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Long-Range Multi-Object Tracking at Traffic
Intersections on Low-Power Devices

Patrick Emami

Abstract—The next generation of intelligent traffic signal
control systems needs multi-object tracking (MOT) algorithms
that can track vehicles hundreds of meters away from traffic
intersections. To facilitate the integration of long-range MOT
into existing traffic infrastructure, the tracker must achieve
a good balance of cost-effectiveness, accuracy, and efficiency.
Although much progress has been made on deep-learning-based
MOT for video, these approaches have limited applicability for
edge deployment since deep neural networks typically require
power-hungry hardware accelerators to achieve real-time perfor-
mance. Furthermore, traffic cameras have a field of view limited
to near the intersection. To address these shortcomings, we intro-
duce a practical MOT framework that fuses tracks from a novel
video MOT neural architecture designed for low-power edge
devices with tracks from a commercially available traffic radar.
The proposed neural architecture achieves high efficiency by
using depthwise separable convolutions to jointly predict object
detections alongside a dense grid of features at a single scale for
spatiotemporal object re-identification. A simple and effective
late fusion strategy is also presented where tracks of distant
vehicles from a traffic radar are handed over to the video tracker
within a region where the sensor fields of view overlap. Our video
tracker is empirically validated on the UA-DETRAC video MOT
benchmark for traffic intersections and the multi-sensor tracker
is evaluated on video and radar data collected and labeled by
the authors at an instrumented traffic intersection.

Index Terms— Computer vision, intelligent transportation sys-
tems, machine learning.

I. INTRODUCTION

NTELLIGENT traffic intersection control automates inter-

section management and improves adaptability to changing
traffic conditions. These systems assume that a centralized
intersection controller has access to detailed information about
all traffic participants around the intersection in real time
which it uses to make decisions about upcoming signal timings
and autonomous vehicle trajectories [1]-[6]. It is expected
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that this will directly help reduce emissions, congestion, and
accidents. However, to properly operate, information about
vehicles that are still far down the road is needed. Early
detection and tracking of vehicles gives the system sufficient
time to properly optimize [6]. However, current multi-object
tracking (MOT) algorithms for traffic intersections are by
and large incapable of supporting this application, since they
are either too inaccurate, too over-costed, or too inefficient
for real-world applications. To achieve our high-level goal of
introducing a practical framework for multi-object tracking at
traffic intersections, we propose a novel convolutional neural
network (CNN) for video MOT on low-power edge devices
and a simple fusion algorithm for multi-sensor tracking with
traffic camera and traffic radar.

State-of-the-art video MOT relies on computationally inten-
sive CNNs that hardly run in real-time even when using a
hardware accelerator (e.g., a GPU).! Accelerators that are
powerful enough to run advanced CNNs have stringent power
and cooling requirements and must be protected from adverse
weather conditions. In most cases, such accelerators will not be
available at the edge. Furthermore, traffic intersection control
requires accurate tracking in regions far (e.g., 200+ meters)
from the intersection, which is beyond the visual field of traffic
cameras. Alternative solutions are based on classic computer
vision techniques or other modalities like loop detectors and
radar, which cannot provide sufficiently accurate results.

In this work, we introduce the MobileDR (MobileNetV2
Detection and Re-ID) CNN architecture for video MOT on
low-power edge devices. MobileDR jointly predicts object
bounding boxes, class labels, and matchable features for object
re-identification (Re-ID). Re-ID features are predicted as a
dense grid at a single resolution for efficient parallel extraction
of object-centric features with a single forward pass (Figure 1).
In our experiments, we study the trade-off of speed vs.
performance induced by its lightweight architecture design.

To track vehicles far down the road, we propose a simple
algorithm for combining video tracks with tracks provided by
a traffic radar. The algorithm is based on a late fusion strategy
because our approach is designed to require minimal effort for
deployment at a traffic intersection by leveraging affordable
and commercially available traffic radars. These sensors are
typically shipped with proprietary tracking algorithms and
provide an API for processing a real-time list of tracked
objects. Therefore, we associate and fuse radar outputs with

ITo be concrete, assume “real-time” means the ability to process 10 video
frames per second (FPS) or faster and “low-power” refers to achieving roughly
10 FPS running on hardware that consumes 5 — 10 W.
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Fig. 1. Time to predict object bounding boxes and Re-ID features for
a single video frame as the number of detected objects increases while
running on CPUs. We compare the proposed joint detection and tracking
CNN, MobileDR, with YOLOv3 DeepSORT and MobileNetV2-SSDLite
DeepSORT. DeepSORT’s Re-ID CNN crops the image around each bounding
box and processes each crop individually, which causes its runtime to depend
linearly on the number of detected objects. MobileDR predicts Re-ID features
in parallel for all objects with a single forward pass.

video at the level of tracks, as opposed to using a mid-level
fusion strategy which would require access to the raw radar
detections, or an early fusion strategy which would require
access to raw acoustic waveforms from which to extract
features to combine with video features for joint detection
and association. Our fusion algorithm is designed around a
“hand-off” of radar tracks of distant objects to video tracks
of nearby objects within a region of overlap between the two
sensor’s field of views (Figures 2, 3). This is motivated by
the observation that traffic radars have a much longer range
than traffic cameras which creates a large region where the
two sensors do not overlap. We also found that the radar
was not well-suited for tracking objects near the intersection
relative to video-based tracking, particularly in moderate-to-
heavy congestion.

Our experiments analyze the performance of MobileDR
on video-based detection and MOT as well as the perfor-
mance of the multi-sensor MOT framework at an instru-
mented traffic intersection. With the same CPU hardware,
MobileDR achieves a 450% increase in FPS over the popular
YOLOV3 DeepSORT (3 vs. 20 FPS). We show that a dense
prediction of Re-ID features removes a linear dependence of
the runtime on the number of detected objects, regardless of
the choice of detector (Figure 1). When augmenting MobileDR
with traffic radar, we demonstrate a +9.8% improvement in
MOTA, with most gains coming from improved tracking of
vehicles far away from the intersection. To summarize, our
main contributions are:

« We propose a novel joint detection and tracking CNN,
MobileDR, that should be generally useful for real-time
MOT on low-power edge devices.

« We introduce a multi-sensor MOT framework for traffic
intersections that balances cost-effectiveness, accuracy,
and efficiency, making it practical.

« We provide a thorough real-world evaluation on data
collected from an instrumented traffic intersection.
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II. RELATED WORK

A. (Near-)Real-Time Video MOT for Traffic Surveillance

1) Hand-Crafted Pipelines: Methods that run efficiently on
low-cost hardware have typically been based on hand-crafted
image processing pipelines. Key steps include background
subtraction, object segmentation, and motion estimation. See
Wang et al. [7] for an overview. However, it is known
that these methods degrade in the presence of variable
illumination, cluttered environments with stop-and-go traf-
fic, and diverse interacting objects with distinct motion
patterns [8]-[12]. In general, the accuracy attainable by
these methods is much worse than their deep learning
counterparts.

2) Tracking-by-Detection: The advent of powerful object
detectors such as the Deformable Parts Model (DPM) [13],
[14] ushered in the tracking-by-detection MOT paradigm.
These methods first detect objects in each video frame and
then match them over time to form tracks. State of the art
tracking-by-detection methods use CNNs, which are invariant
to translations in object location and are able to learn features
that are robust to changes in illumination, shape, and color.
However, the increase in detection accuracy achieved by CNNs
comes at the price of requiring access to a hardware accelerator
such as a GPU for deployment. For example, the SORT [15]
algorithm is a simple and highly effective tracker that com-
bines a Kalman Filter [16], the Munkres linear assignment
algorithm [17] with a bounding box intersection-over-union
(I0U) cost, and a powerful CNN for object detection. Trackers
that use the IOU between bounding boxes in adjacent frames
as a similarity measure for matching can be quite effective.
V-IOU [18], which introduces a heuristic for handling missing
bounding boxes in [OU-based tracking, is currently one of the
leading methods on the UA-DETRALC traffic intersection MOT
benchmark [19]. DeepSORT [20] improves over SORT by
adding a metric-learning CNN for learning appearance features
that are used in a cascaded spatiotemporal data association
algorithm. Improvements to DeepSORT have since been pro-
posed to further boost performance such as filtering out tracks
with low confidence [21]. The video tracker described in this
paper can be seen as an alternative to DeepSORT that can run
in real time without needing a cumbersome hardware acceler-
ator at the edge. CenterTrack [22] extends the powerful and
efficient CenterNet [23] point-wise object detection framework
for MOT. The key idea of CenterTrack is to unify detection and
tracking into a single CNN where objects are treated as points
and tracking is handled implicitly by predicting 2D offsets
between points in adjacent frames. Data association is per-
formed by a simple greedy matching on the predicted points.
CenterTrack achieves strong performance on standard MOT
benchmarks while processing 960 x 544 images in 57 ms on a
GPU.

3) Joint Detection and Tracking: The joint detection and
tracking (JDT) MOT paradigm has recently gained in interest
because it aims to achieve faster FPS by combining the
different deep neural networks used by tracking-by-detection
trackers into a single CNN architecture. The basic idea
is to attach an object detection head and a Re-ID head

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:34:41 UTC from IEEE Xplore. Restrictions apply.



2484

Detector net

Re-ID net
BBoxes Re-ID

backbone Repeat for each bounding box

Classes

(a) Tracking-by-detection

BBoxes ~. _
L |
MobileNetV2 Clsses _J—
backbone — =
Re-lD -~~~ H/8x W8 x32-dim
Re-ID grid

(b) MobileDR (Ours)

Fig. 2.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

MobileDR Smartmicro
MobileNetV2 Type 29
backbone Doppler radar

Re-ID head <J—>Detection head}’

Sliding-window
track association
and fusion

Bounding boxes
Class labels

Dense grid of
matchable features

Y

Track extension

Deep matching
cascade

©

a) Tracking-by-detection predicts deep Re-ID features for objects individually, which scales linearly with the number of detected objects. b) MobileDR

is a simple and efficient CNN for joint detection and tracking MOT on low-power edge devices. It predicts a dense grid of Re-ID features at a single resolution.
Matchable features for data association are bi-linearly interpolated from the centers of the non-maximally suppressed set of predicted bounding boxes. ¢) The

multi-sensor tracking framework for long-range tracking at traffic intersections.

to a single CNN backbone and train with a multi-task
loss. The detection head outputs one or more of: bounding
boxes, object centers, object masks, or class scores. The
Re-ID head predicts matchable features for data association.
Recently proposed JDT trackers are Track R-CNN [24],
RetinaTrack [25], JDE [26], UMA [27], and FairMOT [28].
Both our tracker, MobileDR, and FairMOT predict a dense
grid of Re-ID features in parallel for all objects, unlike the
other JDT methods. Like CenterTrack, FairMOT [28] also uses
an anchor-less CenterNet detector as its backbone; however,
CenterTrack does not explicitly predict Re-ID features for data
association. FairMOT achieves state-of-the-art performance
on standard MOT benchmarks by also introducing better
pre-training strategies and optimization tricks for balancing
detection and Re-ID objectives. Differently from FairMOT,
we use MobileNetV2-SSDLite as the detection backbone,
design the Re-ID head using only separable convolutions for
maximum efficiency on edge processers, and train the Re-ID
head independently of the detection branch with a supervised
contrastive loss. Another related tracker is TubeTK [29], which
proposes a novel approach to end-to-end MOT by regressing
bounding box tubes from videos. So-called BTubes provide
better spatiotemporal features and robustness to occlusion
although the tracker itself is more heavy-weight as it requires
using a sliding-window-based 3D CNN for processing video
clips.

5) MOT at Traffic Intersections: Some of the aforemen-
tioned trackers have been evaluated on the task of traffic
surveillance at intersections in prior work. The COSMOS [30]
project curated a dataset of birds-eye-view 1920 x 1080
resolution video of an intersection and compared vari-
ous “real-time” video trackers, varying the detector (Mask
R-CNN [31], YOLOv3 [32], and SSD [33]) as well as the
tracker (DAN [34], DeepSORT [20], and MCUT [30]). Mask
R-CNN outperforms the other detectors but is roughly ten
times slower on a GPU. DeepSORT is the fastest tracker,
followed by DAN (37% slower).

B. Real-Time Multi-Sensor MOT for Traffic Surveillance

Given that single-sensor traffic surveillance is limited by
the choice of sensor, multi-sensor systems have been proposed
to overcome this that aim to fuse information from multiple
sensors. In one instance, video MOT and Doppler radar are
fused for tracking oncoming vehicles at a traffic intersec-
tion [35]. The video solution is based on simple blob tracking
whereas our method uses deep learning, and video and radar
measurements are combined with early fusion to form a single
set of tracks whereas we use late fusion. A system for parking
lot and intersection monitoring was recently introduced [36]
that is based on multi-camera tracking. They equip a group of
networked cameras with power-efficient Jetson Nano GPUs
to process video frames in real-time at the edge with a
lightweight CNN. However, their system is designed for
multi-camera tracking using tracking-by-detection. They avoid
solving the challenge of real-time tracking-by-detection by
simply not using CNN features for Re-ID. This lowers the
overall accuracy of the system. Another system fuses multiple
LiDAR sensors [37] placed around an intersection to track
objects within the intersection region with reasonably high
accuracy. In our work, we are interested in tracking vehicles
before they arrive at the intersection; the limited range of
LiDARs make them less suitable for this problem. To the best
of our knowledge, no prior work exists that combines deep-
learning-based video MOT with radar for traffic intersection
surveillance.

III. METHODOLOGY

A. MobileDR

1) Backbone: For video MOT, we follow the JDT paradigm
which achieves competitive performance compared to state-
of-the-art tracking-by-detection methods while being orders
of magnitude more efficient [24]-[26], [28]. We adapt the
MobileNetV2-SSDLite [38] detector to create MobileDR,
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which has three output heads: a regression head for bound-
ing boxes, an object classification head, and a novel fully-
convolutional Re-ID head for object features (Figure 2b). Our
motivation for using a MobileNet CNN backbone is that the
MobileNet CNN family represents the state-of-the-art in accu-
rate object detection on low-power devices [38]-[40], i.e., they
are capable of running at real-time speeds on computing
devices requiring less than ~ 10 W. The most recent iteration
is MobileNetV3-SSDLite [40]; it achieves similar accuracy
as V2 with a 27% improvement in latency at the cost of
increased architecture complexity, so we use V2 in this work
for simplicity and because V2 already achieves sufficiently
low latency for our purposes. MobileNetV2 uses various
architecture optimizations to help it run efficiently on edge
devices. The most important one is depthwise separable con-
volution [39], [41], [42]. Essentially, this is a 2D convolution
that has been factorized into two simpler operations. We note
that each separable convolution uses BatchNorm [43] and
ReLU activations. The entire architecture is a stack of inverted
residual blocks (IRBs), which consist of a depthwise separable
convolution and a linear residual bottleneck. The linearity of
the bottleneck layer is important for preserving information,
and the residual connection helps propagate gradients across
multiple layers.

The regression and classification heads in SSDLite are
defined similarly as in the SSD [33] except that they use
separable convolutions. We follow the standard approach of
attaching one set of detection heads after downsampling
by 16x as well as a head after each extra IRB at 32x
downsampling.

2) Re-ID Head: In tracking-by-detection, a dedicated CNN
is trained to produce a feature vector for each bounding
box. This requires processing each bounding box individ-
ually which cannot typically be done in real-time if high-
end compute resources are unavailable. For example, suppose
50 objects are detected in an image. Then, for each of the
50 bounding boxes, the image is cropped and the resulting
patch is passed to the dedicated feature-extraction CNN. This
fails to exploit the fact that most of the 50 image crops are
overlapping. To take advantage of this, instead the bounding
boxes can be processed “in paralle]” by having the CNN
produce a single dense grid of features after one forward pass.
With this grid, for each bounding box we can extract an object
feature by bi-linearly interpolating the feature at the center of
the bounding box (Figure 2c). This removes the dependence
of the runtime on the number of detected objects (Figure 1).
Features are extracted from bounding box centers after running
non-maximum suppression, which is superior to predicting an
embedding for all positive bounding box anchorst [28]. The
latter has issues when multiple anchors correspond to the same
objec.

The Re-ID head consists of seven depthwise separable
convolutions with 3 x 3 kernels and channel dimension pro-
gression 32 — 256 — 512 — 1024 — 512 — 256 —
D, where D is the output Re-ID feature dimension. The
Re-ID head is fully-convolutional as it computes a dense
grid without using any fully-connected layers (Figure 2b).
Each grid coordinate (i, j) corresponds to a feature vector of
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dimension D. MobileDR estimates a single grid at 1/8x the
input resolution, attached after the third IRB. This resolution is
high enough so that the model can predict distinct features for
each object in a potentially highly cluttered scene. It has been
previously demonstrated that deep feature matching performs
best with features taken from intermediate CNN layers that
have a large receptive field while still containing discriminative
information [44]. We considered feature dimensions of D =
{32, 64, 128} and found 32 to work best based on a sensitivity
analysis in our experiments.

3) Training Details: Jointly balancing losses for detec-
tion and Re-ID is nontrivial because the architecture design
is asymmetric and can lead the model to favor one task
over another [28]. To address this, we train MobileDR
following a curriculum. First, we fine-tune a pretrained
MobileNetV2-SSDLite model on the detection task using
the standard SSD MultiBox training loss for bounding box
regression and classification [33]. Then, we freeze the weights
for the base layers, regression head, and classification head and
train the randomly initialized weights of the Re-ID head using
supervised contrastive learning.

The loss we use for the Re-ID head is the normalized
temperature-scaled cross entropy loss, or NT-Xent loss [45].
This loss function encourages features corresponding to the
same object (positive examples) to have a higher cosine
similarity than features from two different objects (negative
examples), and has been demonstrated to be highly successful
for representation learning despite its simplicity. A key moti-
vating factor for using this loss is that it does not rely on online
mining of hard negatives, which is computationally expensive.
To obtain positive and negative examples for evaluating the
loss, we obtain them “for free” from track annotations using
a manually-labeled MOT dataset. In detail, the NT-Xent loss
is

e 1 ilog : exp(CS(x}, x!')/7) /
N = > =t Ttk exp(CS(x!, x;)/7)
1 & exp(CS(x!', x1) /1)
_ Zlog N i : ,
N = > et Ttk exp(CS(x!, x})/7)

with CS : = cosine similarity. The Ijx»; is an indicator
variable equal to one when k # i else it is zero. The
numerators consist of the interpolated point-wise features from
a mini-batch of N randomly sampled pairs of ground truth
bounding boxes {(x], xi/), o (xly, xf\/,)} originating from the
same object in a video at frames 7 < ¢’. The denominators
contain the negative pairs, which we implement by aligning
each bounding box from one object in the mini-batch with a
different object’s bounding box. The temperature 7 regularizes
the Re-ID head parameters, helping to prevent them from
getting stuck in poor local minima early on in training.
To further improve generalization we use random mirroring
and photometric data augmentation during training. During the
initial detection training phase we use photometric distortion,

random mirroring, and random image cropping.
4) Data Association: For each incoming video frame (e.g.,
of size 960 x 540), we first resize it to 300 x 300 and
then use MobileDR to jointly predict bounding boxes, class
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labels, and the dense Re-ID feature grid. After applying hard
non-maximum suppression to the bounding boxes based on
class confidence scores and extracting features from the dense
grid with bi-linear interpolation, the bounding boxes and
features are sent to the deep matching cascade algorithm from
DeepSORT [20]. We replace the features from the patch-based
CNN with those extracted from the Re-ID grid, greatly increas-
ing the tracker speed (Figure 1); see Wojke et al. [20] for
full details of the matching algorithm. The MobileDR video
tracker can be thought of as an alternative to DeepSORT that
is suitable for real-time use on low-power edge devices.

B. MobileDR+Radar

Due to the limited visual range of traffic cameras and
our restriction of designing a low-cost and real-time solution,
we propose to make use of off-the-shelf traffic radar to track
vehicles far from traffic intersections. The late fusion strategy
we describe next allows us to make use of affordable and
widely available traffic radars that are easy to deploy at traffic
intersections.

1) Fusion Algorithm: Doppler-based traffic radar uses
acoustic beams to detect moving objects and is able to estimate
range and speed of vehicles at upwards of 200 meters from a
traffic intersection. Off-the-shelf traffic radar units are often
shipped with proprietary tracking algorithms and an API
for accessing a real-time list of tracked objects. However,
the tracking accuracy degrades for vehicles near the sensor
if the angle of incidence between the moving object and the
beam is not zero (known as the “cosine effect” [46]).2 Also,
we observed that the radar can generate a high number of false
positive tracks from spurious detections due to clutter, partic-
ularly when there is moderate-to-heavy congestion. We handle
this by removing radar tracks closer than a pre-set threshold
of meters away from the intersection, leaving a stretch of road
where the fields of view between the video and radar overlap
(Figure 3). In this region, the algorithm identifies which video
and radar tracklets originated from the same object and fuses
the matched pairs.

An illustration of the full multi-sensor MOT framework is
shown in Figure 2c. The key steps are summarized as follows:

1) Predict bounding boxes, class scores, and the dense grid
of Re-ID features from the video frame at the current
time step with MobileDR.

2) Bi-linearly interpolate object-centric features from the
dense grid using the bounding boxes and after applying
non-maximum suppression.

3) Update a video track array using the deep matching
cascade data association algorithm.

4) Parse the latest set of radar tracks obtained from the
real-time radar API.

5) Project the video and radar tracks into a sensor-centric
world coordinate system with calibration matrix P.

2While multi-beam and continuous wave radar have also become com-
mercially available—which in theory helps to address this—in this work we
assume a standard single beam Doppler radar. We believe that more advanced
radars can be used to achieve higher accuracy but at an increased cost.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

(c) MobileDR+Radar

Fig. 3. The multi-sensor tracker obtains tracks from MobileDR (3a) and
tracks from a traffic radar (3b). We keep radar tracks farther than a distance
p = 70 meters from the intersection (shown as a dotted line) where the radar
is most reliable. 3c) The multi-sensor tracker fuses radar and video tracks in
the region of overlap (circled) to achieve efficient and high-quality tracking
both near and far (up to 200 meters).

6) Do cross-sensor track-to-track association using relaxed
linear assignment over the last w frames.

7) Fuse the matched tracks with simple averaging.

8) Extend a running estimate of the visible tracks in the
field of view by solving a spatiotemporal assignment
with the newly estimated fused tracks from the current
sliding window.

In detail, the algorithm gathers all video and radar tracklets
within a time window of w seconds that are not deemed to
be spurious. Spurious (i.e., false positive) tracklets are those
that are too short-lived (less than m time steps long). Radar
tracklets whose spatial centroid in world coordinates is closer
than p meters to the intersection are considered spurious
and removed (Figure 3b). Then, multi-sensor track associ-
ation is performed by running a relaxed linear assignment.
This measures the similarity between N video and M radar
tracklets using the Euclidean dynamic time warping (DTW)
distance [47]. The DTW is an efficient way to measure the
similarity of 2D curves and is invariant to temporal stretching
and shrinking. DTW provides an accurate tracklet similarity
measurement as long as the sensors are calibrated such that
tracks can be reasonably aligned in the world coordinate
system; see Section III-C for a discussion on the calibration
assumptions we make. We relax the one-to-one assignment
constraint between the two sets of sensors tracklets, allow-
ing for tracklets to go unmatched if the DTW distance is
greater than a threshold. Threshold values are selected using
a validation set of manually labeled video frames. In lieu of
not having access to accurate track uncertainty information
from commercial radar sensors, we handle tracklet fusion by
averaging the positions and velocities of matched tracklets.
We maintain a set of tracks 7 which represents all objects
believed to exist in the multi-sensor field of view up to but
not including the current time window. A track extension
algorithm based on relaxed linear assignment is used to
update 7 with the new set of fused and unmatched tracklets.
Similarity across time between candidate pairs of historical
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I-150

-100

Fig. 4. a) Multi-sensor mounting configuration. b) Inspection of the estimated
camera calibration matrix P by visualizing world space distances from the
camera for each pixel.

tracks and new tracklets is estimated by the pixel-space
Euclidean distance between temporally adjacent pixel-space
object states. We provide detailed pseudocode and more imple-
mentation details for the multi-sensor tracking algorithm in the
appendix.

C. Sensor Installation and Calibration

To facilitate the calibration process and ensure sufficient
overlap of field of view, we assume that the sensors are
mounted on the same traffic mast arm as close to each other
as possible and oriented in the same direction. We visualize
the installation at the testbed for our experiments in Figure 4a.

Techniques for estimating the camera calibration matrix P,
which projects video tracks from the 2D image plane to
a 3D world coordinate system, have been well-studied for
traffic monitoring applications [48]. Necessary measurements
of quantities such as camera height and line distances are
carried out during the sensor installation process. In this work,
we measured the length of a few lines visible in the camera
image to obtain P. See Figure 4b for a qualitative visualization
of the depth estimation provided by P. The software that
came with our commercial radar sensor provided a tool for
similarly calibrating the radar at the time of installation to
enable extracting tracks in a world coordinate system. Since
the sensors are installed at nearly the same position, we assume
that the origins of both world coordinate systems are the same
(that is, the sensor installation location on the mast arm).
We did not find that this assumption resulted in inaccura-
cies being introduced into the multi-sensor tracking in our
experiments.

IV. EXPERIMENTS

In this section we evaluate MobileDR and MobileDR+
Radar on data from various traffic intersections. Datasets, eval-
uation metrics, and training details for evaluating MobileDR
are provided in Sections IV-A and IV-B. In Sections IV-C
and IV-D, we show that MobileDR achieves strong detec-
tion and tracking precision, but due to its efficiency vs.
performance trade-off, it has lower recall than other less
efficient state-of-the-art architectures. Results from evalu-
ating MobileDR+ Radar on video and radar data col-
lected by the authors at a live traffic intersection are in
Section IV-E, where we verify that adding the radar sensor
helps recover missed tracks, particularly in regions far from the
intersection.
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A. UA-DETRAC Dataset and Evaluation Metrics

For assessing the performance of MobileDR we use the
UA-DETRAC [19] video detection and tracking benchmark
which consists of videos captured at 24 different intersec-
tions in China. These video sequences vary in time of day,
weather, traffic level, and amount of occlusion. For the initial
training stage (object detection), we use the UA-DETRAC
V3 train, validation, and test splits. For the second training
stage (Re-ID), we randomly sample 50, 000 pairs of bounding
boxes from tracks in the training sequences and 5, 000 pairs
from tracks in the validation sequences.

For object detection, we follow the UA-DETRAC bench-
mark and evaluate MobileDR using average precision (AP).
We use the implementation of the AP metric as provided in
the official evaluation toolkit, which computes the area under
the precision-recall curve with the trapezoidal rule and linear
interpolation. For MOT, again we follow the UA-DETRAC
benchmark and evaluate the tracking performance using the
PR CLEAR MOT metrics [60]. These metrics are similar to
the CLEAR MOT [61] metrics except they aggregate results at
various detection thresholds. The two most important metrics
are the PR-MOTA and PR-IDF1 [62] scores. The PR-MOTA
decreases when the number of false positives, false negatives,
or fragmentations increases and hence is a good indicator of
the strength of the defector. The PR-IDF1 metric measures
the ability of the tracker to properly identify detections, and
balances tracker precision and recall using the harmonic mean;
hence, it is a good indicator of the strength of the Re-ID
features and data association algorithm.

B. Training Details

To train MobileDR on the detection task with the
UA-DETRAC V3 data, we initialize the MobileNetV2 and
SSDLite layers with parameters from a pretrained model
implemented in PyTorch [63].> We use stochastic gradient
descent with a learning rate of 0.01 for the heads and 0.001
for the base layers, momentum set to 0.9, and weight decay
set to 0.0004. We multiply the learning rate by 0.1 after
80 epochs. The model is trained for 100 epochs with a batch
size of 32 on a single NVIDIA Titan Xp GPU. We customize
the SSDLite anchor boxes and aspect ratios by calculating
average bounding box statistics with validation data from the
UA-DETRAC dataset. The UA-DETRAC V3 classes are
mapped to { background, bus, car, truck}.

When training the Re-ID head we freeze the parameters of
the base layers and detection heads. This ensures that there
will not be any detection performance degradation. We train
the model for 20 epochs with a learning rate of 0.01 and batch
size of 32. The loss temperature 7 is initialized to one and
gets divided by two every five epochs during training until it
reaches 0.0625 where we keep it fixed thereafter.

C. UA-DETRAC Detection

1) Key Results: The AP scores on the UA-DETRAC test
set are shown in Table I. We include published results listed

3 https://github.com/qfgaohao/pytorch-ssd
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TAB
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LEI

IMAGE OBJECT DETECTION RESULTS ON THE UA-DETRAC TEST SET. AS COMPARISON WE SHOW PUBLISHED WORK APPEARING ON THE
UA-DETRAC WEBSITE (OCTOBER 2020). MOBILEDR ACHIEVES COMPARABLE AVERAGE PRECISION (HIGHER IS BETTER) TO FASTER R-CNN
WHILE BEING THE ONLY LISTED MODEL TO RUN IN REAL-TIME ON LOW-POWER EDGE DEVICES

Model Real-time Overall | Easy |Medium | Hard | Cloudy | Night | Rainy | Sunny
@ edge

SpotNet [49] 86.80% | 97.58% | 92.57% | 76.58% | 89.38% | 89.53% | 80.93% | 91.42%
FG-BR_Net [50] 79.96% | 93.49% | 83.60% | 70.78% | 87.36% | 78.42% | 70.50% | 89.8%
HAT [51] 78.64% | 93.44% | 83.09% | 68.04% | 86.27% | 78.00% | 67.97% | 88.78%
GP-FRCNNm [52] 77.96% | 92.74% | 82.39% | 67.22% | 83.23% | 77.75% | 70.17% | 86.56%
R-FCN [53] 69.87% | 93.32% | 75.67% | 54.31% | 74.38% | 75.09% | 56.21% | 84.08%
EB [54] 67.96% | 89.65% | 73.12% | 53.64% | 72.42% | 73.93% | 53.40% | 83.73%
Faster R-CNN [55] 58.45% | 82.75% | 63.05% | 44.25% | 66.29% | 69.85% | 45.16% | 62.34%
YOLOV2 [56] 57.72% | 83.28% | 62.25% | 42.44% | 57.97% | 64.53% | 47.84% | 69.75%
RN-D [57] 54.69% | 80.98% | 59.13% | 39.23% | 59.88% | 54.62% | 41.11% | 77.53%
MobileDR ‘ v ‘ 58.17% | 86.03% | 63.85% ‘ 41.39% | 62.59% | 66.50% | 45.50% | 64.00%

TABLE II

VIDEO MULTI-OBJECT TRACKING RESULTS ON THE UA-DETRAC TEST SET. AS COMPARISON WE SHOW PUBLISHED
WORK APPEARING ON THE UA-DETRAC WEBSITE (OCTOBER 2020)

Real-time
Model M| pR-MOTA (1) | PR-MOTP (}) | PR-MT (1) | PR-ML (}) | PR-IDS (1) | PR-FRAG (] | PR-FP (}) | PR-EN (})

@ edge
Mask R-CNN+V-IOU [18] 30.7% 37.4% 28.7% 23.2% 143.3 1183.1 13387.9 | 195193.9
EB+DAN [34] 20.2% 26.3% 14.5% 18.1% 518.2 - 9747.8 | 135978.1
CompACT+FAMNet [58] 19.8% 36.7% 17.1% 18.2% 617.4 9702 14988.6 | 164432.6
EB+IOUT [59] 19.4% 28.9% 17.7% 18.4% 23113 2445.9 147965 | 1718068
MobileDR | v ] 1549 30.4% 10.7% 30.1% 397.4 6863 | 13937.1 | 255923.8

TABLE TII

VIDEO-ONLY TRACKING EFFICIENCY COMPARISON USING A 6-CORE

INTEL 15-9600K CPU ON THE GAINESVILLE VALIDATION SEQUENCE

Tracker Image size | # params (M) | CPU FPS (1) | IDF1 () | MOTA (1)
MobileDR, 32-D 300 x 300 4.448 19.37 57.5% 38.5%
MobileDR, 64-D 300 x 300 4.456 19.31 56.6% 38.6%
MobileDR, 128-D | 300 x 300 4.473 20.99 56.4% 37.5%

DeepSORT 320 x 320 73.442 3.51 55.0% 44.2%

on the benchmark’s web-page for comparison—notably, our
model is the only one which can run in real time on a CPU.
The overall AP score of 58.17% is near the performance of
the powerful Faster R-CNN [55] (58.45%). SpotNet [49] is
the top-performing model which combines segmentation with
the point-based detection approach of CenterNet [23].

2) Takeaways: MobileDR can detect vehicles relatively well
when there is low amounts of occlusion and good illumination
(as in the easy and medium test splits). As expected due to its
lightweight design, it has more difficulty detecting partially
occluded and small objects and handling low visibility due
to poor weather. We attribute this to the fact that MobileDR
has significantly fewer model parameters (Table III) than
other more accurate and heavyweight detectors. While this
may appear as a shortcoming of the MobileDR architecture,
in fact it further justifies the use of additional sensors such
as a Doppler radar to augment it in practice. We discuss

ways to potentially improve its performance in future work
in Section V.

D. UA-DETRAC Tracking

1) Key Results: Results for the UA-DETRAC MOT test
set are in Table II. The baselines for comparison in the
table are the published results from the public web server at
the time of writing. We note that each entry uses its own
detections, which greatly influences the tracking performance.
The PR-MOTA achieved by MobileDR is 15.4% and the
PR-MOTP is 30.4%. While this surpasses the PR-MOTP score
of EB+4 IOUT by 1.5%, the PR-MOTA score is 4% lower.
The high PR-MOTP score is due in part to the strength of the
learned Re-ID features; notice the low number of ID switches
(397.4, the second lowest), fragments (686.3, the lowest), and
false positives (13937.1, third lowest). The relatively high
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number of false negatives (i.e., missed tracks) are chiefly
caused by detection failures and explains the low PR-MOTA
score.

2) Takeaways: For a qualitative look at the tracker perfor-
mance see Figure 5. This helps illustrate that it successfully
detects and tracks most vehicles that are fully or near-fully
visible. Vehicles that are distant or mostly occluded cause
the majority of tracking failures. The conclusion we draw
from the tracking analysis is that although the MobileDR has
high precision and is effective at tracking vehicles near the
intersection, it tends to miss vehicles that are more challenging
to track. This means that this tracker is well-suited to be
integrated into a multi-sensor tracking framework that can
complement the video tracking by providing missing track
information for e.g., vehicles that are beyond the range of
the video sensor.

E. MobileDR+Radar Evaluation

1) Dataset and Metrics: We mounted an Image Sens-
ing Systems Autoscope traffic camera at an intersection in
Gainesville, FL, which provides a stream of 720 x 1280
RGB frames at about 30 FPS to a traffic signal mast arm.
The Doppler radar is a Smartmicro Systems Type 29 that
sends a list of tracked objects with IDs at a rate of about
20 Hz to the traffic intersection cabinet from which it can
be accessed. We collected and manually annotated 4,324
video frames with track labels using the Vatic labeler [64].
We stored the stream of radar tracks during this time period as
well. The video sequence is split into three shorter sequences:

win i ww
i w
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MobileDR tracking from the UA-DETRAC test set. Each column is twenty frames apart (left to right).

an easy sequence (light traffic) which is frames 1-1, 830,
a hard sequence (heavy traffic) which is frames 1, 830-3, 277,
and we set aside frames 3,227-4,324 as a tuning set for
analyzing tracker hyperparameters. For certain experiments,
we also separately analyzed model performance on all tracks
whose location in a video frame was closer than p = 70
meters to the intersection (Near) and those tracks farther than
p = 70 meters away (Far). We do not train MobileDR on this
data and instead re-use the MobileDR model trained on the
larger UA-DETRAC dataset. This allows us to also explore
the generalization abilities of MobileDR since the Gainesville
data is recorded on a different continent and with a different
traffic camera than the UA-DETRAC data. We rely on the
standard CLEAR MOT metrics at a detection threshold of 0.3
for easy interpretation of the tracking results.

We compare MobileDR+Radar against DeepSORT,
MobileDR (without radar), radar alone, and a simple
baseline that replicates a classic real-time video surveillance
tracking pipeline of Mixture-of-Gaussians (MoG) background
subtraction followed by blob tracking. Blob tracking is
accomplished by first running blob detection on the MoG
foreground mask, then using a Kalman Filter to obtain a set of
blob track hypotheses, and finally applying the Munkres [17]
linear assignment algorithm for data association. This baseline
is implemented with OpenCV [65] and represents a simple
MOT algorithm that practitioners may attempt to use in
absence of a GPU. See the appendix for more details.

2) Efficiency Comparison: First, we compare the number
of model parameters and tracking latency for MobileDR
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Fig. 6. Tracking outputs for easy sequence (frames 634, 1418) and hard sequence (frames 2006, 3014). We highlight tracks that overlapped between sensors
and were subsequently matched and fused. We show the IDs of the fused tracklets.

TABLE IV

ABLATIONS AND PARAMETER ANALYSIS FOR THE MULTI-SENSOR TRACKER USING THE GAINESVILLE VALIDATION SEQUENCE. WE USE
p = 70 METERS. LATENCY MEASURES THE TIME IN SECONDS TO RUN CROSS-SENSOR TRACK

ASSOCIATION AND FuUsI

ON USING w FRAMES

Far (> p) IDFI/MOTA

Both, IDFI/MOTA

Latency ({)

No radar < p | Window size (frames) | Near (< p) IDFI/MOTA
20 63.1%/41.3%
v 10 74.4%/64.1%
v 20 75.7%/65.2%
v 30 73.9%/62.4%
v 40 79.4%/63.6%

45.7%/34.0%
41.7%/36.2%
46.2%,/35.5%
52.9%,/39.5%
49.3%/38.2%

45.6%,36.4%
41.8%/43.6%
46.5%,/43.3%
53.5%/45.5%
53.3%/45.2%

0.071 s
0.077 s
0.072 s
0.080 s

with Re-ID output dimensions {32, 64, 128} against Deep-
SORT [20] in Table III. All of the evaluation is conducted
on a single PC with 32 GB of RAM and a 6-core Intel Core
15-9600K CPU. MobileDR achieves a 450% increase (3.5 vs.
19.37) in FPS over DeepSORT and a 94% decrease in the
number of model parameters. We note that when deploying
MobileDR on an edge device as opposed to a PC, one should
expect a slightly lower FPS. We use the 32-dim features for all
other experiments since it has the smallest memory footprint.

3) Sensitivity Analysis: For MobileDR+ Radar, we analyze
the impact of removing radar tracks closer than p = 70 meters
to the intersection as well as the choice of window length w.
By comparing the first (p = 0, w = 20) and third (p = 70,
w = 20) rows of Table IV, we can see that p = 0 causes
a sharp drop in Near (< p) IDF1 (63.1% vs. 75.7%) and
Near (< p) MOTA (41.3% vs. 65.2%). Naturally, there is little
change in Far (> p) IDF1 and MOTA scores. When we com-
pare window lengths of {10, 20, 30, 40} frames (equivalently

{0.33,0.67, 1, 1.33} seconds for a 30 FPS camera), we see
an improvement in IDF1 and MOTA as the window length
increases with a noticeable jump occurring between w = 20
and w = 30. Since the difference in latency of the multi-sensor
tracker for the best performing window size w = 30 compared
to the other window sizes is negligible, we use w = 30 for the
remainder of our experiments. Effectively, the algorithm only
has to spend an additional 0.072 seconds to process each new
batch of tracklets every w frames.

4) Key Results: The tracking performance for the easy and
hard Gainesville sequences are presented in Table V. We visu-
alize examples of our method’s track association and fusion
in Figure 6. MobileDR+ Radar outperforms MobileDR as well
as the radar alone on the easy sequence. In Figures 7a and 7b,
we directly compare the MOTA of these three trackers on the
easy sequences as broken down by “near” and “far” based
on p. MobileDR+ Radar drastically improves the MOTA of
MobileDR for the “far” region (Figure 7b). Note the increase
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TABLE V
GAINESVILLE DATASET CLEAR MOT RESULTS (KEY METRICS ARE HIGHLIGHTED). ADDING RADAR
INCREASES MOBILEDR’S MOTA BY +9.8% ON THE HARD SEQUENCE
Tracker MOTA (1) | MOTP (}) | IDFI (1) | MT | PT | ML FP FN Rell Prcn IDsw | Frag
MobileDR+Radar 46.4% 119.6 48.0% 3 12 1 1738 | 1778 | 73.8% | 73.7% 43 58
> MobileDR 44.2% 66.3 60.2% 0 13 3 109 3589 | 45.9% | 96.5% 5 14
5 Radar only 24.9% 167.0 40.3% 2 13 1 2438 | 2502 | 62.3% | 62.9% 42 68
OpenCV blob tracking —12.6% 239.5 3.6% 0 0 16 1019 | 6384 3.9% 19.8% 67 68
DeepSORTT 67.3% 62.0 61.3% 5 10 1 580 1554 | 76.6% | 89.8% 39 34
MobileDR+Radar 38.4% 133.2 38.2% 1 12 4 989 2520 | 56.3% | 76.6% 42 81
2 MobileDR 29.6% 58.2 46.8% 1 9 7 194 3864 | 33.0% | 90.7% 1 6
= Radar only 19.3% 172.4 33.9% 0 13 4 1499 | 3109 | 46.1% | 63.9% 43 88
OpenCV blob tracking —19.1% 317.6 3.9% 0 3 14 1297 | 5512 4.4% 16.2% 55 59
DeepSORTT 45.3% 65.9 59.3% 3 9 5 420 2726 | 52.7% | 87.9% 7 13

T Runs at 3.5 FPS on a CPU, see Table III
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Fig. 7. A comparison of CLEAR MOTA scores on the Gainesville dataset
broken down by sequence difficulty and proximity to the intersection as
measured by p. Higher is better. When considering all four scenarios
together, the fused solution is the highest performing.

in tracking recall from 45.9% to 73.8%. However, adding the
radar decreases the MOTP because the radar tracking is less
precise than the video tracking. Similarly, the lower overall
IDF1 score of the fused solution compared to MobileDR is
due to the less reliable radar sensor; however, notice that
the fused solution’s IDF1 scores are higher than the radar’s
IDF1 scores. DeepSORT achieves strong results (MOTA of
67.3% and IDF1 of 61.3%—MobileDR’s IDF1 score of 60.2%
is similar) due to the use of the accurate YOLOv3 detector,
but we recall that it requires a GPU to achieve real-time
performance at the edge.

The OpenCYV blob tracker has remarkably poor performance
compared to the other trackers. First, it has no way to
classify objects and has to designate any moving blob as a
positive track. Second, the MoG background subtraction loses
stationary objects such as vehicles that are stopped at red
lights. Finally, blob detection and tracking requires applying

morphological operations to remove spurious blobs, which
leads to a high number of false negatives.

In the hard sequence, we see a large +9.8% improvement in
overall MOTA when adding radar to MobileDR. DeepSORT
struggles in denser traffic, and we see that the gap in MOTA
between MobileDR+ Radar and DeepSORT has shrunk com-
pared to the easy sequence. MobileDR+ Radar achieves a
lower number of false negatives than DeepSORT and has a
slightly higher tracking recall due to its ability to track vehicles
far from the intersection. Unsurprisingly, the radar and blob
tracker show a decline in overall tracking performance with
denser traffic.

5) Takeaways: We demonstrated that MobileDR+ Radar
outperforms MobileDR and radar alone in terms of MOTA
both near and far from the intersection in dense traffic. In con-
strained resource settings such as a real-world deployment of
an intelligent traffic intersection control system, we believe
MobileDR+ Radar provides a reasonably good alternative to
heavyweight trackers like YOLOv3 DeepSORT.

F. Failure Modes

We explored fusing DeepSORT [20] with the Doppler radar
on the Gainesville dataset to try to improve its tracking perfor-
mance at far distances. We found that fusing DeepSORT with
the radar decreased DeepSORT’s performance as measured by
the MOT metrics. The radar produces a high number of false
positives and ID switches relative to DeepSORT, and despite
that the fused result had higher recall (since vehicles far away
from the intersection were tracked more often), the overall
performance was lower. This implies that more powerful deep-
learning-based trackers need to be paired with more advanced
radars (e.g., multi-beam Doppler radar as opposed to the single
beam radar used in this work) to see a benefit from the
multi-sensor fusion.

Since MobileDR is trained with supervised learning using
data from the UA-DETRAC training set, we observe drops
in performance when deploying it without fine-tuning at new
intersections, such as the one in Gainesville. For example,
we notice an increase in spurious detections, which we believe
can be attributed to a distribution shift induced by test images
taken with a traffic camera that is positioned and oriented
differently than the cameras used to create the training set.
MobileDR struggled in dense traffic scenarios during which
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there were many vehicles far down the road from the inter-
section (e.g., Figure 7d). Since it is unreasonable to require
collecting and annotating training data at every traffic inter-
section, new data augmentation strategies should be explored
to help achieve stronger out-of-distribution generalization.

V. DISCUSSION

In this work, we developed a practical multi-sensor MOT
algorithm that balances cost-effectiveness, accuracy, and effi-
ciency for downstream applications such as intelligent traffic
intersection control. To that end, we introduced MobileDR,
a CNN for real-time video MOT on low-power hardware
that jointly predicts object detections and matchable object
features for data association. MobileDR is combined with a
deep matching cascade in the video tracker, which is then
complemented by an off-the-shelf Doppler radar, resulting in
clear improvements in tracking performance for objects that
are far away from the traffic intersection.

We note that we could further push performance by
upgrading the MobileDR’s detection branch and base lay-
ers to MobileNetV3-SSDLite [40] to further reduce latency.
Replacing the SSDLite heads with CenterNet [23] or
SpotNet [49]-style detection (treating objects as points) should
also improve accuracy because these methods are anchor-free
and perform center-offset regression. In future work, we will
integrate the tracker into a complete intelligent traffic intersec-
tion controller [6] and conduct field experiments to evaluate
the entire system jointly.
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