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Subcycle Waveform Modeling of Traffic
Intersections Using Recurrent
Attention Networks

Yashaswi Karnati

Abstract— Traffic flow dynamics in the vicinity of urban
arterial intersections is a complex and nonlinear phenomenon,
influenced by factors such as signal timing plan, road geometry,
driver behaviors, etc. Predicting such flow dynamics is an
important task for urban traffic signal control and planning.
Current methods use microscopic simulation for studying the
impact of a large number of signal timing plans at each of the
intersections. A major drawback of microscopic simulation is that
they are they are based on source destination traffic generation
models and cannot incorporate the high resolution loop detector
data such as that are provided by automated traffic signal
performance measures (ATSPM) based systems. The arrival (or
departure) information of each vehicle on a detector can be
thought of as a time series waveform. Given the high granularity
of ATSPM data, this waveform can be used to several interesting
analyses. The waveforms can be used to derive information
on platoon dispersion as vehicles progress across the corridor.
Also, these waveforms can be modelled to understand how the
vehicles progress across the corridor for a variety of signal
timing plans. In this paper, we show that deep neural networks
based machine learning systems can be used to effectively
leverage the waveforms collected at multiple sensors (stopbar
and advanced) on the intersection to model the traffic dynamics
both at an intersection and across intersections. We show that
modelling of these waveforms can be useful to understand traffic
flow dynamics under different signal timing plans and can be
potentially integrated into signal timing optimization software.
Further, these methods are three to four orders of magnitudes
faster than using microscopic simulations.

Index Terms— Traffic, intersection, waveform, neural net-
works, deep learning, feed-forward neural networks, recurrent
neural networks, teacher forcing, signal timing optimization.

I. INTRODUCTION

ITIGATING traffic congestion and improving safety are

the important cornerstones of transportation for smart
cities. Despite significant advances in vehicle technology,
traffic engineering practices, and analytics-based solutions,
traffic congestion is still a major problem. Traffic congestion
resulted in nearly $305 billion in congestion costs and caused
Americans to lose 97 hours per person in congestion.
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Reducing congestion requires coordinating the signal timing
plans of each intersection on a corridor or network so that
most of the vehicles do not have to wait at traffic intersections
(effectively by changing the cycle length, splits and offsets).
This is a complex problem as changing the signal timing on
one intersection affects the traffic on the adjacent intersections.
Thus, it requires choosing the appropriate combination of
signal timing plans for each intersection on a corridor or a
network. Microscopic simulations are useful in understand-
ing the correlated impact of signal timing plan at multiple
intersections on the overall performance of traffic movement.
In particular, they are able to model the output traffic patterns
(along all outbound lanes) of an intersection based on the
traffic patterns of the input lanes. Additionally, they are able
to capture the dispersion of platoons when the vehicles move
from one intersection to another. Both of these are important
requirements for corridor or network optimization.

A major drawback of microscopic simulation is that they are
they are based on source destination traffic generation mod-
els and cannot incorporate the high resolution loop detector
data such as that are provided by automated traffic signal
performance measures (ATSPM) [9] based systems. Unlike
origin-destination models these systems can provide traffic
arrivals and departures at stop bar detectors (and in many
cases advanced detectors) at a decisecond level (and are
effectively much more precise than the origin-destination
models in capturing the traffic variations throughout the day).
Although, some simulators allow this for a single intersection,
they cannot achieve this for corridor and network simulation
where neighboring intersections have input-output relation-
ships. Additionally, microscopic simulation, by their nature,
are sequential in a nature and the time requirements are
proportional to the number of vehicles in the system and are
relatively slow.

The arrival (or departure) information of each vehicle on
a detector can be thought of as a time series waveform
(see Figure 1). Given the high granularity of ATSPM data,
this waveform can be used to derive information about
platoons (multiple vehicles passing without significant dis-
tance) or gaps (no vehicles passing through for a dura-
tion). In this paper, we show that deep neural networks
based machine learning systems can be used to effectively
leverage the waveforms collected at multiple sensors (stop-
bar and advanced) on the intersection to model the traffic
dynamics both at an intersection and across intersections.
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In particular, using these waveforms at stopbar and advanced
detectors:

1) We develop models to both impute the traffic waveform
from each inbound direction to an intersection as well
as the traffic waveform to each outbound direction from
the intersection conditional on the signal timing plan.
The input waveforms in all the directions can be used
to understand if the current signal timing is near optimal.
The models can be used to model the vehicle progression
to downstream intersections and estimate performance
measures for different signal timing plans. However,
since they use data that is directly measured based on
the traffic sensors in the network, they are a much more
accurate indicator of traffic movement than imputed
origin destination pairs.

2) We develop models that can predict the dispersion along
a road segment (exit from one intersection to entrance
of the neighboring intersections) more accurately than
the Robertson model [15] that is traditionally used
(cf. Section VII for more details on other modeks).
This is because our models, like microscopic simulation
models, can effectively capture non-uniform velocities
of vehicles as well variation in driver behaviors.

3) We develop models that can predict the impact of signal
timing of the downstream intersection on platoons as
they arrive close to a downstream intersection. The
output waveform from a given intersection along with
the output waveform on the downstream also be used
to understand the leakage or addition of traffic during a
short time period.

Thus, our models can capture both the local (i.e., near an
intersection) traffic flow dynamics as well as coupled traffic
flow dynamics (i.e., between two consecutive intersections)
and are significant extensions of the prior work on platoon
dispersion models (cf. Section VII). We develop and provide
multi-scale error measures to demonstrate that our predictions
are accurate and comparable to microscopic simulation.

Our models use novel deep learning based architecture with
attention layers [4] and teacher forcing [21] that is specifically
designed to model and predict the behavior of input and output
behavior at an intersection using advance and stop bar high
resolution loop detector data and signal timing information.
The use of our GPU implementation of deep neural networks
can generate accurate predictions at three to four orders of
magnitude faster than using microscopic simulations for this
purpose.

Thus our methods are novel and leverage both the recent
advent of automated traffic signal performance measures
(ATSPM) [9] systems provide this information and signal
timing information at a decisecond level and the availability
of cheap GPU-based computing and deep neural network
algorithms to model traffic behavior. Based on our detailed
literature survey, we have not found any related work in
predicting outflow waveforms or imputing input waveforms at
a subcycle level using neural networks or related techniques.
Most of the previous work is in volume prediction or pre-
dicting flows at downstream intersections. We outline this in
Section VII.
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Adaptive traffic signal control software’s used in practice
(TRANSYT-7F, SCOQT etc.,) leverages Robertson platoon
dispersion models to predict vehicle arrival rate at downstream
intersection and use that to calculate optimal signal timing
parameters like cycle length, offset, green splits etc. The
effectiveness of these tools depends on platoon dispersion
models, how well they predict the progression of vehicles
downstream which our models can provide better accuracy.
Thus, our methods can be integrated into other signal tim-
ing optimization frameworks, such as those based on linear
models and reinforcement learning for corridor and network
coordination optimization.

The rest of the paper is outlined as follows. Section VII
presents the related work of different techniques used for
traffic state estimation. In Section II, we briefly introduce
several common terms used in deep learning. In Section III,
we present different models that we develop to relate
various observable and unobservable quantities. To  test
our approaches using realistic waveforms, we input real-
world recorded traffic flow data to a microscopic simu-
lator and leverage parallel computing to generate a large
(40 million cycles) dataset at 5-second resolution. Section IV
describes how we preprocess raw data and generate synthetic
datasets from real-world controller logs data using SUMO.
In Section V, we describe the architecture of the dual attention
encoder-decoder model. Experimental results are provided in
Section VI, and conclusions in Section VIII.

II. PRELIMINARIES
A. Deep Learning

Artificial neural networks are a class of machine learning
model inspired by biological neural networks. They consist
of systems of interconnected units, with each unit (called
“neurons”) taking multiple inputs and emitting a single output,
based on an activation function. Neurons are connected to
each other in layers and are trained on a dataset via the back-
propagation rule.

With the advent of powerful computing technologies such
as graphics processing units (GPUs) and tensor processing
units (TPUs) and economical large cloud storage technolo-
gies, large multilayer neural networks (with thousands to
millions of tunable parameters) are being trained on equally
large datasets running into 100s of gigabytes. This para-
digm is referred to as “deep learning.” Deep learning can
be understood as a representation-learning method that con-
sists of neural networks that learn a hierarchy of repre-
sentations, ranging from simple features to more abstract
ones.

B. Gated Recurrent Units

A recurrent neural network (RNN) [5] is a class of artificial
neural network, which is especially well-suited for modeling
temporal sequences. These networks process input sequences
within the context of their internal hidden state (“memory”)
in order to arrive at the output. The internal hidden state is an
abstract representation of previously seen inputs. Thus, they
are capable of dynamic contextual behavior.
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Generic single-lane intersection. In real world, the vehicle waveforms is generally observed at stop bar, advance detectors. We also introduce a set

of virtual detectors - exit, inflow, outflow detectors. These are the locations where the waveforms are imputed so that we can model the traffic flow dynamics

between any pair of intersections.

Our task at hand involves processing several temporal sensor
streams (of detector and signal state readings), and thus, GRU
(a version of RNN) [6] is an appropriate model to use.

Teacher forcing [21] is a common training technique for
training RNNs (and thus GRUs). In teacher forcing, the actual
answer of the previous time step is provided to the RNN while
it predicts the current output. An error in the previous output
could cause a large error in the current output, which in turn
would accumulate over time steps. Teacher forcing remedies
this by penalizing the network for the wrong answer at that
time step, but doesn’t allow the network to commit a series
of errors based on the initial error. This technique has been
shown to lead to faster convergence. Given our large dataset
and models, we employ this technique to speed up model
training.

C. Attention Mechanism

Attention mechanism [4] is a deep learning technique for
effectively dealing with long-range dependencies in neural
models. The broad idea is to create linkages between the
current context vector (which, in the case of GRUs, would
include the last hidden state) and the entire source input (or its
abstract representation). Thus, the context field of the model
is enhanced and is no longer prone to forget events in the
distant past. Attention mechanism is especially useful for our
task because the discharge profile at one approach is correlated
in time to what happened in previous cycles.

II1. PROPOSED MODELS

Vehicle loop detectors that have traditionally been deployed
at intersections to detect the passage of vehicles can measure
the absence or presence of vehicles passing above them.
The arrival (or departure) information of each vehicle on a
detector can be thought of as a time series waveform (see
Figure 1). This waveform can be used to provide information
about platoons (multiple vehicles passing without significant
distance) or gaps (no vehicles passing through for a duration.
These waveforms are only available at advance detectors and
stop bar detectors, as there are typically no detectors available
at inputs and outputs (some U.S. states have these detectors,
but most do not).

To model the progression of vehicles between intersections,
in terms of input and output waveforms, we introduce a set of

Fig. 2. Diagram showing input, output relationship’s for different models
as proposed in Section III. We decompose the modelling to capture both
the local (i.e., near an intersection) traffic flow dynamics as well as coupled
traffic flow dynamics (i.e., between two consecutive intersections). M,i; - To
model the waveform at exit detectors. M;, - To reconstruct inflow waveform.
Mgown - To predict progression of exit waveform towards downstream inter-
section. Mg, - To impute waveform at stopbar, advance detectors.

virtual detectors placed at an intersection (Figure 1) - Exit
detector, Inflow detector, Outflow detector. The underlying
idea is that we train the neural network models based on
simulated data to be able to impute waveforms at these virtual
detectors using data observed at stop bar and advance detec-
tors. Imputing waveforms at these virtual detectors helps us
model the traffic flow dynamics between a pair of intersections
independent of distance between them and also understand the
progression of vehicles for a variety of signal timing plans
(the waveforms observed at stop bar and advance detectors
is correlated with signal timing ). Our focus is on making
predictions of these waveforms at the granularity of approx-
imately 5-10 seconds (generally, this corresponds to a range
of 0-3 vehicles). Our experimental results show that we can
achieve this with a high level of accuracy.

In this work we propose non-parametric neural networks to
model the progression of vehicles between signalized inter-
sections. We decompose the modelling of platoon dispersion
between intersections using 4 different models (Figure 2)
based on where the observations and collected and where
predictions are made. Description of each these models is
presented in the following subsections. Figure 2 shows input-
output relationships for different models. Given waveforms at
stop bar and advance detectors and signal timing information,
the models should be able to predict waveforms at the exit
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of the intersection and the waveform at a certain distance
downstream (outflow) and to reconstruct inflow at a certain
distance upstream. The description for each of the models
follows.

A. Stop-Bar-to-Exit Waveform Prediction Model (Meyit)

This model predicts the waveform that exits the intersection,
given (1) the waveforms at stop bar detectors (S) and advance
detectors (A) along all the directions, (2) the signal timing
plan of the intersection and (3) turning movement counts.
This model captures the local effects at the intersection.
In practice, intersections do not always have an exit detector,
but nevertheless, we instantiate one in our simulator in order
to gain an in-depth understanding of flow dynamics local to
an intersection.

B. Inflow Waveform Reconstruction Model (M)

This model reconstructs the unperturbed inflow waveform
at an intersection, given the observed waveforms at the inter-
section’s stop bar and advance detectors and the signal timing
plan. The inflow waveform can be thought of as the incoming
waveform that has exited the upstream intersection and is still
sufficiently far away from the intersection of interest and thus
is not yet affected by the queues and signal timing plan of the
intersection of interest.

An important application for reconstructing the inflow is to
potentially use it for signal timing optimization. The observed
stop bar and advance detector waveforms are heavily corre-
lated with the observed signal timing plan and heavily affected
by the queue behavior and thus cannot be directly used for
signal timing optimization.

C. Exit-to-Downstream Waveform Prediction Model (Mgo1n)

This model predicts the modification of the exited waveform
as it travels downstream to the next intersection. Given an
exit waveform, the model aims to predict the waveform at a
certain distance downstream from the intersection (not affected
by downstream signal state). This waveform is treated as the
inflow waveform to the downstream intersection.

Instead of predicting the waveform at downstream advance
and stop bar detectors, we employ a two-step strategy: use
the exit waveform to predict the downstream inflow waveform
and use the predicted inflow waveform to predict waveforms
at downstream advance and stop bar detectors. In this way,
we can model the interactions between any pair of intersec-
tions independent of the distance between them.

D. Stop-Bar-Advance Waveform Model (M)

This model predicts the waveforms at stop bar and advance
detectors, given the unperturbed inflow waveform and the
signal timing plan. We can also use this model to verify that
the inflow reconstruction done by M;,, is of sufficient quality
to be used to replicate the same observed stop bar and advance
waveforms.

The waveforms are represented as 1-D vectors, each with
T components. Here T refers to the length of time a particular
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TABLE I

TABLE DESCRIBING NOTATIONS OF DIFFERENT VARIABLES
USED IN THE MODELLING

Name Description Agg. level  Dimension Type
Waveform at
S stopbar detector 5 sec 1x150 Integer (0-5)
Waveform at
A advance detector 5 sec 1x150 Integer (0-5)
Signal timing .
SIG information 5 sec 8x150 Binary (0,1)
T™MC T““C‘g:ﬁl TOYEENt 750 sec 1x12 Integer
Inflow waveform
at distance d
INF, 5 sec 1x150 Integer (0-5)
upstream
the intersection
Waveform at
EXIT virtual exit 5 sec 1x150 Integer (0-5)
detector
Outflow waveform
ouT, ago‘j;it;rr‘g;f 5 sec 1x150  Integer (0-5)
the intersection
TABLE II

TABLE DESCRIBING INPUT AND OUTPUT VARIABLES FOR
DIFFERENT MODELS AS SHOWN IN FIGURE 2

Name Description Inputs Outputs

To predict
waveform at
exit detector

Mezit S, A, SIG, TMC  OUT,

To reconstruct

Min inflow waveform S, A, SIG INFq

To predict
progression of exit
waveform towards

downstream intersection

Mdown OUTO, d OUTd

To impute
waveform at
stopbar, advance
detectors

Msa INF,, SIG S, A

sensor’s data is being considered, with each component being
aggregated at a S5-second level. In our work, T = 150,
i.e., each data vector corresponds to 750 seconds of data
(roughly 6-7 cycles), aggregated at the 5-second level. The
time gap between two vehicles (headway) near an intersection
is usually 2 seconds, which leads to an average of 2-3 vehicles
per 5-second interval. We find this level of aggregation suffi-
ciently expressive to capture platoon dynamics and at the same
time not overly compute-intensive to train our models. Signal
timing information is encoded using eight vectors, each with
T components, all either 1s or Os, 1 indicating that a particular
direction is green at that time interval (a typical intersection
has eight phases or directions of vehicular movement).

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:34:05 UTC from IEEE Xplore. Restrictions apply.



2542

TABLE III

TABLE SHOWING SAMPLE OF RAW EVENT LOGS FROM SIGNAL
CONTROLLERS. MOST MODERN CONTROLLERS GENERATE
THESE DATA AT A FREQUENCY OF 10 Hz

SignallD Timestamp EventCode | EventParam
1490 | 2018-08-01 00:00:00.000100 82 3
1490 | 2018-08-01 00:00:00.000300 82 8
1490 | 2018-08-01 00:00:00.000300 0 2
1490 | 2018-08-01 00:00:00.000300 0 6
1490 | 2018-08-01 00:00:00.000300 46 1
1490 | 2018-08-01 00:00:00.000300 46 2
1490 | 2018-08-01 00:00:00.000300 46 3

As mentioned earlier, we use simulated data for training
neural network models to predict these waveforms at a sub-
cycle level. The main reason for using simulated data is that
many unobserved quantities like queue lengths or waveforms
at exit detectors or outflow detectors can be captured.

IV. DATA GENERATION

Induction loop detectors collect high resolution data that
provide information such as whether a vehicle passed over
them or not, intersection behavior, and timing pattern.

Table III shows a sample of high resolution data. The data
consist of the following attributes:

1) SignalID: Intersection identifier
2) Timestamp: Time at which the event was logged
(decisecond resolution)
3) EventCode: What event at the signal was captured
4) EventParam: Value of the event or attribute at that
time-stamp.
These data also come with metadata which describe the
different event codes and event parameters; for example,
event code 81 indicates a vehicle departure, and event
code 2 indicates start of green phase. An event parameter
identifies the particular detector channel or phase in which the
event was captured. The dataset we used consists of controller
log data from 329 signalized intersections in Seminole County,
Greater Orlando Metropolitan Area.

In order to model an intersection, we need a large dataset to
train our models. While several real-world datasets exist [19],
they are of limited utility for our task because they do not
model intersections under diverse traffic and signal timing
conditions. In the real-world, it is highly unlikely a traffic
authority would implement undesirable signal timing schemes
for gathering data because that would have adverse real-world
consequences. On the other hand, microscopic simulators offer
us the flexibility of implementing undesirable signal timing
plans. They also implement reasonable approximations of real-
world vehicle behaviors. However, building simulation sce-
narios (maps, vehicle flows etc.) and running them is often a
time-consuming process. We use Simulator of Urban Mobility
(SUMO), an open source microscopic traffic simulator [12].
Instead of using SUMO’s built-in modules for programming
flows either using random flows or from origin-destination
(OD) matrices, we use waveforms from the real world for
running the simulations.
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TABLE IV

TABLE SHOWING MINIMUM AND MAXIMUM GREEN TIMES FOR
ACTUATED SIGNAL TIMING PLAN PHASES USED IN
OUR SIMULATIONS

Minimum Green Maximum Green

Traffic Movement Time (seconds) Time (seconds)

Corridor Through and Right 20 70
Side Through and Right 10 30
Corridor Left 10 30
Side Left 10 30

We use a three-stage approach for generating simulation
data:

1) Generate a realistic intersection configuration in SUMO
2) Derive traffic waveforms from real data
3) Run parallel simulations with adaptive control using
waveforms from 2 and intersection configuration in 1.
These are described in the following subsections.

A. Intersection Configuration

Our simulation consists of a one-intersection scenario with
four approaches based on standard NEMA (National Electrical
Manufacturing Association) phasing [1]. It consists of four
through and right movements and four left-turn movements,
one of each for the four approaches. Most urban arterials
have an exclusive left-turn buffer at each approach to cater to
left-turning traffic. This prevents the left-turning traffic from
blocking the through and right traffic until the buffer is filled.

Each approach is initially a single lane which fans out into
a through-lane and an exclusive left-turn buffer. The left-turn
buffer extends 60 meters and can hold 6-7 vehicles. There
are two stop bar detectors per approach, one for through and
right traffic and one for left-turn lanes. There is one advance
detector 90 meters from the intersection, just beyond the end
of the left-turn buffer. Multiple lanes for each movement
group can be handled by (a) aggregating detector counts per
movement group and (b) training multiple models, one for
each intersection geometry of interest. In this study, we only
focus on the most general and minimal configuration.

In addition, we also place additional detectors at 500 meters
upstream from the intersection to capture the unperturbed
incoming inflow waveform. We also place additional exit
detectors to capture the exit waveform as it exits the inter-
section, along outbound approaches.

In order to gather downstream data, we place gating traffic
signals that mimic a downstream intersection 800 meters
from the main intersection. They are simply one-phase signals
without any side streets. There are four such gating signals,
one along each of the four outbound directions.

The signal timing plan for the intersection is an actuated sig-
nal timing plan with minimum and maximum times, as shown
in Table IV. The maximum is chosen with consideration of
acceptable pedestrian wait times. The gating signals have a
single phase with red time of 60 seconds and a green time
of 55 seconds, interleaved with a yellow time of 5 seconds,
with variable offsets with regard to the main intersection.
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TABLE V

TABLE SHOWING FLOW VOLUME BOUNDS. GIVEN THAT WE INTEND TO
MODEL ARTERIAL STREETS, WE ENSURE THE BULK OF THE TRAFFIC
FLOW IS ALONG THE CORRIDOR. WE RANDOMLY CHOOSE
TRAFFIC FLOW VOLUMES THAT ARE SPLIT BETWEEN
THE MINIMUM AND MAXIMUM BOUNDS

Lower Main
Flow Volume
Partition Bound (%)

Upper Main
Flow Volume

Traffic Movement Partition Bound (%)

Corridor Through and Right  40.00 72.72
Side Through and Right 20.00 9.09
Corridor Left 20.00 9.09
Side Left 20.00 9.09

Given that we intend to model arterial streets, we ensure
the bulk of the traffic flow is along the corridor. We randomly
choose traffic flow volumes that are split between the mini-
mum and maximum bounds as shown in Table V.

Thus, the main flow along the corridor through and right
direction will be between two and eight times the flow along
the other streets. These ratios are based on the observed traffic
flows in the recorded Orlando dataset.

B. Input Traffic Generation

We use advance detector logs from the Orlando dataset to
generate vehicle flows at a 1-second resolution. We randomly
sample flow patterns observed at these two detectors for the
straight and side streets, and ensure they fall between the
above-mentioned volume flow constraints. We program these
arrival patterns in the SUMO [12] microscopic simulator.
These patterns are further shaped by the gating signals at the
start of the four incoming approaches. This ensures variable
platooning of volumes and inflow and outflow distributions
based on real-world data.

C. Parallel Dataset Generation

The data generation process makes use of a multiprocess-
ing environment. At any instant, several simulations will be
running in parallel as each thread runs a simulation, processes
the logs, and dumps the dataset into the file system.

Each simulation generates logs which have information of
every time step of the simulation. These logs are processed,
and the following information is stored:

o Waveforms at all the detectors for all the approaches

o Signal timing information

o Queue length for all the approaches

o Turn movement counts for all the possible movements

Within a simulation, after an initial simulation warm-
up of 600 seconds, logs are extracted in windows of
1,000 seconds. These usually contain 8-9 complete cycles
on average. Thus, each data exemplar consists of a set of
waveforms of different signals and detectors, queue lengths,
and turn movement counts for a window of 1,000 seconds
(T = 200), aggregated at 5-second resolution.

A large dataset of 5 million such exemplars is thus gen-
erated, accounting for 40 million traffic cycles of simulation.
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The dataset is then split into training sets and testing sets in
the ratio of 70:30.

The creation of such a vast dataset involved considerable
engineering effort. The entire pipeline was implemented in
the Python programming language. A multiprocessing library
was used to run up to 60 parallel instances of SUMO and
preprocess output XML logs in batches. Numpy and Dask
were then used to create vectors for training and testing. These
vectors were stored in HDF5 format using the HSPY library.

Implementation, training, and evaluation of the deep learn-
ing models was done using the PyTorch [14] library. The
University of Florida’s HiPerGator supercomputing resources
were used to train and test multiple models in parallel.

V. PROPOSED NEURAL NETWORK ARCHITECTURES

In this section, we describe the architecture of the Dual
Attention Encoder-Decoder model. Figure 4 shows the pro-
posed architecture. The model has four components: encoder,
decoder, temporal attention module, and phase attention mod-
ule. The encoder takes the waveforms at all the stop bar and
advance detectors and generates a hidden representation. The
decoder outputs the value of the output waveform at each time
step. The attention modules help the network to concentrate
on relevant temporal and spatial information. The architecture
is described below.

The encoder is a GRU layer with 50 hidden units; input
to it is of the size (batch_size x no._of_input_variables
x no._of _time_intervals). In the forward pass, the last hidden
state of the encoder(batch_size x 50) along with all hidden
states (batch_size x 50 x no_time_intervals) is returned. The
last hidden state of the encoder is used to initialize the initial
hidden state of decoder. If only the last hidden state is passed
through the decoder, it has the burden of representing the
waveform across all the time points.

Attention modules allow the model to focus on specific
parts of the encoder outputs based on the decoder’s out-
puts. The temporal attention module is a feed-forward layer
using the current decoder output and hidden state as inputs,
and the output is a vector, (batch_size x no._of _time_intervals),
which comprises attention scores representing the importance
of each hidden state of the encoder for the current prediction.
The phase attention module is another feed-forward network
that uses the signal timing vector and decoder hidden state
as inputs to generate attention scores (batch_size x 50). The
phase attention score represents the importance given to each
of the hidden units. These attention scores are multiplied by
encoder outputs to create a weighted combination and then
passed through the decoder.

The decoder is also a GRU layer, taking the weighted com-
bination from both the attention modules as input (batch_size x
no._of _time_intervals+50 ). The decoder outputs a prediction
for the next time point and updates its hidden state. This
predicted value is used by the attention module to generate
attention scores for the next time step.

This architecture was inspired by recent advances in
sequence-to-sequence models, namely transformer networks.
Transformer networks also broadly use the encoder-decoder
paradigm with attention. However, they trade RNN-based
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decoder is also an RNN that outputs the value of the output waveform at each time step, the input being encoder’s output for the current timestep multiplied
by the attention scores. Attention modules allow the model to focus on specific parts of the encoder outputs for prediction at current timestep. The temporal
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to each of the hidden units.

(GRU-based) encoders and decoders for convolutional
neural networks (feed-forward networks) to enable easy
parallelization. Transformer networks are uniquely suited to
natural language processing tasks, modeling long-range sparse
dependencies such as correct subject-pronoun matching. For
example, consider the sentences “The cat is sleeping on the
mat. It has eaten its food.” The word “it” in the second
sentence depends squarely on “cat” in the first sentence, but
not on “mat,” which directly precedes it. However, in traffic
waveform estimation, it is not the case that an event (such
as a sudden inflow spike) occurring several cycles ago will
suddenly affect the present cycle without having affected the
intervening cycles. The congestion caused by the spike will
dissipate over several successive cycles, and its effect will be
contained in those successive cycles. Given that traffic state
change is a gradual process, RNN architectures are well-suited
for such situations, as they rely on the preceding hidden state
for predicting the current state.

We compare the performance of the proposed architecture
with feed-forward networks in section VI. The feed-forward
network we use is a standard fully connected network with
four hidden layers with 72, 56, 56, and 72 hidden units.
We show that the proposed architecture has a much better
prediction accuracy with 70% fewer parameters.

V1. EXPERIMENTAL RESULTS

In this section, we present the experimental results for
different models proposed in section III and compare the

— actual
- predicted
5sec

/\ V"L,A.c\f 'RVA'HV\'\_U( C\\,QFVAJWL,A/\N["A\J\,W-JA“A"ADLAAJM‘\#
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N__AN A AN AP
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Fig. 5. Plot showing actual vs. predicted exit waveform at different
resolutions. The key observation here is that even though the actual vs.
predicted waveforms may not exactly match at a 5-s-bucket resolution, if we
aggregate them to higher resolution (10, 15, 25, 50 s, etc.), the actual and
predicted waveforms almost match.

50 sec

performance of the proposed architecture with standard feed-
forward networks.

Even though the models are trained with mean square loss
as the loss metric, we analyze the error in terms of veh
per bucket. As our bucket is 5 s, the error denotes the
absolute value of difference between actual and predicted
number of vehicles in the 5-s bucket. Figure 5 shows the actual
vs. predicted waveform for M,,;; at different resolutions.
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Fig. 6. Plot showing errors for predicting exit waveform using different
models (Mgy;;). This plot shows that dual attention encoder decoder model
has the best prediction accuracy.

TABLE VI

TABLE COMPARING ERRORS FOR My, MODEL AT DIFFERENT
RESOLUTIONS. THE RESULTS SUGGEST THAT USING ROBERTSON
MODEL FOLLOWED BY DUAL ATTENTION ENCODER DECODER
(DA-ED) MODEL HAS BETTER PREDICTION ACCURACY.

DNN: DEEP NEURAL NETWORK

Error in veh. per bucket

Model Inputs Ssec 10sec 15sec 25sec 50 sec
Robertson  E,d 0.62 0.52 0.46 0.37 0.23
DNN S(E,d),d 0.5 0.46 0.40 0.34 0.25
DNN R(E,d),d 0.55 0.46 0.40 0.34 0.25
DA-ED S(E,d),d 040 0.28 0.21 0.15 0.09
DA-ED R(E,d),d 0.38 0.25 0.19 0.13 0.08

The key observation here is that even though the actual vs.
predicted waveforms may not exactly match at a 5-s-bucket
resolution, if we aggregate them to higher resolution (10, 15,
25, 50 s, etc.), the actual and predicted waveforms almost
match. Suppose the actual values in the next two buckets
are 3 and 3, but the model predicts them to be 2 and 4; the
error is almost 33% per bucket, but at 10-s resolution, the
error is 0%. The error at different resolutions indicates that
the overall momentum of the system is conserved (the total
volume of the predicted waveform is equal to total actual
volume). So we also report the error for different resolutions of
the waveform even though our prediction is for 5-s resolution.
Figure 6 shows the errors at different resolutions for My,
using different architectures: feed forward, temporal attention,
and dual attention. As mentioned earlier, the error is reported
in terms of the number of vehicles per bucket. It can be clearly
seen that the dual attention encoder decoder (DA-ED) archi-
tecture outperforms the baseline feed forward network. Also,
we can see that using only waveforms at stop bar detectors
and signal timing also gives similar prediction accuracy.
Table VI shows the errors at different resolutions for
Muown model. This model predicts the modification of the
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Fig. 7. Plot showing error comparison for temporal attention encoder decoder
vs. feed-forward model for inflow reconstruction. This plot shows that encoder
decoder with attention model has the best prediction accuracy.

exit waveform as it travels downstream. The table shows the
error for predicting the downstream waveform using different
models.

This model employs a two-step strategy to predict the
downstream waveforms at a distance x:

1) First, the exit waveform is shifted in time, assuming
average vehicle speeds to cover the distance x. To derive
the exit waveform is used to impute the waveform
at distance d based on platoon dispersion. We tried
out two different strategies (1) Shift the exit waveform
based on distance (d) - S(E, d). This assumes that the
waveform seen at the exit detector is largely unperturbed
as it progresses downstream. (2) Use Robertson platoon
dispersion model - R(E, d).

2) Next, this shifted waveform is fed to a neural network
model that modifies the waveform to incorporate non-
linearities due to variable velocities, different driver
behavior and signaling plan on the next intersections

It is important to note that the first step of shifting the wave-
form effectively captures the distance information between the
two intersections. This allows the neural network model in the
second step to focus on modifying the shifted waveform; thus,
it is independent of the distance between the two intersections.
Our experimental results suggest that using Robertson model
followed by Dual Attention Encoder Decoder (DA-ED) model
has better prediction accuracy

This model can be used to predict an inflow waveform
for the downstream intersection. This inflow waveform is
not affected by the signal timing state of either intersection.
We can use the inflow waveform along with downstream signal
timing information to reconstruct the waveforms at advance
and stop bar detectors (Mg, model).

Figure 7 shows the errors at different resolutions for M;,
comparing the dense network with temporal attention encoder
decoder architecture. It can be seen that we could reconstruct
the inflow waveform with good accuracy using stop bar and
advance detector waveforms. At 50-s aggregation, the error in
vehicles per bucket for the recurrent model is 0.06, equivalent
to 0.6 vehicles (over- or under-counting by 0.6 vehicle for a
50-s period), whereas with the dense network, it is 0.27 or
2.7 vehicles.

Figure 9 shows the attention scores generated for each
decoding step. The attention scores suggests that at each
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Fig. 9.  Plot showing heat map of temporal attention scores. The X-axis
indicates the time buckets for the inflow waveform and Y-axis indicates time
buckets for the predicted outflow waveform. This plot suggests that attention
module is helping the network to focus on relevant temporal information,
around the time for which the prediction is made.

decoding step, more importance is given to hidden states of
the encoder corresponding to that particular time step. For
example, for predicting output at step 80, more importance
is given to encoder hidden states corresponding to time
steps 70-80. This suggests that the attention module is helping
the model to focus on relevant temporal information at each
step.

Also, It is worth noting that these methods are three
to four orders of magnitudes faster than using microscopic
simulations. For simulating input output patterns using SUMO,
for a single intersection took 9 sec per simulation on a 32 core
machine. While the trained neural network models when
used in inference mode are able to generate output in less
than a millisecond for a batch size of 5000. This sug-
gests that neural network based model is atleast 4 orders
of magnitudes faster compared to traditional simulation
approaches.

VII. RELATED WORK

Machine learning techniques, including deep neural net-
works, have been successfully applied to traffic data for traffic
state prediction [19] for short-term (5-30 minutes), medium-
term (30-60 minutes) and long-term (14 hour) time windows.

Most of the previous work is in volume prediction or
predicting flows at downstream intersections. We outline this
work below:

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

1) Predicting volumes at cycle level: A number of tech-
niques have been used for predicting volumes at cycle-
length resolution (generally 2 minutes). This includes
ensembled kernelized matrix completion [10], shock-
wave analysis, and Bayesian networks [17].

2) Predicting volumes at 5-minute intervals: Techniques
that have been used include ARIMA [20], deep learning
with non-parametric regression [2], multisegments (with
recurrent and convolutional layers), deep neural net-
work [18], graph embedding coupled with a generative
adversarial network [25], and a combination of lin-
ear genetic programming (LGP), multilayer perceptron
(MLP), and fuzzy logic [26].

However, these works primarily focus on predicting volumes
for the same loop detector or location at a future point in
time. They do not attempt to model the outflow waveform
exiting a signalized intersection or its modification down-
stream. Somewhat relevant to our work are Ehlers [7] and
Wright et al. [22], which use geometric deep learning archi-
tectures, and Sun and Zhang [16], which uses a linear model
to predict flow at the downstream intersection, given upstream
intersection detector flows.

Platoon dispersion models have been proposed in the liter-
ature to model flow rates of a platoon as it traverses through
a corridor. Lightlhill and Witham modelled platoon dispersion
using kinematic wave theory [11]. Platoon dispersion models
as analogous to continum fliud based on shock wave theory is
proposed by Pacey [13]. The model that is being widely used
is based on Robertson platoon dispersion model [15]. Some
recent studies also proposed variations of Robertson’s model to
account for heterogeneous traffic flow condition [8], [23], [24].
These dispersion models however are not targeted towards
determining the impact of signal timing or traffic entering
from the side streets. The flow rates at a point are similar to
waveforms described above. By using a composition of deep
neural networks and Robertson model, our novel approach can
incorporate the impact of signal timing of the next intersection
on the platoon dispersion (cf. Section III).

VIII. CONCLUSION AND FUTURE WORK
We described our work on modeling waveforms at signal-
ized intersections at subcycle resolutions. We generated a large
dataset based on real-world traffic flows and signal timing
plans. We then trained deep learning models and evaluated
them. We arrive at the following conclusions:

1) We are able to decompose arterial traffic flow dynamics
by considering local interactions (M,yi;) and coupling
interactions (Mgown), and show that they can effec-
tively approximate the dynamics of a pair of inter-
sections. An important advantage of using (Mypwn) 18
that the time-shifted input to the trained neural network
model is independent of the distance between the two
intersections.

2) We are able to effectively reconstruct the unperturbed
incoming inflow waveform to an intersection from
the stop bar and advance detectors and signal tim-
ing information waveforms (M;;). We verify that this
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3)

reconstruction is accurate enough to reasonably esti-
mate the observed stop bar and advance detector wave-
forms (My,). An important point to note is that the
reconstructed inflow waveform is largely independent of
the signal timing plan of the approaching intersection
because it is still a significant distance away.

We see the accuracy measures of our predictions and
reconstructions improve with larger aggregation times,
from 5 seconds to 60 seconds.

Going forward, we hope to expand on this work as follows:

1y

2)

3)

4)

5)

6)

We aim to use our trained models (M;,) to reconstruct
inflow patterns based on real-world recorded traffic data
along arterials.

With reconstructed inflow data, we intend to use our
trained models (Meyi//Myown/Msq) to predict exit wave-
forms and their progression downstream, given a candi-
date signal plan for the two intersections.

Also, we intend to modify these models to predict
level of service (LOS) measures based on the above
techniques.

With exit waveform and combined LOS measures esti-
mated, we will repeat the above process for the next pair
of intersections along the arterial.

We then evaluate the efficiency of multiple candidate
signal plans in parallel, using a Monte Carlo tree search
(MCTS) [3] algorithm to find the best signal plans for
the corridor.8

By identifying key corridors within the urban traffic grid,
we hope to perform city-scale grid optimization.
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