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Vehicle and pedestrian traffic at a traffic intersection provide crucial information about the performance of the

intersection for safety and throughput. It is possible to discover patterns and outliers on this data by applying
data analytics. In this paper, we present a novel clustering algorithm for trajectories that use a new distance
measure and a two-level hierarchical clustering approach based on geometric properties of the trajectories and
spectral clustering. Trajectory data is augmented with signal phasing and timing information, which gives new
insights to the trajectory data. We demonstrate the procedure on a real-life intersection where the prominent
patterns for traffic movement are found, and the anomalous trajectories are extracted.

1 INTRODUCTION g

Traditionally, most intersections have n{ductlon loop
detectors 1nstalled underneath the road These detec—

tioti:’ HoWéver .thes’e detectors}{ncur high eo Sfor de—
ployment as well as maintésance and may not sensé

pedestrians:or scooters. Additionally, even for the.ve-. - .
1ng to generate d@mlnant and anomalous behavror at

hicles that can be detected, the loop detectors cannot
precisely tell the class of the vehicle passrng pver it.

To address these limitations, many intersec’tion's’.sai:e,-/._
now being equipped with other types of sensors, such

as video cameras and radars. The use of videos has
tremendous potential as it provide rich information in
addition to counting the vehicles. Examples of this
include tracking the type of object passing through
an intersection, tracing the trajectories of objects, and
detecting anomalous traffic behaviors. These addi-
tional information can be used to improve safety and
performance of an intersection.

An object moving through an intersection is cap-
tured by the video camera installed at the intersec-
tion, and it is possible to generate the coordinates us-
ing video processing algorithms such as (Huang et al.,
2018) and (Huang et al., 2020) where the coordinates
of the path are annotated with the timestamp, and the
height and width of a bounding box enclosing the ob-
ject. A trajectory is defined as a path traced by a mov-
ing object and is represented by a time series of spa-
tial coordinates of the object. A triplet representation
of the object ((x1, y1, t1), (X2, ¥2, 12) =+ (Xns Yns tn))
provides the location of the object at different time
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/{: QUI paper arg,

1nstants We leverage the trajectories generated us-
ing video processmg and fuse it with SPaT (Signal
Performance and T"Hmng) data to determine vehicle
and pedestrrans on the rntersectron for drfferent s1g—

the 1ntersectlor.1,zwhlch helps in various applications
such as near-niiss detection. The key contributions of
:ds follows:

I We ¢l @lop a new distance measure for comput-
ing’distances between trajectories. Using this dis-
tance measure, we develop an offline, two-level
hierarchical clustering scheme. At the first level,
the trajectories are clustered based on their direc-
tion of movement. At the second level, spectral
clustering is applied. Clustering helps us to detect
the outliers automatically.

2. We show how new insights and perspectives into
the trajectory data are possible by joining the tra-
jectory database with the SPaT data. For example,
the combined data can be used to detect signal vi-
olations, to count the number of vehicles enter-
ing the intersection on a yellow light, and several
other useful behavior patterns.

Extensive results are provided on video and SPaT data
collected at an intersection. These results demonstrate
that video and signal timing information is useful in
quantifying
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1. Safety of pedestrians and bicyclists by study-
ing the nature of the anomalous vehicle trajecto-
ries and also the statistics of occurrence of these
anomalies (counts of anomalies depending upon
the hour and day of the week)

2. Effective tuning of signal timing based on demand
profiles. It also helps us compare the new tech-
nologies such as video-based monitoring and ex-
isting technologies such as induction loops.

The approach presented in this paper can be used
to develop a system that uses edge-based video-
stream processing to convert video data into space-
time trajectories of individual vehicles and pedestri-
ans. These trajectories are transmitted and stored to a
centralized system for intersection level and city wide
processing.

The rest of the paper is organized as follows. We
present existing work on trajectory analysis in Sec-
tion 2. The background information for our applica-

tion may be found in Section 3, while the method-___

ology developed as part of this paper is presepfed in
Section 4, which includes computing distapfe mea-
sures and clustering trajectories along /Jw/ith case-
studies for some intersections. The carclusions are
presented in Section 6. A

Thié'generat advancenent O’F loeatlon acquisition tech—
nologies has made it feasible to generdte.a masswe
database of tra]ectorles for d1fferent klnds of F_I_l_tltles
quires data mmmg techmques to gain insight mto thls
massive dataset. Feng et al. (Feng and Zhu, 2016),
Mazimpaka et al. (Mazimpaka and Timpf, 2016),
and Banerjee et al. (Banerjee et al., 2019) describe
the fact that a complete trajectory data mining appli-
cation involves components for data collection, data
preprocessing, management and storage, query pro-
cessing, data mining, and privacy protection. Most of
the existing work on trajectory data mining focuses
on trajectories at a macro level, such as those through
cities, states, countries, or continents, where trajec-
tory data in collected using satellites or an appropri-
ate satellite-based radio navigation system. Examples
are vehicle positioning data, or data from hurricanes
or animal movement (Lee et al., 2008), activities in
and around a city (Loecher and Jebara, ). Unlike
this work, the focus of this paper is on the analysis
of object trajectories at signalized intersections us-
ing trajectory clustering to find patterns and anoma-
lies of traffic behavior with reference to the signaling
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phase of the intersection as well as the spatial con-
straints. The trajectory data is collected from videos
installed at the intersections, and the trajectory data
is fused with SPaT data from the intersections. SPaT
data may be obtained either from high-resolution con-
troller data or from DSRC (Dedicated Short-Range
Communications) RSU (Roadside Unit). In the fol-
lowing we briefly describe some of the related work
in this area.

Trajectory clustering algorithms may be di-
vided into three groups, namely, supervised, semi-
supervised, and unsupervised algorithms. This dis-
tinction arises if labeled data is used to aide in the
clustering where the labels uniquely identify the clus-
ters (Bian et al., 2018). We use unsupervised clus-
tering in this work, and the user can just invoke
the algorithm without having to input any labeled
data. Model-based unsupervised clustering strate-

gies use probabilistic models for clustering trajecto-
ries (Morris and Trivedi, 2011). Gaussian Mixture
..., models and hidden Markov models are used in (Mor-
tis and Trivedi, 2011), to model the trajectory coordi-
nates and. the trajectory dynamics, respectively. An-
other existin-g'"unsl_llpervised clustering strategy is it-
erative (Lloyd, 1982)' Where the cluster centers are

moveent using geoimétiical properties of the trajec-
tories Then spectrall‘ clustering is applied on each tra-
ment and assocug’ed anomahes

Clustering 4:given set of objects involves comput-

mg the pairwi§e distance between them so that the

Josest objegfs may be clustered together. Thus, the
cfoneiexpt distance measure is essential for clus-
tering’ frajeetones A trajectory is a time-series and
one of the existing distance measures used in litera-
ture for a time-series is the longest common subse-
quence (LCSS (Vlachos et al., 2002), edit distance
with real penalty (ERP) (Chen and Ng, 2004), dy-
namic time warping (DTW) (Kruskal and Liberman,
1983) and FastDTW (Salvador and Chan, 2004). Ap-
plying DTW or FastDTW directly to the trajectories at
an intersection collected in real-time using video pro-
cessing is not effective, because location coordinates
are often dropped due to artifacts of video process-
ing and occlusion. Partial trajectories results in a very
high distance value for two otherwise similar trajec-
tories ( Figure 2). We have developed a new distance
measure that is more effective for these type of tra-
jectories. The distance measure is based on the warp
path of two trajectories. The warp path is obtained by
applying FastDTW, and using the warp path, we de-
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termine the area between the trajectories and divide

the area by the length of the two trajectories to get the 2 5
average perpendicular distance between the trajecto- 4 L)
T1€S. Minor Street ?“"___a"___’f.
P4
SarT
3 BACKGROUND 3t 1l it =7
8 T :

The background information required for analyzing S - ,J'
the trajectories is presented in this section. Section 3.1 A
describes the trajectory generation in brief while Sec- (.] P
tion 3.2 describes the recording of the current signal
state of an intersection. Finally, Section 3.3 presents 1.6 | major street
a detailed comparison of the candidate distance mea- Figure 1: Phase Diagram showing vehicular and pedestrian
Sures. movement at four way intersections. The solid gray arrows

show vehicle movements while the blue dotted arrows show
3.1 Trajectory Generation pedestrian movements. (US Department of Transportation,

2008).
A video processing software processes object loca-
tions frame by frame from a video and outputs,the ~ ure 1 shows these phase numbers as well as the phase
location coordinates along with the corresppn/ding " -.numbers for the'turping vehicles and pedestrians'.
timestamp. The video is captured by a capiera in- dn our application, we store the current signal
stalled at an intersection. To accurately locéte the co- phasein‘a-compact 6-digit hexadecimal encoding. To
ordinates of an object, the video proces;nng software explain the formatting, let us consider the correspond-
must account for the different types ofdistortions that ing 24-bit binary equ1va1'ent The bits 1-8 are pro-
creepintathe system::For example; fora fisheye dengy z:o::: g rammed.so.that they ay afﬂ el: lf__ﬂ_l@ corresponding phase
thete watdd be'a 51gn1ﬁcant amognt of tidia 'drstor and 0 :the brts9 +16:and

tion:-“After taking: it accouﬁ-t the intrifisie dnd: exs - IbltS 17-24 ar¢ resef:wed For prOgrammmg ﬁ}ﬁ Y@HOW

trinsic properties of the canfera a mapping is created; and red status for the eight-vehicle phases, respec-
which is used by. the video processing software tomap. ....- tively. For examplé green on. phases 2 and. 6 at.an
observed ¢ovrdinatés to modified’ ¢oordjnates that dre” ' interséetioft; WOUld Hiavé ‘a-binary éncoding ‘of 0700
nearly free of any distortion. To represent th9 locatlon 0100 for the ﬁmf 8 bits, the next eight bits would be

of a 3D object using a dimensionless point, ose: logks 0000 0000 for yellow and the last set of § bits for
to find the center of mass of the Ob]CCt A boundlng: .-:"._.-;_: _.__I'ed would be Qne where the second and sixth bits are
box is drawn enclosing the object. The center of the '-:Qrcpresented as 1011 1011. Thus, the overall 24-bit

box is approximated to be the center of mass of the biriay; representatlon of the current signalling state is
object. After generating timestamped coordinates of 0100 OFO6-0000 0000 1011 1011, or 4400bb.

"

a trajectory, the software computes other properties

such as speed, the direction of movement. 33 Comparing Tl’ajeCtOI'ieS
3.2 Signalling Status The first step toward clustering a set of trajectories is
applying a good distance measure that will, for any
An intersection almost always has traffic lights to con- two trajectories, tell how close the trajectories are to
trol the flow of traffic safely. The changes in signals each other in space and time. There are two poten-
from green to yellow to red are events that are cap- tial candidates for distance measures of the intersec-
tured in controller logs by advanced controllers and tion trajectories: Euclidean Distance (ED), and Dy-
also sometimes broadcast by DSRC RSUs, and the namic Time Warping (DTW). Among these, ED is the
corresponding data are called Signal Phase and Tim- square root of the sum of the squared length of verti-
ing (SPaT) data. To specify a particular signal and in cal or horizontal hatched lines. The disadvantage of
a more general sense the direction of movement, the using ED is that for trajectories of different length, it
traffic engineers define a standard that assigns phases cannot calculate their distance reliably.
2 and 6 to the two opposite directions of the major DTW can compute distances between trajectories
street and 4 and 8 to those of the minor street. Fig- when they vary in time, or speed, or path length.

Although DTW utilizes a dynamic programming ap-
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tance Value when DTW/FastD«TW is dlrectly used to com-

plexity O(N?), where N is the number 0f coordi-
nates in the two trajectories, there are approximate
approaches such as FastDTW that realize a near-
optimal solution and has a space and time complexity
of O(N). FastDTW is based on a multilevel iterative
approach. FastDTW returns a distance and a list of
pairs of points, also known as the warp path. A pair of
points consists of coordinates on the first and second
trajectories and represents the best match between the
points after the trajectories are warped. The distance
returned by FastDTW is the sum of the distances be-
tween each pair of points on the path. Quite natu-
rally, the distance is small if the trajectories occur in
the same geographical coordinates and are traversed
at similar speeds.

DTW and FastDTW work well for trajectories that
are entirely captured by the sensor system. In re-
ality, the sensor system and the processing software
may not capture the trajectory in its entirety. In that
case, distance returned by the dynamic time warp-
ing algorithm is not representative of the actual dis-

hlgh'ligh{éddﬁ thi: top:aiid the Hotgom i iinages, havié High' diss -

A

~-... lated trajectories.
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Figure 3: Two straight trajectories represented by ABCDE
and FGH. The dashed lines show the point correspondence
(warp path) obtained using FastDTW. The trajectory FGH
is shorter as the beginning part of the trajectory was not
captured.

tance. Figure 2 highlights two example trajectories
for which DTW returns a high value for distance sug-
gesting the tracks are dissimilar. For example, for two
tracks going straight, if the starting portion of one of
the tracks get truncated due to a processing error, as
shown in Figure 3, the distance between the tracks
will be \/AF” + BF® + CF + DG + EH". Thus, the
distance computed results in a high value, which of-
ten falls in the range of distance between two unre-
Hence, we developed a new dis-
tahee measure by utilizing the warp path returned by
the FastDTW,

section. There are. two main components to cluster-
---:mg, the ﬁrst is; toxuse, an; efﬁmenL dlstanee meagure

" for the traJectorle;s 6 be clustered and the second is to

use a clustering’dlgorithm that uses the distance mea-
sure to createlusters of trajectories that behave in a

4 ;_a_similar mangér. We describe the novel distance mea-
“sufe, devel(}ped as part of this work in Section 4.1 and

preSeﬁt Qur {:lusterlng algorithm in Section 4.2
4.1 Distance Measure

The new distance measure developed in this section,
applies to trajectories captured using real-time video
processing. The first step in the computation of the
distance measure is to obtain the warp path using
a time warping algorithm, e.g. FastDTW. Triangles
are constructed using the warp path as shown in Fig-
ure 3, where the triangles are AABF, ABCF, ACDF,
ADFG, ADEG, and AEGH. Since the coordinates
of the vertices (A, B,C, D, E, F, G, and H) are known,
the area of each may be computed using the following
formula from coordinate geometry.

ax(by — ¢y) + by(cy — ay) +cx(ay — by)

7 |
ey

Area = |
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where the vertices of the triangle have coordinates: phase2 WB
(ax,ay), (bx,by), and (cx,cy). The sum of area of all SN (562, 880), (560, 149)
triangles is computed and finally the distance, D;;, be- NS (560, 149), (562, 880)

WE (84, 536), (962, 547)
EW (962, 547), (84, 536)
o phase2stopbar (815, 153), (819, 707)
= ( Z Areak)/Ll-j 2) phase4stopbar (244, 739), (825, 750)
phase6stopbar (330, 155), (287, 726)
phase8stopbar (287, 240), (804, 231)

tween two trajectories 7; and T}, is computed as:

where Areay is the area of the k" triangle and L;; is the

average length of the two trajectories, 7; and T}, and n Figure 4: Snippet of a configuration file that shows the user
is the total number of triangles. If there is no warping, inputs needed for an intersection. The coordinates may be
and the number of matched pairs is m, then n = 2m, by obtained using a visualization tool (Chen et al., 2020).

construction. However, if there is warping, then n <
2m. D;; is the average perpendicular distance between
the trajectories, which intuitively is the average height
of the triangles.

To get a more accurate local distance measure, we
segment the trajectories and compute the distance of
the starting and the finishing segments. Let SD;; and
FD;; be the distances of the starting and the finish-
ing segments, respectively. Then, SD;; is the dis-
tance between the first pair of matching points”that
are not warped (CF and DG in Figure 3) age{ corre-
spondingly, FD;; is the distance between the last pair

of matching points that are not Warpef} (DG and EF fic rules, and hence its-trajectory is necessarily con-
in Figure 3). SD;j may be computed-as the average strained both in time ard space. One of the goals

he;ght :of ; Emangles AEF Gand: ACDG, and: £:L);; as:.o:: vy

quadratic complexity. Clustering at the first level par-
titions the set of trajectories into homogeneous clus-
ters based on their direction of the movement. Then
spectral clustering is applied to cluster the trajecto-
ries for each phase separately and to detect anoma-
lies. The clustering scheme is explained in detail in
this section.

. 4 2.1 Partitioning Trajectories based on
" Movement Phase

Any objec.t' 'a’t'-an_.intersection must obey the traf-

that-af: tﬂangles ADGH and ADEH Thus; we st
triptets of (D, }:5D57: FDE) ts;f,-represent “the: distancé. -
between two trajectories. "Ehese three portions of th¢

i
mately. Thes& Vlo’latIOns'may appedr'as spatial” out-

liers or as timing:¥iolations. Figure 1 shows the
distance measure,.can.be su,ﬂ;ably Welghed for com- 108 gure ° 8

-7 phases for.pedgstrian :aiid vehiculdr movgments: A
given set of trajectories is partitioned into eight bins
aligned respectwely with the eight phases and to four
addltlonal biris: corresponding to the right turns for
“and 8.

rajectories are essentially a series of co-

plftlng 4 sCalar distance if requiréd: ;

Computation of Similarity Matrix. The srmﬂar;t,y
matrix, S, is computed from the distance measures by
setting up empirical thresholds for the magnitude of

A . . '..i LA e . .
the distance between two trajectories. For example, ordinates; 1t 1s possible to use basic vector algebra and
given two trajectories 7; and T}, if their average dis- trigonometry to get their general direction. For exam-

tance D;; of Equation 2 is less than x and the start ple, the spatial coordinates of a track 7; is given as
section distance, SD;; is less than y and the last sec- (1, Y1), (k25 ¥2), -5 (s Ya). Let A= [x1,y1] and
. . . b 9 9 9 9 b . b

tion .d(;stal(;ce., F.f)u 1§H116ss than z, tg?n T and T a;e B = [x,,y,] be two vectors connecting the origin to
considered siar e corresponding entry in the the start and end points respectively, of 7;, with their

similarity matrix, in that case, would be S;; = §;; = 1. . . ..
y i = i direction away from the origin. Let AB be a vector
If any distance value exceeds the thresholds - x, y, and . . L
connecting the start and the end points, with its head

, then the trajectories would be considered dissimilar . .
< J at the end point, (x,,y,). Then, using the rules of vec-

and in that case, S;; = §;; = 0. In this manner, the LTSN i U — - -
similarity matrix is computed and is ready to be used tor addition, A +AB =B, which implies AB =5 —A.

in spectral clustering. Thus, AB = [x, — X1,y —N I
Once constructed, a trajectory vector may be com-
4.2 Hierarchical Clustering pared with a reference vector to obtain the direction of

the trajectory. The start and endpoints of these refer-
ence vectors may be obtained using CAD tools sup-
ported by visualization software, and the coordinates
of the start and endpoints are specified in a configura-
tion file.

Clustering a large set of N trajectories is a O(N?) op-
eration since pairwise distance needs to be computed
to prepare a distance matrix. A two-level hierarchi-
cal clustering scheme is proposed here to address the
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Figure 5: Pictorial representation of information in config-
uration file.

The cosine of the acute angle between a trajectory
vector i, and a reference vector V is given by.

i .

cos 6 = TyTa——
{17

3

A
When the directions are nearly matching, the v/a}ﬁe of

the cosine is close to 1.0. S

A snippet of a configuration file us,eef to spec-
ify the reference vectors is shown in Figure 4. The
user can specify the direction of the.phase 2 move-
ment: using :the-phase: paramaeter :of :this. file: which-
hasavihizesWB (West Béund) m,»'thrs exatnple:: Fhig

other: phaSeS asdeseribedin E’}gure 1 may.be detived: -

with reference to the phase" 2 direction. The param:
eters SN, NS, WE; . EW, are used to specify .the, start
and endpornts of téférence vectois for, Ihrough lanes
along South-North, North-South, West- East,and East-

West directions respectively. Figure 5 show$ Lhe GOl

coordinates of the stop bars are also needed to differ-
entiate left and right turn movements that otherwise
align with each other. An example of this is given
later in this section.

Given a trajectory, the cosine value in Equation 3
may be computed for the trajectory vector and the ref-
erence vectors, and if the value computed is close to
1 for any of these vectors, the trajectory may be as-
signed the corresponding through phase (one of 2, 4,
6 or 8).

For any intersection, the coordinates of the ref-
erence vectors have to be determined once, and the
configuration file may be reused over time until the
geometry of the intersection is changed.

4.2.2 Clustering Trajectories in a Partition

The next step in the hierarchical clustering scheme
is to cluster the trajectories that have the same direc-
tion of movement. The spectral clustering algorithm

responding reference vectors. The start and endpomt'/f"'{.:
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is applied in this step. Prior experimentation with a
simple KMeans clustering approach for this problem
highlights the benefits of using spectral clustering in-
stead. A pure KMeans algorithm requires user input
for the number of possible clusters, which is impossi-
ble for the user to know in advance. Spectral cluster-
ing, through its smart use of standard linear algebra
methods, gives the user objective feedback about the
number of possible clusters and further accentuates
the features of the trajectories to make the separation
of clusters easier.

The inputs to a spectral clustering algorithm are
a set of trajectories, say, try, tra, ---, try, and a sim-
ilarity matrix S, where any element s;; of the matrix
S denotes the similarity between trajectories #r; and
trj. It is to be noted that we consider s;; = s;; > 0,
where s;; = 0 if tr; and tr; are not similar. Given these
two inputs, spectral clustering creates clusters of tra-
jectories such that all trajectories in the same cluster
are similar to each other. In contrast, two trajecto-

... ries belonging to different clusters are not so similar
to-gach other. For example, for the given set of tra-

ject'(')rje_sﬁ__spectral clustering creates separate clusters
for trajectories following different lanes or those that
change lane at the iﬁ'tersection Asa result spectral

spectral clusterrng algérrfhm may e represe'ntecf asa
graph G= (V E ) where vertex v; i in thrs graph rep—
the 51m11ar1ty S j{between the correspondlng tra]ecto-
ries tr; and tr j;';_i;s greater than a certain threshold &,
and the edge..-i_'_'s_:.-"weighted by s;;. Thus, the clustering

edges ‘bétween different components is small. Hence,
by obtaining the number of connected components we
know the number of clusters and then get the clusters
by applying a KMeans algorithm.

We used the linalg library provided by NumPy
and to perform the linear algebra operations in spec-
tral clustering. Once the number k of connected com-
ponents is known, a KMeans algorithm is run on the
first k eigenvectors to come up with the clustering re-
sults. The function KMeans is a standard KMeans
clustering algorithm from the Python sklearn.cluster
library.

The clusters generated by spectral clustering for
all the left turn trajectories are shown in Figure 6.
The clusters for straight and right turn trajectories are
omitted here due to space constraints.
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Flgure 6 Second level of the two-level hlerarchlcal clustering scheme where spectral clustermg is applied on trajectories with
the same direction of motion. The clusters of some left-tyrn trajectories are presented in this figure.

ra
~
4.2.3 Finding Representative Trajectory //
r

After the trajectories are clustered, we }d’éntify a tra-
jectory in each cluster that is represphtative of that

puted asxthe trzgectory t belongmg to the’elustg:r th A

has-the:leust average: drstance from all thieother: traf, .
/ 5

jectories.

Detecting anomalous traffic behavior is one of the top'
goals for clustering trajectories. An anomalous tra-
jectory may be one that violates the spatial or tem-
poral constraints at an intersection. The spatial con-
straints amount to the restrictions a vehicle must fol-
low at an intersection, such as never go in the wrong
way. Temporal constraints, on the other hand, are the
restrictions imposed by the signaling system at an in-
tersection. We consider these two types of anomalous
behavior in the rest of this section.

Signal Timing Violations. The fusion of video and
SPaT data allows us to detect the validity of the trajec-
tories with reference to the current signaling phase of
the intersection. The video clock and the SPaT clock
are sometimes off by a few seconds. The clocks may
be treated as synchronous by adding an offset to the
trajectories. This offset may be computed manually
by comparing the time a signal in the video transi-
tions to green and the time in the SPaT when there
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' :, Figure 7: Colle{:tlon of tracks representing vehicles that en-
! 21 the inters¢etion on a yellow light.

£

is a “Ph&isé“Begin Green” event for the correspond-
ing phase. It is also possible to compute the offset
automatically in software by checking the timestamp
of the first trajectory that crosses, say, the phase2 stop
bar, (Figure 5) and the timestamp in SPaT when phase
2 signal becomes green and then adding a 2.5 seconds
of driver reaction time to the signal transition times-
tamp. Figure 7 shows the trajectories that happen dur-
ing a yellow light.

Trajectory Shape Violation. Figure 8 shows the
anomalous trajectories. In all the cases here, the tra-
jectories are turn movements. Sometimes these tra-
jectories take a very wide turn. At other times the
trajectories turn left from a through lane, and at still
other times, the trajectories start taking a turn much
before the actual stop bar, causing wrong-way access
to the adjacent lane.



Figure 8: Collection of tracks that represent vehicles that
have anomalous behavior because of their shape.

6 CONCLUSIONS

We presented a novel method for analyzing vehicle
and pedestrian trajectories at intersections and ap-

plying data mining techniques to find patterns<and---.

anomalies. We developed a new distance ryfeasure
specifically for two trajectories at a trafﬁ(;» intersec-
tion. We applied a hierarchical clusterlpg algorithm
based on geometric properties of the t;rﬁ]ectorles and
spectral clustering. We demonstrated our workflow

real-life mtérsectlon We augment trﬁeetor (
Tidat.and. showzn eainple of. ho

.....

;;;;;;

useful in detectmg “vehicles {I;rat crossed an 1ntersec~

tion on a yellow hght and aIso potentially detectmg

signal violations. ! This application 'may Bé: leveraged ST

to implement useful applications to detsrmme turn
movement counts, to monitor demand and’fthrough—

put of an intersection, to detect and manage irfcidenits: by

at an intersection.
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