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Abstract

Understanding 3D scenes is a critical prerequisite for autonomous agents. Recently, LIDAR and other sensors have made large
amounts of data available in the form of temporal sequences of point cloud frames. In this work, we propose a novel problem—
sequential scene flow estimation (SSFE)—that aims to predict 3D scene flow for all pairs of point clouds in a given sequence.
This is unlike the previously studied problem of scene flow estimation which focuses on two frames. We introduce the SPCM-
Net architecture, which solves this problem by computing multi-scale spatiotemporal correlations between neighboring point
clouds and then aggregating the correlation across time with an order-invariant recurrent unit. Our experimental evaluation
confirms that recurrent processing of point cloud sequences results in significantly better SSFE compared to using only two
frames. Additionally, we demonstrate that this approach can be effectively modified for sequential point cloud forecasting
(SPF), a related problem that demands forecasting future point cloud frames. Our experimental results are evaluated using a
new benchmark for both SSFE and SPF consisting of synthetic and real datasets. Previously, datasets for scene flow estimation
have been limited to two frames. We provide non-trivial extensions to these datasets for multi-frame estimation and prediction.
Due to the difficulty of obtaining ground truth motion for real-world datasets, we use self-supervised training and evaluation
metrics. We believe that this benchmark will be pivotal to future research in this area. All code for benchmark and models
will be made accessible at (https://github.com/BestSonny/SPCM).

Keywords 3D deep learning - Scene dynamics - Point cloud processing - Scene flow estimation - Spatiotemporal learning -
Self-supervised learning

1 Introduction

Autonomous agents need to understand 3D environments to
ensure safe planning and navigation. A critical step is to
perceive and predict the actions of entities such as vehi-
cles, pedestrians, and cyclists. This requires learning rich
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embeddings of recorded data. Among various 3D geometric
data representations, point clouds can accurately preserve
the original geometric information in 3D environments with
less information loss compared to other representations such
as voxels (Maturana and Scherer 2015), or projected images
(Wuetal.2018). This has led to the explosive growth in devel-
oping point cloud-based deep architectures, as evidenced in
(Landrieu and Simonovsky 2018; Liu et al. 2019b; Wang
et al. 2019b; Qi et al. 2017a,b; Su et al. 2018) and other
tasks such as 3D semantic and instance segmentation (Hou
et al. 2019; Pham et al. 2019; Wang et al. 2018b; Yi et al.
2019; Zhao and Tao 2020), and 3D object detection (Gwak
et al. 2020; Qi et al. 2018, 2020; Shi et al. 2020; Tang et al.
2020; Yin et al. 2021). However, the community has paid
less attention to the processing of dynamic point clouds in
a spatiotemporal scene. Unlike grid-based RGB images or
videos, dynamic point clouds are unordered and irregular in
the spatial dimension and can change drastically in the tem-
poral dimension. The spatiotemporal processing of raw point
cloud sequences remains an open challenge.
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Fig. 1 Contrasting the proposed sequential scene flow estimation
(SSFE) problem and standard scene flow estimation (SFE). a SFE pre-
dicts relative motion between a single pair of frames and has been
widely evaluated in prior work such as Liu et al. (2019b), Wu et al.
(2020b) and Puy et al. (2020). b The problem can be further elevated
by utilizing preceding frames, as evidenced in MeteorNet (Liu et al.
2019c). ¢ Our proposed SSFE problem requires estimating 3D scene
flow between multiple adjacent frames. It requires processing an entire
point cloud sequence, implying that multi-step spatiotemporal infor-

One fundamental 3D task is to understand the motion
of a dynamically changing scene by estimating the scene
flow between two consecutive point clouds (Fig. 1a). Despite
receiving significant attention from the 3D community (Gu
et al. 2019; Liu et al. 2019b; Mittal et al. 2020; Puy et al.
2020; Wu et al. 2020b), most scene flow estimation (SFE)
approaches have focused on inferring the relative motion of
a given frame pair. Only one known study has considered
using an input sequence of point clouds (Liu et al. 2019c)
(Fig. 1b), but they still only predict scene flow for a sin-
gle pair of point clouds. Unlike previous work, we instead
consider a new sequence-to-sequence problem of obtaining a
sequence of flow estimation or future movement conditioned
on an input sequence of point clouds and conduct a through
investigation with several contributions.

First, we introduce the sequential scene flow estimation
(SSFE) task. Different from the standard SFE problem, mod-
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mation is relevant for solving this task. It has been unexplored until
now due to the lack of an appropriate benchmark with supervision for
point cloud sequences and standardized training and evaluation proto-
cols. Our proposed benchmark addresses this gap. d We also include
both supervised and self-supervised variants of the closely related task
of sequential point cloud forecasting (SPF) (Fan and Yang 2019; Weng
et al. 2020) in the new benchmark, which has likewise been difficult
to study for the same reasons. This enables investigating whether, e.g.,
pre-training on SSFE aids SPF

els solving SSFE are evaluated on their ability to predict 7 —1
consecutive scene flows conditioned on an input sequence of
T point clouds. In SFE, models need only predict a single
scene flow, whether the input is a pair of frames (Fig. 1a) or
a sequence (Fig. 1b). SSFE is a non-trivial extension of SFE
because current SFE methods are not equipped to extract
multi-step spatiotemporal information from sequences and
because SFE benchmarks do not support the training and
evaluation of 7 — 1 consecutive scene flows.

We also propose SSFE to help solve the challenging
and related task of sequential point cloud forecasting (SPF,
Fig. 1d) (Weng et al. 2020). Unlike models for SSFE, mod-
els trained on SPF must predict a sequence of future point
clouds conditioned on a sequence of past point clouds. SPF
is still relatively unexplored. One study proposed a self-
supervised architecture for this task but failed to adequately
formalize the new task and evaluate the method (Fan and
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Yang 2019). Recently, another self-supervised architecture
SPFNet (Weng et al. 2020) was proposed as well as a for-
malization of self-supervised SPF. They focus on trajectory
forecasting and only provide a limited evaluation of the self-
supervised SPF task. In this work, we study the connection
between our new SSFE problem and the supervised and self-
supervised variants of SPF.

Second, we establish a method for solving SSFE called
Sequential Point Cloud Modeling Network (SPCM-Net).
SPCM-Net extends a state-of-the-art coarse-to-fine SFE
architecture (Wu et al. 2020b) to exploit multi-step infor-
mation, and differs from related models for sequential
processing of point clouds by using a set-to-set cost volume
layer. Specifically, SPCM-Net embeds the set-to-set cost vol-
ume layer within a recurrent cell at each scale of a feature
pyramid. This provides multi-scale spatiotemporal correla-
tion information between neighboring point clouds which
gets aggregated over time by an order-invariant recurrent
unit. SPCM-Net can be directly used to also solve SPF by
appending a similarly-designed decoder to the architecture.
Furthermore, we explore how pre-training on SSFE impacts
performance when fine-tuning on SPF.

Our third contribution is to standardize training and
evaluation protocols by introducing a rigorous benchmark
consisting of several datasets for both the SSFE and SPF
problems. No dataset, to the best of our knowledge, has been
proposed to train and evaluate frame-wise scene flow esti-
mation in point cloud sequences of lengths longer than two
frames. To overcome this limitation, we take the popular
synthetic FlyingThings3D dataset (Mayer et al. 2016) and
reconstruct point cloud sequences with multi-step ground
truth scene flow to support the SSFE task. We repeat the same
process on the newly released Virtual KITTI dataset (Gaidon
etal. 2016) for synthetic evaluation on traffic scenes. We also
process raw LIDAR sequences collected from the Argoverse
dataset (Chang et al. 2019) for the self-supervised variant of
the SPF task. We define suitable metrics for the new SSFE
problem as well as for SPF and adapt appropriate prior work
(Fan and Yang 2019; Liu et al. 2019b; Puy et al. 2020; Qi
et al. 2017a; Wu et al. 2020b) for comparison.

Experimental results on the new benchmark confirm the
effectiveness of SPCM-Net on the new SSFE problem. We
demonstrate a clear advantage over pre-existing SFE meth-
ods due to the recurrent processing of point cloud sequences
for learning scene dynamics. We also show that pre-training
on SSFE followed by fine-tuning on the SPF task improves
SPF performance significantly and establishes state-of-the-
art performance compared to training from scratch. Without
additional pre-training, SPCM-Net achieves competitive per-
formance on the SPF task compared to relevant prior work.
In a control study on the popular KITTI SFE benchmark (Liu
et al. 2019c; Menze and Geiger 2015), we find that SPCM-
Net’s recurrent cost volume approach provides a stronger

inductive bias for sequential point cloud processing than 4D
convolution proposed by the state-of-the-art MeteorNet (Liu
et al. 2019c¢).

1.1 Contributions

We summarize the contributions of this paper as follows:

— To the best of our knowledge, this is the first work to
formally define the problem of sequential scene flow esti-
mation (SSFE) for point cloud sequences.

— We propose the new SPCM-Net architecture for solving
SSFE. SPCM-Net establishes the state-of-the-art perfor-
mance on the new SSFE task by combining a set-to-set
cost volume layer within a recurrent point cloud process-
ing architecture.

— We show that pre-training SPCM-Net on the proposed
SSFE task improves the downstream performance on
sequential point cloud forecasting.

— To aid future research we present a sequential point cloud
benchmark consisting of two synthetic datasets and one
real-world dataset. The benchmark standardizes metrics
for both supervised and self-supervised task variants and
provides multi-step ground truth motion annotations.

In what follows, we describe SSFE and SPF problems
(Sect. 2) and then present our proposed method (Sect. 3).
Then, we introduce the proposed benchmark consisting of
three new datasets along with appropriate evaluation metrics
(Sect. 4). Experimental results are presented and discussed
in Sect. 5. Related work is discussed in Sect. 6. We discuss
findings, limitations, and future work in Sect. 7 and draw
conclusions in Sect. 8.

2 Problem Definitions
2.1 Sequential Scene Flow Estimation

SSFE requires capturing spatiotemporal interaction to esti-
mate frame-wise motions of points in different frames
(Fig. 1c). Formally, the input is a sequence of T consecu-
tive point clouds Pi.r = {(C;, Xy) | t = 1,..., T} with
3D point coordinates C; € R¥*3 and their corresponding
features X; € RN xd where N and d denote the number
of points and feature dimensions, respectively. Given the
sequence P .7, the goal is to estimate the scene flow associ-
ated to each frame of the sequence (starting from the second
frame). Denoting the predicted flows as §2;T and the ground
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truth scene flows as S».7,! we want to find a function fto
compute S2.7 = fssfe (P1.7) that minimizes the error defined
as

E(fssfev Pl:T) = De(fssfe(PlzT)a SZ:T)~ (])

D, is generally instantiated as a mean square error between
§2;T and S,.7. The function f¢e is modeled with a neural
network suitable to point cloud sequences.

Prior work (Gu et al. 2019; Liu et al. 2019b; Wang et al.
2020c; Wu et al. 2020b) has focused on the standard scene
flow estimation problem between two consecutive frames.
By contrast, SSFE requires processing sequences longer than
two frames, which encourages the extraction of contextual
information from all frames to achieve more accurate and
robust estimation.

2.2 Sequential Point Cloud Forecasting

The SPF task is to process a given T-length sequence Pi.7
and predict the most probable future point cloud sequence
of length K, given by Pri1.7+k = {(Crk, X1744) | k =
1,..., K} (Fig. 1d):

Privrik =argmaxp, . o Pr(Pririr4k | Prr). (2)

The problem is highly non-trivial due to the complexity
inherent in point cloud sequences, e.g., partial or full object
occlusion, shape deformation, and scale variations.

When ground truth point-wise motion is available, ground
truth future frames can be generated from the input sequence
P .7 by adding 3D motion to the last point cloud of the
sequence Pr. In this setting, the goal is to find a function
Jfspt that minimizes the error between the predicted frames
i’T+ 1.7+k = Jfspf(P1.7) and the ground truth future frames
Pry1.74+k defined as

E(fspf, P7) = Dp(fspf(Pl:T)7 PT+1:T+K)~ 3

In this supervised setting, D, can be implemented as the
mean square error.

When ground truth point-wise motion is not available, the
task can be approached in a self-supervised manner (Fan and
Yang 2019; Weng et al. 2020). Here, pseudo-ground truth
is generated by estimating nearest points to predicted points
from the point cloud frame in the next timestep, and vice
versa. Then, D, can be implemented as the Chamfer distance
(CD), which is applied to every pair of predicted and future
frames at each timestep (see Sect. 3.3 for a formal definition
of CD).

! In this paper, we define the ground truth scene flow as the motion
from frame 7 to frame 7 — 1, a backward flow. It mostly follows the
setting in Liu et al. (2019c) for a convenient comparison.
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The formulation of SPF above is a generalization of the
same task considered in prior work (Fan and Yang 2019;
Weng et al. 2020) as it admits both supervised and self-
supervised approaches. This eases the study of this problem
within the context of our proposed benchmark which pro-
vides multi-step ground-truth motion annotations.

3 Proposed Method

In this section, we describe our proposed method for sequen-
tial scene flow estimation and sequential point cloud fore-
casting. Our model solves the defined tasks by exploiting
several properties of point cloud sequences (Liu et al. 2019c;
Zhang et al. 2019):

— Intra-frame order invariance Points within the same
frame are arranged without a specific order. Any permu-
tation applied to the points should not change the output
of the model.

— Inter-frame location variance Points at different times-
tamps may carry different spatial correlations. Such
dynamic changes of spatial correlation should be cap-
tured by a model, i.e., changing the timestamp of a point
should result in a different feature vector.

— Spatiotemporal interaction between points Points that
are close spatially and temporally should be considered
as neighboring points, from where local dependencies
should be modeled.

3.1 Network Design

Due to the nature of SSFE and SPF, models must have a
capability of accurately capturing multi-step spatiotempo-
ral information from point cloud sequences. Existing SFE
approaches will not adapt to these tasks because they are
originally designed to handle frame pairs. Without a temporal
receptive field spanning the input point cloud sequence, they
are likely to fail to exploit multi-step information. Inspired
by this, we propose SPCM-Net to recurrently process each
pair of frames in a sequence and aggregate features in a spa-
tiotemporal fashion.

The architecture of SPCM-Net for the SSFE task is visu-
alized in Fig. 2. It consists of multiple modules including an
intra-frame feature pyramid (IFFP) module, an inter-frame
spatiotemporal correlation (IFSC) module, and a multi-scale
coarse-to-fine prediction (MCP) module. The IFFP module
encodes each point cloud frame into a feature pyramid that
captures local spatial information at different scales. The
IFSC module recurrently processes each pair of frames in
the sequence and fuses features with past information, which
we will describe in Sect. 3.1.2. The MCP module generates
multi-scale prediction at each timestep based on features
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Fig. 2 The SPCM-Net architecture for sequential scene flow esti-
mation. We only show the operation of two frames here although
SPCM-Net is designed to recurrently process a point cloud sequence.
For each point cloud frame of the current frame fair, we first encode
it into a feature pyramid via a stack of PointConv (Wu et al. 2019),
multilayer perceptron (MLP), and Farthest Point Sampling (FPS) lay-
ers (Eldar et al. 1997; Moenning and Dodgson 2003; Qi et al. 2017b).
Then at each pyramid level /, its recurrent cost volume layer takes fea-

from IFFP and IFSC modules. Depending on the specific
task, the MCP module is to either estimate scene flows or
predict future point movements.

We now describe each module of the SPCM-Net archi-
tecture for the SSFE task and discuss key ingredients to
our approach. The architecture for the SPF task is similarly
designed and described in Sect. 3.1.3.

3.1.1 Intra-Frame Feature Pyramid

We can not directly apply conventional convolution opera-
tors to point clouds because they are irregular and orderless.
Therefore, we follow PointPWC-Net architecture (Wu et al.
2020b) to utilize the PointConv layer (Wu et al. 2019) to
capture local spatial information within each point cloud.
This generates pyramidal features by hierarchically sampling
each point cloud via multiple Farthest Point Sampling (FPS)
(Eldar et al. 1997; Moenning and Dodgson 2003; Qi et al.
2017b) layers. Each pyramid captures the local geometric
structure within its receptive field. The pyramid features are
further aggregated into larger units to generate higher-level
features. We repeat the process until reaching a demanding
number of pyramid levels, e.g., five (Wu et al. 2020b).

Sequential Processing of
A Point Cloud Sequence

tures of the current point cloud (£;) as the input and updates its hidden
states from 7 — 1 to t. We concatenate the updated states, the upsampled
coarse flow from pyramid level / — 1, and feature Fj, followed by multi-
ple PointConv (Wu et al. 2019) and MLP layers, to generate a finer scene
flow and the intermediate features. For simplicity, we omit one level and
only visualize a three-level pyramid architecture. The future predictor
is designed similarly and is described accordingly in Sect. 3.1.3

3.1.2 Inter-Frame Spatiotemporal Correlation

To model spatiotemporal correlation between point cloud
frames, we would like to exploit the local dependencies of
neighboring frames to capture a larger temporal receptive
field across the whole sequence length. A straightforward
solution would be directly applying 4D convolutions on the
voxelized sequence following (Choy et al. 2019). However,
this requires extensive computation. Furthermore, quanti-
zation errors during voxelization may cause performance
drops when tackling problems requiring precise measure-
ment, e.g., point-wise scene flow estimation. A promising
solution would be instead borrowing designs from sequence
modeling to construct a recurrent model customized for point
cloud sequences.

PointPWC-Net uses a cost volume for computing the
scene flow between two consecutive frames. In our model,
within each pyramid level, the pyramid features generated
from two frames are combined to compute a cost volume to
obtain spatiotemporal correlation. Although we could simply
repeat this computation between every two adjacent frames
to predict scene flow for a given point cloud sequence, this
ignores multi-step information in preceding frames which
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could lead to more accurate estimation. Instead, we com-
bine the cost volume for pairwise frame modeling with
a recurrent neural unit similar to long short-term memory
(LSTM) (Graves 2012; Hochreiter and Schmidhuber 1997).
The spatiotemporal features produced by the cost volume are
fused with past information, producing a smoother estima-
tion of 3D scene flow for each point. This is important for
both the SSFE and SPF tasks. The detailed description of the
recurrent cost volume (RCV) layer can be found in Sect. 3.2.

3.1.3 Multi-scale Coarse-to-Fine Prediction

Inspired by scene flow approaches (Gu et al. 2019; Revaud
et al. 2015; Sun et al. 2018; Wu et al. 2020b), we adopt a
coarse-to-fine prediction approach where the current scene
flow prediction is initialized with estimated flows from a pre-
ceding prediction. We establish this by plugging RCV layers
into the feature pyramid defined in Sect. 3.1.1. At each pyra-
mid level, the RCV layer builds a spatiotemporal correlation
between downsampled versions of the current pair of point
cloud frames in the sequence via FPS (Eldar et al. 1997; Li
et al. 2018b; Moenning and Dodgson 2003; Qi et al. 2017a,
2019; Yu et al. 2018). At the top level is the original input
point clouds. The bottom level contains the fewest points,
which generates the coarsest scene flows. We upsample these
flows with respect to points in the higher level via the widely
used inverse distance weighted interpolation (Qi et al. 2017b)
and make a further refinement.

Sequential flow estimator At each pyramid level [ of the
current timestep ¢, the RCV takes features of the current point
cloud (F}) as the input and updates its hidden states from r — 1
to . We concatenate the updated states, the upsampled coarse
flow from the pyramid level / — 1, and features F;, followed
by a stack of PointConv (Wu et al. 2019) and multilayer
perceptron (MLP) layers, to generate a finer scene flow and
the intermediate features.

Formally, let SF;; be the estimated flow at level [ of
timestep ¢, P, ; be the point cloud at level / of timestep ¢,
we upsample the estimated coarse flow SF;_; ; atlevel [ — 1
with respect to P; ; to obtain the upsampled coarse flow. For
each point pf” in the fine level point cloud P, ;, we find its

K nearest neighbors N ( pll.’t) in the coarse level point cloud

~LL . 7 .
P, ;_;. Each scene flow sf,,, in SF;; for finer level [ is
computed via inverse distance weighted interpolation:

K Lt -1 [—1,t
~d Zj:lw(pi P )SF]-
sfie = K Lt -1t

Zj:lw(Pi P )

“

1t [—1,t
) =

where o (p; P and pl_l’t € N(pll.’t).

1
agp L
We used the Euclidean distance as the distance metric
d( pl[.", pl]._l’l). The estimated flow SF; ; is further obtained
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by concatenating SAFIJ, F[ and the updated state of RCV
(H;) and feeding them to a stack of PointConv (Wu et al.
2019) and MLP layers:

SF ;= MLP(PointConv(Sfl\*“l,,; Ff; H,). (@)

We repeat the process for all pyramid levels. The final
estimated scene flow at time ¢ is S F7 ;. By doing so, we have
modeled a point cloud sequence via multiple RCV layers at
different pyramid levels and across different timesteps. This
design allows exploiting stronger spatiotemporal correlation
in sequences, which we verify in the experiment section.

Sequential future predictor The architecture from the
SSFE task can be adapted to support the SPF task by treating
it as an encoder and adding a decoder. The encoder digests
input point cloud frames while the decoder predicts the future
movement of the last input point cloud P7 = (Cr, X71).
Specifically, the encoder consumes the input point cloud
sequence frame-by-frame and keeps updating the states of
RCV layers till P7. The obtained states will initialize the
states for the decoder. To simplify the problem, we predict
the displacements A P between points of the current timestep
and the next timestep rather than directly reconstructing
future point coordinates from scratch, which is generally
more difficult. We feed the predicted point cloud frame into
the model to interact with the states of the RCV layers and
generate the next point cloud. We repeat this operation until
the prediction step reaches K.

3.2 Recurrent Cost Volume Layer

This section describes the recurrent cost volume in detail.
We begin by providing a preliminary introduction to the cost
volume to build the necessary background.

We first introduce the learnable matching cost between
two consecutive point clouds following PointPWC-Net (Wu
et al. 2020b). Formally,. given' t\yo points p;_,
(ct_,,x!_|)e P,_yand p] = (c/,x]) € P, with3D point
coordinates and their corresponding features, the matching
cost between p; and p!_| is defined as

Cost(p!, pi ) = dmip(ci | — ¢l x!_ | x]). (6)

Here, the feature vectors of two points and the directional
difference between their spatiotemporal positions are passed
to an MLP. Note that p; _, comes from a neighboring point set

of p{ based on spatiotemporal distance or feature similarity.

However, it has been shown that this pure point-to-point
matching cost is sensitive to outliers (Wu et al. 2020b). The
flow embedding layer proposed by Liu et al. (2019b) partly
addresses it by aggregating flow votes from neighboring
points. Specifically, for a given point p/, they finds its neigh-
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Recurrent Modeling

FlowNet3D PointPWC-Net

Point-to-Set
Matching Cost

Set-to-Set
Matching Cost

Fig. 3 A comparison between different model architectures. The key
operation in PointPWC-Net (Wu et al. 2020b) is the cost volume, which
we consider as the set-to-set matching cost, in contrast to the point-to-
set matching cost (the flow embedding layer) proposed by FlowNet3D
(Liu et al. 2019b). PointRNN (Fan and Yang 2019) incorporates the
Sflow embedding layer of FlowNet3D (Liu et al. 2019b) into a recurrent
unit for predicting future point clouds while the proposed SPCM-Net
extends PointPWC-Net Wu et al. (2020b) by introducing the recurrent
cost volume that combines the cost volume for pairwise frame mod-
eling with a recurrent neural unit similar to long short-term memory
(LSTM) (Hochreiter and Schmidhuber 1997; Graves 2012)

boring points at timestep ¢ — 1 via ball query. These points
are considered as multiple soft correspondence points for p;
and are utilized to obtain multiple matching costs defined in
Eq. (6). Matching costs are further aggregated via the max-
pooling. However, motion information can be lost due to the
max-pooling operation. To obtain a more robust and stable
matching cost, a preferable approach is to aggregate match-
ing costs in a manner similar to the patch-to-patch approach
in optical flow (Hosni et al. 2012; Sun et al. 2018). This
motivates us to choose the cost volume in PointPWC-Net
(Wu et al. 2020b) to describe point motion. We consider the
cost volume as the set-to-set matching cost, in contrast to the
point-to-set matching cost (the flow embedding layer). The
leap from point-to-set to set-to-set matching costs is exactly
prefigured in the move from the softmax to the softassign cost
in earlier point matching (Chui and Rangarajan 2003). We
provide a comparison between our proposed SPCM-Net and
several model architectures including PointRNN (Fan and
Yang 2019), FlowNet3D (Liu et al. 2019b), and PointPWC-
Net (Wu et al. 2020b) in Fig. 3.
Formally, the cost volume for p; is defined as

cviph= Y eut p)

preM(p)) 7
x Y on(pi_y, p) Cost(p}_y, py)
Pi_1eN(pY)

Fig. 4 Recurrent cost-volume layer. At each timestep ¢, it takes the
current point locations C; and the associated features X, as the inputs.
They will interact with recurrent cost volume memory states C;_,
H,_y,and M,_; via multiple gates

wm(pX, p}) = MLP(cF — ¢]) (8)
oy (Pl P =MLP(c_| —cb ©

This requires finding a spatial neighboring point set M (p;)
around p/ in P,. Then for each point p* € M (p]), we find
a spatiotemporal neighboring point set N ( pf) around p’; in
P;_ (across time). The interaction between these points is
modeled by two directional vectors obtained via convolu-
tional operations wy (plt‘, p)) and wy (pi_l, pﬂ‘), and their

matching costs. Both the spatial neighboring point set M ( p{ )
and N ( pf ) can be obtained by conducting an efficient GPU-
based ball query that finds all points within a radius to the
query point or the K-nearest neighbor search that finds a fixed
number of points that are the closest.

Now we show how to embed the cost volume into a recur-
rent unit for point cloud sequences (Fig. 4).

Inputs To maintain spatial structure, our hidden states
maintain both the point coordinates and the associated fea-
tures. At timestep 7, both C; and X, will be fed into the RCV
layer as the input.

Initialization Accordingly, the states of the RCV layer are
extended to C;_;, H;_; and M;_; to track the most recent
historic point locations and memory states. For notation clar-
ity, since we already are using C; to denote the coordinates of
points in the point cloud, we will use M to refer to the recur-
rent cell state. The hidden and cell states are zero-initialized
attime t = 0.

Order-invariance Since the point sets can be ordered com-
pletely differently across time and objects may appear or
disappear from view, there is no guarantee that a one-to-one
mapping between neighboring frames exists. Therefore, we
use the cross-frame neighborhood query within the cost vol-
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ume operation to perform updates to the hidden and cell states
(H;_1 and M;_1), making them invariant to any changes to
the order of points or to the addition of new points.

Update Let

CV(Py; Piy) =CV(Cy, X5 €y, {H -, M1} (10)

be the cost volume for all points in timestep ¢ with respect
to the point cloud at timestep ¢ — 1. The core component of
the update operator is a recurrent unit similar to the LSTM
cell, where we replace the fully connected layers with the
cost volume. The relevant update equations are:

It = o1 (CVi(Cy, Xt; Cr1, Hi ), (11)
Fr=0p(CVp(Cy, Xy; Coy, Hyy), (12)

O0r =00(CVo(Cy, X5 C—1, Hi—y), (13)
M, = CVy(C;,None:; C,_1, M, ). (14)
H, = tanh(CVy(C;, X;: Ci—1, H,_)), (15)
MtthGMt—l'i'It@Hta (16)
H, =0,0M,, (17

where the operator © denotes the Hadamard product. CVp,
CVp, and CVjp denote the cost volume operations for the
input, forget and output gates, respectively. The “None” in
the cost volume operation applied to the cell state M;_1 rep-
resents that we do not use any input features when performing
the neighborhood query on the cell state (x; in Eq. (6) is
ignored). Then M,_, is modulated via the forget gate F; and
is further aggregated with the new memory H, passed to the
input gate /; to obtain the latest memory state M. The latest
hidden state H, is obtained by conditionally deciding what
to output from M; controlled by the output gate O;. Note
that C; and H, can be used together as the input features of
downstream tasks.

3.3 Learning Objectives

SSFE When ground truth scene flows are available, we adapt
the multi-scale loss function used in PWC-Net (Sun et al.
2018) and PointPWC-Net (Wu et al. 2020b) and extend it to
handle point cloud sequences. Given the predicted scene flow
SF;; at the pyramid level / from timestep ¢ and its ground
truth scene flow G F, ;. The objective function is specified as

T L

=YY «llSF; —GF,ll5. (18)

t=2 I=1

SSFE
L supervised

Occluded points are not considered by masking them
out from gradient computation and weight updating. As
done previously (Wu et al. 2020b), we use a set of hyper-
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parameters {o; | [ = 1, ..., L} to balance the importance of
losses from different pyramid levels.

In this study, we do not explore self-supervised SSFE as

this would require non-trivial innovation to develop a suit-
able training objective. Recent work (Mittal et al. 2020) has
shown progress on self-supervised SFE which suggests that
an extension to SSFE is possible.
SPF When ground truth point-wise motion is available, the
learning objective is similar to Eq. (18). We compute the
difference between the predicted future frames and the future
ground truth frames derived from ground truth scene flow.
Denote P;; and ’Pt, ; as ground truth and predicted frames at
the pyramid level / from timestep ¢. The objective function
is specified as

T+K L

L3 iea = D Y aillPri—Pull3. (19)

t=T+1 I=1

In reality, it is often difficult and expensive to obtain ground
truth scene flows for real-world point cloud sequences and
therefore few scene flow datasets are available. To avoid
relying on the availability of ground truth scene flows, we
can also define a self-supervised learning objective to train
the model. We adopt the Chamfer Distance (CD) to com-
pute the difference between predicted sequences and actual
future sequences (Weng et al. 2020), which allows us to
approximate the ground truth scene flow and guide the model
learning. The CD is defined as

Dcp(Pi. P)=" min |p—p|°+ ) min [|p— I,

eP
peEP; beb peP,

(20)

where P, and P ¢ are ground truth and predicted frames. We
apply Eq. (20) to all the future frames:

T+K L

LEcIIfE-superviscd = Z ZalDCD(Pt,lv Pf,l)~ (21)
t=T+1 =1

We do not explore advanced techniques widely used in the
scene flow community for self-supervised SPF, e.g., Lapla-
cian regularization or local smoothness (Pontes et al. 2020;
Wau et al. 2020b), to further improve the performance. It guar-
antees a relatively fair comparison to baseline methods with
simple learning objectives.

4 Datasets and Metrics

In this section, we will describe datasets and the evaluation
metrics designed for new tasks.
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Limitations of existing benchmarks Most existing bench-
marks (Mayer et al. 2016; Menze and Geiger 2015) focus
on SFE between two consecutive point cloud frames with
ground truth annotations, which are widely adopted in recent
state-of-the-art approaches (Gu et al. 2019; Liu et al. 2019b;
Wu et al. 2020b). An extension of the KITTI scene flow
dataset to short sequences for flow estimation of the last
input frame has been considered (Liu et al. 2019¢). How-
ever, this does not meet the requirement of multi-step scene
flow annotations necessary for supervised SSFE and SPF.

New benchmarks Therefore, to evaluate SSFE and SPF,
new datasets are needed to help systematically analyze novel
methods. For supervised SSFE and SPF we adapt two syn-
thetic yet challenging datasets: FlyingThings3D (Mayer et al.
2016) and Virtual KITTI (Gaidon et al. 2016). We generate
ground truth annotations for point cloud sequences that could
be useful to both SSFE and SPF tasks. For self-supervised
SPF we extract sequences from the real-world Argoverse
dataset (Chang et al. 2019).

4.1 Sequential FlyingThings3D (SFT3D) Dataset

FlyingThings3D (Mayer et al. 2016) is the first large-scale
synthetic dataset proposed for training deep learning mod-
els on scene flow estimation. It contains videos all with a
frame length of 10, rendered from scenes by randomly mov-
ing objects from the ShapeNet dataset (Chang et al. 2015).
However, it does not provide point cloud sequences directly.
Therefore, we reconstructed point clouds and 3D scene flows
based on the ground-truth disparity maps, maps of disparity
change, optical flows, and the provided camera parameters.
We follow (Guetal. 2019; Liu et al. 2019b) and only maintain
points with a depth of less than 35 m.

Our SFT3D dataset can be used for evaluating both SSFE
and SPF. In detail:

— SSFE We use the first six frames as the input for SSFE.
Models must predict all the scene flows starting from
frame 2 to frame 6. All these frames are provided with
ground truth scene flows. For input frames, we randomly
sample a fixed number of points (e.g., 2048 points) for
each frame in a non-corresponding manner, meaning a
point of a certain frame may not necessarily find its cor-
responding point in the subsequent frame.

— SPF We take the first six frames as the input while using
the rest of the frames as ground truth. For all points in
future frames, we find and track the future movement
of points sampled in the last input frames (the 6th input
frames) along the whole prediction period to obtain the
ground truth motions.

The proposed SFT3D dataset is challenging, e.g., it
contains points of occluded scene flows. Similar to the prepa-

Fig. 5 One example sequence from our created SFT3D dataset (the
frame number increases from top to bottom). Left: The original
frames of FlyingThings3D dataset (Mayer et al. 2016). Right: The
reconstructed point cloud sequences. Notice that existing scene flow
approaches only take a pair of frames as the input while in this paper
we focus on handling point cloud sequences. Best viewed in color

ration of Liu et al. (2019b), occluded points are present in
both the input and output of a designed model. However, they
are not considered during performance evaluation or included
in training losses. We remove sequences where all points are
completely occluded in any frame. A visual example can be
found in Fig. 5.

4.2 Virtual KITTI Sequence (VKS) Dataset

The Virtual KITTI dataset uses a game engine to recreate real-
world videos from the KITTTI tracking benchmark (Geiger
et al. 2012). Due to recent improvement in lighting and post-
processing of the Unity game engine, an improved dataset
called the Virtual KITTI 2 dataset is released to be more
photo-realistic and better-featured. It provides images from
a stereo camera with new supports for forward and backward
optical flow, forward and backward scene flow, and available
camera parameters. We consider vehicles as objects of inter-
est as they are the main dynamic objects in a traffic scene,
i.e., trucks, cars, and vans. We obtain 3D point locations by
projecting 2D pixel positions (in meters) to the 3D space
based on the camera parameters.

As shown in Fig. 6, the original virtual KITTI contains five
scenes of crowded urban area (SceneQ1), busy intersections
(Scene02, Scene06), long road in the forest (Scenel8), and
highway driving scene (Scene20). For each sequence, we
repeatedly sample consecutive frames with a length of 10
and select the starting frame number every five frames. For
all videos, we use their first 60% of frames for training and
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Fig.6 Sample snapshot frames from the VKS dataset (sequence 1, 2, 6,
18, 20 from top to bottom). We consider vehicles as objects of interests
as they are the major dynamic objects in a traffic scene. (Left) Original
image frames from the Virtual KITTI dataset. (Right) Our created point
clouds. Best viewed in color

the remaining 40% for testing. We sample 2048 points for
each frame and only consider points with a depth less than
35 m.

Our VKS dataset is used for evaluating both SSFE and
SPF tasks:

— SSFE The first five frames are used as the input. Models
estimate flows from frame two to frame five.

— SPF Models predict the future movement of points start-
ing from the last input frame (frame five) for five steps.
Similar to our SFT3D dataset, occluded points are not
considered during the evaluation.

4.3 Sequential Argoverse (SAG) Dataset

The Argoverse dataset (Chang et al. 2019) is collected in
Pittsburgh, Pennsylvania, USA and Miami, Florida, USA by
a fleet of autonomous vehicles. The collected dataset cap-
tures different seasons, weather conditions, and times of the
day. We use the raw LiDAR data from Argoverse-Tracking
consisting of 113 log segments varying in length from 15 to
30 s. Among them, 89 logs are used for training and the rest
is for testing.

The Argoverse dataset does not provide ground-truth
point-wise motion and therefore we adopt metrics that do
not require annotations (Sect. 4.5). Hence, we only train and
evaluate models on self-supervised SPF with this dataset.
Forecasting future point clouds on real-world datasets is chal-
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Fig. 7 Visualization of one example from our created SAG dataset.
Different colors denote points from a different frame number: first input
frame 1, lastinput frame 5, and last future frame 10. Ground plane points
are removed using a heuristic algorithm. Best viewed in color

lenging with rapid changes in the vehicle’s surroundings. We
focus on short-term prediction in this work. We repeatedly
sample from each driving log by randomly choosing 10 con-
secutive frames and creating the corresponding point cloud
sequences. To achieve a reasonable computation, we sam-
ple a fixed number of points for each frame, i.e., 2048. We
remove the ground points to reduce the bias caused by the
flattened geometry of the ground. Similarly, we follow the
practice of Wu et al. (2020a) and crop the point clouds to
extract region defined by [—32, 32] x [—8, 8] x [—00, 2] m,
which corresponds to the XYZ range. A sample data is shown
in Fig. 7.

4.4 Overview of Dataset Splits

Here we provide detailed information on the dataset splits
(see Table 1 as well).

— SFT3D A total of 5337 sequences are created. Among
them, 4020 videos are used for training and the rest of
446 and 871 videos are held out for validation and testing,
respectively. The validation set is utilized to select the
best training model.

— VKS We have collected a total of 3350 point cloud
sequences, where 2175 of them are used to train the model
and the rest of the sequences are for testing.

— SAG The SAG dataset contains a total of 1200 test
point cloud sequences, where the first five frames are
the input and the rest are the ground truth future frames.
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Table 1 A summary of the created datasets with X forward, Y left, and Z up

Dataset Frame sampling X—Y-Z point range Points per #Train #Validation #Test SSFE SPF

frame
STE3D N/A X <35 2048 4020 446 871 v v
VKS Sample 10 frames X <35 2048 2175 N/A 1175 v v
per second
SAG Sample 10 frames [—32,32] x [—8, 8] x [—00, 2] 2048 On-the-fly N/A 1200 X v

per second

Training samples are generated on-the-fly similar to test
sequences.

4.5 Evaluation Metrics

To adapt several standard evaluation metrics in point cloud
processing to fit our task format, we analyzed the usefulness
of scene flow estimation metrics as well as metrics for future
point cloud prediction and identified which are best suited.
Our evaluation is mainly divided into three types: supervised
SSFE metrics, supervised SPF metrics, and self-supervised
SPF metrics.

Supervised SSFE metrics If the ground truth scene flow
annotations are available, we adapt the evaluation protocol of
3D scene flow estimation (Gu et al. 2019; Liu et al. 2019b, ¢)
and extend to sequences. Specifically, the 3D end point error
(EPE3D) and accuracy (ACC3D) are used as the metrics.
The EPE3D measures the average ¢, distance between the
predicted scene flow vector §% and ground truth scene flow
vector s§ for all points in the sequence of length 7 — 1, which
is computed as

EPE3D =

1
: (22)
t

T
> mills; = sl
1,i =2 i=1

where m is a binary mask and m! = 0 denotes an invalid
scene flow of the point p'. This is possible in reality due to
the viewpoint shift and occlusion. Taking the average over
all valid points reflects the overall performance of flow esti-
mation over sequences. The ACC3D reflects the portion of
estimated flows that are below a specified end point error
threshold among all points. Following Gu et al. (2019), both
strict and relaxed ACC3D are used:

— The strict ACC3D (Acc3DS) considers the percentage of
points whose E P E3D < 0.05 m or relative error < 5%.

— The relaxed ACC3D (Acc3DR) considers the percentage
of points whose EPE3D < 0.1 m or relative error <
10%.

To measure outlier prediction, we use the Outliers3D to com-
pute the percentage of points whose EPE3D > 0.3 m or

relative error > 10%. We noticed that Outliers3D is invalid
when the ground truth flows are near 0. The reason is that
computing this value requires dividing by the norm of the
ground truth flow, which is sensitive to values near zero.
Therefore, we fix it by proposing a rectified version of Out-
liers3D (RectOutliers3D) that only depends on the condition
EPE3D > 0.3 m when the ground truth scene flow is small
(e.g., its £ norm is lower than a threshold value 0.1). Other-
wise, it remains the same to Outliers3D.

We use two additional metrics that involve projecting point
clouds back to the image plane. We obtain EPE2D by com-
puting the 2D end point error in the image plane and Acc2D
by calculating the percentage of points whose EPE2D < 3 px
or relative error < 5%.

We highlight that although all the SSFE metrics are SFE
metrics that have been extended to sequences, we maintain
the same names for simplicity.

Supervised SPF metrics We propose to use the standard
evaluation from the trajectory forecasting community (Alahi
et al. 2016). We consider two common metrics: the aver-
age displacement error (ADE) and final displacement error
(FDE).

The ADE measures the average Euclidean distance bet-
ween the estimated point piT 4, and ground truth point
giT 4, for all points in each prediction step. Considering the
occluded points, it is defined as

K N

1 i i i
ZZ’"T—;—;”PT—H _gT+t||2

ADE = 7
D i My =1 i=1

(23)

where m’T 4, denotes that the point has disappeared due to
occlusion or view shift if the value is 0, otherwise 1. The FDE
computes the average Euclidean distance between estimated
point piT 4 and ground truth point giT 4k for all points at
end of the prediction period K.

Self-supervised SPF metrics ADE and FDE are suitable
when ground truth annotations are available. In most real-
world datasets where ground truth point correspondences
between frames are difficult to obtain, we cannot compute
them anymore. We could have approximated the true corre-
spondence by solving a weighted bipartite matching problem
(Jonker and Volgenant 1987) or via softassign (Chui and Ran-
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garajan 2000, 2003) but instead adopted a simpler nearest
neighbor approach (Barrow et al. 1977; Besl and McKay
1992; Fan and Yang 2019; Li et al. 2018b; Weng et al. 2020).
Specifically, we generate the pseudo-ground truth points by
considering nearest points to predicted points from the point
cloud frame in the next timestep, and vice versa. This could
be implemented as a Chamfer distance, which is previously
defined in Sect. 3, Eq. (20). We apply Chamfer distance to all
future frames and sum the errors up by enumerating ¢ from
T+1toT +K.

Similarly, we also use Earth Mover’s Distance (EMD)
(Rubner et al. 2000) defined as

Demp(Pr, P)= min_ Y |p—¢(pl? (24)
¢:Py— P, peP,

where ¢ : P, — ’15, is a bijection. We divide both EMD and
CD by the total number of points.

Both CD and EMD lack a mechanism to handle outliers
which are likely to exist due to occlusions, noise, and sam-
pling patterns in LiDAR point clouds. For example, in CD,
noisy points or isolated points that are far from the others
might substantially increase the CD by introducing large
distance values between them and their nearest-neighbours,
leading to noisy evaluation. In EMD, the constraint of one-
to-one mapping (a bijective mapping) is usually too harsh for
LiDAR point clouds, which are sampled randomly.

Inspired by Gojcic et al. (2021) and Yew and Lee (2020),
we introduce an evaluation method built upon optimal trans-
port (Peyré and Cuturi 2019). Our goal is to find the
corresponding point of the estimated point p! with respect
to the ground truth point cloud P,. Denoting ¢ as the hard
correspondence mapping, we define an evaluation metric as

Deorr(Pi. P) =Y |p—o(p. P)I* (25)
PEP,

To obtain ¢, we firstly obtain the optimal soft assignment
(called the softassign in an homage to the softmax nonlinear-
ity) @sof; via the Sinkhorn algorithm (Sinkhorn 1964), and
then follow Li et al. (2021) to obtain hard correspondence.
Specifically, we use the point coordinates of pi and p/ to

construct an affinity matrix M where /\/lp,- ) is defined as
Pt

14
Mpi ﬁj = exP(T)- (26)
pE d(p;, p;) +e€

Here, y is empirically set to 10, € = le_g, and d(pi, ’ﬁf)
is the Euclidean distance. Given M, we perform an alternat-
ing row and column normalization for a few iterations (e.g.,
five iterations), which yields a doubly stochastic assignment
matrix A. The soft correspondence function ¢y, then reads

<Psofz(17§, ﬁz) =a;/|a; |1/I;t where a; is the i-th row of A.
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To handle outliers, we follow Chui and Rangarajan (2003),
Gojcic et al. (2021), Yew and Lee (2020) and add an addi-
tional row and column of ones (a slack row and column)
to the original input of Sinkhorn normalization (the matrix
M) while only performing the alternating row and column
normalization on non-slack rows and columns to obtain a
resulting matrix A.To generate ¢, we follow Li et al. (2021)
to modify each row of A by setting its column element with
the maximum value to 1 and the remaining element to O such
that the point with the highest transport score is selected as
the corresponding point in this row.

We average all the ¢, distances between all pairs of points
except those which are assigned to slack columns. These are
denoted as P }’”lid C P, respectively and then the Sinkhorn
Distance (SD) evaluation metric is defined as

Dsp(P;, Py) = Y llp—ep. Pol>. @7

valid
|P; | pepualid

We use the ADE, FDE, CD, and EMD metrics for evaluat-
ing SPF tasks on SFT3D and VKS datasets. When we move
to the SAG dataset, we report both CD, EMD, and SD met-
rics because no ground truth annotation is available. Also,
the introduced SD is used to downweight outliers. Note that
SPCM-Net uses the CD as the learning objective on the SAG
dataset.

5 Experiments

In this section, our main goal is to present experimental
results evaluating SPCM-Net and relevant baselines on the
proposed SFT3D, VKS, and SAG datasets.

To that end, we first evaluate SPCM-Net and relevant mod-
els on supervised SSFE and supervised SPF on the SFT3D
dataset (Sect. 5.2). Then, we evaluate the two taskson the
VKS dataset with the same models (Sect. 5.3). Next, we
evaluate SPCM-Net on the self-supervised SPF task with the
SAG dataset (Sect. 5.4). Finally, we demonstrate the bene-
fit of our recurrent cost volume approach to modeling point
cloud sequences in a controlled experiment using the stan-
dard KITTI scene flow dataset (Sect. 5.5).

5.1 Implementation Details

We implemented all the developed models in PyTorch
(Paszke et al. 2019) using distributed training with 8 GPUs.
Training each model generally takes 1-2 days. For SFE mod-
els (such as FlowNet3D) built upon TensorFlow (Abadi et al.
2016), we converted their pre-trained model weights into
Pytorch and achieved identical performance. For most of the
experiments, we set the learning rate and weight decay as
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0.001 and 0.0001, respectively. We trained the models for 400
epochs while decaying the learning rate of each parameter
group by 0.1 every 100 epochs. The gradient clip technique
was applied to normalize the gradients. We didn’t use any
data augmentation strategy (such as rotation and scaling).
We will release training and evaluation code for the new
benchmark and models to facilitate future research at https://
github.com/BestSonny/SPCM.

5.2 Sequential FlyingThings3D Dataset (SFT3D)
5.2.1 Supervised SSFE

Models We created several models to compare against
the proposed SPCM-Net by directly adapting prior SFE
approaches for frame pairs. We selected three representative
state-of-the-art architectures that are publicly available for
a comprehensive evaluation, namely FlowNet3D (Liu et al.
2019b), PointPWC-Net (Wu et al. 2020b), and FLOT (Puy
et al. 2020). Originally, these models only support scene flow
estimation between two consecutive frames. FlowNet3D
and FLOT were trained with the FlyingThings3D dataset
(FT3D) prepared by Liu et al. (2019b). We train PointPWC-
Net using the same dataset. These models are denoted as
MODEL_NAME + FT3D.

To report the performance for these models on our new
SFT3D dataset, we pass every two consecutive frames of each
point cloud sequence to obtain the predicted scene flows (e.g.,
four-step scene flow estimation for a point cloud sequence
of length five). To ensure a fair comparison, we customized
these methods to support SSFE by making n-step predic-
tions and retraining them with the training split of the SFT3D
dataset. We used the validation split to select the best models.
These models are denoted as MODEL_NAME + SFT3D.
The same setting of training and evaluation ensures a fair
comparison between SPCM-Net and these models.

Results All results are aggregated and shown in Table 2.
All models trained with the pair-wise FT3D dataset achieve
limited performance on the SFT3D dataset. After customiz-
ing these models and re-training them on SFT3D, we observe
consistent improvement in performance. The improvement
reflects that the extra supervision from multiple frame pairs
of a sequence provides a stronger learning signal compared
to single-frame-pair supervision. However, these models
independently conduct standard scene flow estimation on
all frame pairs in point cloud sequences, ignoring multi-
step spatiotemporal information. This has been addressed
by SPCM-Net, which can recurrently process point cloud
sequences.

SPCM-Net surpasses baseline methods significantly on
various metrics. On both validation and test splits of the
SFT3D dataset, SPCM-Net shows a clear improvement over
the best models. It obtains EPE3D scores of 0.108 and

0.157 on the validation and test split, respectively, improv-
ing the best results of relevant models, i.e., PointPWC-Net
+ SFT3D and FlowNet3D + SFT3D. The improvements
become larger when we measure the accuracy of scene flow
prediction and the number of outlier predictions. For exam-
ple, on the test split, SPCM-Net achieves a Acc3DS score of
0.380 and a Acc3DR score of 0.659, largely outperforming
FlowNet3D, FLOT, and PointPWC-Net.

Specifically, it surpasses the previous best result on every
single metric: > 6% on Acc3DS (higher is better), > 2% on
Acc3DR (higher is better), and > 5% on Outliers3D (lower
is better). This indicates that our framework can handle
sequences in a more principled way by recurrently process-
ing a point cloud sequence, thus capturing scene dynamics
across a longer temporal length. Compared to baselines
designed for pair-wise frames, the capability to utilize multi-
step information reduces outlier predictions. Overall, our
model demonstrates an ability to utilize historical point-wise
motion patterns derived from spatiotemporal neighborhoods
of points across frames. We further verify this by visualizing
model predictions on the SFT3D dataset, as shown in Fig. 8.

5.2.2 Supervised SPF

Models We evaluate the prediction task by comparing against
several prediction baselines: (1) PointNet++ (Qietal. 2017b)
+ LSTM. We established a simple baseline by converting
each point cloud into a global feature vector via a pooling
layer. To learn the temporal dynamics and propagate it to the
future, we use a standard fully-connected LSTM network to
process the global feature vectors of the past input frames.
At each timestep, the output feature of the LSTM will be
broadcasted to each point and combined with the local point
feature similar to the segmentation network in PointNet++.
The model output will be the motion offsets of future points.
(2) We used a recent preprint work called PointRNN (Fan
and Yang 2019), which essentially extends the flow embed-
ding layer in FlowNet3D (Liu et al. 2019b) to a recurrent
model to support future prediction. We are unable to include
the SPFNet architecture (Weng et al. 2020) in our evaluation
as code has not been released for it at the current time, but
we aim to add it to our benchmark in the near future.

We evaluate two variants of the proposed SPCM-Net—
one trained from scratch (SPCM-Net) and one fine-tuned on
SPF after pre-training on SSFE (SPCM-Net + Pretrained).
The first one ensures a fair comparison to the baselines while
the second one explores whether pretraining on the SSFE
task helps the SPF task. All the models were trained with our
proposed SFT3D dataset.

Results Table 3 reports the future prediction results on vali-
dation and test splits. Compared to other baseline approaches,
our SPCM-Net achieves lower ADE, FDE, CD, and EMD
under the same setting of training from scratch. Addition-
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FLOT

Image Frames Point Clouds

FlowNet3D

PointPWC-Net SPCM-Net (Ours)

Fig. 8 The SPCM-Net can generate accurate scene flow estimation
while largely reducing the outlier prediction, due to its capability of
extracting multi-step information from sequences. Points can leverage
their historical motion patterns in nearby locations to estimate more
accurate and robust scene flow. Qualitative comparisons between SSFE
results of different models on our SFT3D dataset. The ‘Image Frames’

column visualizes one sample sequence of the original FlyingThings3D
dataset. The ‘Point Clouds’ column shows the corresponding point
cloud sequences created after adding ground truth scene flows to them-
selves. All the models are trained with our SFT3D dataset. The error
heatmaps illustrate the estimation results. The errors gradually increase
from dark blue to dark red. Best viewed in color

Table 3 SPCM-Net can be adapted to support the SPF task while achieving a superior performance

Method SFT3D validation split SFT3D test split

ADE | FDE| CD| EMD| ADE | FDE| CD| EMD|
PointNet++(Qi et al. 2017a) + LSTM 0.6740 1.0045 0.4603 0.9495 1.4017 21717 0.8878 2.0773
PointRNN (Fan and Yang 2019) 0.5605 0.8022 0.3715 0.7998 0.7607 1.1275 0.4783 1.0996
SPCM-Net (Ours) 0.5069 0.7893 0.3300 0.7364 0.6286 0.9769 0.3848 0.9155
SPCM-Net (Ours) + Pretrained 0.2488 0.3886 0.1737 0.3408 0.3978 0.6373 0.2514 0.5684

Pretraining on the SSFE task helps the SPF task. We show supervised SPF results on our SFT3D datasets. All models are trained from scratch
except the model (SPCM-Net (Ours) + Pretrained). ‘Pretrained’ denotes that it is finetuned on the model pretrained in the task of supervised SSFE.

Bold values indicate the best performance

ally, we verify that using the pre-trained weights obtained
from the SSFE task to initialize the model is beneficial.
It further reduces the displacement errors and obtains bet-
ter future predictions. For example, on both validation and
testing splits, compared to the best result of SPCM-Net,

SPCM-Net + Pretrained further reduces the ADE and FDE
to 0.2488 and 0.3978, achieving a significant decrease of
50.92% and 36.72%, respectively. The CD and EMD also
reflect that a significant improvement has been achieved.
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Fig.9 Qualitative comparisons between SPF results of different mod-
els on our SFT3D dataset. Top rows show the original input image
frames and our constructed point cloud frames. The bottom rows show
the prediction results. The error heatmaps reflect the average displace-
ment errors (ADE) of points. The errors gradually increase from dark
blue to dark red. We show that performing pre-training on SSFE, fol-

We visualize a sample generated by each model in Fig. 9.
We see that SPCM-Net + Pretrained achieves the best future
prediction. In particular, it successfully predicts the motion
of the lamp with the wooden mount while all other models
have failed.

5.3 Virtual KITTI Sequence (VKS) Dataset

The VKS dataset further allows us to evaluate models on
simulated environments for the real-world, providing a pre-
liminary prototype evaluation for traffic scenes. It provides
accurate ground truth scene flows and future movements of
multiple moving objects that are rather difficult to obtain in
real-world settings.

@ Springer

lowed by fine-tuning on the SPF task, helps boost the performance of
SPF compared to training from scratch, which is verified by the circled
results. ‘SPCM-Net (ours) + Pretrained’ successfully predicts the future
motion of the lamp with the wooden mount while all models trained
from scratch have failed. Best viewed in color

5.3.1 Supervised SSFE

Baselines The evaluated models are very similar to the mod-
els used in the SFT3D dataset except for one difference. Both
PointPWC-Net and SPCM-Net have changed to ball-query-
based neighbor search instead of K-nearest neighbor search
for better performance. This follows the practice of Qi et al.
(Qi et al. 2017b) to maintain a fixed region scale and high-
light local region patterns. All models are first pre-trained on
the SFT3D dataset then fine-tuned on the VKS dataset.
Results The results are shown in Table 2. We find
that SPCM-Net outperforms other baseline methods on
all the metrics including EPE3D, Acc3DS, Acc3DR, Out-
liers3D, RectOutliers3D, and EPE2D, and Acc2D. The main
improvements are seen in the accuracy scores (reflected by
Acc3DS and Acc3DR) and reductions in outlier predictions.
FLOT (Puy et al. 2020) performs slightly worse than we
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Table4 Our general SPCM-Net architecture achieves competitive SPF results compared to tailored state-of-the-art models under both supervised

and self-supervised settings

Method VKS (supervised) SAG (self-supervised)
ADE | FDE| CD| EMD| CDJ EMD| SD|
PointNet++ (Qi et al. 2017b) + LSTM 1.1747 1.9278 0.7260 1.4071 2.0718 2.5574 2.4363
PointRNN (Fan and Yang 2019) 0.2856 0.4655 0.1551 0.3575 1.2322 2.3160 1.3630
SPCM-Net (Ours) 0.2768 0.4799 0.1400 0.3418 1.3453 2.2992 1.4845
Bold values indicate the best performance
- - 0 B A
e PCCO
e ~\‘.;‘i‘iﬁf @5@5&# A t-ﬂﬁ. ~ {‘)A a a

Fig. 10 Visualization of SAG future prediction with our SPCM-Net.
Top: Top view of the whole scene. Bottom: Zoomed in areas. green
points are future points at frame 10 while blue points are the predicted
point cloud. Lines connect the nearest neighboring points between green

initially expected. We suspect that the K-nearest neighbor
search used in FLOT could potentially degrade the perfor-
mance, due to its learned features that are less generalized in
space.

5.3.2 Supervised SPF

Models The baselines are the same as for the SFT3D dataset.
Our SPCM-Net uses a ball-query-based neighbor search. All
models are first pre-trained on the supervised SPF task with
the SFT3D dataset and then fine-tuned on the VKS dataset.

Results Quantitative results are listed in Table 4. We
show that SPCM-Net achieves a comparable performance
compared to PointRNN (Fan and Yang 2019). Interestingly,
PointNet++ (Qi et al. 2017b) + LSTM performs significantly
worse. Because it uses the global fully-connected feature as
the spatiotemporal representation, it struggles to capture the
dynamics of local regions in the VKS dataset.

A visualization of predictions made by our SPCM-Net
is provided in Fig. 11. It makes reasonably good predic-

points and blue points, which are obtained by the Chamfer distance.
Shorter-length lines are preferred since they reflect lower errors. Best
viewed in color

Future Frames at T+5 Predicted Frames at T+5

> ST M

T w =

R

= i

Fig. 11 Visualization of VKS future prediction with our SPCM-Net.
Left: the ground truth future frames at the end of prediction period (the
Sth future frames). Right: the predicted frames. Best viewed in color

tions, and overall we achieve competitive performance to
the prior art PointRNN. We show some typical errors made
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by SPCM-Net. When predicting the future movement of the
truck objects, the model shows that it lacks awareness of the
physical constraints. Another challenge is that when a vehi-
cle makes a turn, the model struggles to capture the precise
movement (i.e., orientation, speed) of the vehicle. This could
be found in the black car example in Fig. 11. We encourage
the community to further explore this problem by investigat-
ing advanced topics in generative models (Achlioptas et al.
2018; Wang et al. 2020a) and physical scene understanding
(Yao et al. 2018).

5.4 Sequential Argoverse (SAG) Dataset

To explore the performance in real-world datasets, we train
and evaluate models on the SAG dataset. The baselines are the
same as models used in the supervised SPF VKS experiment,
except that we use the self-supervised SPF objective to guide
model learning.

Results Results are shown in the right section of Table 4.
SPCM-Net achieves a competitive result compared to other
baselines. Figure 10 shows visual results. The overall pre-
diction is relatively good with high fidelity. However, we
notice that the ground truth points formulated by randomly
sampling points in a scene contain outliers (lines of long
length in Fig. 10). This can explain high CD and EMD
scores. Both PointRNN and SPCM-Net achieve competitive
SD results. We encourage future work to revisit the point
sampling process by focusing on object points. However, this
likely requires applying extra unsupervised object segmen-
tation (Landrieu and Simonovsky 2018) or object discovery
techniques (Karpathy et al. 2013). Also, it is promising to
map point clouds to a latent space where a robust distance
metric can be computed, as evidenced in a recent work (Zua-
nazzi et al. 2020) using adversarial learning.

5.5 KITTI Scene Flow Dataset

We conduct an experiment on standard scene flow estimation
using the KITTI Scene Flow benchmark with the multi-frame
setup of MeteorNet (Liu et al. 2019c¢) to demonstrate a direct
comparison between their architecture and SPCM-Net. We
consider MeteorNet as the 4D extension of PointNet++ (Qi
et al. 2017b) since it appends a 1D temporal coordinate to
the 3D spatial coordinates. The resulting 4D coordinates
help find spatiotemporal neighbors and extract features in
4D space to handle point cloud sequences.

Experimental setup The KITTI scene flow dataset (Menze
and Geiger 2015) provides ground truth disparity maps and
optical flows for 200 frame pairs, from where the 3D ground
truth scene flow can be constructed. Among 200 frame pairs,
only 142 provides the corresponding mapping to laser point
clouds. MeteorNet (Liu et al. 2019¢) further extends the
dataset to use preceding point cloud frames. As a result, the

@ Springer

Table 5 Flow estimation results on KITTI sceneflow dataset

Method Frames Mean SD

FlowNet3D 2 0.287 0.250
MeteorNet (direct) 3 0.282 0.204
MeteorNet (direct) 4 0.263 0.210
MeteorNet (chained-flow) 3 0.277 0.244
MeteorNet (chained-flow) 4 0.251 0.227
SPCM-Net (ours) 3 0.229 0.184
SPCM-Net (ours) 4 0.194 0.174

Metrics are the mean and standard deviation of the end-point-error
(EPE) of scene flow. Bold values indicate the best performance

Fig.12 Visualization of SPCM-Net example results on the KITTI scene
flow dataset with three (left) and four (right) preceding frames as input.
Different colors denotes points from a different frame number: frame
t — 3, frame ¢t — 2, frame ¢ — 1, frame ¢, and the translated points
in black (frame ¢ — 3 + predicted scene flows). The translated points
should highly overlap to points of frame r — 2 for a good estimation.
Left-column and right-column images show the results of using 4 and
3 input frames, respectively. Best viewed in color

task aims to predict one-step scene flow of each frame pair
while taking a point cloud sequence as the input (recall from
Fig. 1b). The first 100 of the 142 frames are used to fine-tune
the models while the remaining 42 sequences are used for
testing. We used the same dataset prepared and released by
Liu et al. (2019c) for training and evaluation.

Results We train and evaluate two model variants of
SPCM-Net with three and four preceding frames as input to
match MeteorNet’s results. Increasing the number of frames
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from three to four achieves a consistent performance gain
as expected. SPCM-Net significantly improves the results
compared to the previous state-of-the-art method MeteorNet.
Specifically, SPCM-Net achieves lower mean errors of 0.229
and 0.194 with three and four preceding frames, decreasing
the errors of MeteorNet by 17.33% and 22.71%, respec-
tively. The use of a recurrent cost volume to processes a
point cloud sequence shows a better capability of extracting
motion patterns for scene flow estimation than the 4D con-
volution approach of MeteorNet. Figure 12 visualizes some
examples of the predicted scene flows.

6 Related Work
6.1 Sequential Point Cloud Processing

Our work is related to techniques for sequential point
cloud processing. This area is fairly new but is a criti-
cal step towards general learning of scene dynamics. To
effectively process point cloud sequences, Fast and Furi-
ous (FaF) (Luo et al. 2018) proposes a network that jointly
tackles 3D detection, tracking, and motion forecasting with
a birds-eye view representation of point clouds and 3D
convolutions. MinkowskiNet (Choy et al. 2019) invents a
generalized sparse tensor-based computing framework that
allows handling point cloud sequences with 4D sparse con-
volutions. However, directly applying 4D convolutions on
a voxelized sequence requires extensive computation. Fur-
thermore, quantization errors during voxelization may cause
performance drops when tackling problems requiring pre-
cise measurement, e.g., point-wise scene flow estimation.
Occupancy Flow (Niemeyer et al. 2019) learns a tempo-
rally and spatially continuous vector field to perform the 4D
reconstruction. More recently, PSTNet (Fan et al. 2021b)
designs a point spatiotemporal convolution to compute fea-
tures from point cloud sequences with a hierarchical design.
They apply their architecture to 3D action recognition. 3DV
(Wang et al. 2020b) proposes to use 3D dynamic voxels as
the motion representation for depth videos and utilizes Point-
Net++ (Qi et al. 2017b) for feature abstraction. Prantl et al.
(2019) presented a new deep learning method that aims at
capturing stable and temporally coherent features from point
cloud sequences, via a novel temporal loss that extends the
EMD loss to minimize the difference between estimated and
ground-truth super-resolution point clouds in higher orders,
i.e., positions, velocities, and accelerations. They introduced
an additional mingling loss term to push the individual points
of a group apart, avoiding temporal mode collapse. Their
method can be potentially adapted for our defined tasks as
it could produce smooth motion for point cloud sequences.
Rempe et al. (2020) made an important step to aggregate
and encode spatio-temporal changes of objects from point

cloud sequences and learn Canonical Spatiotemporal Point
Cloud Representation (CaSPR) via a Latent ODE approach.
Their technique has been applied to various applications
such as reconstruction, camera pose estimation, and cor-
respondence estimation. P4ATransformer (Fan et al. 2021a)
introduced a new transformer-like network to model raw
point cloud videos, where a novel point 4D convolution has
been proposed to efficiently encode spatio-temporal local
structures. P4Transformer shows superior performance on
various benchmarks including 3D action recognition (Li et al.
2010; Liuetal. 2019; Shahroudy et al. 2016) and 4D semantic
segmentation (Choy et al. 2019).

Recently, a collection of work has focused on learning
scene dynamics from sequences of point clouds. We con-
sider MeteorNet (Liu et al. 2019c) as a 4D extension of
PointNet++ (Qi et al. 2017b) to handle temporal point cloud
sequences by appending a 1D temporal coordinate to the
3D spatial coordinates. The resulting 4D coordinates help
find spatiotemporal neighborhoods in 4D space. Both direct
and chained-flow grouping are proposed to consider the spa-
tiotemporal interaction of points such as the maximum travel
distance and the motion direction of points. We show that
SPCM-Net’s recurrent processing of sequences provides a
stronger inductive bias compared to the 4D convolution of
MeteorNet. MeteorNet is only evaluated on last-frame scene
flow estimation at a relatively small scale, which is clearly
distinct from the SSFE task proposed in this work. Their
work also does not consider future prediction. PointRNN
(Fan and Yang 2019) has been proposed to incorporate the
flow embedding layer of FlowNet3D (Liu et al. 2019b) into
a recurrent unit for predicting future point clouds. We con-
sider the flow embedding layer as the point-to-set matching
cost, in contrast to SPCM-Net’s recurrent cost volume that
adopts a set-fo-set matching cost which is more robust to
outliers (see Sect. 3.2). PointRNN failed to adequately for-
malize the SPF task which limited their evaluation. They only
focus on self-supervised training and evaluation, whereas
we consider both supervised and self-supervised SPF in
addition to supervised SSFE. Moreover, our experiments
confirmed that SPCM-Net’s recurrent cost volume for prop-
agating point-wise spatiotemporal features across time is a
more robust matching cost than PointRNN’s flow embed-
ding cost. Another self-supervised architecture, SPFNet, is
proposed to tackle the SPF problem on self-driving datasets
(Weng et al. 2020). They investigated both point-based and
range-map-based encoders to extract useful information from
past frames, followed by LSTM-based decoders to predict
future scene point clouds. The point-based encoder is similar
to PointNet (Qi et al. 2017a) to extract a global feature from
each point cloud frame while the range-map-based encoder
is only suitable for processing of LIDAR point clouds due
to its range map representation. Their paper focused on tra-
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jectory forecasting and provided limited evaluation of the
self-supervised SPF task.

6.2 Scene Flow Estimation

To estimate motion between frames, previous work (Dosovit-
skiy et al. 2015; Hui et al. 2018; Teed and Deng 2020) tends
to follow traditional optical flow approaches such as energy
minimization (Horn and Schunck 1981) or warping-based
methods (Brox et al. 2004; Bruhn et al. 2005). FlowNet is
a generic deep learning architecture for optical flow estima-
tion (Dosovitskiy et al. 2015) that correlates feature vectors
of image pairs at different image locations. Since then, new
work has been proposed to further improve its performance
(Ilg et al. 2017; Ranjan and Black 2017; Sun et al. 2018).

Prior to the study of 3D scene flow estimation, flow esti-
mation was concerned with motion across pairs of images.
The three-dimensional scene flow is initially described in
(Vedula et al. 1999) as a 3D extension of 2D optical flow,
where they formulate the estimation problem as a factor-
graph-based energy minimization problem with hand-crafted
SHOT descriptors (Tombari et al. 2010) for correspondence.
Early work on scene flow estimation used multi-view geome-
try to associate salient image key points (Vedula et al. 1999).
The problem has also been addressed by jointly optimizing
registration and motion (Huguet and Devernay 2007; Pons
et al. 2007).

Recently, deep learning models have been proposed to
estimate LiDAR flow with parametric continuous convolu-
tion layers (Wang et al. 2018a). The flow embedding layer,
introduced in FlowNet3D (Liu et al. 2019b), encodes motion
between two consecutive point clouds and has achieved com-
petitive performance. HPLFlowNet (Gu et al. 2019) instead
estimates motion by converting point clouds into permutohe-
dral lattices with bilateral convolutions to aggregate features.
PointPWC-Net (Wu et al. 2020b) presents an end-to-end
deep scene flow model to conduct scene flow estimation
in a coarse-to-fine fashion. FLOT (Puy et al. 2020) finds
the point correspondences between two points by adapt-
ing optimal transport with relaxed transport constraints to
handle real-world imperfections. In Mittal et al. (2020), the
authors present a self-supervised approach based on near-
est neighbors and cycle consistency with competitive results
compared to supervised scene flow approaches. In Pontes
et al. (2020), scene flow from point clouds is recovered and
regularized with graph Laplacian (Bobenko and Springborn
2007). Our work draws upon model designs of the scene
flow approaches while making further innovations to sup-
port recurrent processing of point cloud sequences to solve
the SSFE and SPF tasks.
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6.3 Deep Learning on 3D Point Clouds

Extensive research projects have been undertaken to develop
modeling techniques aimed at automatically understanding
3D scenes and objects for numerous applications, such as 3D
object classification (Wang et al. 2019b; Klokov and Lem-
pitsky 2017; Li et al. 2018a; Qi et al. 2017a,b), 3D object
detection (Qi et al. 2018; Shi et al. 2019), 3D semantic label-
ing (Choy et al. 2019; Graham et al. 2018; Landrieu and
Simonovsky 2018; Su et al. 2018), and 3D instance segmen-
tation (Pan et al. 2020; Pham et al. 2019; Yang et al. 2019).
Most prior work relies on transforming 3D data into regu-
lar representations such as voxels (Wu et al. 2015) or 2D
grids (Su et al. 2015) for processing. Here, context aggre-
gation can be achieved easily with convolutions at relatively
low resolutions due to the expensive computational over-
head and memory footprint. To mitigate the issue, we have
seen architectures such as OctNet (Riegler et al. 2017) and
permutohedral lattice representations (Su et al. 2018) being
proposed to achieve efficient memory allocation and compu-
tation without compromising resolution.

Recently, new work has emerged that directly processes
raw and irregular point clouds (Wang et al. 2019b; Qi et al.
2017a,b; Phametal. 2019) by applying MLPs in a point-wise
fashion. To further capture local structures, follow-ups (Wang
et al. 2019b; Qi et al. 2017b; Shen et al. 2018; Thomas et al.
2019) have defined pseudo-convolutional operators where
convolutions are instantiated as continuous kernels, assum-
ing a continuous space for point clouds. However, this incurs
an extra cost due to the use of greedy nearest neighbor search
and point sampling algorithms for hierarchical processing.
More recently, sparse tensor-based point cloud processing
has been proposed to conduct sparse convolutions only on
non-empty locations. Popular frameworks, such as SparseC-
onvNet (Graham et al. 2018), MinkowskiEngine (Choy et al.
2019), and TorchSparse (Tang et al. 2020), can conduct the
sparse convolutions very efficiently based on their fast index-
ing structure.

Up to now, the majority of this body of work is aimed at
processing static point clouds. Less progress has been made
on dynamic point cloud modeling, especially the motion esti-
mation and future prediction of point cloud sequences, which
is the focus of this paper.

6.4 Self-supervised Learning

Deep learning models have demonstrated the ability to obtain
discriminative embeddings with unsupervised learning with-
out providing any external supervision, i.e., supervision
signals are generated from data itself (Doersch et al. 2015;
Lee et al. 2009; Srivastava et al. 2015). These representations
could be used in downstream tasks or as strong initializa-
tion for supervised tasks. In point cloud processing, we have
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seen several works attempting to jointly learn multiple tasks
including depth estimation, optical flow estimation, ego-
motion estimation, and camera pose estimation based on 2D
images (Lee and Fowlkes 2019; Yin and Shi 2018; Zou et al.
2018). Other self-supervised point cloud tasks include point
set generation (Fan et al. 2017), point cloud auto-encoder
(Yang et al. 2018), point set registration (Fitzgibbon 2003).
We refer the interested reader to Guo et al. (2019) for a
comprehensive examination. In this paper, we have utilized
geometric losses, i.e., chamfer distance and earth mover’s
distance (Rubner et al. 2000), for self-supervised learning
of future prediction from point cloud sequences. Advanced
techniques such as Laplacian regularization or local smooth-
ness (Pontes et al. 2020; Wu et al. 2020b) could be further
utilized to regularize the learning and improve the perfor-
mance.

6.5 Spatiotemporal Learning

RNNSs and their variants are widely used in sequence predic-
tion while having difficulty in applying directly to structured
data such as videos due to the ignorance of handling the
spatial arrangement of data. To address this, the convolu-
tional LSTM (ConvLSTM) (Xingjian et al. 2015) is proposed
to capture local spatial correlations and replace the fully
connected layer in the recurrent state transition with a con-
volution operation. The spatiotemporal LSTM (Wang et al.
2017) further extends ConvLSTM by introducing a novel
recurrent unit that can deliver memory states both verti-
cally (across recurrent layers) and horizontally (across time).
Numerous follow-up works have been proposed along this
direction (Wang et al. 2018c, 2019a). In CubicLSTM (Fan
et al. 2019), the authors extend the ConvLSTM by uti-
lizing two states (the temporal state and the spatial state)
with independent convolutions. All of these LSTMs can be
applied to spatiotemporal data. However, additional designs
(see Sect. 3) are required to apply them to 3D point cloud
sequences because the point cloud sequences are unstruc-
tured and orderless. Our work demonstrates one way in which
these methods can be applied to point cloud sequences.

7 Discussion

Our experimental results showed that SPCM-Net achieves
superior performance compared to state-of-the-art SFE mod-
els on the SSFE task by leveraging temporal coherence of
points over many frames. We attribute this to the recurrent
cost volume layer, which effectively propagates point-wise
spatiotemporal information across time. Empirically, we
observed alarge reduction in outlier predictions which helped
improve the overall scene flow estimation performance.
SPCM-Net also produces competitive SPF results under

supervised and self-supervised settings compared to the best
prior model. We achieved state-of-the-art SPF performance
by first pre-training on the SSFE task before fine-tuning on
SPE.

This evaluation is conducted on a newly introduced bench-
mark for SSFE and SPF. As shown by our qualitative results,
the ground truth supervision provided for the two synthetic
datasets SFT3D and VKS enables a rigorous and principled
comparison between competing models. Both datasets offer
unique challenges for future study; in particular, the VKS
dataset contains multiple dynamic objects in each frame and
requires learning physical properties of vehicles for accurate
estimation and prediction. The real-world SAG dataset also
contains its own set of challenges, particularly related to han-
dling outliers during training. We expect this benchmark to
be pivotal for standardizing training and evaluation protocols
for future work on SSFE and SPF.

7.1 Limitations and Future Work

In this work, our studied tasks focus on relatively low-
level dynamic point cloud processing that aims to predict
the point-wise motion of sequences. We expect that object
category information and motion smoothness priors could
help improve performance. This, however, requires defining
novel tasks and proposing new benchmarks. Also, the self-
supervised Chamfer distance objective used in our paper is
designed for point matching between two point sets at each
timestep. Objective functions that take into account temporal
correspondence across frames, like those used for multi-
frame data association in multi-object tracking (Emami et al.
2020), are needed to provide stronger supervision signals.

We can suggest further promising directions for future
research. First, better modeling of occlusion is needed to fur-
ther improve the scene flow estimation, e.g., Ouyang and
Raviv (2020). Second, the self-supervised SPF remains an
open problem. Currently, models make an assumption that
points in the current predicted future frame are translated
from points in the previous predicted frame with a motion off-
set. In real-world applications, due to the nature of how each
point cloud is generated, this assumption does not hold. This
leads to isolated points being improperly matched, which
then leads to noisy training signals. A promising alternative
to nearest-neighbor losses like Chamfer distance is adver-
sarial learning (Zuanazzi et al. 2020) where point clouds are
mapped to a latent space in which a robust distance metric
can be computed.

8 Conclusion

In this paper, we introduced sequential scene flow estimation
(SSFE) for point cloud sequences, which is a novel exten-
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sion of the well-studied scene flow estimation task to multiple
frames. We proposed the SPCM-Net architecture to solve this
task as well as the related sequential point cloud forecasting
(SPF) task. To help advance future research, we collected and
presented a new benchmark consisting of three point cloud
sequence datasets containing diverse backgrounds and mul-
tiple object motions in synthetic and realistic environments.
Our benchmark uniquely contains ground truth annotations
for multi-step scene flow which current SFE datasets lack,
which should be pivotal to future research.
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A Appendix
A.1 Additional Evaluations

This section provides additional results supporting the
evaluations presented in the Experiments.

A.1.1 Additional SPF Results on nuScenes

The nuScenes dataset (Caesar et al. 2019) is a large-scale
public autonomous driving dataset, which contains 850 pub-
licly available scenes in total collected in both Boston and

Singapore, which are known for dense traffic and highly
challenging driving situations. 15 h of driving data (242 km
traveled at an average of 16km/h) was collected with the
dataset containing 68 driving logs for training and 15 driving
logs for testing. The LiDAR data was captured by a Velodyne
32-beam LiDAR.

The nuScenes dataset does not provide ground-truth anno-
tations for scene flow. Therefore, we adopt metrics without
requiring any annotation. Given the fact that forecasting
future point clouds on real-world datasets is challenging due
to rapid changes in the vehicle’s surroundings, we focus on
short-term prediction for the nuScenes dataset. With each
driving log providing a point cloud sequence, we repeat-
edly sample from it by randomly choosing 10 successive
point clouds for training and testing (consecutively sam-
pling every other frame and repeating 10 times). To achieve
reasonable computation times while staying within memory
limits, we sample a fixed number of points for each frame and
remove the ground points to reduce the bias caused by the
flattened geometry of the ground. Specifically, 2048 points
are randomly sampled from every point cloud frame in the
sequence. Following the practice of (Wu et al. 2020a), the
point clouds are cropped to extract the region defined by
[—32,32] x [-8, 8] x [—1.3, 2] m, which corresponds to
the XYZ range.

The experimental results of nuScenes are summarized
in Table 7. Our SPCM-Net achieves a competitive result
compared to other baselines in all metrics. One interesting
observation is that both SPCM-Net and PointNet++ (Qi et al.
2017b) + LSTM outperform PointRNN (Fan and Yang 2019)
significantly. We suspect that static points dominate on the
nuScenes dataset such that most of the points only contain
ego-motion. Therefore, it prefers models with a better capa-
bility of extracting global information.

Table 6 Evaluation results on VKS for the SSFE task with the goal to test generalization to unseen driving scenarios

VKS train split

Method EPE3D| Acc3DS?1 Acc3DR1 Outliers3D |, RectOutliers3D|, EPE2D| Acc2D?
FlowNet3D (Liu et al. 2019b) 0.0422 0.8790 0.9718 0.2043 0.0855 3.9368 0.9159
FLOT (Puy et al. 2020) 0.0396 0.8625 0.9316 0.2174 0.1118 2.5706 0.8939
PointPWC-Net (Wu et al. 2020b) 0.0588 0.9202 0.9542 0.1960 0.0824 2.4082 0.9306
SPCM-Net (Ours) 0.0618 0.9212 0.9556 0.2061 0.0877 2.4044 0.9180
VKS test split

Method EPE3D| Acc3DS1 Acc3DR? Outliers3D|, RectOutliers3D|, EPE2D| Acc2D?t
FlowNet3D (Liu et al. 2019b) 0.0550 0.6877 0.9123 0.3974 0.2888 2.3364 0.8368
FLOT (Puy et al. 2020) 0.0689 0.7471 0.8708 0.3484 0.2506 3.4343 0.8360
PointPWC-Net (Wu et al. 2020b) 0.0478 0.7972 0.8993 0.3458 0.2440 2.2210 0.8556
SPCM-Net (Ours) 0.0477 0.8106 0.9082 0.3298 0.2268 2.0846 0.8678

Bold values indicate the best performance
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Table 7 Evaluation results on

nuScenes for the SPF task Method NuScenes

CD| EMD| SD|

PointNet++ (Qi et al. 2017b) + LSTM 0.6176 0.8334 0.6920
PointRNN (Fan and Yang 2019) 0.9750 0.9878 1.0969
SPCM-Net (Ours) 0.6339 0.7858 0.7113
Bold values indicate the best performance

Table 8 Evaluation results on . .

VKS for the SPF task with the ~ 1c1%d VKS train split

goal to test generalization to ADE | FDE| CD| EMD|

unseen driving scenarios
PointNet++ (Qi et al. 2017b) + LSTM 0.9971 1.6726 0.5783 1.2601
PointRNN (Fan and Yang 2019) 0.2201 0.3292 0.1242 0.2856
SPCM-Net (Ours) 0.2535 0.4327 0.1418 0.3315
Method VKS test split

ADE | FDE| CD| EMD|

PointNet++ (Qi et al. 2017b) + LSTM 1.4951 2.4608 0.8209 1.8308
PointRNN (Fan and Yang 2019) 0.3334 0.5562 0.1798 0.4095
SPCM-Net (Ours) 0.3291 0.5853 0.1824 0.4068

Bold values indicate the best performance

A.1.2 Additional SSFE Results on VKS

In Sect. 5.3, we have evaluated the performance of
VKS, providing a preliminary prototype evaluation for traf-
fic scenes. Table 6 further supplements it with the evaluation
results on the VKS dataset with a new split to report the
generalization capability of unseen driving scenarios. Recall
from Sect. 4.2 that the original virtual KITTI contains five
scenes of crowded urban area (SceneO1), busy intersections
(Scene02, Scene06), long road in the forest (Scenel8), and
highway driving scene (Scene20), and we initially have cho-
sen the train and test splits both containing examples of all
scenes. We made a further exploration to create the train and
test splits such that they do not have any overlap on scenarios.
To do so, we held out the highway driving scene (Scene20) as
the test split and use other scenes as the train split. This leads
atotal of 1876 train and 1474 test point cloud sequences. We
didn’t try other possible split combinations as it would end
up with excessive number of experiments to run. Instead, we
will provide the possibility to try other combinations in our
implementation for future research.

As expected, the SSFE performance of all fully super-
vised methods drops slightly when moving from the training
scenes to the unseen scenes (Table 6). Remarkably though,
obtaining comparable or worse results on the training split,
our SPCM-Net outperforms other methods on the unseen
scenes, implying that it has a better generalization capability
on the SSFE task.

A.1.3 Additional SPF Results on VKS

Similarly, we also evaluate the prediction performance on
VKS following the same split as done in previous Sect. A.1.2.
Our SPCM-Net still achieves a comparable performance
compared to PointRNN (Fan and Yang 2019), drawing a sim-
ilar conclusion as in Sect. 5.3.
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