcgp results produced significantly lower ANCs and S(0) extrapolation. Indeed, the Dcgp analysis
produces values for S(F) at c.m. energies of 10-20 keV that can only be reconciled with the LUNA
data (Costantini et al., 2008) if the normalization of these data is adjusted by 2-3 times the quoted
common-mode error.

This emphasizes the importance of detailed uncertainty quantification when data sets are to be used for
accurate inference of extrapolated quantities, where |Barnard et al.| (1964) does not include these kinds of
details regarding the experiment. This makes the tension between the Barnard et al. (1964) and SONIK
data regarding S(0) difficult to resolve, thus the Barnard et al. (1964) data may need to be omitted from
future evaluations. We emphasize, though, that these previous data were invaluable in advancing our
understanding of the “Be system to its current state, but data with more well defined uncertainties are
needed for current applications.

Zhang, Nollett, and Phillips pointed out that the s-wave *He-« scattering length is correlated with this
result (Zhang et al., 2020). The Dcg analysis produces ag = 36.594_'8:?):5,) fm. Premarathna and Rupak
simultaneously analysed capture data and *He-« phase shifts in EFT and found ag = 40f2 fm (Model A
IT of |Premarathna and Rupak (2020a))—in good agreement with this number. However, it disagrees by
20 with the ag extracted using EFT methods from capture data alone by Zhang et al.|(2020): ag = 50J_r$.
Recently |Poudel and Phillips| (2021) performed an EFT analysis of the SONIK data, using priors on the
"Be ANCs from the capture analysis of Zhang et al. (2020), and extracted ag = 60 4+ 6 fm—even further

away from the results of this R-matrix analysis.

Improvements in the analyses presented here could occur if there were:

e Better documentation of the energy dependence of systematic uncertainties in published data sets.
The Bayesian formalism that underlies BRICK allows systematic uncertainties with any correlation
structure to be incorporated into the analysis.

e Improved understanding of the way theory uncertainties in the phenomenological R-matrix formalism
affect the extrapolation of data.

e Detailed modern data with full uncertainty quantification in the vicinity of the 7/27 resonance. This
may help resolve some of the ambiguities in results between the Dcg and Dcgp analyses.

e Ab initio constraints, e.g., on ANCs could be incorporated in the analysis.

e Data from transfer reactions that provided complementary information on the “Be ANCs.

Future applications of BRICK could include posteriors for astrophysical reaction rates. This would
enhance BRICK’s utility as a tool for performing detailed uncertainty quantification on nuclear
reactions, especially those of astrophysical interest. AZURE2 already includes the necessary functionality.
Implementing this feature ought to be a straightforward process.
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Figure 16. Two-dimensional posteriors are presented for the analyses of both Dcgp (blue) and Dcg (green)

data models. The “anchor” parameter is S(0). The top panel gives its correlation with ag. The middle
(bottom) panel corresponds to the square of the excited- (ground-) state ANC.
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