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Abstract— The advent of new traffic data collection tools such
as high-resolution signalized intersection controller logs opens
up a new space of possibilities for traffic management. In this
work, we describe the high resolution datasets, apply appropri-
ate machine learning methods to obtain relevant information
from the said datasets and develop visualization tools to provide
traffic engineers with suitable interfaces, thereby enabling
new insights into traffic signal performance management. The
eventual goal of this study is to enable automated analysis and
help create operational performance measures for signalized
intersections while aiding traffic administrators in their quest
to design 21st century signal policies.

I. INTRODUCTION

Mitigating traffic congestion and improving safety are
the important cornerstones of transportation for smart cities.
An INRIX study1found that in 2017, traffic congestion cost
nearly $305 billion and caused Americans to lose 97 hours
per person in gridlock. This costs the U.S. $87 billion
annually in lost time. Many drivers are frustrated due to
long (but potentially preventable) delays at intersections. The
Governors Highway Safety Administration (GHSA) found2

that pedestrian deaths have steadily increased with the 6590
deaths in 2019 an estimated 60 percent increase over 2009.
Addressing these challenges requires a thorough understand-
ing of traffic patterns not only at intersections but on the
streets and in the overall network. Current performance
evaluations include a limited comparison of before-and-after
travel-time data to demonstrate the effectiveness of signal
retiming efforts. However, traffic patterns vary dynamically
during a day as well as globally within the network, and there
is a need for continuous monitoring and evaluation of signal
timing parameters based on performance and fluctuation
demands.

The data available at each intersection can be broadly
divided into signal timing data and vehicle detector data
(gathered from loop detectors). The former consists of traf-
fic movement and timing information for different phases,
while the latter consists of arrival/departure and occupancy
information for vehicles. In the past, this information was
available at coarse levels of granularity (for example, traffic
movement counts by the hour) limiting their use and the
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ability to discover cycle-by-cycle changes. Methods such as
the Purdue Coordination Diagrams [1], [2] have been shown
to be useful in understanding signal behavior and potential
bottlenecks using signalized intersection datasets.

The availability of high resolution (10 Hz) controller logs
opens a broader range of possibilities that were not available
in previous systems. Additionally, this data, in many cases,
is available with small latency (a few minutes) making it
amenable to real-time decision making and addressing of
bottlenecks. However, this plethora of information without
proper decision-making tools adds a burden to transportation
professionals. Many of them evaluate this information using
ATSPM3 tools and analyze the collected information one
intersection at time. This is challenging even for small cities
comprising of a few hundred traffic intersections. There is
a need for a system that provides corridor-level and city-
level information in a succinct and actionable form. In this
paper, we describe a system that partially addresses this
need. Our system leverages machine learning methodologies
for data collected from a large number of intersections to
derive key spatio-temporal traffic patterns in a city and then
interactively allows a traffic engineer to focus on key chal-
lenges or improvements that can be carried out to alleviate
them. Additionally, our system provides an analysis of traffic
interruptions by observing changes in traffic at detectors,
approaches, and intersections. The key modules of the system
are now described.

1) Ranking: Several measures of effectiveness (MOEs)
are used in the discipline [1], [3]. Our systems allow
the user to rank or select intersections based on split
failures and ratios of arrivals on red vs. green. Addi-
tionally, using a combination of these two metrics, we
subdivide the intersections into several categories.

2) Clustering: Intersections with similar behavior or per-
formance are grouped together using machine learning
techniques. This approach is particularly useful when
dealing with a large number of intersections and is
carried out along both space and time. The system
discovers and highlights signals on a corridor that
preform similarly.

3) Change detection: We have developed a change detec-
tion algorithm that can detect statistically significant
changes at an intersection level as compared to previ-
ous, similar time periods. This approach can be used
to determine unexpected behavior or change in traffic

3https://udottraffic.utah.gov/atspm/
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patterns.
4) Incident detection: Using time series analysis, we

derive extended time periods of significant traffic re-
duction for a detector or for an approach. A spatio-
temporal presentation of this information is useful to
derive key areas of traffic interruptions.

We have implemented this system, which can be executed
in parallel on a multicore machine and can handle data
from thousands of intersections. The system can process six
months of data for 300+ intersections (roughly 1 Terabyte) in
less than 6 hours using a 50-core processor. A visualization
module allows the user to select spatial and temporal regions
of interest in an interactive fashion.

The rest of the paper is organized as follows. In Sec-
tion II, we first describe the pre processing steps that are
performed to convert raw controller logs to measures of
effectiveness (MoEs). In Section III, we introduce the key
modules in the system. These include: intersection ranking
and categorization, clustering methods to highlight spatio-
temporal patterns in the performance of intersections, change
detection and incident detection. In the fourth section, we
detail our visualization framework. In the final two sections,
we detail the overall workflow, present results to demonstrate
the performance & scalability of the system and summarize
our contributions. We also discuss how our techniques can
be incorporated into existing ATSPM systems.

II. DATA-SET

The availability of high resolution (10 Hz) controller logs
opens has open up a broad range of possibilities in terms
of traffic intersection monitoring and performance metrics.
In the following, we describe the key steps required for
information processing.

A. Intersection Controller Logs

Traffic signals are crucial in managing vehicular and
pedestrian traffic at an intersection where two or more road
segments meet. The new generation of signal controllers,
based on the latest Advanced Transportation Controller
(ATC) 4 standards, are capable of recording signal events
as well as vehicle arrival and departure events at a high data
rate (10Hz). This allows us to compute signal performance
metrics such as arrivals on red, arrivals on green, and
platooning ratios on a cycle-by-cycle basis [3].

B. Data Collection

We can ingest data on a daily basis for the advanced
controllers of type NTCIP 76.x, ATC. The detailed data
collection process is described as follows. Each controller
stores 24 hours of this data. This data is collected once a day
using FTP by providing the IP addresses, which are local
addresses to the remote network. A script can be used to
initiate a FTP connection to each controller, downloads the
stored data, decode the data to ASCII format, and upload the
data to a local computer for further processing. The raw data

4https://www.ite.org/technical-resources/
standards/atc-controller/

is then processed, and the required information extracted and
stored to a database.

C. Detector Configuration or Detector to Channel Mapping

Meaningful interpretations of this high resolution data
lead to the computation of useful performance measures
at intersections. For this, certain secondary sets of data or
information is needed. The most critical requirement for
interpretation of the high resolution signal event data logged
in a controller is the detector mapping information. To
compute performance measures or measures of effectiveness
(MOE) from the controller logs, we need to have detector-
to-phase mappings. These mappings indicate the location
of a detector, such as advanced or stop-bar, and the phase
in which it detects vehicles. In many practical situations,
these mappings are missing (e.g., the infrastructure was
built decades ago, and the mappings are not available in
a machine-readable form) or incorrect (e.g., during main-
tenance or addition of new lanes, the contractor forgot to
update the mappings).

The lack of a specific location for a detector limits
automated systems (like 5 and others) as they are unable
to compute the performance measures that depend on the
vehicular arrivals and departures for a particular detector or
direction of movement.

The goal of this module is to find the best mapping of
detector channels to phases and to classify detectors as stop
bar detectors or advanced detectors based on events in the
high resolution controller logs. These events include a change
in the signaling state (for example, green, yellow, or red for
vehicles, and walk, flashing do not walk, and do not walk
for pedestrians) and a change in the detector state (based on
whether the detection area is occupied or not). Our machine
learning-based algorithms are driven by the intuition that the
traffic on a detector during the green phase will be higher
than that of the corresponding red phase [4].

D. Data Volume and Velocity

The total amount of data collected from each signal per
day is between 50 to 100 MB (in ASCII format), and about
a third of this is in the native binary format. Since the data is
collected directly from the controllers, it has a high degree
of veracity. The daily data download, decoding, and upload
for each intersection require less than a minute.

III. FUNCTIONAL ARCHITECTURE & KEY MODULES

The overall approach seeks to process data and aggregate
it at cycle-by-cycle level. It is worth noting that cycle
times, in general, are variable throughout the day for each
intersection. This cycle level data is then used to generate
several measures of effectiveness that are further aggregated
to fixed size intervals (e.g., 15 minutes or an hour). Figure 1
provides the key modules and the overall workflow. In the
rest of the section, we summarize each of the modules.

5https://udottraffic.utah.gov/atspm/
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Fig. 1. The figure describes the overall workflow of the system. Starting
with raw data as input, we follow these steps to get to the interactive
dashboards presented in IV.

A. Ranking and Classification

We currently use demand-based split failures (computing
red occupancy and green occupancy ratios) and the ratio of
arrivals on red to arrivals on green (AoR/AoG) as measures
of effectiveness (MOEs) of an intersection. These measures
serve as good proxies for the level of traffic demand and
effectiveness of signal timing, respectively. The possibility
of using other measures is being explored further.

Once these measures are computed, they can be used for
both filtering (using a threshold) or ranking. This allows
traffic engineers to focus their effort on the most problematic
intersections. A combination of the above MOEs is them
used to categorize intersections into four broad classes:

1) Low split failures, Low AoR/AoG: Well timed and
utilized intersections

2) Low split failures, High AoR/AoG: Low demand but
potential for timing improvements

3) High split failures, Low AoR/AoG: Potential capacity
problems

4) High split failures, High AoR/AoG: High demand and
potential for timing optimizations

Additionally, intersections with detection issues or missing
data can be derived if these measures are very high or very
low for extended periods of time.

B. Clustering

Daily data for each intersection based on MOEs is rep-
resented as a vector. The length of the vector is based on
the number of intervals into which the entire day is divided.
For example, if the data is aggregated at an hourly basis,
the length will be 24. A weighted graph is first constructed
for all intersection and day pairs based on distances between
the vectors. Nonlinear dimensionality reduction, followed by
clustering in the reduced space is then used to produce the
clusters of similar behavior based on the MOEs. For more
details the reader is referred to [5].

Fig. 2. The nine clusters corresponding to distinct demand patterns
discovered in the data. Each plot represents one cluster, and reach row
represents the weekly behavior of an intersection that belongs to the cluster.
We order these clusters from low demand to very high demand.

Fig. 3. This is an example of a major interruption. Note the significant
deviation of traffic volumes from predicted volumes(amount and duration).

A representative set of cluster centers is derived and
described in Figure 2. Sometimes the intersections belonging
to a cluster are spread over geographic regions several miles
apart. While these intersections may be performing similarly,
there is limited real value in having such distant intersections
in the same cluster. A second round of processing is per-
formed to split a cluster of intersections into multiple disjoint
clusters based on spatial or corridor locality. A geographical
indicator such as primary road names or distance between
the intersections is used for this purpose.

C. Change Detection

This module can be used to discover significant changes
in signal performance. Our methods detect temporal changes
in signal performance, and/or detect periods with changes
in many signals, and automatically highlight the change
or evolution of intersection performance with time. The
following approach is used:

• A significant change in the performance of the inter-
section over time can be detected by observing the
evolution of the intersection’s cluster membership over
time.

• A change in the lower dimensional projection of the
data representing the intersection performance can be
used as a change detection measure.

In practice, the two methods are combined into one
overarching method. Details are provided in [6].
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D. Interruption Detection

Managing traffic interruptions is one of the crucial activi-
ties for any traffic management center. These interruptions
may be caused by traffic accidents, vehicle breakdowns,
debris, etc. Further, this should be done in (near) real-time
so that proactive actions can be undertaken for mitigation.
Broadly, we define an interruption to be any time period
where the amount of traffic is significantly lower than normal
or predicted traffic for a significant period of time. A large
traffic interruption is defined on the bases of two parameters
(see Figure 3):

1) The magnitude of deviation (percentage reduction) of
observed traffic volumes from predicted volumes. This
is measured in terms of the percentage dip of the actual
traffic volume vs. the predicted value. Common sense
dictates that the greater the deviation, the larger the
interruption.

2) The duration (in seconds) for which the actual traffic
volume is less than a baseline predicted volume. Again,
a long duration heralds a large interruption.

The reader is referred to [7] for further details.

Fig. 4. Dashboard showing the clustering and classification results for
a single day. The results show that intersections on the same corridor
demonstrate similar behavior throughout the day.

IV. VISUALIZATION

We have developed a visualization module that allows the
user to derive trends and hotspots in their city using the
modules described in the previous section. The key features
of this module are the following:

1) The user can select a small subset of intersections
based on MOEs of interest. This is important as it
allows the user to focus on problem areas. Each signal
is represented by an icon based on the four categories
derived by the combination of the two MOEs. The size
of the icons, used to represent each of the different
categories (based on the two MOEs), is proportional
to the relative severity. This allows the user to visually
compare the different intersections.

2) The user can hover on a particular intersection to get
a detailed description of the MOEs and other relevant
information at a granular level. Examples of such
information include the signal ID, the number of split

failures that happened on an hourly basis for the major
approaches, the number of arrivals on red and green
and the number of pedestrian actuations.

3) The intersections in a cluster with similar behavior can
be easily identified because they have the same color.
This allows the user to observe spatially and temporally
similar behavior across multiple hours or days. Further,
the user can highlight all the intersections represented
by a particular cluster. For each cluster, the behavior
legend presents the corresponding color, the number
of members, the name of the road where the members
may be found, and the days of the week that the cluster
was observed.

4) There are different screens for each functionality.
Further, different screens allow the user to access
information for a single time period or multiple time
periods. The former is useful in looking at details for
a single time period while the latter allows the user to
see comparisons between time periods or trends. The
time periods for multiple period screens can be chosen
by a drop-down menu, and the user can flexibly chose
two to ten time periods.

Figure 4 shows the results on a single day. Many signals
on the same corridor get grouped together, showing that they
performed similarly during the day. The clustering results
of a multiday dashboard in Figure 5 show that for many
intersections, the performance is similar during weekdays but
differs from the weekends. For this particular week, many of
the intersections performed well on Sunday but had potential
capacity issues on weekdays.

The clustering technique is sensitive enough to separate
intersections with granular differences between the observed
behavior that are limited to only a few days. i.e. certain
behavior can occur only on weekends whereas other patterns
exist throughout the weekdays. Similar screens are available
for performing this analysis on an hourly basis . Thus, the
visualization system can be used to understand key behaviors
in a grid or network of signalized intersections. It can be used
to understand the hours or days for which the traffic patterns
are similar and the time periods for which there might be
some problems

Figure 6 shows the change detection screen of the dash-
board. The user can select two time periods for comparison
and the system provided differences in behavior. If only one
time period is chosen, the system automatically chooses a
baseline (e.g., for a Monday, it will chose the previous 6
to 10 Mondays). Statistically significant changes are then
presented, allowing the user to detect temporal changes in
traffic behavior.

V. SYSTEM AND PERFORMANCE

Our system is implemented using a variety of software
technologies based on Python, Elixir6, and Angular7. We
have also used libraries such as NumPy, Scikit-Learn and

6Elixir: https://elixir-lang.org/
7AngularJS: https://angularjs.org/
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Fig. 5. Multi-day angular dashboard allows for comparison of the clustering and ranking results across days. It highlights temporal patterns in intersection
performance. We can see that the behavior on weekdays can be contrasted with the weekend behavior.

Fig. 6. The Change Detection dashboard allows the user to compare and detect statistically significant changes between any two dates or from the baseline
behavior.

Pandas. A high level architecture of the system in presented
in Figure 7. At the lowest level the monitoring module
collects data from a large number of intersections. The
module allows for performing collection in real time or
at regular intervals. This data is stored in a database. A
multi-threaded software layer based on Elixir and Python
is used to develop all of our algorithm implementation
for each of the modules described in the previous section.
This allows for fault tolerance and seamless scalability in
presence of additional computational resources. In particular,
the architecture has several useful attributes:

• Fault Tolerant: We create a single actor for each func-
tional task, and each actor or thread has it’s own

supervisor thread. If an actor fails to execute it’s task,
it suspends itself and all of its children and sends an
exception to its supervisor. The supervisor can then
work on a recovery strategy. Actors and supervisors
fail gracefully, and all the failures can be ultimately
managed by the Elixir/Erlang virtual machine (called
BEAM).

• Scalable: Because the system has a set of dedicated ac-
tors for each functional module and the actors have very
little overhead associated with them, it is easy to spawn
new actors with an increase in the workload for any
specific module. The number of actors is only limited
by the resources available on the physical machine.
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Fig. 7. Overall Architecture of the system. starting with event logs from
controllers, we use distributed and parallel compute techniques to design a
robust framework to support various applications.

• Parallel and Distributed: This architecture is inherently
parallel and can be distributed among multiple machines
for further scalability. Any number of nodes running
the virtual machine can be merged easily, and the
actors or threads running on one node can communicate
with threads on other nodes with no extra effort. The
only additional overhead is the latency associated with
communicating over a network.

The performance of the system was evaluated on a 50-
core CPU server. 1 month of controller log data from
approximately 1000 intersections was processed in a total
of around 180 minutes. The workloads are a function of city
size and we have documented batch performance observed
on historic data. But, given the performance observed for
the current (historic data based) workloads, this system can
easily scale for near-real time workloads.

Figures 4, 5 and 6 show a snapshot of a visualization built
in Angular 6 (with a Ruby backend) to present our results.
The main benefit of choosing Angular is its component-
based architecture, which enables the reuse of components
and elements across the application. Also, the use of services
in Angular assists in sharing the data across components with
similar functionality.

The maps that are embedded in the application are built
using leaflet.js. Leaflet is a JavaScript library that provides
interactive maps and contains all the required mapping
features. Since the application deals with a large number
of intersections, it is important for both scalability and
responsiveness to show these intersections as markers on the
map without any noticeable lag. For example, whenever the
user selects a range of dates, more than 10,000 markers are
plotted on the maps. Making the markers are made with SVG
or HTML reduces the performance of the application because
all the markers have to be loaded into the DOM (Document
Object Model). To overcome this issue, each marker is drawn
using Canvas, and because Canvas markers need not be
loaded into the DOM the maps can handle more than 100,000
markers at once without sacrificing user interactivity.

VI. CONCLUSIONS

The advent of new traffic data logging, collection, and
reporting tools enhances traffic signal management by using
these high resolution controller logs to generate newer opera-
tional performance measures. However, it can be challenging
to continuously monitor these performance measures for even
small cities (comprising a few hundred intersections). In this
work, we presented a scalable system that provides corridor-
level and city-level information using these measures in
a succinct and actionable form. Specifically, we ranked
and categorized intersections by using the two measures,
allowing users to filter intersections based on these measures
and categories, enabling them to focus on key problem
areas. We grouped intersections into clusters of similar
performance to enable detection of spatial and temporal
patterns in performance and to aid the detection of changes
in performance. Our system leverages high performance
computing and machine learning methodologies for data
collected from a large number of intersections to derive key
spatio-temporal traffic patterns in a city. It allows a traffic
engineer to interactively understand problems and focus on
key challenges or improvements that need to be carried out
to alleviate traffic congestion in a city.
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