2021 IEEE International Intelligent Transportation Systems Conference (ITSC) | 978-1-7281-9142-3/21/$31.00 ©2021 IEEE | DOI: 10.1109/ITSC48978.2021.9564800

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

Trajectory Prediction via Learning Motion Cluster Patterns in
Curvilinear Coordinates

Aotian Wu, Tania Banerjee, Anand Rangarajan and Sanjay Ranka

Abstract— A high proportion of crashes happen at or near
intersections. To improve intersection safety, trajectory pre-
diction of vehicles has been studied intensively, mostly for
automated vehicle (AV) and advanced driver assistance system
(ADAS) applications. These approaches with vehicle-mounted
sensors still suffer from limited detection range or occluded
views. In this work, we propose to perform trajectory pre-
diction on surveillance cameras. As Vehicle-to-Infrastructure
(V2I) technology enables low-latency wireless communication,
warnings from our prediction algorithm can be sent to vehicles
in real-time. Our approach consists of an offline learning
phase and an online prediction phase. The offline phase learns
common motion patterns from clustering and finds prototype
trajectories for each cluster, and updates the prediction model.
The online phase predicts the future trajectories for incoming
vehicles assuming they follow one of the motion patterns learned
from the offline phase. We adopted a long short-term memory
encoder-decoder (LSTM-ED) model for the task of trajectory
prediction. We also explored the usage of a Curvilinear Co-
ordinate System (CCS), which utilizes the learned prototype
and simplifies the trajectory representation. Our model is also
able to handle noisy data and variable-length trajectories. Our
proposed approach outperforms the baseline Gaussian Process
(GP) model, and shows sufficient reliability when evaluated on
collected intersection data.

I. INTRODUCTION

Road intersections, where two or more roads meet and
cross, show complex geometry and traffic rules, and re-
quire drivers’ timely maneuvers. It was reported by the
Federal Highway Administration (FHWA) that more than
50% of fatal and injury causing crashes occur at or near
intersections. Of all the intersection-related crashes, only
about 4% is caused by vehicle or environmental reasons
with 96% attributed to drivers [1]. Possible driver-attributed
crashes at intersections include inadequate surveillance, false
assumptions regarding other driver actions, obstructed views,
illegal maneuvers, internal distractions and misjudgments
of gaps, speed, etc. [1]. Potential solutions for reducing
crashes tend to be focused on providing driver assistance
of vehicle control or giving timely warnings of potential
risks. To this end, predictive algorithms are proposed. For
example, by tracking the surrounding vehicles, one can es-
timate their intended maneuvers, predict their future motion
and estimate the risk of collision. Previous studies [2],
[3], [4], [5] have focused on automated vehicle (AV) and
advanced driver assistance system (ADAS) solutions. These

Aotian Wu, Tania Banerjee, Anand Rangarajan, Sanjay Ranka are with
University of Florida, Gainesville, FL. 32611. This work is supported by
NSF CNS 1922782, by the Florida Dept. of Transportation (FDOT) and
FDOT District 5. The opinions, findings and conclusions expressed in this
publication are those of the author(s) and not necessarily those of the Florida
Department of Transportation or the National Science Foundation.

approaches rely on on-board sensors, such as LiDAR, radar,
and vision sensors. However, the on-board sensors have
certain limitations, such as limited detection range or field of
view, low resolution, drifting position estimation, and sensor
imprecision. Therefore we propose to incorporate assistance
from existing and planned intersection video infrastructure
to improve intersection safety.

Vehicle-to-Infrastructure (V2I), as the next generation of
Intelligent Transportation Systems (ITS), exchanges data
from vehicles and infrastructures through wireless commu-
nication, and enables real-time assistance and warning from
infrastructure to vehicles on the road. With the rapid devel-
opment of wireless communication technologies, especially
in the recent progress in 5G networks, algorithms running
on the infrastructure side are ready to be delivered to road
participants, and will be needed in the future.

In this work, we tackle the problem of robust and flexible
vehicle trajectory prediction at intersections from surveil-
lance videos, aiming to give early warnings to vehicles about
possible collisions and abnormal behaviors. Our proposed
approach only requires vision sensors, no signal data is
needed, and can be applied to both signaled and unsignaled
intersections. Our approach requires a setup stage, namely,
1) google-map alignment, ii) learning typical motion pat-
terns from historical data, and iii) training the trajectory
prediction model. After the setup, our model can make real-
time predictions of all the vehicles’ trajectories within the
intersection. We also take into account the noise introduced
by the automatic vehicle tracking algorithms and varying
lengths of trajectories captured.

The main contributions of the paper are as follows:

« We present a real-time capable vehicle trajectory predic-
tion from surveillance cameras without requiring traffic
signal or GPS data.

e Our algorithm automatically learns the typical motion
patterns from historical data, and representatives of
them are used in the online phase to speed up and boost
the performance of trajectory prediction.

e We design a deep-learning-based trajectory prediction
model, which is capable of dealing with variable-length
observations and prediction periods.

o Multiple reasonable predictions are given by the model
if multiple motion patterns are likely to describe the
observed trajectory.

The rest of this paper is organized as follows. Section II
presents the related works on trajectory prediction methods.
Section III gives an overview of our proposed approach, con-
sisting of an offline learning phase and an online prediction

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 2200

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

phase. Section IV describes the methodology of the offline
trajectory clustering and prototype generation. Section V
presents the CCS transformations and the trajectory predic-
tion model. Section VI reports our experimental settings, and
quantitative and qualitative results. We conclude with a few
observations in Section VII.

II. RELATED WORK

Vehicle motion or trajectory prediction has been studied
extensively over the last two decades and is mainly used
in ADAS and AV. The work in [6] organized the motion
prediction approaches into three categories: physics-based,
maneuver-based, and interaction-aware motion models. Our
approach falls into the maneuver-based category. The work
in [6] further divides the maneuver-based approaches into
prototype-based and intention estimation. Our approach can
be classified as prototype-based.

1) Prototype-based Trajectory Prediction: Prototype-
based approaches assume that vehicle motion can be grouped
into a finite set of clusters. A prototype trajectory is learned
for each cluster as its representative. In the case of four-
way intersections, there are mainly twelve motion patterns,
namely left turn, right turn, and going straight from the
four directions. For road sections, typical motion patterns
are lane keeping, lane change to the left and lane change to
the right. An early work [7] adopts a statistical approach,
where clusters of motion patterns are represented by the
mean and standard deviation. Later works [8], [9], [10]
represent motion patterns with Gaussian Processes (GP) due
to its ability to capture spatio-temporal characteristics of
traffic situations. One drawback of GP models lies in its
computational complexity. As a non-parametric approach,
the number of parameters grows as more training samples
are provided. In a surveillance setting, to leverage the huge
amount of data captured from cameras, a non-parametric
approach will be slow and expensive. In this work, our
proposed approach not only fits a compact model to the
training data, it also incorporates the prototype trajectories
to make more informed predictions.

2) Recurrent Neural Network (RNN) for Trajectory Pre-
diction: Trajectories are essentially sequences of locations,
velocities, etc. Recurrent Neural Networks (RNNs), espe-
cially LSTMs and Gated Recurrent Units (GRUs) have been
explored and broadly evaluated for the task of sequence
generation and prediction. Over the last five years, RNNs
and its variants have been gaining popularity in trajectory
prediction. The work in [11] first applied an LSTM model
to learn general human motions and predict their future tra-
jectories. Later works [12], [13], [14], [15] extended the idea
to vehicle trajectory predictions, enabling vehicles to reason
about future motion of other surrounding vehicles. To the
best of our knowledge, there is no work that utilizes a deep
learning-based trajectory prediction model from surveillance
vision systems. Unlike the above approaches for autonomous
vehicles or ADAS where modeling interaction is important,
our approach will be applied to give early warnings to

vehicles entering intersections; hence, we focus on typical
motion pattern finding and efficient online functioning.

III. SYSTEM OVERVIEW AND PIPELINE

The paper is divided into two main components: an offline
phase in which trajectories are clustered and good prototypes
found. This is followed by an online phase in which different
LSTMs are constructed to perform trajectory prediction.
The second phase necessarily uses the prototype information
from the first phase. In this section, we give a procedural
description of our algorithm workflow. Fig. 1 concisely
summarizes the workflow.

A. Offline Phase

The offline phase can be done periodically to capture
the dynamics of traffic evolving (e.g., road construction
that causes vehicle detour) or done once for setup if the
intersection geometry remains unchanged. There are two
main tasks in the offline phase: i) finding common motion
patterns and their representatives and ii) training the LSTM-
ED trajectory prediction model.

The trajectories are captured by a vision-based tracking
algorithm, and are stored in the database. We refer to the
trajectories in the database as historical trajectories. We
use a portion of historical trajectories to learn common
motion patterns by a course-to-fine clustering algorithm,
followed by finding prototypes to represent each motion
cluster. In order to generate longer and smoother prototype
trajectories, a filtering and smoothing algorithm is applied
before clustering. Lastly, the trajectory prediction model to
be used in the online phase is trained in the offline phase.

B. Online Phase

The online phase receives real-time captured trajectories
from the online tracking algorithm. We first detect whether
the vehicle is waiting for traffic signals using the stay point
detection algorithm from [16]. We start making predictions
when the vehicle starts moving. For a partial trajectory from
a moving vehicle, we match with prototype trajectories from
the offline phase based on distance measurements. We then
feed the partial trajectory, matching prototypes, and duration
to be predicted into the trajectory prediction model to output
its future trajectory.

IV. TRAJECTORY CLUSTERING AND PROTOTYPE
TRAJECTORIES

In this section, we introduce the methods used to cluster
trajectories and find prototypes.

A. Historical Trajectory Clustering

Vehicles at an intersection exhibit common motion pat-
terns, and their trajectories can be grouped into clusters.
Within each cluster of the same moving direction, one or
more finer clusters can be found, as there might be multiple
entering and exiting lanes of the same motion. Our clustering
approach is therefore a two step process where we first
cluster the trajectories based on their direction of motion
and next cluster the trajectories for a given motion using

2201

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

Offline Learning

e Complete and
Hlsmgcal Trmw%ﬁmnm » Reasonable = —— ousteingby o ~oo e Clusters —Graph spectral clustering—» Fine Clusters
atabase N N motion direction
Trajectories
liﬂnd average frajectories Q
As training set ——®| u m’rdmm n . 4 ‘
‘ Matched prototype
Online Trajectory Prediction Match
| y
Real-time Captured Trajectories from Traiec‘lory Prediction Predicted Future
Partial Trajectories %S“y point detactio No-») moving vehicles Trajectory
A
Yes

Ignore

Fig. 1.

Jul
S

Fig. 2. Phase Diagram showing vehicles at four way intersections as defined
in [17].

spectral clustering. In this section, we describe the clustering
based on motion direction, followed by the description of a
new distance measure for spectral clustering, and finally, we
describe our spectral clustering approach.

1) Clustering by Motion Direction: When we analyze
a collection of trajectories, one of the first steps is to
automatically identify the phase of the trajectory. As shown
in Fig. 2, the vehicle phase system assigns a single number
for both through and right turn movements. We find it useful
to first have a separate category for the right turn vehicular
movement. So, in addition to the eight bins, each storing
trajectories of a certain phase, we append four more bins for
storing the trajectories doing right turns for phases 2, 4, 6,
and 8.

The motion direction of a trajectory can be represented
as the vector connecting the start and end point. Refer-
ence motion directions are obtained from annotation using
CAD tools. Fig. 3 depicts a configuration file that contain

Prediction Duration

The overall workflow of trajectory prediction in offline and online phases.

N

“w 5

2

2

2

T @

@
¥
£

zqdol-s z a};zqd

|

Fig. 3. Pictorial representation of information in configuration file

these reference vectors for each direction, namely, South-
to-North, North-to-South, East-to-West and West-to-East.
These vectors are drawn approximately connecting the lanes
of opposite side. The comparison of the direction of the
trajectory vector with respect to each reference vector is
done by computing the cosine of the acute angle between
these two vectors. The cosine is very close to 1.0, when the
direction of the trajectory vector aligns with the direction
of a reference vector, and then we assign the phase of the
reference vector to the trajectory.

After partitioning the trajectories by motion direction into
bins, we apply spectral clustering to the trajectories of each
bin. We used a new distance measure for computing the
distance between two trajectories in the same bin. This is
described next.

2) Distance Measure: The warping path between two
trajectories T; and T} is found by applying a time warping
algorithm. We use Dynamic Time Warping (DTW) which
is a well known algorithm for finding similarities between
two temporal sequences that vary in speed. As shown in

2202

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Two trajectories represented by ABCDE and FGH. The dashed
lines show the point correspondence (warping path) obtained using DTW.

Fig. 4 there are two trajectories ABCDE and FGH. The
warping path for these two trajectories is represented by the
dashed lines and is (A, F), (B, F),(C,G),(D,H),(E, H).
Using geometric coordinates of the points, it is possible to
determine the approximate area between the two paths. This
is done by determining the area of the triangles ANABF,
ABCF, ANFGC, ACDG, AGHD, and ADFEH, using
coordinate geometry area formula for triangles when the
coordinates of their corners are known. The sum of the
area of all triangles approximates the area between the
trajectories. Finally, the distance between the trajectories
is approximated as the total computed area divided by the
average length of the trajectories [18].

3) Clustering by Graph Spectral Clustering: Spectral
clustering is applied next to the trajectories in the same
direction bins and we get clusters of trajectories that have
the same movement. Spectral clustering may also be used
to identify the outliers or anomalous trajectories that are
not similar to any of the other trajectories in the same bin.
The details of our spectral clustering implementation may be
found in [18].

B. Prototype Trajectory Generation

From our clustering algorithm, clusters of motion patterns
are found. In this section, we present our approach to
generate prototype trajectories for each cluster.

1) Complete Trajectory Determination: A large number
of trajectories extracted from the traffic video are incomplete,
meaning that they either appear from the middle of the
intersection or disappear within it. These trajectories are as
useful as complete ones in the LSTM-ED model training.
However, we prefer complete trajectories for prototype gen-
eration for two reasons: 1) complete trajectories are spatially
aligned as they start and end in the same regions, and 2)
the distance measure we use performs better with longer
reference trajectory.

Trajectories that starts at an intersection entrance and ends
at an intersection exit are considered complete. We annotated
the intersection boundary as a polygon. For each motion
pattern, we annotate its enter line and exit line. We consider
a trajectory complete only when its starting point is close to
the entering line and its ending point is close to the exit line.
The left part of Fig. 5 shows the complete trajectories from
one cluster.

2) Averaging Complete Trajectories: Given a set of com-
plete trajectories from a cluster, we aim to find a representa-
tive for the cluster by averaging the trajectories. We represent

Fig. 5. Complete trajectories in a cluster and its prototype.

phase2_right
A phase2_throughl
. * phase2_through2
« phase5
» phased_right
* phased_throughl
phased_through2
phase7_1
« phase7_2
phaseb_right
phase6_throughl
phase6_through2
phasel
phase8_rightl
phase8_right2
phase8_throughl
phase8_through2
phase3

Fig. 6. The resulting prototypes. Note that the slight deviation of some
prototypes is caused by imperfect Google Map alignment.

the complete trajectories as 2-D cubic splines, denoted as .5,
where = and y coordinates of a trajectory are parameterized
by t:

S(t) = (x(t), y(1)),
z(t) = apt® + bpt? + cot + dy, 0

y(t) = ayt® + byt* + eyt + d,
where t’s are equally-spaced break points in the range of
[0,1]. As the complete trajectories are roughly spatially

aligned, an average trajectory for each cluster can be found
by

1 &
Selt) = - > Si(b), @)
J

where S; is a complete trajectory from the given set from
cluster ¢, and m,. is the number of trajectories. After ob-
taining the average trajectories, the last step we do is to
reparametrize and re-scale the splines. We adopt the arc-
length parametrization algorithm from [19], which results in
equally-spaced control points. We then re-scale the splines
so that consecutive points of a spline have a distance of
one meter. Fig. 6 shows the prototypes we obtained for an
intersection.

V. TRAJECTORY PREDICTION MODEL

In this section, we present our trajectory prediction model.
A brief summary of the approach follows. The trajecto-
ries originally represented in Cartesian coordinates are first

2203

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. TIllustration of Curvilinear Coordinate System.

transformed to CCS. These CCS trajectories are then fed
to the LSTM-ED model for training and inference. We
first define the trajectory prediction problem in section V-A,
introduce the CCS and transformations from and to Cartesian
coordinates in section V-B, and describe the architecture,
training and inference using LSTM-ED in section V-C.

A. Problem Definition

Given an observed partial trajectory of the ¢-th vehicle in
CCS:

X; = [(x(l) y(l)) (x(?) y@)) . (I(tubs) y(tom))] 3)

K2 3
the model predicts the future trajectory:

Y; = (2" y

(tastrl)) (x(tobs+2) y(tnstrQ))

’ ' 4)

tobst+lpre tobs+ipre
(o tamea) gtove o))

where ¢, is the original trajectory time cardinality with
tpreqd being the predicted temporal duration.

B. Curvilinear Coordinate System

Curvilinear coordinate systems (CCS) are a natural fit
for our problem of trajectory prediction. Consider the prob-
lem of predicting left turn trajectories at intersections. In
standard Euclidean coordinates, the velocity vector changes
its orientation continuously through the turn whereas a
reparametrization of the velocity along the curve has the
advantage of better inertia representation. CCS are also akin
to the use of Lagrangian frames in fluid mechanics (or the
viewpoint from the boat in a river) as opposed to the Eulerian
frame (or the viewpoint from the riverbank watching the
boat float by). The work in [20] uses curvilinear coordinates
to impose roadway geometry constraints to motion tracking
and behavior reasoning algorithms. We extend the idea to
intersection geometry, which implicitly constrains the vehicle
trajectories to a set of standard trajectory templates. We

propose to use the CCS defined as the shape of a prototype
trajectory. Partial trajectories matching with the prototype are
assumed to move along with it with an offset. The prediction
is largely simplified in the CCS, as the model only needs
to learn the difference between a new trajectory and the
average of historical trajectories conforming to the same
motion pattern.

For a vehicle entering an intersection, the possible motion
patterns can be found by matching with trajectory prototypes.
Most of the motion patterns can be ruled out, as their
distances to the query trajectory are too far to be considered
as potential matches. In this work, we only consider the
closest 2 prototype trajectories. Each prototype trajectory
defines a curvilinear coordinate system with s and n axes—
essentially the tangent and normal at each point along the
curve. The s-axis is defined as along the shape of a prototype
with arc length coordinates used while the n-axis is defined
to be perpendicular to the s-axis at every point on the curve
giving us a measure of how far a point is from the curve, as
shown in Fig. 7. In the rest of this section, we describe the
transformations between the Image Coordinate System (ICS)
and the Curvilinear Coordinate System (CCS), where Image
Coordinates (IC) refer to Google Map aligned intersection
image coordinates. We denote a point in IC as (z,,y,), and
its corresponding point in CC as (s,, n,), as shown in Fig. 7.

1) ICS to CCS transformation: Our prototype trajectories
are sampled from continuous splines, as in section IV-B.2,
and the determination of the closest point on a spline from a
query point requires the use of optimization methods. These
are now described. Given p with coordinates x,,¥, in the
ICS, we aim to find the corresponding s,,n, in the CCS.
We first find s, by finding the closest point on spline S
to the point p, which can be formulated as the following
minimization problem:

min [[p — S(sp)|2- o)

We use a standard limited-memory (BFGS) algorithm (avail-
able in Python scientific libraries) to solve for s,. Once s,
is determined, we turn our attention to n,. First, |n,| is
defined as the distance between p and p’. The sign of n,
is determined by:

sen(pp’ X ¢'p'),
C]/ = S(SP - 6)7

where sgn is the sign of a number, X is the cross product, ¢’
is a point near p’ with a slightly smaller s-value and e denotes
a small number. q’_i)’ estimates the growing direction of S at
point p’. So far we have given the procedure of transforming
from ICS to CCS. We now examine the opposite direction.

2) CCS to ICS transformation: Given sy, n, in the CCS,
we then aim to find the corresponding x,, y,, in the ICS. This
is a relatively easy process, since the transformation has a
convenient closed-form expression:

(6)

(Tp,yp) = S(sp) +9'p,

7o —
pp=npel,

(7

2204

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

Train

Transform back to
image coordinate
Gound-truth
Cluster Class

luster One-hot|

Encoder Vector G
Vector

*
Predict
S

-\ca|—7 Decoder

Encoder

Transform to CCS T
of the cluster

1 1

<1

RMSE
loss

Random Observation Ratio

Inference

One-hot|

Encoder Vector| | Custer
Vector

Transform back to
image coordinate

A
Predict

Match with
Cluster Centroids

Cluster
Probability
Vector

Top N
Selection

oncal*>| Decoder

|

T Prediction Length

Encoder

of the cluster

Transform to GCS T

Fig. 8. LSTM encoder-decoder training and inference behavior.

where €] is the unit vector perpendicular to S at point p/,
which can be found from the derivative of S. In summary,
the use of CCS simplifies the task for trajectory prediction
as it decouples the two coordinates to some extent. The S-
coordinate mainly captures the speed along the road while the
N-coordinate mainly captures the speed off the road (e.g. lane
changes or abnormal behavior). The coupling of prototype
trajectories to a “Lagrangian” coordinate system is therefore
a vital contribution of this work.

C. LSTM Encoder-Decoder Model

LSTM networks are designed and proven effective for
sequence modeling and prediction tasks. Thus, they are
well-suited for trajectories represented as a sequence of
coordinates. We adopt the encoder-decoder architecture to
cope with variable-length observation and prediction period,
as the trajectories captured at a intersection are of variable
length. The encoder encodes observed partial trajectories to a
fixed-length internal representation, and the decoder decodes
the state and predicts possible future motions for a given
period of time. Besides the internal vector from encoder,
cluster belonging is also provided as input to the decoder. In
this way, the decoder learns to predict differently considering
its cluster.

1) Network Architecture: Both the encoder and decoder
consist of two layers: a fully connected (FC) layer and
an LSTM layer. The FC layer serves as an embedding
function that embeds locations into a fixed-length vector. The
embedding will then be fed to the LSTM layer. The encoder
encodes the observed trajectory into the LSTM’s last hidden
state hl(t“*"*). The decoder takes hgt(’“) concatenated with the
one-hot-encoded cluster class vector as input, and is trained
to generate its future trajectory Y;.

2) Training: We adopt the Lo loss for training, which
measures the distance between the predicted and the ground-
truth trajectories. As vehicles pass an intersection at different
speeds, the number of trajectory points captured in the
intersection vary over a wide range. For example, a left
turn trajectory usually has more trajectory points captured
than a straight heading trajectory, as a left turn vehicle will
slow down as it enters the intersection, while a straight
heading vehicle tends to be at the maximum speed limit. For
this reason, we enable the model to encode variable-length
observations and to decode variable-length predictions. We
achieve this by splitting a training sample into an observation
and prediction sequence with a random ratio Z,ys:tpred, SO
that the model is trained from mixed length data, and will
learn to make variable-length predictions.

3) Inference: At inference time, the cluster class of a
trajectory ¢ is unknown. The model first infers cluster class
by matching with all prototype trajectories. The degree of
belonging of trajectory tr; to cluster class C(") is calculated
by inverse distance weighting:

]./d(tT‘i, tT‘C(m))
Z;‘Lil 1/d(tr;, irou) 7

where d is the distance measure introduced in section I'V-
A.2, and treq)) represents the prototype trajectory of class
CU) . If the trajectory has a similar degree of belonging to
M classes, the model will output M predictions. For each
possible cluster class, the model will make the corresponding
prediction. To be more specific, for each possible C'), the
corresponding representation in CCS as well as the one-hot
cluster vector will be fed to the LSTM-ED model, which then
makes its future prediction with “probability” ue) (tr;). We
set M to 2 based on intersection geometry, as each lane of
an intersection usually allows 2 or less motion patterns (e.g.,
heading straight and right turn).

4) Implementation Detail: The embedding dimension is
set to 64 for both the encoder and decoder. The encoder’s
LSTM layer has a hidden state of dimension 64 and the
decoder’s LSTM layer has a hidden state of dimension 64
+ n.. We use the Adam optimizer with learning rate 1 x
10~%. The tobs:tpreq Tatio is randomly chosen in the range
[0.3,0.7].

®)

U (m) (t?‘i) =

VI. EXPERIMENTS

We evaluated the proposed approaches on the collected
trajectory dataset from surveillance fisheye cameras at 3
intersections. Section VI-A describes our data collection
methods as well as pre-processing steps to obtain google-map
aligned trajectories. Section VI-B compared our trajectory
prediction model with baseline methods. Finally, section VI-
C evaluates the trajectory prediction pipeline for variable-
length observation and prediction period.

A. Data Collection and Pre-processing

Our intersection trajectory dataset is obtained from three
busy intersections in Gainesville, Florida. The surveillance
cameras have a circular fisheye lens with 10 fps frame rate.

2205

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

From our previous work [21], we have the mapping from
fisheye video pixels to google map locations. A detection
and tracking pipeline is running periodically to automate the
trajectory capture process. We clean the dataset using rule-
based filtering. We impose speed limits, within the intersec-
tion and non self-intersecting constraints on trajectories. We
also applied a trajectory smoothing algorithm to compensate
for detection imprecision. In addition, as the traffic signal
phase is unknown in our setting, we exclude the stay points
of trajectories before entering the intersection. After the
above process, we obtain roughly 15,000 trajectories for each
intersection which are then split it into training, validation
and testing set with a roughly 7:1:2 ratio. The validation set
is used in LSTM-ED training to avoid over-fitting. We refer
to the 3 intersections simply as Intersection 1, Intersection 2
and Intersection 3.

B. Evaluation of trajectory prediction model

In this section, we evaluates the performance of the
proposed trajectory prediction model and compare it with
baseline models. This experiment is performed on Intersec-
tion 1, and we assume the ground truth cluster class of
each trajectory is known. We compare the proposed model
(LSTM-ED CCS) with two baseline models:

1) LSTM-ED ICS: an LSTM encoder-decoder model
without coordinate transformation, otherwise the same
as LSTM-ED CCS.

2) GP: a Gaussian process regression model used in [10]

We adopt the following two metrics for prediction evalu-
ation:

1) Average displacement error (ADE): the average of Eu-
clidean distance between ground truth and prediction
over all trajectory points.

2) Final displacement error (FDE): the Euclidean distance
between the end positions of ground truth trajectory
and predicted trajectory.

We show the prediction errors of different observation and
prediction periods. To ensure fair comparison for different
periods settings, we set a threshold for minimum trajectory
length for evaluation. In our case, only trajectories with
more than 40 timestamps are chosen, as the maximum of
observation timestamps plus prediction timestamps is 40, as
shown in Table I. In this way, the same set of trajectories are
used for each setting, as opposed to some trajectories (less
than 40 timestamps) only used in shorter period settings.
Thus, the experimental result is a true reflection of the
model’s performance for different observation and prediction
periods. The prediction errors are reported in Table .

We find that LSTM-ED CCS outperforms the two baseline
models in almost every setting. GP tends to have a large
FDE and the prediction result also looks unsmooth. LSTM-
ED ICS performs similarly on shorter prediction periods as
LSTM-ED CCS, but worse on longer prediction periods.

C. Evaluation of trajectory prediction pipeline

Our pipeline consists of cluster class determination and
trajectory prediction. In other words, unlike the previous

TABLE I
COMPARISON OF TRAJECTORY PREDICTION APPROACHES GIVEN
GROUND-TRUTH CLUSTER CLASS

Observation Length 10 20 30
Prediction Length 10 20 30 10 20 10
GP ADE 075 186 276 045 120 035
FDE 276 496 6.08 234 458 269
LSTM-ED ADE 061 124 196 047 091 045
ICS FDE 1.13 251 417 086 197 0.84
LSTM-ED ADE 051 1.10 176 045 091 047
CCS FDE 097 232 361 081 187 0.87

* We utilize two metrics: average displacement error (ADE) and final
displacement error (FDE) (in meters) to compare the three approaches.
The lower the error, the more accurate the approach.

Fig. 9. Two predictions at inference time. The red, blue and green points
represent observed, ground-truth future, and predicted points of a trajectory
respectively.

experiment, the ground truth cluster class is unknown to the
LSTM-ED model. We evaluated the pipeline on all three
intersections. The quantitative result is reported in Table II.
The qualitative result is shown in Fig. 10. As explained in
section V-C.3, our model produces multiple outputs if the
observed trajectory matches with multiple prototypes. Fig. 9
shows one example of multiple outputs. From the observed
trajectory, going straight and right turn are both likely.

TABLE 11
PREDICTION ERRORS FOR INTERSECTIONS 1, 2, AND 3

Observation Length 10 20 30
Prediction Length 10 20 30 10 20 10

ADE 054 121 209 052 1.16 0.61
FDE 1.02 270 483 097 261 1.15

ADE 054 123 205 046 091 049
FDE 1.03 272 429 079 190 0.82

ADE 0.66 140 219 058 1.18 0.54
FDE 124 289 438 103 244 099

Intersection 1

Intersection 2

Intersection 3

VIL

A real-time trajectory prediction approach coupled with
aligned google map information is proposed in this paper.
Our approach makes use of a historical trajectory database
and finds typical motion patterns as a guide for future
prediction. Given this prior information, our approach is able
to make reasonable predictions based on variable starting
position, observation period and prediction period. Experi-
mental results on three intersections show the effectiveness

CONCLUSION

2206

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. Samples of the prediction results.

and extensibility of our approach. In the immediate future,
we plan to integrate our trajectory prediction module to an
early warning system. We believe our work will help increase
the intersection safety.

[1]

[2]

[4

=

[5]

[6]

[7]

[8

[t}

[10]

(11]

REFERENCES

E.-H. Choi, “Crash factors in intersection-related crashes: An on-scene
perspective,” Nat. Highway Traffic Safety Admin., Washington, DC,
USA, Tech. Rep., 2010.

A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao, “Vehicle trajec-
tory prediction based on motion model and maneuver recognition,”
in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2013, pp. 4363-4369.

J. M. Scanlon, R. Sherony, and H. C. Gabler, “Injury mitigation
estimates for an intersection driver assistance system in straight
crossing path crashes in the united states,” Traffic injury prevention,
vol. 18, no. supl, pp. S9-S17, 2017.

X. Huang, S. G. McGill, B. C. Williams, L. Fletcher, and G. Rosman,
“Uncertainty-aware driver trajectory prediction at urban intersections,”
in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 9718-9724.

J. M. Scanlon, R. Sherony, and H. C. Gabler, “Preliminary poten-
tial crash prevention estimates for an intersection advanced driver
assistance system in straight crossing path crashes,” in 2016 IEEE
Intelligent Vehicles Symposium (IV). 1EEE, 2016, pp. 1135-1140.
S. Lefevre, D. Vasquez, and C. Laugier, “A survey on motion pre-
diction and risk assessment for intelligent vehicles,” ROBOMECH
Journal, vol. 1, no. 1, pp. 1-14, 2014.

D. Vasquez and T. Fraichard, “Motion prediction for moving objects:
a statistical approach,” in IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 4. IEEE,
2004, pp. 3931-3936.

J. Joseph, F. Doshi-Velez, A. S. Huang, and N. Roy, “A Bayesian
nonparametric approach to modeling motion patterns,” Autonomous
Robots, vol. 31, no. 4, p. 383, 2011.

Q. Tran and J. Firl, “Online maneuver recognition and multimodal
trajectory prediction for intersection assistance using non-parametric
regression,” in 2014 IEEE Intelligent Vehicles Symposium Proceedings.
IEEE, 2014, pp. 918-923.

S. A. Goli, B. H. Far, and A. O. Fapojuwo, “Vehicle trajectory
prediction with Gaussian process regression in connected vehicle
environment,” in 2018 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2018, pp. 550-555.

A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social LSTM: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 961-971.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

2207

B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W.
Choi, “Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC). IEEE,
2017, pp. 399-404.

N. Deo and M. M. Trivedi, “Convolutional social pooling for vehicle
trajectory prediction,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, 2018, pp. 1468—
1476.

S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via LSTM
encoder-decoder architecture,” in 2018 IEEE Intelligent Vehicles Sym-
posium (1V). 1EEE, 2018, pp. 1672-1678.

T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang,
and Y. N. Wu, “Multi-agent tensor fusion for contextual trajectory
prediction,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 126-12134.

Y. Cai, M. Tian, W. Yang, and Y. Zhang, “Stay point analysis in
automatic identification system trajectory data,” in Proc. 2018 Int. Con.
Data Science, 2018, pp. 273-278.

F. H. A. US Department of Transportation, “Traffic signal
timing manual,” https://ops.thwa.dot.gov/publications/fhwahop08024/-
chapter4.htm, 06 2008.

T. Banerjee, X. Huang, K. Chen, A. Rangarajan, and S. Ranka,
“Clustering object trajectories for intersection traffic analysis,” in
6th International Conference on Vehicle Technology and Intelligent
Transport Systems (VEHITS 2020), 2020.

H. Wang, J. Kearney, and K. Atkinson, “Arc-length parameterized
spline curves for real-time simulation,” in Proc. 5th International
Conference on Curves and Surfaces, vol. 387396, 2002.

K. Jo, M. Lee, J. Kim, and M. Sunwoo, “Tracking and behavior
reasoning of moving vehicles based on roadway geometry constraints,”
IEEE Transactions on Intelligent Transportation Systems, vol. 18,
no. 2, pp. 460-476, 2016.

X. Huang, T. Banerjee, K. Chen, N. V. S. Varanasi, A. Rangarajan,
and S. Ranka, “Machine learning based video processing for real-time
near-miss detection.” in VEHITS, 2020, pp. 169-179.

Authorized licensed use limited to: University of Florida. Downloaded on June 02,2022 at 20:40:34 UTC from IEEE Xplore. Restrictions apply.

