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Intelligent Intersection: Two-stream Convolutional
Networks for Real-time Near-accident Detection
in Traffic Video
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Camera-based systems are increasingly used for collecting information on intersections and arterials. Un-

like loop controllers that can generally be only used for detection and movement of vehicles, cameras can

provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection,

object tracking, and near-miss detection have been developed to derive this information. However, much of

this work currently addresses processing videos offline. In this article, we propose an integrated two-stream

convolutional networks architecture that performs real-time detection, tracking, and near-accident detection

of road users in traffic video data. The two-stream model consists of a spatial stream network for object de-

tection and a temporal stream network to leverage motion features for multiple-object tracking. We detect

near-accidents by incorporating appearance features and motion features from these two networks. Further,

we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the

video frame rate on a variety of videos collected from fisheye and overhead cameras.
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1 INTRODUCTION

The rapid changes in growth of exploitable and, in many cases, open data have the potential to
mitigate traffic congestion and improve safety. Despite significant advances in vehicle technology,
traffic engineering practices, and analytics based on crash data, the number of traffic crashes and
fatalities are still too many. Many drivers are frustrated due to long (but potentially preventable)
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delays at intersections. The use of video or light detection and ranging (LIDAR) processing, big
data analytics, artificial intelligence, and machine learning can profoundly improve the ability to
address these challenges. The collection and exploitation of large data sets is not new to the trans-
portation sector. However, the confluence of ubiquitous digital devices and sensors, significantly
lower hardware costs for computing and storage, enhanced sensing and communication technolo-
gies, and open-source analytics solutions have enabled novel applications. The latter may involve
insights into otherwise unobserved patterns that may positively influence individuals and society.

The technologies of artificial intelligence (AI) and the Internet of Things (IoTs) are ushering in
a new promising era of “Smart Cities” where billions of people around the world can improve the
quality of their lives in aspects of transportation, security, information, communications, and so
on. One example of data-centric AI solutions is computer vision technologies that enable vision-
based intelligence for edge devices across multiple architectures. Sensor data from smart devices
or video cameras can be analyzed immediately to provide real-time analysis for intelligent trans-
portation systems (ITS). At traffic intersections, there is a greater volume of road users (pedestrians
and vehicles), traffic movement, dynamic traffic events, near-accidents, and so on. It is a critically
important application to enable global monitoring of traffic flow, local analysis of road users, and
automatic near-accident detection.

As a new technology, vision-based intelligence has many applications in traffic surveillance
and traffic management [Buch et al. 2011; Coifman et al. 1998; He et al. 2017; Kamijo et al. 2000;
Valera and Velastin 2005; Veeraraghavan et al. 2003]. Among them, many research works have
focused on traffic data acquisition with aerial videos [Angel et al. 2002; Salvo et al. 2017]; the aerial
view provides better perspectives to cover a large area and focus resources for surveillance tasks.
Unmanned aerial vehicles (UAVs) and omnidirectional cameras can acquire useful aerial videos
for traffic surveillance, especially at intersections, with a broader perspective of the traffic scene
and with the advantage of being both mobile and spatio-temporal. A recent trend in vision-based
intelligence is to apply computer vision technologies to these acquired intersection aerial videos
[Scotti et al. 2005; Wang et al. 2006] and process them at the edge across multiple ITS architectures.

Object detection and multiple-object tracking are widely used applications in transportation,
and real-time solutions are significant, especially for the emerging area of big transportation data.
A near-miss is an event that has the potential to develop into a collision situation between two
vehicles or between a vehicle and a pedestrian or bicyclist. These events are important to mon-
itor and analyze for preventing collisions in the future. They also serve as a proxy for potential
timing and design issues at the intersection. Camera monitored intersections produce video data
in gigabytes per camera per day. Analyzing thousands of trajectories collected per hour at an in-
tersection from different sources to identify near-miss events, quickly becomes challenging, given
the amount of data to be examined and the relatively rare occurrence of such events.

In this article, we investigate the use of traffic video data for near-accident detection. However,
to our best knowledge, a unified system that performs real-time detection and tracking of road
users and near-accident detection for aerial videos is not available. Therefore, we have collected
video datasets and presented a real-time deep-learning-based method to tackle these problems.

Generally, a vision-based surveillance tool for ITS should meet several requirements: (1) segment
vehicles from their surroundings (including other road objects and the background) to detect all
road objects (still or moving); (2) classify detected vehicles into categories: cars, buses, trucks,
motorbikes, and so on; (3) extract spatial and temporal features (motion, velocity, and trajectory) to
enable more specific tasks, including vehicle tracking, trajectory analysis, near-accident detection,
anomaly detection, and so on; (4) function under various traffic conditions and lighting conditions;
and (5) operate in real time.
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Over the decades, although an increasing amount of research on vision-based systems for
traffic surveillance has been proposed, many of the criteria listed above still cannot be met. Early
solutions [Hoose 1992] do not identify individual vehicles as unique targets and progressively
track their movements. Methods have been proposed to address individual vehicle detection and
vehicle tracking problems [Coifman et al. 1998; Koller et al. 1993; McLauchlan et al. 1997] with
tracking strategies and optical flow deployment. Compared to traditional hand-crafted features,
deep-learning methods [Girshick et al. 2016; He et al. 2019a, 2019b; Redmon et al. 2016; Ren et al.
2015; Tian et al. 2016] in object detection have illustrated the robustness of specialization of the
generic detector to a specific scene. Recently, automatic traffic accident detection has become
an important topic. Before detecting accident events [Hommes et al. 2011; Jiang et al. 2007;
Jiansheng et al. 2014; Kamijo et al. 2000; Sadeky et al. 2010], one typical approach is to apply
object detection or tracking methods, using histogram of flow gradient (HFG), hidden Markov
model (HMM), or Gaussian mixture model (GMM). Other approaches [Chen et al. 2010, 2016;
Ihaddadene and Djeraba 2008; Karim and Adeli 2002; Liu et al. 2010; Tang and Gao 2005; Wang and
Dong 2012; Wang and Miao 2010; Xia et al. 2015] use low-level features (e.g., motion features) to
demonstrate better robustness. Neural networks have also been employed for automatic accident
detection [Ghosh-Dastidar and Adeli 2003; Ohe et al. 1995; Srinivasan et al. 2004; Yu et al. 2008].

Intersections tend to experience more, and potentially more severe, near-accidents, due to fac-
tors such as angles and turning collisions. The first type of intersection video considered here is
drone video, which monitors an intersection with a top-down view. The second type is real traf-
fic video acquired by omnidirectional fisheye cameras that monitor small or large intersections.
This is widely used in transportation surveillance. These can be directly used as inputs for any
vision-based framework.

We propose a unified vision-based framework for near-incident detection that has the following
novel ideas:

(1) A combined spatial and temporal stream convolutional networks architecture

that performs object detection, classification, and tracking. The spatial stream net-
work detects individual vehicles and likely near-accident regions at the single frame level
by capturing appearance features with a state-of-the-art object-detection method. The
temporal stream network leverages motion features extracted from detected candidates to
perform multiple-object tracking and generates corresponding trajectories of each tracked
target;

(2) A frame-based spatial pixel segmentation approach to derive accurate bounding

boxes for multiple objects. This approach is considerably more accurate as compared
to rectangular bounding boxes approaches;

(3) A metric learning approach for improved tracking in the presence of occlusion.

Occlusion can lead to several frames where the object goes undetected;
(4) A novel distance measure between tracks to detect near-misses between objects.

This measure detects near-accidents by incorporating appearance features and motion
features to compute probabilities of near-accident candidate regions.

In addition, we show that this can be executed on a GPU at the rate of 33+ frames per second,
which is useful in real-time video applications. We also note that these methods are executed on
fisheye lens-based video, which is considerably more difficult than standard rectilinear video frame
geometry. Experiments demonstrate the advantage of our framework with an overall competitive
performance at high frame rates. The overall pipeline of our method is depicted in Figure 1.

The organization of the paper is as follows. Section 2 describes the background of convolutional
neural networks, object detection, and multiple-object-tracking methods. Section 3 describes the
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Fig. 1. The overall pipeline of our two-stream convolutional neural networks for near-accident detection.

Fig. 2. Architecture of convolutional neural networks for image classification.1

overall architecture, methodologies, and implementation of our method. This is followed in Sec-
tion 4 by an introduction of our traffic near-accident detection dataset (TNAD) and presentation
of a comprehensive evaluation of our approach and other state-of-the-art near-accident detection
methods, both qualitatively and quantitatively. Section 5 describes a recent literature of object
detection, multiple-object tracking and near-accident detection. Section 6 summarizes our contri-
butions and also discusses the scope of future work.

2 A BRIEF DESCRIPTION OF STANDARD COMPUTER VISION APPROACHES

2.1 Convolutional Neural Networks (CNNs)

CNNs have shown strong capabilities in representing objects, thereby boosting the performance of
numerous vision tasks, especially when compared to traditional features [Dalal and Triggs 2005].
A CNN is a class of deep neural network that is widely applied in image analysis and computer
vision. A standard CNN usually consists of both the input layer and the output layer, as well as
multiple hidden layers (e.g., convolutional layers, fully connected layers, pooling layers) as shown
in Figure 2. The input to a convolutional layer is the original image X . We denote the feature map

1Figure based on the blog article published at https://adeshpande3.github.io/.
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of the ith convolutional layer as H i and H 0 = X . Then H i can be described as

H i = f (H i−1 ⊗Wi + bi ) , (1)

whereWi is the weight for the ith convolutional kernel for the i − 1th image or feature map and
⊗ is the convolution operation. The output of the convolution operation includes a bias bi . Then,
the feature map for the ith layer can be computed by applying a standard nonlinear activation
function. We briefly describe a 32 × 32 RGB image with a simple ConvNet for CIFAR-10 image
classification [Krizhevsky et al. 2009]:

• Input layer: the original 32 × 32 image with three color channels (R,G,B).
• Convolutional layer: local operations in the image passed through nonlinear activation

functions. If we use 12 filters, then the size of the result is [32 × 32 × 12].
• Pooling layer: a downsampling operation, resulting in a volume such as [16 × 16 × 12].
• Fully connected layer: output scores for each class, resulting in a volume of size [1 × 1 × 10]

for 10 classes.

In this way, CNNs transform the original image into multiple high-level feature representations
layer by layer, finally obtaining class-specific outputs or scores.

2.2 YOLO Object Detection

The real-time You Only Look Once (YOLO) detector, proposed in Redmon et al. [2016], is an end-
to-end state-of-the-art deep-learning approach without using region proposals. The pipeline of
YOLO [Redmon et al. 2016] is rather straightforward: Given an input image, YOLO [Redmon et al.
2016] passes it through the neural network only once, as its name implies (You Only Look Once),
and outputs the detected bounding boxes and class probabilities in prediction. Figure 4 demon-
strates the detection model and system of YOLO [Redmon et al. 2016]. YOLO [Redmon et al. 2016]
is orders of magnitude faster (45 frames per second) than other object-detection approaches, which
means it can process streaming video in real time. Compared to other systems, it achieves a higher
mean average precision as well. In this work, we leverage the extension of YOLO [Redmon et al.
2016], Darknet-19, a classification model used as the basis of YOLOv2 [Redmon and Farhadi 2017].
Darknet-19 [Redmon and Farhadi 2017] consists of 19 convolutional layers and five max-pooling
layers, where batch normalization is utilized to stabilize training, speed up convergence, and reg-
ularize the model [Ioffe and Szegedy 2015].

2.3 Simple Online Real-time Tracking (SORT)

SORT [Bewley et al. 2016] is a simple, popular, and fast multiple-object-tracking (MOT) algorithm.
The core idea is a combination of Kalman filtering [Kalman 1960] and frame-by-frame data associ-
ation. The data association is implemented with the Hungarian method [Kuhn 1955], by measuring
the bounding box overlap. With this rudimentary combination, SORT [Bewley et al. 2016] achieves
a state-of-the-art performance compared to other online trackers. Moreover, due to its simplicity,
SORT [Bewley et al. 2016] can update at a rate of 260 Hz on a single machine, which is over 20
times faster than other state-of-the-art trackers.

2.4 DeepSORT

DeepSORT [Wojke et al. 2017] is an extension of SORT [Bewley et al. 2016]. DeepSORT integrates
appearance information to improve the performance of SORT [Bewley et al. 2016], by adding one
pre-trained association metric. DeepSORT [Wojke et al. 2017] helps to solve a large number of
identity switching problems in SORT [Bewley et al. 2016], and it can track occluded objects in
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Fig. 3. Two-stream convolutional neural networks architecture for near-accident detection.

Fig. 4. Object-detection pipeline of our spatial stream [Redmon et al. 2016]: (1) resizes the input video

frame, (2) runs convolutional network on the frame, and (3) thresholds the resulting detection by the model’s

confidence.

a longer term. During online application, the measurement-to-track association is established in
visual appearance space, using nearest-neighbor queries.

3 TWO-STREAM ARCHITECTURE FOR NEAR-ACCIDENT DETECTION

In this section, we present our computer vision-based two-stream architecture for real-time near-
accident detection. The architecture is primarily driven by real-time object detection and multiple-
object tracking (MOT). The goal of near-accident detection is to detect likely collision scenar-
ios across video frames and report these near-accident records. Because videos have both spatial
and temporal components, we divide our framework into a two-stream architecture as shown in
Figure 3. The spatial aspect comprises individual frame appearance information about scenes and
objects. The temporal aspect comprises motion information of objects. For the spatial stream con-
volutional neural network, we utilize a standard convolutional network designed for state-of-the-
art object detection [Redmon et al. 2016] to detect individual vehicles and mark near-accident
regions at the single-frame level. The temporal stream network leverages object candidates from
object-detection CNNs and integrates their appearance information with a fast MOT method to
extract motion features and compute trajectories. When two trajectories of individual objects in-
tersect or come closer than a certain threshold (whose estimation is described below), we label
the region covering the two objects as a high probability near-accident region. Finally, we take
the average near-accident probability of both the spatial stream network and the temporal stream
network and report the near-accident record.
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3.1 Object Detection and Classification

In our framework, each stream is implemented using a deep convolutional neural network. Near-
accident scores are combined by averaging. Since our spatial stream ConvNet is essentially an
object-detection architecture, we base it on recent advances in object detection—essentially the
YOLO detector [Redmon et al. 2016]—and pre-train the network from scratch on our dataset con-
taining multi-scale drone, fisheye, and simulation videos. As most of our videos contain traffic
scenes with vehicles and traffic movement captured in a top-down view, we specify different vehi-
cle classes such as motorbike, car, bus, and truck as object classes for training the detector. Addi-
tionally, near-accidents or collisions can be detected from single still frames even at the beginning
of a video or from stopped vehicles associated in an accident after collision. Therefore, we train
our detector to localize these likely near-accident scenarios. Since static appearance is a useful
cue, the spatial stream network performs object detection by only operating on individual video
frames.

The spatial stream network regresses the bounding boxes and predicts the class probabilities
associated to these boxes, using a simple end-to-end convolutional network. It first takes the image
and splits it into a S × S grid. For each grid cell,

• it predicts B boundary boxes, and each box has a confidence score
• it detects one object only, regardless of the number of boxes B
• it predicts C conditional class probabilities (one per class for the likelihood of the object

class)

For each bounding box, the CNN outputs a class probability and offset values for the bounding
box. Then, it selects bounding boxes that have the class probability above a threshold value and
uses them to locate the object within the image. In essence, each boundary box contains five ele-
ments: (x ,y,w,h) and a box confidence. The (x ,y) are coordinates that represent the center of the
box relative to the bounds of the grid cell. The (w,h) parameters are the width and height of the
object. These elements are normalized such that x , y, w and h lie in the interval [0, 1]. The inter-
section over union (IoU) between the predicted bounding box and the ground-truth box is used
in confidence prediction, which reflects the likelihood that the box contains an object (objectness)
and the accuracy of the boundary box. The mathematical definitions of the scoring and probability
terms are:

box confidence score Pr (object ) · IoU ,
conditional class probability Pr (classi |object ),

class confidence score Pr (classi ) · IoU ,
class confidence score = box confidence score × conditional class probability,

where Pr (object ) is the probability that the box contains an object. IoU is the intersection over
union (IoU) between the predicted box and the ground-truth box. Pr (classi ) is the probability that
the object belongs to classi . Pr (classi |object ) is the probability that the object belongs to classi

given an object is present. The network architecture of the spatial stream simply contains 24 con-
volutional layers followed by two fully connected layers, reminiscent of AlexNet and even earlier
convolutional architectures. The last convolution layer is flattened, which outputs a (7, 7, 1024)
tensor. It performs a linear regression using two fully connected layers to make boundary box
predictions and to make a final prediction using the threshold of box confidence scores. The final
loss adds the localization (the first and the second terms), confidence (the third and the fourth
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terms), and classification (the fifth term) losses together. The objective function is

Lmulti
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where 1obj
i denotes if the object appears in cell i and 1obj

i j denotes that the jth bounding box predictor

in cell i is “responsible” for that prediction.

3.2 Multiple-object Tracking

In general, MOT can be regarded as a multi-variable estimation problem [Luo et al. 2014], and the
objective of MOT can be modeled by performing MAP (maximum a posteriori) estimation to find
the optimal sequential states of all the objects from the conditional distribution of the sequential
states, given all the observations:

Ŝ1:t = arg max
S1:t

P (S1:t |O1:t ) , (3)

where si
t denotes the state of the ith object in the t th frame, St = (s1

t , s
2
t , . . . , s

Mt
t ) denotes states of

all the Mt objects in the t th frame, and S1:t = {S1, S2, . . . , St } denotes all the sequential states of all
the objects from the first frame to the t th frame. In tracking-by-detection, oi

t denotes the collected

observations for the ith object in the t th frame. Ot = (o1
t , o

2
t , . . . , o

Mt
t ) denotes the collected ob-

servations for all the Mt objects in the t th frame. O1:t = {O1,O2, . . . ,Ot } denotes all the collected
sequential observations of all the objects from the first frame to the t th frame.

The spatial stream network is not able to extract motion features and compute trajectories due
to single-frame inputs. To leverage this useful information, we present our temporal stream net-
work, a ConvNet model that implements a tracking-by-detection MOT algorithm [Bewley et al.
2016; Wojke et al. 2017] with a data association metric that combines deep appearance features.
The inputs are identical to the spatial stream network using the original video. Detected object
candidates (only vehicle classes) are used for tracking, state estimation, and frame-by-frame data
association using SORT [Bewley et al. 2016] and DeepSORT [Wojke et al. 2017]—the real-time
MOT method. MOT models the state of each object and describes the motion of objects across
video frames. The tracking information allows us to stack trajectories of moving objects across
several consecutive frames, which are useful cues for near-accident detection.

Estimation Model. For each target, its state is modeled as

x = [u,v, s, r , u̇, v̇, ṡ]T , (4)

where u,v denotes the 2D pixel location of the target’s center, s denotes the scale of the target’s
bounding box, and r is the aspect ratio (usually considered to be constant). The target’s state is
updated when a new detected bounding box is associated to it, by solving the velocity via a Kalman
filter [Kalman 1960]. The target’s state is simple predicted (without correction via the Kalman filter)
if no bounding box is associated to it.

Data Association. To assign all new detection boxes to existing targets, we predict each target’s
new location (one predicted box) in the current frame and compare the IoU distance between
new detection boxes and all predicted boxes (the detection-to-target overlaps), forming as the
assignment cost matrix. The matrix is further used in the Hungarian algorithm [Kuhn 1955] to
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solve the assignment problem. One assignment is rejected if the detection-to-target overlap is less
than a threshold (the minimum IoU IoUmin ). The IoU distances of the bounding boxes are utilized
to handle occlusion caused by passing targets in short term.

Creation and Deletion of Track Identities. When new objects enter or old objects vanish
in video frames, we need to add or remove certain tracks (or objects) accordingly to main unique
identities. We treat any detection fails to associate to existing targets as one potential untracked
object. This target further undergoes a probationary period to accumulate enough evidence, by
associating the target with detection. This strategy can prevent tracking of false positives. The
track object is removed from the tracking list if they failed to be detected for TLost frames, which
enables to maintain an relatively unbounded number of trackers and reduces localization errors
accumulated over long duration.

Track Handling and State Estimation. This part is mostly identical to SORT [Bewley et al.

2016]. The tracking scenario is represented as an eight-dimensional state space (u,v,γ ,h, ẋ , ẏ, γ̇ , ḣ).
(u,v ) represents the bounding box center location. γ is the aspect ratio and h is the height. The
rest are its velocities relative to other bounding boxes. This representation is used to describe

the constant velocity motion (ẋ , ẏ, γ̇ , ḣ) and linear observation model (u,v,γ ,h) in Kalman filter-
ing [Kalman 1960].

Data Association. To solve the frame-by-frame association problem, SORT uses the Hungarian
algorithm [Kuhn 1955] where both motion and appearance information are considered.

To handle motion information, the (squared) Mahalanobis distance is utilized to measure the
distance between newly arrived measurements and Kalman states:

d (1) (i, j ) = (d j −yi )T (S i )−1 (d j −yi ), (5)

where yi and d j denote the ith track distribution and the jth bounding box detection, respec-
tively. The smallest cosine distance between the ith track and jth detection is considered to handle
appearance information:

d (2) (i, j ) = min
{
1 − r j

Tr (i )
k

���r (i )
k
∈ Ri

}
. (6)

Both motion and appearance are combined with a linear combination where the influence of each
is controlled by a hyperparameter λ:

ci, j = λd (1) (i, j ) + (1 − λ)d (2) (i, j ). (7)

Matching Cascade. Previous methods try to solve measurement-to-track associations glob-
ally, while SORT adopts a matching cascade, introduced in Wojke et al. [2017] to solve a series of
subproblems. In some situations, when an object is occluded for a longer period of time, the sub-
sequent Kalman filter [Kalman 1960] predictions would increase the uncertainty associated with
the object location. As a consequence, the probability mass will spread out in the state space, and
the observation likelihood will be less peaked. The measurement-to-track distance should be in-
creased by considering the spread of probability mass. Therefore, objects seen more frequently are
given more priority in the matching cascade strategy to encode the notion of probability spread
in the association likelihood.

3.3 Metric Learning for Vehicle Re-identification

Metric learning and various hand-crafted features are widely used in person re-identification
problems. We apply a cosine metric learning method to train a neural network for vehicle re-
identification and use it to make our temporal stream more robust in terms of tracking perfor-
mance. Metric learning aims to solve the clustering problem by constructing an embedding in
which the metric distance corresponding to the same identity is likely to be closer than features
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Fig. 5. Vehicle samples selected from the VeRi dataset [Liu et al. 2016b]. All images are the same size, and we

resize to 64 × 128 for training. Left: Diversity of vehicle colors and types; right: variation of the viewpoints,

illuminations, resolutions, and occlusions for the vehicles.

from different identities. The cosine metric measures the degree of similarity by calculating the
cosine distance between two objects. We observe that in traffic video, especially in crowded traffic
scenes or scenes with heavy occlusion, our tracking algorithm produces switched road user iden-
tities. To generate accurate and consistent track data, we introduce a deep cosine metric learning
method to learn the cosine distance between objects. The cosine distance involves appearance in-
formation that provides useful cues for recovering identities in crowded scenes or after long-term
occlusion when motion information is less discriminative. Through this deep network, the fea-
ture expression vector obtained by any object is placed in the cluster corresponding to the nearest
neighbor. We trained the network on a vehicle re-identification dataset (VeRi dataset) [Liu et al.
2016b] (Figure 5) and integrated it as the second metric measure for the assignment problem of
our temporal stream.

Our idea is to use a unified end-to-end framework that automatically learns the best metrics.
Compared to the standard distance metric (L1, L2), the learned metric can obtain more discrimina-
tive features for Re-ID and is more robust to cross-view vehicle images. We adopt the architecture
of [Wojke and Bewley 2018] and train a deep network with a cosine softmax classifier, which
can generate feature vectors of fixed length (128) for the input images (vehicles). The cosine met-
ric finds the nearest cluster exemplar and matches the vehicle on (sometimes far-flung) different
video frames to solve tracking problems in the presence of heavy occlusion.

Given a re-identification datasetD = {(x i ,yi )}Ni=1 of N training images x i ∈ RD and associated
class labels yi ∈ {1, . . . ,C}, deep metric learning is to find a parametrized encoder function. The
deep metric neural network is r = fΘ(x ) with parameters Θ, which projects the input images x ∈
RD into a feature representation r ∈ Rd that follows a predefined notion of cosine similarity.

The cosine softmax classifier can be adapted from a standard softmax classifier and is expressed
as

p (y = k |r ) =
exp

(
κ · w̃T

kr
)

∑C
n=1 exp

(
κ · w̃T

nr
) , (8)

whereκ is a free-scale parameter. To generate compact clusters in the feature representation space,
the first modification is to apply the �2 normalization to the final layer of the encoder network
so that the representation has unit length ‖ fΘ(x )‖2 = 1,∀x ∈ RD . The second modification is to
normalize the weights to unit length as well, i.e., w̃k = wk/‖wk ‖2,∀k = 1, . . . ,C . The training of
the encoder network can be carried out using the cross-entropy loss, as usual. In particular, the au-
thors in Salimans and Kingma [2016] have proposed a way to accelerate convergence of stochastic
gradient descent by decoupling the length of the weight vector κ from its direction.
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3.4 Using Image Segmentation to Determine Object Gaps

To present our method in a fully end-to-end fashion, we apply a learning-based dynamic distance
threshold rather than a manually defined one to determine near-accident detection. Near-accident
is detected if the distance between two objects in image space is below the threshold. We intro-
duce a threshold learning method by estimating the gap between objects using object segmen-
tation. We present a supervised learning method, using gap distance between road users in the
temporal stream to determine a near-accident while continuing to update the threshold for more
convergence and precision. The straightforward way is to compute the gap using bounding boxes
from detections, but the bounding boxes are not accurate in terms of representing boundaries of
objects, particularly when rotation is involved. We need a more compact representation and there-
fore combine detections with superpixel segmentation on the video frame to get an object mask
for gap distance estimation.

The main steps of our gap estimation method can be summarized as follows:

(1) Extract object detections (bounding boxes) from the spatial stream network.
(2) Tessellate the video frame into homogeneous superpixels.
(3) Compute the Intersection over Union (IoU) metric of bounding boxes and superpixels at

frame level.
(4) Generate object mask per detections (using the IoU metric), and compute the gap between

objects using the mask and bounding boxes.
(5) Update the gap threshold while processing the video.

In our gap estimation method, the Intersection over Union (IoU) metric of boxes and superpixels
is given by

IoU =
area(B1:t ) ∩ area(S1:t )

area(B1:t ) ∪ area(S1:t )
, (9)

where bi
t denotes the detection for the ith object in the t th frame, Bt = (b1

t , b
2
t , . . . , b

Mt
t ) denotes the

collected detection observations for all the Mt objects in the t th frame, and B1:t = {B1,B2, . . . ,Bt }
denotes all the collected sequential detection observations of all the objects from the first frame to

the t th frame. Similarly, si
t denotes the ith superpixel in the t th frame. St = (s1

t , s
2
t , . . . , s

Nt
t ) denotes

all the Nt superpixels in the t th frame. S1:t = {S1,B2, . . . , St } denotes all the collected sequential
superpixels from the first frame to the t th frame.

In 2D superpixel segmentation, the popular SLIC (simple linear iterative clustering) [Achanta
et al. 2012] and ultrametric contour map (UCM) [Arbelaez et al. 2010] methods have established
themselves as the state of the art. Recently, we have seen deep neural networks [Jampani et al.
2018] and generative adversarial networks (GANs) [Yan et al. 2018] integrated with these meth-
ods. In our architecture, we adopt the GPU-based SLIC (gSLICr) [Ren et al. 2015] approach to
produce the tessellation of the image data to achieve an excellent frame rate (400 fps). SLIC is
widely applicable to many computer vision applications, such as segmentation, classification, and
object recognition, often achieving state-of-the-art performance. The contours forming the homo-
geneous superpixels are shown in Figure 6. In Figure 7, we show an illustration for the defini-
tion of intersection and union, and present some object masks we generated from detections and
superpixels.

3.5 Near-accident Detection

The most typical motion cue is optical flow, which is widely utilized in video processing tasks
such as video segmentation [Huang et al. 2018]. A trajectory is defined as a data sequence
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Fig. 6. 2D image superpixel segmentation using SLIC [Achanta et al. 2012]. Top: original image; bottom-left:

SLIC segmentation for drone video (1,600 superpixels); bottom-middle: SLIC segmentation for fisheye video

(1,600 superpixels); bottom-right: SLIC segmentation for simulation video (1,600 superpixels).

Fig. 7. (a) Illustration depicting the definitions of intersection and union. (b) Top: original video frames;

bottom: object detections and object masks produced by our method.

containing several concatenated state vectors from tracking and an indexed sequence of positions
and velocities over a given time window.

When utilizing the multiple-object-tracking algorithm, we compute the center of each object
in several consecutive frames to form stacking trajectories as our motion representation. These
stacking trajectories can provide accumulated information through image frames, including the
number of objects, their motion history, and timing of their interactions, such as near-accidents.
We stack the trajectories of all objects for L consecutive frames, as illustrated in Figure 8, where

pi
t denotes the center position of the ith object in the t th frame. Pt = (p1

t , p
2
t , . . . , p

Mt
t ) denotes

trajectories of all the Mt objects in the t th frame. P1:t = {P1, P2, . . . , Pt } denotes the sequence of
trajectories of all the objects from the first frame to the t th frame. For L consecutive frames, the
stacking trajectories are defined by the sequence

P1:L = {P1, P2, . . . , PL }, PL+1:2L = {PL+1, PL+2, . . . , P2L }, . . . (10)

where Ot = (o1
t , o

2
t , . . . , o

Mt
t ) denotes the collected observations for all the Mt objects in the t th

frame, and O1:t = {O1,O2, . . . ,Ot } denotes all the collected sequential observations of all the
objects from the first frame to the t th frame. We use a simple detection algorithm that finds
collisions between simplified forms of the objects, using the center of bounding boxes.
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Fig. 8. The stacking trajectories extracted from multiple-object tracking of the temporal stream. Consecutive

frames and the corresponding displacement vectors are shown with the same color.

ALGORITHM 1: Collision Detection

Input: current frame tcurr ent , collision state list Collision
Output: collision state list Collision
for tL ← tpr evious to tcurr ent in steps of L frames do

for each pair of object trajectory (p1
:tL
, p2

:tL
) do

if (p1
:tL

intersects p2
:tL

as of tL) then

add o1, o2 to Collision
end

end

if (Collisions) then
tpr evious ← tL ; return TRUE

end

end

tpr evious ← td ; return FALSE

Our algorithm is depicted in Algorithm 1. Once a collision is detected, we set the region covering
collision-associated objects to be a new bounding box with class probability of near-accident of
1. By averaging the near-accident probabilities from the spatial stream network and the temporal
stream network, we are able to obtain a final confidence measure of near-accident detection.

4 EXPERIMENTS

Here, we present qualitative and quantitative evaluation in terms of the performance of object
detection, MOT, and near-accident detection, and a comparison between other methods and our
framework.

4.1 A Traffic Near-accident Dataset (TNAD)

To our best knowledge, we know of no comprehensive traffic near-accident dataset containing
top-down-view videos such as drone or UAV videos or omnidirectional camera videos for traffic
analysis. Therefore, we have built our own dataset, the traffic near-accident dataset (TNAD), which
is depicted in Figure 9. Intersections tend to experience more near-accidents and more potentially
severe ones due to factors such as angles and turning collisions. The traffic near-accident dataset
contains three types of video data from traffic intersections that could be utilized for not only
for near-accident detection but also for other traffic surveillance tasks, including turn movement
counting.
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Fig. 9. Samples of traffic near-accident: Our data consists of a large number of diverse intersection surveil-

lance videos and different near-accidents (cars and motorbikes). Yellow rectangles and lines represent the

same object in video from multiple cameras. White circles represent the near-accident regions.

The first type is drone video that monitors an intersection with a top-down view. The second
type of intersection video is real traffic video acquired by omnidirectional fisheye cameras that
monitor small or large intersections. They are widely used in transportation surveillance. These
video data can be directly used as input for our vision-based intelligent framework. Furthermore,
pre-processing and fisheye correction can be applied for better surveillance performance. The third
type of video is video game-engine simulations that train on near-accident samples as they are
accumulated. The dataset consists of 106 videos with total duration over 75 minutes, with frame
rates between 20 and 50 fps. The drone video and fisheye surveillance videos were recorded in
Gainesville, Florida, at several different intersections. Our videos are more challenging than videos
in other datasets for the following reasons:

• Diverse intersection scene and camera perspectives: The intersections in drone video, fish-
eye surveillance video, and simulation video are very diverse. Additionally, the fisheye
surveillance video has distortion, and a fusion technique is needed for multi-camera fisheye
videos.

• Crowded intersection and small object: The number of moving cars and motorbikes per
frame is large, and these objects are relatively smaller than normal traffic video.

• Diverse accidents: Accidents involving cars and motorbikes are all included.
• Diverse lighting conditions: Lighting conditions such as daylight and sunset are included.

We manually annotated the spatial location and temporal location of near-accidents and the still
or moving objects and their vehicle class in each video. Thirty-two videos with sparsely sampled
frames (only 20% of the frames in these 32 videos are used for supervision) were used, but only for
training the object detector. The remaining 74 videos were used for testing.

4.2 Fisheye and Multi-camera Video

We have large amounts of fisheye traffic videos from across the city. The fisheye surveillance videos
were recorded from real traffic data in Gainesville. We collected 29 single-camera fisheye surveil-
lance videos and 19 multi-camera fisheye surveillance videos monitoring a large intersection. We
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Fig. 10. Object-detection result samples of our spatial network on TNAD dataset. Top: samples for drone

video; middle: samples for fisheye video; bottom: samples for simulation video.

conducted two experiments, one directly using these raw videos as input for our system and an-
other in which we first preprocessed the video to correct for fisheye distortion and then fed them
into our system. As the original surveillance video has many visual distortions, especially near the
circular boundaries of the cameras, our system performed better on these after preprocessing. In
this article, we do not discuss issues related to fisheye unwarping, leaving these for future work.

For large intersections, two fisheye cameras placed opposite to each other are used for surveil-
lance, and each of them shows almost half the roads and real traffic. We apply a simple object-level

stitching method by assigning the object identity for the same objects across the left and right
video using similar features and appearing and vanishing positions.

4.3 Model Training

We adopt Darknet-19 [Wojke et al. 2017] for classification and detection with DeepSORT, using
a data association metric that combines deep appearance features. We implement our framework
on Tensorflow and perform multi-scale training and testing with a single GPU (Nvidia Titan X
Pascal). Training a single spatial convolutional network takes one day on our system with one
Nvidia Titan X Pascal card. For classification and detection training, we use the same training
strategy as YOLO9000 [Wojke et al. 2017]. We train the network on our dataset with four classes
of vehicle (motorbike, bus, car, and truck) for 160 epochs, using stochastic gradient descent with
a starting learning rate of 0.1 for classification and 10−3 for detection (dividing it by 10 at 60 and
90 epochs.), weight decay of 0.0005, and momentum of 0.9 using the Darknet neural network
framework [Wojke et al. 2017].

4.4 Qualitative Results

We present some example experimental results of object detection, MOT, and near-accident de-
tection on our traffic near-accident dataset (TNAD) for drone videos, fisheye videos, and simu-
lation videos. For object detection (Figure 10), we present some detection results of our spatial
network with multi-scale training based on YOLOv2 [Redmon and Farhadi 2017]. These visual
results demonstrate that the spatial stream is able to detect and classify road users with good
accuracy even if the original fisheye videos have large distortions and occlusions. Different from
drone and simulation video, we have added pedestrian detection on real traffic fisheye video. From
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Fig. 11. Tracking and trajectory comparison with Urban Tracker [Jodoin et al. 2014] and TrafficIntelli-

gence [Jackson et al. 2013] on drone videos of TNAD dataset. Left: tracking results of Urban Tracker [Jodoin

et al. 2014] (BSG with Multilayer and Lobster Model; middle: tracking results of TrafficIntelligence [Jackson

et al. 2013]; right: tracking results of our temporal stream network.

Figure 10, we see that our detector has good performance on pedestrian detection on daylight and
dawn fisheye videos. The vehicle detection capabilities are good on top-down view surveillance
videos, even for small objects. In addition, we can achieve a fast detection rate at 20 to 30 frames
per second. Overall, this demonstrates the effectiveness of our spatial neural network.

For MOT (Figure 11), we present comparison of our temporal network based on DeepSORT
[Wojke et al. 2017] with Urban Tracker [Jodoin et al. 2014] and TrafficIntelligence [Jackson et al.
2013]. We also present more visual MOT comparisons of our baseline temporal stream (DeepSort)
with cosine metric learning-based temporal stream (Figure 12). For the tracking part, we use a
tracking-by-detection paradigm, thus our methods can handle still objects and measure their state.
This is especially useful, since Urban Tracker [Jodoin et al. 2014] and TrafficIntelligence [Jackson
et al. 2013] can only track moving objects. However, Urban Tracker [Jodoin et al. 2014] and
TrafficIntelligence [Jackson et al. 2013] can compute dense trajectories of moving objects with
good accuracy, but they have slower tracking speed—around one frame per second. For accident
detection, our two-stream convolutional networks are able to do spatial localization and temporal
localization for diverse accident regions involving cars and motorbikes. The three subtasks (object
detection, MOT, and near-accident detection) can always achieve real-time performance at a high
frame rate—40 to 50 frames per second—and this depends on the frame resolution (e.g., 50 fps for
960×480 image frames).

In Figure 12, we demonstrate the effectiveness of applying cosine metric learning with the tem-
poral stream for solving ID switching (and for the case where new object IDs emerge). For example,
the first row shows that the ID of the green card (inside the red circle) got changed from 32 to 41.
The third row shows that the IDs of the red car and a pedestrian (inside the red circle) were both
changed (from 30 to 43 and from 38 to 44, respectively). The second and fourth row demonstrate
that with cosine metric learning, the IDs of tracks are kept consistent. In Figure 13, we show an
example of more accuracy and compact road user mask generated by superpixel segmentation and
detections for the learning-based gap estimation. With a segmentation mask, we can estimate the
gap distance between road users in a more accurate way than directly using object detections.
Segmentation would be more useful for fisheye videos where the distortion is large and occlu-
sion is heavier. For near-accident detection (Figure 14), we present final near-accident detection
results along with tracking and trajectories using our two-stream convolutional networks method.
Overall, the qualitative results demonstrate the effectiveness of our spatial and temporal networks.
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Fig. 12. Multiple-object-tracking comparisons of our baseline temporal stream (SORT) with cosine metric

learning-based temporal stream. Row 1: results from SORT (ID switching issue); row 2: results from cosine

metric learning + SORT (ID consistency); row 3: results from SORT (ID switching issue); row 4: results from

cosine metric learning + SORT (ID consistency).

Fig. 13. Object segmentation using detections and superpixels. Top-left: original image; top-middle: super-

pixels generated by SLIC [Achanta et al. 2012]; top-right: final object mask; bottom-left: object detections;

bottom-middle: colored superpixels generated by SLIC [Achanta et al. 2012]; bottom right: final binary object

mask.

4.5 Quantitative Results

4.5.1 Speed Performance. We present timing results for the tested methods in Table 1. All ex-
periments have been performed on a single GPU (NVIDIA TITAN V). The GPU-based SLIC seg-
mentation [Achanta et al. 2012] has excellent speed and runs from 110 to 400 fps on videos of
different resolutions. The overall two-stream CNNs (object detection, MOT, and near-accident
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Fig. 14. Sample results of tracking, trajectory, and near-accident detection of our two-stream convolutional

networks on simulation videos of TNAD dataset. Left: tracking results from the temporal stream; middle:

trajectory results from the temporal stream; right: final near-accident detection results from the two-stream

convolutional networks.

Table 1. Quantitative Evaluation of Timing Results for the Tested Methods

Methods GPU Drone Simulation Fisheye
1,920 × 960 2,560 × 1,280 3,360 × 1,680 1,280 × 960

SLIC segmentation NVIDIA TITAN V 300 fps 178 fps 110 fps 400 fps
Two-Stream CNNs NVIDIA TITAN V 43 fps 38 fps 33 fps 50 fps

detection) can achieve real-time performance at a high frame rate, 33–50 fps, depending on the
frame resolution.

4.5.2 Improved Multiple-object Tracking with Cosine Metric Learning. We present some
quantitative results for gap estimation and cosine metric learning in Figure 15. The results for
cosine metric learning have been established after training the network for a fixed number of
steps (100,000 iterations). The batch size was set to 120 images and the learning rate was 0.001.
All configurations after training have fully converged as depicted in Figure 15.

Triplet Loss. The triplet loss for cosine metric learning network [Weinberger and Saul 2009] is
defined by

Lt (ra ,rp ,rn ) =
{
‖ra − rn ‖2−‖ra − rp ‖2+m

}
+
, (11)

where ra , rp , and rn are three samples in which a positive pair, ya = yp , and a negative pair,
ya � yn are included. With a pre-defined margin m ∈ R, the triplet loss demands the distance
between the positive and negative is larger than it. In this experiment, we introduce a soft-margin-
based triplet loss where we replace the hinge of the original triplet loss [Hermans et al. 2017] by
a soft plus function, {x +m}+ = log(1 + exp(x )), to resolve non-smoothness [Rippel et al. 2015]
issues. Further, to avoid potential issues in the sampling strategy, we directly generate the triplets
on GPU as proposed by [Hermans et al. 2017].
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Fig. 15. Gap estimation and cosine metric learning. (a) Evolution of gap threshold for three types of videos;

(b) classification accuracy for training VeRi dataset; (c) evolution of total loss for training; (d) evolution of

magnet loss for training; (e) evolution of triplet loss for training; (f) evolution of weight loss for training.

Magnet Loss. The magnet loss is defined as a likelihood ratio measure that demands separation
of all samples away from the means of other classes. Instead of using a multimodal form in its
original proposition [Rippel et al. 2015], we use an unimodal, adapted version of this loss to fit the
vehicle re-identification problem:

Lm (y,r ) =
⎧⎪⎪⎨⎪⎪⎩
− log

e
− 1

2σ̂ 2 ‖r −μ̂y ‖
2

2
−m

∑
k ∈C̄ (y ) e

− 1
2σ̂ 2 ‖r −μ̂k ‖

2
2

⎫⎪⎪⎬⎪⎪⎭+
, (12)

where C̄ (y) = {1, . . . ,C} \ {y}, and the m is the pre-defined margin parameter, μ̂y is used to

represent the sample mean of class y, and σ̂ 2 denotes the variance of each sample separated away
from their class mean. They are all established for each batch individually on GPU.

4.5.3 Object Segmentation. For learning the gap threshold with superpixel segmentation and
detections, the plot (top left) demonstrates the converging evolution of gap distance for three
types of video. The initial gap threshold is set to be 50 pixels, the average gap thresholds from
experiments are about 47 pixels, 45 pixels, and 42 pixels for simulation video, fisheye video, and
drone video, respectively.

ACM Transactions on Spatial Algorithms and Systems, Vol. 6, No. 2, Article 10. Publication date: January 2020.



10:20 X. Huang et al.

Table 2. Quantitative Evaluation of All Tasks for Our Two-stream Method

Task or Methods Data Precision Recall F1-score

Object Detection Simulation 0.92670 0.95255 0.93945
Fisheye 0.93871 0.87978 0.90829

Multiple-object Tracking Simulation 0.89788 0.86617 0.88174
Fisheye 0.91239 0.84900 0.87956

Multiple-object Tracking (cosine metric) Simulation 0.91913 0.90310 0.91105
Fisheye 0.92663 0.87725 0.90127

SLIC Segmentation Mask Simulation 0.93089 0.81321 0.86808
Near-Accident Detection (Spatial Stream) Simulation 0.90395 0.86022 0.88154

Near-Accident Detection (Temporal Stream) Simulation 0.83495 0.92473 0.84108
Near-Accident Detection (Two-Stream) Simulation 0.92105 0.94086 0.93085

The evaluation method we use for instance segmentation is quite similar to that of object de-
tection, with the exception that we now calculate IoU of masks instead of bounding boxes.

Calculating mask precision, recall, and F1 score. To evaluate our collection of predicted masks, we
will compare each of our predicted masks with each of the available target masks for a given input.

• A true positive is observed when a prediction-target mask pair has an IoU score that exceeds
some predefined threshold (we set it to 0.7).

• A false positive indicates a predicted object mask had no associated ground-truth object
mask.

• A false negative indicates a ground-truth object mask had no associated predicted object
mask.

4.5.4 Precision, Recall, and F1 Score. Since our framework has three tasks and our dataset is
quite different from other object-detection datasets, tracking datasets, and near-accident datasets
such as dashcam accident dataset [Chan et al. 2016], it is difficult to compare the individual quanti-
tative performance for all three tasks with other methods. One of our motivations was to propose
a vision-based solution for ITS; therefore, we focus more on near-accident detection and present
quantitative analysis of our two-stream convolutional networks. In Table 2, we present quantita-
tive evaluations of three sub-tasks: object detection; multiple-object tracking (with and without
cosine metric learning); SLIC segmentation (mask vs. bounding box); and near-accident detec-
tion (spatial stream only, temporal stream only, and two-stream model). For the fisheye video, we
present evaluations regrading object detection and multiple-object tracking. The simulation videos
are for the purposes of training and testing with more near-accident samples, and we have 57 sim-
ulation videos totaling over 51,123 video frames. We sparsely sample only 1,087 frames from them
for training processing. We present the analysis of near-accident detection for 30 testing videos
(18 had positive near-accident; 12 had negative near-accident).

Calculating Near-accident Detection Precision, Recall, and F1 Score. To evaluate our prediction of
near-accidents, we’ll compare each of our predicted detection with each ground truth for a given
input.

• A true positive is observed when a prediction-target detection pair has an IoU score that
exceeds some predefined threshold (we set it to 0.7).

• A false positive indicates a predicted near-accident had no associated ground-truth near-
accident.

• A false negative indicates a ground-truth near-accident had no associated predicted
detections.
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5 RELATED WORK

5.1 Object Detection

Object detection has achieved striking improvements in recent years, as demonstrated in popular
object-detection competitions such as PASCAL VOC detection challenge [Everingham et al. 2015,
2010], ILSVRC large-scale detection challenge [Russakovsky et al. 2015], and MS COCO large-
scale detection challenge [Lin et al. 2014]. Object detection aims at outputting instances of se-
mantic objects with a certain class label such as “humans” or “car.” It has wide applications in
many vision tasks, including pedestrian detection, face detection, facial recognition, video object
co-segmentation, image retrieval, object tracking, and video surveillance. Different from image
classification, object detection does not have the goal of classifying the whole image. Position and
category information of the objects are both needed, which means we have to segment instances of
objects from backgrounds and label them with position and class. The inputs are images or video
frames while the outputs are lists where each item represents the position and category informa-
tion of candidate objects. In general, object detection seeks to extract discriminative features to
help in distinguishing the classes.

Methods for object detection generally fall into three categories: (1) traditional machine
learning-based approaches; (2) region proposal-based deep-learning approaches; and (3) end-to-
end deep-learning approaches. For traditional machine learning-based approaches, one of the im-
portant steps is to design features. Many methods have been proposed to first design features [Dalal
and Triggs 2005; Lowe 1999; Viola and Jones 2001, 2004] and apply techniques such as support
vector machine (SVM) [Hearst et al. 1998] to do the classification. The main steps of traditional
machine learning-based approaches are:

• Region selection: using sliding windows at different sizes to select candidate regions from
whole images or video frames

• Feature extraction: extract visual features from candidate regions using techniques such
as Harr feature for face detection, HOG feature for pedestrian detection, or general object
detection;

• Classifier: train and test classifier using techniques such as SVM.

Traditional machine learning-based approaches have their limitations. The scheme using sliding
windows to select RoIs (Regions of Interest) increases computation time with many window re-
dundancies. However, these hand-crafted features are not robust, due to the diversity of objects,
deformation, lighting condition, background, and so on, while the feature selection has a huge
effect on classification performance of candidate regions.

Recent advances in deep learning, especially in computer vision, have shown that CNNs have
a strong capability of representing objects and help to boost the performance of numerous vision
tasks, compared to traditional heuristic features [Dalal and Triggs 2005]. For deep-learning-based
approaches, there are CNNs to extract features of region proposals or end-to-end object detection
without specifically defining features of a certain class. Well-performing deep-learning-based ap-
proaches of object detection include R-CNN [Girshick et al. 2014], Fast R-CNN [Girshick 2015],
Faster R-CNN [Ren et al. 2015]), SSD [Liu et al. 2016a], and YOLO [Redmon et al. 2016].

Usually, we adopt region proposal methods (Category 2) to produce multiple-object proposals,
and then apply a robust classifier to further refine the generated proposals; this is referred to as
a two-stage method. The first example of a region-proposal-based deep-learning approach was R-
CNN [Girshick et al. 2014]. The main pipeline of R-CNN [Girshick et al. 2014] is (1) gathering input
images, (2) generating a number of region proposals (e.g., 2,000), (3) extracting CNN features, and
(4) classifying regions using SVM. It usually adopts selective search (SS), one of the state-of-art
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object proposal methods [Uijlings et al. 2013], which is applied in numerous detection tasks on
several fascinating systems [Girshick 2015; Girshick et al. 2014; Ren et al. 2015] to extract these
regions from an image and designate region proposals. Instead of trying to classify all the possible
proposals, R-CNN selects a fixed set of proposals (e.g., 2,000) to work with. The selective search
algorithm used to generate these region proposals includes (1) generate initial sub-segmentation,
generate many candidate regions, (2) use a greedy algorithm to recursively combine similar regions
into larger ones, and (3) use the generated regions to produce the final candidate region proposals.

These candidate region proposals are warped into a square and fed into a CNN, which acts as the
feature extractor. The resulting dense layer consists of the extracted features, which are fed into an
SVM [Hearst et al. 1998] to classify the presence of the object within that candidate region proposal.
The main problem of R-CNN [Girshick et al. 2014] is that it is limited by the inference speed, due to
a huge amount of time spent extracting features of each individual region proposal. And it cannot
be applied in applications requiring real-time performance (such as online video analysis). Later,
Fast R-CNN [Girshick 2015] was proposed to improve the speed by avoiding feeding raw region
proposals every time. Instead, the convolution operation is done only once per image, and RoIs
over the feature map are generated. Faster-R-CNN [Ren et al. 2015] further exploits the shared
convolutional features to extract region proposals used by the detector. Sharing convolutional
features leads to substantially faster speed for the object-detection system.

The third type is the end-to-end deep-learning approach, which does not need region pro-
posals (also referred to as one-stage method). The pioneering works are SSD [Liu et al. 2016a]
and YOLO [Redmon et al. 2016]. An SSD detector [Liu et al. 2016a] works by adding a sequence
of feature maps of progressively decreasing spatial resolution to replace the two stage’s second
classification stage, allowing a fast computation and multi-scale detection on one single input.
YOLO detector is an object-detection algorithm much different from the region-based algorithms.
In YOLO [Redmon et al. 2016], object detection is regarded as an end-to-end regression problem
and uses a single convolutional network to predict the bounding boxes and the corresponding
class probabilities. It first takes the image and splits it into a S × S grid; within each cell of the
grid, we take m bounding boxes. For each bounding box with multiple scales, the convolutional
neural network outputs a class probability and offset values for the bounding box. Then, it selects
bounding boxes that have the class probability above a threshold value and uses them to locate the
object within the image. YOLO [Redmon et al. 2016] is orders of magnitude faster (45 frames per
second) than other object-detection approaches, but the limitation is that it struggles with small
objects within the image.

5.2 Multiple-object Tracking

Video object tracking attempts to locate objects in successive video frames, and it has various
important applications in robotics, video surveillance, and video scene understanding. Based on
the number of moving objects that we wish to track, there is the single-object tracking (SOT)
problem and the multiple-object-tracking (MOT) problem. In addition to detecting objects in the
video frame, the MOT solution requires robust association of multiple detected objects between
frames to get consistent tracking, and this data association part remains very challenging. In MOT
tasks, for each frame in a video, we aim at localizing and identifying all objects of interest, so
that the identities are consistent throughout the video. Typically, the main challenges are speed,
data association, appearance change, occlusions, disappear and re-entry of objects, and so on. In
practice, it is desirable that the tracking be performed in real time, running as fast as the frame-rate
of the video. Also, it is challenging to provide consistent labeling of the detected objects in complex
scenarios such as when objects change appearance, disappear, or involve severe occlusions.
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MOT approaches can be categorized by their different models. A distinction based on initial-

ization method is that of detection-based tracking (DBT) versus detection-free tracking (DFT). In
DBT, object detection is performed on video frames before tracking. DBT methods involve two
distinct tasks: detection of objects and tracking of objects. In this article, we focus on DBT (also
referred to as tracking-by-detection for MOT). The reason is that DBT methods are widely used
due to their excellent performance with deep-learning-based object detectors, while DFT meth-
ods require manual annotations of the targets, which could yield poor results if a new, previously
unseen object appears. Another important distinction based on processing mode is that of online
versus offline models. An online model receives video input on a frame-by-frame basis and gives
output per frame. This means that only information from past frames and the current frame can
be used. Offline models have access to the entire video, which means that information from both
past and future frames can be used.

Tracking-by-detection methods are usually utilized in online tracking models. A simple and
classic pipeline is (1) detect objects of interest, (2) predict new locations of objects from previous
frames, and (3) associate objects between frames by similarity of detected and predicted locations.
Well-performed CNN architectures, such as Faster R-CNN [Ren et al. 2015], YOLO [Redmon et al.
2016], and SSD [Liu et al. 2016a], can be used for object detection. For prediction of new locations
of tracked objects, approaches model the velocity of objects and predict their positions in future
frames using optical flow, recurrent neural networks, or Kalman filters. The association task is to
determine whether a detection is associated with a previously detected object or a new object.

One popular dataset for MOT is MOTChallenge [Leal-Taixé et al. 2015]. In MOTChallenge [Leal-
Taixé et al. 2015], detections for each frame are provided in the dataset, and the tracking capability
is measured, as opposed to the detection quality. Video sequences are labeled with bounding boxes
for each pedestrian, collected from multiple sources. This motivates the use of the tracking-by-
detection paradigm. MDPs [Xiang et al. 2015] is a tracking-by-detection method that achieved
state-of-the-art performance on the MOTChallenge [Leal-Taixé et al. 2015] Benchmark when it was
proposed. Major contributions can be solving MOT by learning a MDP policy taking advantages
of both offline-learning and online-learning for data association. SORT [Bewley et al. 2016] is a
simple, real-time MOT method, where it only applies classical tracking methods to achieve state-of-
the-art performance. It is the most widely used real-time online MOT method and is very efficient
for real-time application in practice. On the MOTChallenge [Leal-Taixé et al. 2015], SORT [Bewley
et al. 2016] achieves better performance than MHT [Kim et al. 2015] on standard detections by
combining with a well-performed person detector. DeepSort [Wojke et al. 2017] is an extension of
SORT [Bewley et al. 2016] that further improves the performance.

5.3 Near-accident Detection

In addition to vehicle detection and vehicle tracking, interaction and behavior analysis of vehicles
play an important role in traffic modeling [Hermes et al. 2009; Sivaraman et al. 2011; Wiest et al.
2012]. Near-accident detection is one of the highest levels of semantic interpretation in charac-
terizing the interactions of vehicles on the road. The basic task of near-accident detection is to
locate near-accident regions and report them over video frames. To detect near-accidents in traffic
scenes, robust vehicle detection and vehicle tracking are prerequisites.

Most of the near-accident detection approaches are based on motion cues and trajectories. The
most typical motion cues are optical flow and trajectory. Optical flow is widely utilized in video
processing tasks such as video segmentation [Huang et al. 2018]. In recent years, researchers have
worked on long-term vehicle motion prediction. Based on tracking algorithms such as Kalman
filtering, we can estimate future vehicle motion state. Vehicle motion can be estimated for a longer
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duration with trajectory modeling approaches [Hermes et al. 2009; Sivaraman et al. 2011; Wiest
et al. 2012]. Typical highway trajectories are modeled using clustering and classified via hidden
Markov modeling in Sivaraman et al. [2011]. In Hermes et al. [2009], it uses the rotation-invariant-
based longest common subsequence to measure the similarity between trajectories. Wiest et al.
[2012] classifies and predicts long-term vehicles trajectories by applying variational Gaussian mix-
ture modeling.

Approaches such as decision trees, Kalman filters, or time-series analysis have been applied in
traffic accident or near-accident detection [Bhonsle et al. 2000; Jiansheng et al. 2014; Shuming et al.
2002; Srinivasan et al. 2001, 2003; Xu et al. 1998]. Neural network is utilized in Ohe et al. [1995]
to detect traffic incidents. In Ikeda et al. [1999], the authors propose a system to classify different
types of incidents for automatic incident detection. Kimachi et al. [1994] investigated the abnormal
behavior of vehicles related to accidents, based on the concepts of fuzzy theory, where accident
occurrence is related to the behavioral abnormality of multiple continual images. Zeng et al. [2008]
integrates multi-class SVMs with D-S evidence theory data fusion. Sadeky et al. [2010] presents
a real-time method using trajectory and histogram of flow gradient (HFG). Kamijo et al. [2000]
develops an event recognition system based on the hidden Markov model (HMM), which is robust
for traffic monitoring and accident detection. Chen et al. [2010] proposed a SVM-based method
on traffic flow measurement. A similar approach using BP-ANN for accident detection has been
proposed in Ghosh-Dastidar and Adeli [2003] and Srinivasan et al. [2004]. Road-user interaction
are analyzed using a refined probabilistic framework, where collision probabilities are estimated by
identifying potential collision points. Other methods for traffic accident detection have also been
presented using matrix approximation [Xia et al. 2015], optical flow and scale-invariant feature
transform (SIFT) [Chen et al. 2016], smoothed particles hydrodynamics (SPH) [Ullah et al. 2015],
and adaptive traffic motion flow modeling [Maaloul et al. 2017]. With advances in object detection
with deep neural networks, several automatic traffic accident detection methods based on CNNs
[Singh and Mohan 2018; Sultani et al. 2018] and traffic accident anticipation methods based on
recurrent neural networks (RNNs) [Chan et al. 2016; Suzuki et al. 2018] have been proposed along
with traffic accident datasets [Kataoka et al. 2018; Shah et al. 2018; Sultani et al. 2018; Suzuki et al.
2018] of surveillance videos or dashcam videos [Chan et al. 2016]. However, these methods either
do not have real-time performances for online accident detection without using future frames
or give unsatisfactory results. Besides that, no proposed dataset contains videos with top-down
views such as drone or unmanned aerial vehicle (UAVs) videos or omnidirectional camera videos
for traffic analysis.

6 CONCLUSION

We have proposed a two-stream convolutional network architecture that performs real-time detec-
tion, tracking, and near-accident detection for vehicles in traffic video data. The two-stream convo-
lutional network comprises a spatial stream network and a temporal stream network. The spatial
stream network detects individual vehicles and likely near-accident regions at the single-frame
level by capturing appearance features with a state-of-the-art object-detection method. The tem-
poral stream network leverages motion features of detected candidates to perform multiple-object
tracking and generates individual trajectories of each tracked target. We detect near-accidents by
incorporating appearance features and motion features to compute probabilities of near-accident
candidate regions. Experiments have demonstrated the advantage of our framework with an over-
all competitive qualitative and quantitative performance at high frame rates. Future work will
include image stitching methods that will be deployed on multi-camera fisheye videos.
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