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Abstract

In this paper, we construct a new family of higher order Fourier finite element spaces to
discretize the axisymmetric Hodge Laplacian problems. We demonstrate that these new
higher order Fourier finite element methods provide improved computational efficiency as
well as increased accuracy.

1 Introduction

The finite element method (FEM) is a numerical technique for approximating solutions
to complex partial differential equations (PDEs). Many PDEs cannot be solved using
analytical techniques; rather their solutions must be approximated. The FEM is an
ideal candidate for approximating solutions due to its efficiency, well developed theory,
adaptability, and accuracy.

An axisymmetric problem is a three-dimensional (3D) problem that is symmetrical
about the z-axis (the axis of rotation). Beyond mathematical research and advancement,
axisymmetric problems have a variety of applications in fields such as biomedical engineer-
ing, electromagnetism, and optics. For example, the numerical solution for the axisym-
metric Maxwell equations can be used to design efficient antennas for hepatic microwave
ablation, an alternative treatment to various types of cancer where a small antenna is
inserted into the tumor to burn it [3].

Restated, an axisymmetric problem is a 3D problem such that if we take a two-
dimensional (2D) slice of the problem domain, then we can regain the entire 3D domain
by rotating the 2D slice about the z-axis. This slicing method allows one to perform a
dimension reduction, transforming a 3D problem into a set of 2D problems, where the
solution to each 2D problem is a Fourier mode of the 3D solution. For any computational
method, solving a 2D problem is much more efficient and less complex than solving a 3D
problem. Thus, performing a dimension reduction significantly reduces computational
efforts. One important thing to note about this dimension reduction is that the 2D
problems will be posed in weighted function spaces, with the weight being the radial
component 7.
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We define the 2D slice on the meridian half-plane, R? = {(r, z) € R? : v > 0}, as the
domain, 2, and its boundary as 0€2. We use I'; to denote the part of 92 that is not on
the z-axis and I'y to denote the artificial boundary 0Q\I';.

Given an axisymmetric problem, Fourier FEMs use an appropriate FEM to approxi-
mate the solution, where the solution to each 2D problem is the n'® Fourier mode of the
3D solution.

Given a scalar function u defined on an axisymmetric domain Q) € R3, u can be written
as in [18,19],

o0 oo
u= uo—i-Zun cos (nd) +Zu,n sin (nd). (1.1)
n=1 n=1
For a vector-valued function, we let u = u,e, + ugeg + u.e,, where e,, eq, e, are the
cylindrical basis. Then, we divide u into its symmetric and anti-symmetric parts, u =
u® + u®. From [18,19], its Fourier series decomposition is

(0] o [u”cos (nb)
uw=|0|+ Z uy sin (nf) |
(ul|  n=t [u? cos (nd) (12)
[0 ] oo [ur"sin (nf) '
u® = |ud| + Z u, " cos (nh)
| 0] =1 |u;"sin(nd)

By applying the usual grad, curl, and div operators in cylindrical coordinates to Eq.
(1.1) or (1.2), we get the operators for the n'" Fourier mode,

O,u
grad)u= | —2u |,
| O.u
[, ] [ —(2u, + O, up)
curl’, | wp | = Oy, — Opu, , (1.3)
L Uy | L MTTW + aru9
. Ur Uy — Ny
div;, | we | = Opu, + — + 0,u,.
u; |

We assume n > 0 throughout this paper.

Axisymmetric problems with axisymmetric data have been studied in many previous
works including in [2,9,10,12]. Additionally, axisymmetric problems with general data,
where the functions are not axisymmetric, have also been studied in [7,8,13,16]. In [1], the
Hodge Laplacian and its discretization are studied in a uniform framework. The author
of [17] applied the theory developed in [1] to axisymmetric problems with axisymmetric
data. The work in [17] was extended in [19] to the Hodge Laplacian problem and its
discretization for general axisymmetric problems with non-axisymmetric data. The scalar
and vector Laplacian with various boundary conditions are both examples of Hodge Lapla-
cian problems. Additionally, these are important problems because they are fundamental
to many problems which arise in mathematical models.
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In [19], Oh constructs a new family of lowest order Fourier finite element spaces to
approximate Hodge Laplacian problems on axisymmetric domains. Our research expands
these results by constructing another family of Fourier finite element spaces using higher
order Fourier FEMs. Our higher order Fourier FEMs are based on higher order basis
functions and provide improved computational efficiency and accuracy when compared
with the lowest order Fourier FEMs.

The following sections of this paper are organized as follows. In section 2, we define the
relevant standard finite element spaces and construct the new first order family of Fourier
finite element spaces. Section 3 presents the Hodge Laplacian on axisymmetric domains
and the four main problems solved in this paper. In section 4, we present the discrete
mixed formulation of each problem and describe how matrices and vectors are constructed
and used in the FEM program for the k = 1 case. Section 5 compares the numerical results
of the four first order programs in this work with the lowest order programs in [19].

2 Fourier Finite Element Spaces for Axisymmetric Problems

In the following subsections and throughout this paper, we define a finite element trian-
gulation as T}, on a given domain () such that T}, satisfies the usual geometric conformity
conditions in [6]. We assume that T}, is quasi-uniform with a representative mesh size h.

The author of [17] constructs the new family of Fourier finite element spaces, denoted
by Ap,, Bhy, Ch,, and Dy, by using the P; space and the lowest order Nédélec, Raviart
Thomas, and Py spaces (denoted by NDy, RTy, and Py respectively). The Py space
consists of polynomials of at most degree k. Both the Nédélec and Raviart Thomas
spaces consist of vector-valued functions. In 2D, the Nédélec and Raviart Thomas spaces
are rotations of each other. There are known FEM examples, as in section 2.3 of [1],
where the Py approximation converges to the wrong solution, while the Raviart Thomas
approximation converges to the correct solution, thus motivating our use of these spaces.
For more details on the Nédélec and Raviart Thomas spaces, refer to [15,20].

The A, space is constructed from the P, space, the Bj, space from the P; and
the NDy spaces, the C}, space from the RT(; and the P, spaces, and the D, space
from the P space. The main motivation for these spaces is that they satisfy the exact
sequence property and the so-called commuting diagram property. Refer to [17,19] for
more information on the construction and motivation behind this lowest order family of
Fourier finite element spaces which are defined as,

Ap, ={u e H.(grad",Q) :u|lre Ay VT €T},

he = fu € Ho(curl”, Q) :u|lp € By VT €T},
Chy ={u€ H(dv",Q) :ulreCy VT eT,},
Dy, = {u € L}(Q) culp € Dy VT €Ty},

(2.1)

where Ay, B, C;, and D, are lowest order polynomial spaces with the following form,
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where «;, 85,7 € R.

Ay = {ayr? + agrz + asrl,

_—%51 + Bur — %632 — Berz
31:{ B+ Bar + B3z },

i Bsr + Ber? (2.2)
Y1+ Yer
C, = { L1+ a7 }7
| Y4+ Y27
Dy = {a1}.

The weighted Hilbert spaces used in Eq. (2.1) are defined as:

2(0 { ]« rzrdrdz<oo}

(©) =

H,(grad”, Q) = {u € L?(Q) : grad”u € L*(Q) x L*(Q) x L*(Q)},

H,(curl”, Q) = {u € L3(Q) x L3(Q) x L2(Q) : curl”u € L(Q) x L3(Q) x L3(Q)},
H,(div*, Q) = {u € L3(Q) x L2(Q) x L2(Q) : diviu € L2(2)}.

Additionally, the corresponding standard (non-weighted) function spaces are defined as:

2(0 { ]« rz2dA<oo}

(©2) =
HY Q) ={uc L*(Q) : gradu € L*(Q) x L*(Q)},
H(curl, Q) = {u € L*(Q) x L*(Q) : curlu € L*(Q)},
H(div,Q) = {u € L*(Q) x L*(Q) : divu € L*(Q)}.

Throughout the paper, we will use N to denote the number of vertices, N,, for the
number of midpoints, N, for the number of edges, and N, for the number of triangles all
on a particular mesh. We also use v; to denote the i vertex, e; to denote the i** edge,
and T to denote the i" triangle. We use the vertices (z;,,v;,) and (z,,y;,) to denote the
endpoints of edge e;. Lastly, we use 7? to denote the unit outward normal vector to e;
and t1) to denote the unit tangent vector to e;.

We will construct a new first order family of Fourier finite element spaces from the
P, space and the first order spaces ND;, RT;, and Py in a similar way to how [17,19]
construct the lowest order family of spaces. We define the P,, NDy, RTy, and P; spaces
in the following subsections.

2.1 P, Space

The P5 space is defined as

Py = {u cHY Q) tulr =ayr? +agrz + oz +agr +asz+ag VT € Th}.
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For each triangle, there are 6 degrees of freedom for the P, space; 1 for each vertex and
1 for each edge midpoint. Let us use {¢Z}N+Nm to denote the basis of Pj.

The following must hold for each of the degrees of freedom used to construct the basis
for the P, space, where v; represents each vertex and edge midpoint in the mesh,

wi(vy) :{ (1) iz;; . (2.3)

2.2 ND,; Space
The ND; space is defined as

_ _ 2
ND, = {u € H(cwl, Q) : ulr = {giigiiigfg +§Z§+ g:fz} VT e Th}.

For each triangle, there are 8 degrees of freedom for the ND; space; 2 for each edge
and 2 for the triangular element. Let us use {®;}7: "™ to denote the basis of NDj.

The following must hold for each of the degrees of freedom used to construct the basis
for the ND; space, where T} represents each triangle in the mesh and (z;,,v:,), (%i,, ¥i,)
represent the pair of endpoints for each edge in the mesh,

WTETIOR if i = j
/f (t)2 +y'(t) dt{ i

/Of(x(t DN + Y (O dt = {é ?;i
e (2.4)
dA — 1 ifti=
/Tj Lo =0 s
1 ifi=g
/Tj H dA_{O it
where

<:E(t),y(t)> = <xj1’yj1><1 - t) + <xj27yj2>t7 for 0 <t< 17

’t—d t

¥ () = o (t)

i

2.3 RT; Space
The RT; space is defined as

+ 722 4 s 4 97 + srz
RT; =< u € H(curl,Q) : ulr = nr VT eTy,.
: { (emrl Q)2 ulr = 10 gz 436+ 71z + 7527 "

For each triangle, there are 8 degrees of freedom for the RT; space; 2 for each edge
and 2 for the triangular element. Let us use {¢;}:2: " to denote the basis of RT}.
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The following must hold for each of the degrees of freedom used to construct the basis
for the RT; space, where T} represents each triangle in the mesh and (z;,, yi,), (Zi,, ¥ip)
represent the pair of endpoints for each edge in the mesh,

/of(a:(t),y(t)) ()% + (1) dt:{(l) ii;i ’

Alﬂﬂmy@ﬁ f@2+y@2<ﬁ—{é §§Z§’
e (2.5)

0 1 ifi:j

AﬁrL]dA:{oiﬁ%j’

where .
f(:U,y) = ¢Z : ﬁ(Z)a
<:L‘(t),y(t)> = <xj1,yj1><1 - t) + <"L‘j27yj2>t7 for O <t< 17

(1) = (),

(1) = Sult)

2.4 P, Space

The P, space is defined as
Pi={uec H(Q) :ulr =air + asz+as VT €T}

For each triangle, there are 3 degrees of freedom for the Py space; 1 for each vertex.
Let us use {x;}Y, to denote the basis of P;.

The following must hold for each of the degrees of freedom used to construct the basis
for the Py space, where v; represents each vertex in the mesh,

me:{éixig. (2.6)

2.5 New Family of Fourier Finite Element Spaces

We will use the notation Ay,, By,, Ch,, and Dy, to represent the new first order family
of Fourier finite element spaces that we construct in this section. We construct the new
first order family of Fourier finite element spaces in a consistent way to what the author
of [17] did for the lowest order family of Fourier finite element spaces. The lowest order
family satisfies the so-called commuting diagram property (Theorem 4.1 of [17]), and the
first order family will continue to satisfy this property.
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We define the first order family of Fourier finite element spaces as

Ap, ={u € H,(grad",Q) :u|lpr € Ay VT €Ty},
By, = {u € Hy(cwl”,Q) :ulr € By VT €T},
Ch, ={u e H.(div",Q) :ulpeCy VT €T},
Dy, = {u € L}Y(Q) culp € Dy YT €T},

(2.7)

where Ay, By, Cy, and Dy are first order polynomial spaces with the following form
and oy, B, € R.

Ay = {anr® + apr?z + asrz® + aur? + asrz + agr},

-%(517“2 + Borz + PBsr — Brr?z — Psrz® — Pz — i3z — Pia)
By = Bor? + Brorz + B112% + Brar + P13z + Pua )
L(Bar? + Bsrz + Bor + Brr® + Ber?z)

- ) (2.8)
{ YT+ Y22 + Y3+ YTt 4 sz }
CQ - )

%(722 + 3+ Yor? + Y1072 + Y117)
V4 4+ V52 4+ Y6 + Yrrz + Y82

DQ = {0617’ + oz + @3}.

The construction of these spaces is given in more detail in the following subsections.

2.6 Aj,: Weighted Fourier P, Space

There are 6 local degrees of freedom in the Ay, space; 1 for each vertex and 1 for each
edge midpoint. In comparison, there are 3 degrees of freedom for each triangle in the Ay,
space; 1 for each vertex. Let us use {47} to denote the basis of Aj,.

The following must hold for each of the degrees of freedom used to construct the basis
for the Ay, space, where v; represents each vertex and edge midpoint in the mesh,

n. . 1 ifi=g
The basis functions on each triangle have the following form and satisfy Eq. (2.9),

v =

7

(1r? + aorz + azz® + aur + a5z + ag) (2.10)

SI—313313

= —(oqr® + aor’z 4+ agrz® + aur? + asrz + agr),
where 1); represents the basis functions for the Py space.

2.7 By,: Weighted Fourier ND; and P, Space

There are 14 local degrees of freedom in the Bj, space; 2 for each edge, 1 for each
vertex and edge midpoint, and 2 for the triangular element. The lowest order space,
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By, has only 6 local degrees of freedom; 1 for edge and 1 for each vertex. Let us use
{2 NARNANENm [y 2Net2Ne {@?}f;ﬁf’&}fﬁ&%l\[’t) to denote the basis of By, .
The following must hold for each of the degrees of freedom used to construct the basis
for the By, space, where v; represents each vertex and edge midpoint in the mesh, Tj
represents each triangle in the mesh, and (x;,, vi, ), (z4,, ¥i,) represent the pair of endpoints

for each edge in the mesh,

. 1 ifi=
! 1 ifi=j
1(+)2 1(+)2 — -

| 1)@ dt—{ )T (211.2)
! 1 ifi=j

/ 2 / 2 _

[ saoonmme a={ g gl @i
(¢ +¢™ 7 e .
T 1 1 le:j

n |- dA = R 2.11.4

/Tj I ”fﬂ# | {0} { 0 ifi#y ( )
¢l +¢ 7 P .
T 0 1 1f1:j

no |- dA = R 2.11.5

/Tj I ”C% | L} { 0 ifi#y ( )

where

néi (i o
f(l', y) = nz.";,; . t(l),

<I(t),y(t)> = <Ij1’yj1><1 - t) + <xj27yj2>t7 for 0 <t < 1.

We note that Eq. (2.11.1) is the same as what must hold for the basis of P, {wj}jylem.

Therefore, for the subset of basis functions on vertices and midpoints in the By, space,
{\Ijn}N+Nm+(2Ne+2Nt)
J Jj=1+(2Nc+2Ny)

, we let
2 2
Ul =) = air” + agrz + azz” + aur + asz + ag.

Furthermore, to satisfy Eq. (2.11.2 - 2.11.5) for this subset of basis functions, we let
n 1 n 1 2 2
VP = ——U = —— (17" + aorz + azz” + aur + a5z + ag),
" n n

and
\IJ;.LZ =0,

n(f%\II?G)+\I/?9 B 0
0 ~ o)

At this point, we have defined the subset of basis functions, {7} }
they satisfy Eq. (2.11.1 - 2.11.5).

Now for the subset of basis functions on edges and triangles in the By, space, {®”
If we let @} = 0, then we guarantee that the basis functions will satisfy Eq. (2.11.1).

so that

vy
r =
i,

T

N+Np+(2Ne+2Ny)

J=1+(2N,2N,) SO that

}2Ne+2Nt
=1 ’
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Furthermore, with ®7 = 0, then
l%@?: +¢%>} _ l% ”}

We note that Eq. (2.11.2 - 2.11.5) is very similar to what must hold for the basis of
NDy, {®; 222V a5 in Eq. (2.4). Thus, if we let

F i | | P
Fonl o [®]”

then Eq. (2.11.2 - 2.11.5) matches Eq. (2.4). We define

S
n
r
5(517“ + Boz + By — Brrz — Bs2?)
1
5(517” + Barz + B3 — Bar®z — Perz® ),
and ,
i = —0;,
* n
s
= —(Bar + P52 + B + Bor? + Bsrz)
1

= 5(547”2 + Bsrz + Ber + Bar® + Bsr?z),

to satisfy Eq. (2.11.2 - 2.11.5) for the subset of basis functions {®p}2Ne 2V,
The basis functions for the By, space have the following form on each triangle,

[L(B17% + Borz + B3r — BrrPz — Perz?)

O = 0 )

i %(547“2 + Bsrz + Ber + Brr® + Psr?z)
[—L(a1r? + corz 4+ a3z® + aur + asz + ag)
U" = ar? + oz + asz? + aur + asz + ag

0

(2.12)

2.8 C},: Weighted Fourier RT; and P, Space

There are 11 local degrees of freedom in the C},, space. On each triangle in the mesh, there
are 2 basis functions for each edge, 1 for each vertex, and 2 for the triangular element.

The C},, space has 4 degrees of freedom for each triangle; 1 for each edge and 1 for the

}2N6+2Nt+N _ {¢n}2NE+2NiU{ n}N+ (2Ne+2Ne) ¢ 0 denote

triangular element. Let us use {£ J= 14 (2N +2N;)

the basis of C},.
The following must hold for each of the degrees of freedom used to construct the basis
for the C},, space, where T} represents each triangle in the mesh, v; represents each vertex
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in the mesh, and (x;,,v;,), (i, ¥i,) represent the pair of endpoints for each edge in the
mesh,

/Olf@(t),y(t))m dt:{(l) e (2.13.1)
/ 1) s O dt:{(l) o (2.13.2)
Ll a-{s tiz) e

/THm dA:{é i (2.13.4)

S ={g gy @39

where

flz,y) = { } i,

<$(t)7y<t>> - <xj17yj1>(l - t) + <xj2ayj2>t7 for 0 <t < 1.
Notice that Eq. (2.13.1 - 2.13.4) is the same as Eq. (2.5), which details what must hold

for the basis of RTy, {¢;}>N; "2 . Therefore, for the subset of basis functions on edges
and triangles in the Cy, space, {¢7}2VeT2N we let

:-LT = ¢ir =Mr + Y22+ v3 + ’)/77’2 + g7z,
and
Pr = i, = Yar + V52 + Y6 + Y7z + 827
Then, we need to satisfy Eq. (2.13.5) for this subset of basis functions. This is done by
solving the following
iy — i,

r

=0

n 1 9
- ie—;(’YlT+’Y2Z+’Y3+’Y7T +ysr2) =0

n,., 1 9
;9251'9 = ;(%T + Y22 4 3+ YT + Y87T2)

1
o = E(’er + Y22 + 3 + Y7 + Ys72)

Thus, we let ¢Z) = %(’yﬂ’ + Y9z + Y3 + Yrr? 4 Ysr2).

Now, to solve for the subset of basis functions on vertices in the Cj,, space, { X?}N+(2Ne+2Nt)

J=14(2Ne+2N;)?
we begin by letting x7 , x7 = 0 to satisfy Eq. (2.13.1 - 2.13.4). Then, we need to satisfy

Eq. (2.13.5). We notice that by setting xj = 0, then

n n
nX.]O _X]'r _ E n

T y e
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Now the condition looks similar to that of the Py space in Eq. (2.6), so we let

n r 1 2
Xy = X5 = E(alr + agrz + asr),

where x; is the basis function for the P; space. We see that

nxj,  n(;)(oar® + agrz + asr)

r r

1 ifi=j

0 ifi#j "

which satisfies Eq. (2.13.5) in the same way that the basis functions for the P, space do.
The basis functions for the C},, space have the following form on each triangle,

ZOZ1T+0422’+OZ3:{

[+ ez + s + v sz
oF = | Lonr + 12z + s + 9t +er2) |
T+ V52 + Y6 + YTz + 82
L Var T s ! Y6 T 7 8 (2.14)
Xj = |+(oar® + agrz + asr)
0

2.9 D,,: Weighted Fourier P, Space

Similarly to how Dj, was set to be the Py space, we let Dj, be the P; space. We use
{x:}¥, to denote the basis of Dy, as well as Py, where y; has the following form on each
triangle,

Xi = a7 + oz + as. (2.15)

3 Hodge Laplacian Problems on Axisymmetric Domains

The main framework for the Hodge Laplacian with k£ = 0,1, 2, 3 was built in [1]. A similar
framework is established for axisymmetric problems in [17,19] where the abstract Hodge
Laplacian with £ = 0, 1,2, 3 is defined in the following way,

Ly = d* 16, + 6 d”. (3.1)

We define d* as,

d’u = grad”,u,

d'u = curl”_ u,

d*u = div™,u,

d®u =0,
with the operators in (1.3). We define ¢y, as,

(S()u = O,

hu = —diviu,

dou = curlu,

dsu = —grad;; u,

520



with the following operators,

oy
gradjJu= | Zu |,
o,u
B T B n
Uy ;uz - azue
curl’> | up | = 0,u, — Oy u, ,
| U, | | —nu;—‘rue + aruﬁ
Uy
. Ur + NUg
divi? | ug | = Ovuy + — + 0, u,.
UZ

Note that when k = 0, d*~! does not exist and similarly, when k = 3, §;,, does not exist.
Therefore, the affected terms are set equal to zero.
We denote the domain of Lj as D% which is defined by

Di={ueVinVvy | dueVy, d&ueV" '}
The spaces V* and V;* are Hilbert spaces associated with their respective operators,

H,(grad", ),
H,(curl", ),
H,.(div", Q),
L7(9),

Vi = L),
Ve = Hyo(div™, 0)
= {(uy, ug,u,) € L2(Q) x L2(Q) x L2(Q) : div™¥u € L*(Q), (up,u.) -n=0on 'y},
Vi = H,p(curl™, Q)
= {(uy, ug, u,) € L2(Q) x L2(Q) x L2(Q) : curlu € L2(Q) x L2(Q) x L2(),
(up,uy) -t =0and ug =0 on I'y },
Vit = H,p(grad™, Q)
= {(uy,up,u,) € L2(Q) : grad™u € L3(Q) x L3(Q) x L*(Q),u =0 on I';}.

From [19], a solution u € D% that satisfies the Hodge Laplacian problem Lju = f,
must satisfy the following

(dFu, d"v) 120y + (Oku, 650) 1200y = (f,0) 120 Vv € VFNVL.

Let us use (+,-)r2(n) to denote the inner-product associated with L2(9), i.e.,

(u,v)120) = // wordrdz .
Q
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Finally, we can define the weighted mixed formulation of the abstract Hodge Laplacian
with £ = 0,1,2,3. Let 0 = 0,u, then o and u satisfy the following mixed formulation:
Find (o,u) € V¥! x V¥ such that,

(O’, T)LZ(Q) — (dkilT, U)Lg(ﬂ) V1€ Vkil,

— 0,
) (3.2)
(@0, v) 12(0) + (d*u, d*0)r20) = (f:0)12(0), Vv e VE

The discretization of each of the four Hodge Laplacian problems with k£ = 0,1,2,3 are
given in detail in the next section. The problem as written in Eq. (3.2) corresponds to
the following four problems as shown in [19].

k = 0: The Neumann Problem for the Axisymmetric Poisson Equation

—diviigrad’ u = f in ,

grad;,u-7n =0 on ;.

k = 1: The Axisymmetric Vector Laplacian curl curl + grad div

n

—grad;, div, u + curl;curl’, u = f,

- (3.4)

(curl’,u),., - =0, (curl’u)g =0,u,, -7 =0 onI}y.
k = 2: The Axisymmetric Vector Laplacian curl curl + grad div

curl”, curl’Tu — grad;div, u = f,

7 _ (3.5)
Up, -t =0,u9p = 0,div;,u =0 on I'.
k = 3: The Dirichlet Problem for the Axisymmetric Poisson Equation
—div gradSu = in €,
ng TZ f (3.6)

u=0 onlj.

4 Implementation of Finite Element Methods for Hodge Laplacian
Problems

We will present the discrete mixed formulation of each problem in this section and describe
in detail how matrices and vectors are constructed and used in the FEM program for the
k =1 case.

4.1 Discrete Mixed Formulations

k = 0 Discrete Mixed Formulation:

Find uj, € A, such that
(grad;,up, grad, vn)2() = (Fivn)2@) ¥ up € Ap,. (4.1)

k = 1 Discrete Mixed Formulation:
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Find (op,un) € Ap, X By, such that

(Uh,Th)r — (gradeTh, uh)r =0 A Th € Ahl,

(grad;,op, vp)r + (curll up, curl’,vp), = (Fyvp), VY vy € By,.

k = 2 Discrete Mixed Formulation:
Find (op,upn) € By, x Cp, such that

(oh, Th)r — (curll, 7h, up), =0 Y 1, € By,
(curly,on, vp), + (divi up, divy,on), = (Fyop), Y o € Ch,.
k = 3 Discrete Mixed Formulation:
Find (op,up) € C, X Dy, such that

(oh, Th)r — (up, div], 7). = 0 YV 1, € Ch,,
(diV:}ZO'h, Uh)r = (F, Uh)r Yo, € Dhl-

4.2 Implementation of the £k = 1 Case

(4.2)

(4.4)

In this subsection, we focus on the k = 1 case to provide the details of implementation.

The other cases are programmed in a similar way.

Let Ny = N+ N,,, and Ny = 2N, + 2N, + N + N,,,. Then, let us use {@Z)Z"}fvzll to denote
the basis of Ay, as defined in Eq. (2.10) and {Cjn}jvjl to denote the basis of By, as defined

in Eq. (2.12). Then,
Op = Efiﬁaiw )
w, = S0,
and Eq. (4.2) can be rewritten as,
(S, o), = (grad i, B3206;¢F).
(Ei\glaigrad?z zn? CTT)I:L)T + (z;\glbjcurl?z ;L? Curl?zcgz)r = <F> ng)r
The above system of equations can again be rewritten as,
S (W87 = 52, (grady, op, ()b

S (gradi vl G)rai + B2 (cwlL (F cwl. R ) by = (F, GG,

vy

V(o

v

Vi

e {y/' iillv
e {ChIhey.

S {wln}lN:lh

c{¢n %ir

Let & = YN a; and 4 = Ej-v:zlbj. Then, we define the following vectors and matrices

M(i,1) = (7 47, M e RN
B(l,j) = (gradi. ¥y, ¢f')r B € RMxN2)

S(j,m) = (cwrl (7, curl? (1), S € R(N2xNz)
ﬁ(m) = (ﬁ> Con ) F e RW2x1)

Then, the system of equations reduces to
M¢ = B,
BTG+ Si=F.

(4.5)
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By solving, we get
i=(B"M B+ S)'F,
7= M 'Bi.

Note that since M is symmetric positive definite, it is an invertible matrix.

5 Numerical Results

We will present numerical results of the weighted Hodge Laplacian on axisymmetric do-
mains in this section. We will compare the results for the lowest and first order Fourier
FEMs for each of £ = 0,1, 2, 3.

For each problem with a known exact solution, we define our domain as the unit square
in R? such that the vertices of Q are (0,0), (1,0), (1,1), (0, 1).

Note that in the error charts throughout this section, the order of convergence, also
referred to as the rate in this paper, is calculated by taking logg(%) where £ is the
mesh level. Generally, as can be observed in the error charts presented, the rate is a
positive number since the error reduces to zero as the mesh level increases. However, if
the mesh level k4 1 error is larger than the mesh level k error, then the rate is a negative
number. On lower level meshes, like mesh levels 1 and 2, the efficiency of the method may
not yet be demonstrated and negative rates may be observed in these coarse meshes.

5.1 The kE = 0 Case

The problem written below has the same left-hand side as the weighted Hodge Laplacian
with £ = 0, but has a modified right-hand side where Q,, : H,(grad",Q) — A, is a
projection that satisfies

(grad;, Qnu, grad;, vp)12(0) = (grad,,u, grad; vs)r2@) ¥V vn € Ap,. (5.1)

We define v as v = rsin(z).

Table 5.1: k = 0 case with Fourier mode n = 1

Lowest Order First Order
mesh level | [Ju — Qnul|r2(q) | rate || [Ju — Quul[12) | rate
1 8.47e-03 1.64e-03
2 2.76e-03 1.62 2.54e-04 2.69
3 7.52e-04 1.88 3.51e-05 2.86
4 1.99e-04 1.92 4.59e-06 2.93
5 5.10e-05 1.96 5.86e-07 2.97
6 1.29e-05 1.99 7.41e-08 2.98
7 3.23e-06 1.99 9.31e-09 2.99
8 8.09e-07 2.00 1.17e-09 3.00

Table 5.1 shows the L?(Q)-norm of the errors between the exact solution u and the
approximated solution Q),u computed by both the lowest and first order programs.
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Table 5.2: k£ = 0 case approximate solution vector lengths

length of approximate solution vector
mesh level || Lowest Order First Order

1 4 9

2 9 25

3 25 81

4 81 289

5 289 1089

6 1089 4225

7 4225 16641

8 16641 66049

Table 5.2 shows the length of the solution vector Z representing the approximation for
Qnu in each mesh level. Note that in this problem, the length of the solution vector 7 is
the same as the length of the vector b and dimensions of the FEM matrix, S.

First of all, the order of convergence for the first order program is 3, while that of the
lowest order program is 2. As a result, the 5 mesh of the lowest order program and 3
mesh of the first order program have similar L?(Q)-norm error measurements of 5.10e—05
and 3.51e—05. However, the first order program has an FEM matrix of dimension 81 x81
in the 3¢ mesh, whereas the lowest order program has an FEM matrix of dimension
289%289 in the 5™ mesh. This shows that the first order program approximates u with
more accuracy than the lowest order program and while using a much smaller matrix.
Furthermore, comparing the L?())-norm error measurements of the 5% mesh for each
program reveals that the first order program yields an approximation with two digits of
accuracy more than the lowest order program.

5.2 The k =1 Case

For the k = 1 case we define f such that the exact solution (o, u) is

T

1 1
o= —br® +4r® — (22 — 1) (gr?’ — 57’2),
u=[rt*—7r30,(22 — 2)(3r° — 31%)]
Recall from Eq. (3.4) that f = —grad),div,;u + curl curl}, u.

z z

Table 5.3: kK = 1 case with Fourier mode n = 2

Lowest Order First Order

mesh level || ||o — op||12) | 1ate || [|u — usl|r2q) | rate || [lo —onl|r2@) | rate || [|u — unl|r2¢0) | rate
1.15e-01 3.42e-02 2.26e-03 1.64e-02
6.51e-02 0.82 2.55e-02 0.42 6.49e-04 1.80 9.96e-03 0.72
1.95e-02 1.74 1.80e-02 0.50 9.47e-05 2.78 3.19e-03 1.64
5.16e-03 1.92 9.96e-03 0.85 1.24e-05 2.93 8.53e-04 1.90
1.31e-03 1.97 5.12e-03 0.96 1.59e-06 2.97 2.18e-04 1.97
3.30e-04 1.99 2.58e-03 0.99 2.01e-07 2.99 5.50e-05 1.99

DU W N

Table 5.3 depicts the L?(Q2)-norm of the errors between the exact solution (o,u) and
the approximated solution (o, uy) for the k = 1 case with n = 2. The o- and u-errors
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are bounded by a constant multiple of the best approximation error in the corresponding
finite element spaces. The difference in the order of convergences for o and w also follows
by the best approximation error properties of each finite element space.

Table 5.4: k =1 case approximate solution vector lengths

length of solution vector & || length of solution vector «
mesh level || Lowest Order | First Order || Lowest Order | First Order
1 4 9 9 23
2 9 25 25 73
3 25 81 81 257
4 81 289 289 961
5 289 1089 1089 3713
6 1089 4225 4225 14593

Table 5.4 shows the lengths of the solution vectors ¢ and u representing o, and wu; in
each mesh level.

By looking at table 5.3, we can easily see that the first order program has a higher
order of convergence for both parts of the solution. As a result, the L?(2)-norm of the
error for uy, in the 2"! mesh of the first order program and the 4" mesh of the lowest
order program are the both 9.96e—03. Additionally, the L?(Q)-norm of the error for oy,
in the 3'¢ mesh for the first program, 9.47e—05, is smaller than that of the 6' mesh in
the lowest order program, 3.30e—04.

In addition to comparing the errors, we can compare the size of the vectors in each
mesh level relative to the error produced. In the 4" mesh of the first order program the
& vector is 289x1 and the @ vector is 961 x1, while in the 5" mesh of the lowest order
program, they are 289x1 and 1089x 1, respectively. The L?(2)-norm of the errors for oy,
for these meshes are 1.24e—05 for the first order program and 1.31e—03 for the lowest
order program. These numbers indicate that the approximated solution oj from the first
order program is accurate to the 5" decimal place, while the lowest order program only
produces accuracy to the 3'¢ decimal place. This comparison indicates that the first order
program produces far more accurate results, specifically two digits of accuracy more,
with the same & vector length. In fact, if we look at the 2"¢ mesh of the first order
program, where the ¢ vector is 25x1 and the @ vector is 73x1, the L?(Q)-norm of the
error for oy is 6.49e—04. With both vectors more than a tenth of the length smaller
than in the 5* mesh of the lowest order program, the first order program still produces
an approximated solution for ¢ that is accurate to an additional decimal point than the
lowest order program. These results show that the first order program produces more
accurate approximations with less computation and a faster rate of convergence.

5.3 The k = 2 Case

For the k = 2 case we define f such that the exact solution (o, u) is

o= [nr(r—1),-3r* + 2r, O}T,
u=1[0,0,7*(r — 1)}T.
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As defined

in Eq. (3.5), f = curl} cur

z

n* nx 3:..1
1" u — grad) div, u.

Table 5.5: k = 2 case with Fourier mode n = 10

Lowest Order First Order

mesh level || |[0 — ou||12() | 1ate || [|u —upnl|12(q) | 1ate || [|o — onl|r2) | rate || |Ju — up||r2@) | rate
1 9.46e-01 4.72e-02 1.04e-02 2.75e-02
2 6.13e-01 0.63 3.06e-02 0.63 2.52¢-02 -1.27 1.31e-02 1.08
3 3.32e-01 0.88 2.02e-02 0.60 1.37e-02 0.88 3.70e-03 1.82
4 1.72e-01 0.95 1.10e-02 0.88 4.83e-03 1.51 9.74e-04 1.93
5 8.70e-02 0.98 5.64e-03 0.96 1.46e-03 1.73 2.49e-04 1.97
6 4.37e-02 0.99 2.84e-03 0.99 4.27e-04 1.77 6.26e-05 1.99

Table 5.5 shows the L?(2)-norm of the errors for the approximated solution (o, us)
in comparison to the exact solution (o, u) for the k = 2 case with Fourier mode n = 10.

Table 5.6: k = 2 case approximate solution vector lengths

length of solution vector & || length of solution vector «
mesh level || Lowest Order | First Order || Lowest Order | First Order
1 9 23 7 18
2 25 73 24 57
3 81 257 88 201
4 289 961 336 753
5 1089 3713 1312 2913
6 4225 14593 5184 11457

In table 5.6, we show the lengths of the solution vectors ¢ and @ representing o), and
uy, in each mesh level.

By comparing the L(Q)-norm of the errors for uj, between the lowest and first order,
we see that the 3" mesh of the first order program produces a smaller error of 3.70e—03
when compared to 5.64e—03 in 5 mesh of the lowest order program. Additionally, the
L%(Q)-norm of the error for o, is 1.37e—02 for the first order program and 8.70e—02
for the lowest order program. These both indicate that for lower mesh levels, the first
order program produces a smaller error for both parts of the solution. Furthermore, by
comparing the order of convergence for the two parts of the solution in each program,
we see that the first order program has a higher order of convergence, indicating that it
decreases the error between mesh levels at a faster rate than the lowest order program.

We also compare the size of vectors in each mesh level of each program which has a
direct correlation to the number of computations required. In the 4" mesh of the first
order program, the & vector is 961x1 and the @ vector is 753x1 and in the 5" mesh
of the lowest order program they are 1089x1 and 1312x1. By examining the table, we
can see that the smaller vectors in the first order program produce errors with one more
digit of accuracy than those in the lowest order program for both parts of the solution.
Furthermore, with even smaller vectors of lengths 257 and 201 in the 3' mesh, the first
order program still produces errors that are smaller for both parts of the solution when
compared to the 5" mesh of the lowest order program. These results indicate that the first
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order program approximates solutions with more accuracy and efficiency when compared
to the lowest order program.

Table 5.7: k = 2 case with Fourier modes n =1,2,3,4,5

n=1 n=2 n=3 n=4 n=>5

mesh level H(T — O'hHLg(Q) rate HO‘ — O'h|‘L$(Q) rate HO‘ — U}lHLg(Q) rate HO‘ — UhHLg(Q) rate HU — U]LHLg(Q) rate
1 3.66e-02 2.40e-02 1.75e-02 1.45e-02 1.30e-02
2 2.90e-02 0.34 2.08e-02 0.21 1.83e-02 -0.07 1.90e-02 -0.39 2.05e-02 -0.65
3 1.21e-02 1.25 8.88e-03 1.23 7.71e-03 1.25 7.94e-03 1.26 8.77e-03 1.22
4 4.57e-03 1.41 3.33e-03 1.42 2.80e-03 1.46 2.76e-03 1.52 2.97e-03 1.56
5 1.66e-03 1.46 1.19e-03 1.48 9.66e-04 1.53 9.12e-04 1.60 9.47e-04 1.65
6 5.92¢-04 1.49 4.20e-04 1.50 3.30e-04 1.55 2.98e-04 1.62 2.97e-04 1.67

Table 5.7 shows the order of convergence for
from 1 to 5.

o, gradually increasing as n increases

=
T

oy Order of Convergence
EN o
T T
o)

40

50
Fourier mode n

60

90

100

Figure 5.1: Fourier mode n vs. o, order of convergence for the k = 2 case

Figure 5.1 shows the relationship between the n'® Fourier mode and the order of
convergence for o, from mesh level 6 in the given problem. We observe that the order of
convergence approaches 1.8 as n increases from 1 to 20, then begins to fall as n continues
to increase. The convergence analysis related to the Fourier mode n remains as future

work.

For the k£ = 3

5.4 The k = 3 Case

case we define f such that the exact solution (o, u) is

o = [ —sin(r2)(2r — 1), —nsin(72)(r — 1), =7 cos(wz)(r* — r)}T,

u = sin(mwz)(r

2 7).

where f = —div] grad u as defined in Eq. (3.6).
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Table 5.8: k = 3 case with Fourier mode n =5

Lowest Order First Order
mesh level || |0 — o[22 | rate | ||u — unl|r2() | rate || ||o — onl|r2) | rate || [Ju — up||r2¢0) | rate
1 1.16e+00 9.16e-02 8.58e-01 5.77e-02
7.54e-01 0.63 4.99e-02 0.87 5.31e-01 0.69 2.55e-02 1.18
4.37e-01 0.79 2.47e-02 1.02 2.62e-01 1.02 7.80e-03 1.71
2.37e-01 0.88 1.21e-02 1.03 1.30e-01 1.01 2.03e-03 1.94
1.26e-01 0.91 6.01e-03 1.01 6.50e-02 1.00 5.13e-04 1.99
6.65e-02 0.92 3.00e-03 1.00 3.25e-02 1.00 1.28e-04 2.00
3.48e-02 0.93 1.50e-03 1.00 1.62e-02 1.00 3.21e-05 2.00

N O T = W N

The L?(2)-norm of the errors of the approximated solution (o, uy,) compared to the
exact solution (o, u) for the & = 3 case with Fourier mode n = 5 are shown in table 5.8.

Table 5.9: k = 3 case approximate solution vector lengths

length of solution vector & || length of solution vector o
mesh level || Lowest Order | First Order || Lowest Order | First Order
1 7 18 2 4
2 24 57 8 9
3 88 201 32 25
4 336 753 128 81
5 1312 2913 512 289
6 5184 11457 2048 1089
7 20608 45441 8192 4225

Table 5.9 depicts the lengths of the solution vectors & and u representing oj, and wuy,
for the approximated solutions in each mesh.

For this particular example, the order of convergence for the L?(2)-norm of the errors
for o, is 1 for both the lowest and first order program. However, the order of convergence
for the L?(2)-norm of the errors for uy is 1 for the lowest order program and 2 for the
first order program.

If we compare the L2(Q)-norm of the errors for uy in the 5" mesh of the first order
program and the 7" mesh of the lowest order program, we see that the error in the first
order program, 5.13e—04, is smaller than the error in the lowest order program, 1.50e—03.
In the 7*" mesh of the lowest order program, the & vector is 206081 and the @ vector is
8192x 1. In comparison, in the 5** mesh of the first order program the vectors are 2913 x 1
and 289x 1, respectively. The much smaller vectors in the first order program are more
efficient to build and produce smaller errors for the approximation of u. These results
show that the first order program is more efficient and produces better approximations
than the lowest order program.

Finally, we present the results of the £k = 3 case with an unknown exact solution and
f=2.

For this problem, we define an L-shaped domain in R? such that the vertices of {2 are
(0,0),(1,0),(1,0.5),(0.5,0.5), (0.5,1), (0, 1).
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Table 5.10: k = 3 case with no known exact solution and n = 3

mesh level m || [[tp—1 — um||22(0) | Tate || [um—1 — Un|ui@) | rate
2 3.81e-03 4.97e-02
3 1.63e-03 1.23 4.22e-02 0.24
4 5.20e-04 1.65 2.62e-02 0.69
5) 1.46e-04 1.84 1.44e-02 0.86
6 3.93e-05 1.89 7.68e-03 0.91
7 1.06e-05 1.89 4.09e-03 0.91

Table 5.10 contains the L2()-norm and the H!(€2)-norm of the errors of the approx-
imated solution u,,_; compared to the approximated solution u,, in the next mesh level,

where u,,, denotes u;, in the m

th mesh level.

Uy Order of Convergence
~
T

Figure 5.2: Fourier mode n vs. uy order of convergence for the k = 3 case

20 30 40

50

60
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70 80 90

100

Figure 5.2 shows the relationship between the n'® Fourier mode and the order of
convergence for o, from mesh level 7 in the given problem.

6 Concluding Remarks

This research studied higher order Fourier FEMs for Hodge Laplacian problems on ax-
isymmetric domains using a new family of Fourier finite element spaces. The new family
of Fourier finite element spaces is extended from [17] and is constructed with higher order
spaces. Through numerical examples, we have shown that higher order programs yield
better results with less computation and more efficiency when compared to the lowest

order programs.

530



1]

2]
3]
4]
[5]
[6]

17l

18]

9]
[10]
11
12]
13]
14]
15]
16]
17]
18]
19]

[20]

Bibliography

ArNoOLD, D. N., FALK, R. S., AND WINTHER, R. Finite element exterior calculus: from Hodge
theory to numerical stability. Bulletin of the American Mathematical Society 47, 2 (Jan 2010),
281-354.

BERNARDI, C., DAUGE, M., AND MADAY, Y. Spectral Methods for Azisymmetric Domains, vol. 3.
1999.

BERTRAM, J. M., YANG, D., CONVERSE, M. C., ET AL. Antenna design for microwave hepatic
ablation using an axisymmetric electromagnetic model. BioMed Eng OnLine 5, 15 (2006).

BLAHETA, R., HAsAL, M., DOMESOVA, S., AND BERES, M. RT1-code: A mixed RTy-Py Raviart-
Thomas finite element implementation. 10.

BRENNER, S., AND ScOTT, R. The Mathematical Theory of Finite Element Methods. Springer-
Verlag New York, 2008.

CIARLET, P. G. The Finite Element Method for Elliptic Problems. North-Holland Publishing
Company, Amsterdam, 1978.

CIARLET, P. J., JUNG, B., KADDOURI, S., LABRUNIE, S., AND ZOU, J. The Fourier singular

complement method for the Poisson problem. Part I: Prismatic domains. Numer. Math. 101, 3
(2005), 423-450.

CIARLET, P. J., JunG, B., KADDOURI, S., LABRUNIE, S., AND ZoU, J. The Fourier singular

complement method for the Poisson problem. Part II: Axisymmetric domains. Numer. Math. 102,
4 (2006), 583-610.

CoPELAND, D. M., GOPALAKRISHNAN, J., AND OH, M. Multigrid in a weighted space arising
from axisymmetric electromagnetics. Math. Comp. 79 (2010), 2033—-2058.

CoOPELAND, D. M., GOPALAKRISHNAN, J., AND PASCIAK, J. E. A mixed method for axisymmetric
div-curl systems. Math. Comp. 77 (2008), 1941-1965.

ErvIN, V. Computational bases for RT}; and BDMj, on triangles. Computers and Mathematics with
Applications 64, 8 (Oct 2012), 2765-2774.

GOPALAKRISHNAN, J., AND OH, M. Commuting smoothed projectors in weighted norms with an
application to axisymmetric Maxwell equations. J. Sci. Comput. 51 (2012), 394-420.

LAcosTE, P. Solution of Maxwell equation in axisymmetric geometry by Fourier series decomposi-
tion and by use of H(rot) conforming finite element. Numer. Math. 84 (2000), 577-609.

LynEss, J. N., AND CooLs, R. A Survey of Numerical Cubature over Triangles, 1994.
NEDELEC, J. Mixed Finite Elements in R3. Numer. Math. 35 (1980), 315-341.

NkEMZI, B. Optimal convergence recovery for the fourier-finite-element approximation of maxwell’s
equations in nonsmooth axisymmetric domains. Applied Numerical Mathematics 57, 9 (2007),
989-1007.

OH, M. de Rham complexes arising from Fourier finite element methods in axisymmetric domains.
Comput. Math. Appl., 70 (2015), 2063-2073.

OH, M. Multigrid in H(div) on axisymmetric domains. Journal of Mathematical Analysis and
Applications 490, 1 (Oct 2020), 124209.

OH, M. The Hodge Laplacian on axisymmetric domains and its discretization. IMA Journal of
Numerical Analysis (2020).

RaAvVIART, P. A., AND THOMAS, J. M. A mixed finite element method for 2-nd order elliptic
problems. In Mathematical Aspects of Finite Element Methods (1977), Springer, Berlin, p. 292-315.

531





