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Abstract—We use a monotonicity-based approach to
design a safety controller in two realistic driving situations:
a vehicle-following scenario and an unprotected left turn
scenario. For each scenario we construct a symbolic ab-
straction of the system and efficiently synthesize a safety
controller by exploiting the monotonicity property of the
dynamics. We show how monotonicity property makes
it possible to deal with complex scenarios, such as the
vehicle following scenario with safe impact and left turn
scenario, while handling model uncertainty.

Index Terms— Autonomous vehicles, hybrid systems

. INTRODUCTION

commonly studied traffic situation is the vehicle-

following scenario. For this scenario, one typically de-
signs a controller for the ego vehicle with the goal of meeting
a particular specification, e.g. ensuring a safety constraint on
the distance between the ego and lead vehicle is maintained at
all times [1]. In some cases, it is beneficial to relax this safety
specification slightly - for example, in vehicle platooning,
where the goal is to have a group of vehicles drive closely
together in a tight formation (see [2] and [3]). To this end,
in [4] the authors allow a soft impact with bounded relative
velocity to occur in a worst-case driving scenario. By doing so,
the time required to safely execute a platoon join maneuver,
for example, is reduced.

Another common maneuver that a driver must execute
is an unprotected left turn. Recent works have studied this
scenario due to its complexity; see e.g. [5]. In [6] the au-
thors consider an analogous scenario of highway merging
for connected vehicles, where the ego vehicle can merge
either ahead of or behind the other vehicle. In each case,
the state space is separated into conflict, nonconflict, and
uncertain regions, where the boundaries of these regions are
dependent on the acceleration capabilities of each vehicle.
Similarly, in [7] the authors compute a capture set, i.e. the
set of states that lead to conflict regardless of input choice.
In particular, this computation can be done efficiently if the
system has an order preserving property. The authors propose
a control map ensuring the capture set is avoided, and the
approach is demonstrated on an example where two connected
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vehicles approach an intersection, and also on an autonomous
roundabout scenario in [8].

In this letter, we apply symbolic control techniques from [9]
and [10] to both driving scenarios mentioned above. Symbolic
control techniques have multiple advantages - for example,
they can handle complex specifications, and can be applied
directly to nonlinear systems. In contrast, [4], [6], and [8]
ignore nonlinearities in the vehicle dynamics, and [7] uses
feedback linearization. Similarly, in [11] the authors only
consider nonlinear vehicle dynamics on a restricted input
space, otherwise using a linear approximation.

By exploiting the monotonicity of the system dynamics, we
reduce the computational complexity of the controller syn-
thesis and implementation [10]. We show how monotonicity
makes it possible to deal with complex scenarios, such as
the vehicle following scenario with safe impact and left turn
scenario, while handling model uncertainty.

The contribution of this work is two-fold. First, we show-
case the flexibility of symbolic control techniques by applying
them in two realistic driving situations: a vehicle-following
scenario in Section III, and an unprotected left turn scenario in
Section IV, each of which is of independent interest. Second,
to deal with the specification in each scenario we construct a
non-standard abstraction, in which we introduce new special
states to transform the specifications into lower closed safety
specifications [10]. We also introduce a new construction
of the transition relation which ensures monotonicity of the
abstraction, where a new partial order has been defined to
deal with the special states.

[I. MONOTONICITY CONCEPTS

In this section, we overview the monotonicity and symbolic
control concepts we will use throughout the letter.

A. Partial orders

A partially ordered set £ has an associated binary relation
< where for all [1,1s,l5 € L, the binary relation satisfies: (i)
1 <g Uy, (i) ifly <l andly <, [y thenl; =, I3 and, (iii) if
I <glpand Iy <, l3then [y <, 3. Given a partially ordered
set L, for a € L the lower closure of the element a € L is
denoted | a and defined as | a := {& € L : x <, a}. The
lower closure of a set A C Lis | A:=J,c4 | a. A subset
A C L is said to be lower-closed if | A = A.



B. Monotone Transition Systems

Below we recall the notion of a transition system [12] and
define monotone transition systems that preserve a partial order
on input and state spaces.

Definition 1: A transition system is a tuple T =
(X, Xo,U, A), where X is a set of states, Xg C X is a set
of initial states, U is a set of inputs and A : X x U — X is
a deterministic transition relation.

Definition 2: A transition system T’ = (X, X, U, A) is said
to be input-state monotone if X and U are equipped with
partial orders <x, <y, respectively, and for all 1,22 € X,
for all uy,ue € U, with 1 <x x9 and u; <y uo, it follows
that A(Il, Ul) <x A(IEQ, UQ).

C. Controller Synthesis for Safety Specifications

1) Maximal safety controller: Given a transition system T =
(X, Xo,U, A), a controller for T is a set-valued map C : X =
U and its domain is defined as dom(C) = {x € X : C(x) #
(0}. A safety controller is then defined as:

Definition 3: A safety controller C for the transition system
T = (X, Xo,U,A) and the safe set X C X satisfies:

o dom(C) C X%,

e Vz € dom(C) and Yu € C(z), A(z,u) C dom(C).

A suitable solution to the safety problem is a controller
that enables as many actions as possible. This controller C*
is said to be a maximal safety controller, in the sense that
for any other safety controller and for all z € X, we have
C(x) C C*(x).

2) Lazy controller synthesis for safety specifications: Con-
sider an input-state monotone transition system 1T =
(X, Xo,U, A) and a safety specification X*° C X. The safety
specification X° is said to be lower closed (respectively,
upper closed) if X is a lower closed (respectively, upper
closed) subset of X. Classical approaches use a fixed-point
algorithm [12] for general safety specifications. For upper and
lower safety specifications, efficient symbolic abstractions and
lazy synthesis approaches have been proposed recently in [9]
and [10]. These approaches allow us to compute the maxi-
mal safety controller while reducing the computational cost
required for the synthesis and implementation of the maximal
safety controller. Indeed, in classical approaches [12], one
first constructs the entire abstraction for the original system
and then uses the pre-computed abstraction to synthesize the
controller. In lazy approaches, however, the abstraction and
controller synthesis are done in parallel, making it possible to
compute only a fragment of the abstraction that is essential
for the controller synthesis.

I1l. VEHICLE-FOLLOWING SCENARIO

In this section, we consider a vehicle-following scenario. We
first introduce the vehicle dynamics model that we use and
present the control objective. We then use the monotonicity
properties of the model to construct a symbolic abstraction
and to synthesize a controller.

A. Monotone Vehicle Dynamics

The vehicle-following model is:
[hv i)a ’UL] = [UL -, f(U,U,G), f(uLvULa QL)] (1)

where i € R is the headway between the vehicles, v, u € R
are the velocity and wheel torque for the ego vehicle, vy, uy, €
R are the velocity and wheel torque for the lead vehicle, and
9, 6, € R® contain modelling parameters. The individual
vehicle dynamics evolve according to

9(u,v,0), v >0,
f(’U/7’U79) = max {g(u,v, 0), O} Y v = Umirn (2)
min {g(u7 v, 0)3 0} ;U = Umax,
where

1
g(um,&)zM(Ru —Ff) ande:a+ﬂv—|—’yv2 3)
w

give the vehicle’s acceleration and frictional force acting on
it. We note the vehicle dynamics model ensures both vehicles
never exceed their velocity bounds - that is v(t), vp(t) €
[Vmins Vmax] for ¢ > 0. Furthermore, (1) - (3) contain the
following modelling parameters: M > 0 is the vehicle mass,
R,, > 0 is the wheel radius, and « > 0, 8 > 0, and v > 0 are
friction coefficients. We collect all modelling parameters in
0 :=[M; Ry,; «; B; 7] for the ego vehicle and, similarly, in
01, for the lead vehicle (which may have different modelling
parameters). For each vehicle, the values of the modelling
parameters are unknown and are only assumed to lie within
a bounded interval of values, where the interval bounds are
known. For example, we assume 7, Y7, € [Ymin, Ymax), Where
Ymin > 0 and Ypax > 0 are known.

Next, we define the state of (1) as z(t) :=
[h(t); w(t); vr(t)], the input w(¢), and the disturbance
w(t) := wur(t), each of which are assumed to lie within a

corresponding constraint set at all times

X = {33 * Umin S v and VL, min S vrL S 'UL,ma;v}7
U:= {u D Umin S U< Umaz};
W .= {w * Wmin S ur, S wma:}c}' (4)

The solution of the vehicle model (1) at time ¢ > 0, from an
initial condition 2y € X, under a control input u : [0,¢] — U,
a disturbance input w : [0,¢] — W and a vector of unknown
parameters [0;01] is denoted ®(t;xo,u,w,[0;60L]). Hence,
under the same conditions, the reachable set over the time
interval [0, t] reads ®([0, t]; zo, u, w, [0;0L]).

Finally, we equip the state, input and disturbance spaces of
the model in (1) with the partial orders

(z1 <x @2) < [(h1 = h2) A (v1 Swv2) A(vpy > vL2)]
(u1 <y ug2) <= (u1 < ug), (5)
(w1 <w wa) <= (up1 > urz2) (6)
where < is the usual partial order on R. With the partial order
defined above, it is easy to verify that the dynamics in (1)

are monotone [13]. This property states that for 1 <x xo,
uy <y usg, and wy <y ws, we have for t > 0:

(I)(t7 x1, U, W1, [97 HLD S (b(t7 T2, U2, W2, [97 HLD (7)



B. Control Objective

We now discuss the control objective we want the ego
vehicle to satisfy. Typically, one would require

z(t) e XNH, Hi={zx: hmin <hand v < Vpmaz}, (8)

to hold for ¢ > 0. From the definition of the set of constraints
X in (4), the condition z(t) € X, for all ¢ > 0 is already
satisfied. The objective here is to synthesize a controller for
the ego vehicle ensuring that z(t) € H, for all ¢ > 0, which, as
discussed in Section II-C, is a lower closed safety specification
with respect to the partial order (5). In words, (8) means the
ego vehicle must ensure it never collides with the lead vehicle.
Moreover, the ego vehicle velocity must be bounded by the
maximum velocity vp,q., While assuming the lead vehicle
velocity is also bounded by v,q4-

Next, we define the set of states for which a soft impact has
occurred [4]:

S = {x h < hpin and v —vp, < vallow}. 9)

For our modified safety specification, we allow a soft impact
to occur in a worst-case driving scenario, but never an unsafe
impact - that is, one that violates (9). This is beneficial since
it relaxes the restrictive constraint (8) on the ego vehicle, al-
lowing it to follow the lead vehicle more closely, for example.
We now formally state the control objective considered in this
section:

Problem 1: Given the model of the vehicle-following sce-
nario in (1), synthesize a sampled-data controller C : X = U
such that either (8) holds or the following holds:

Jto > 0s.t. z(tg) € S and z(t) € X NH for t € [0,1g).

The control objective described above is in the same spirit of
a reach-avoid specification, in the sense that the system state
must either remain in the set X NH for all time (avoiding an
unsafe impact), or eventually reach the set S. We emphasize
that the set S will only be reached in a worst-case scenario -
for example, if the ego vehicle fails to satisfy (8) because the
lead vehicle applied harsh brakes.

C. Synthesis using the symbolic approach

In this section, we design a control law C : X = U
which is a solution to Problem 1 using the symbolic control
approach [12] that relies on the use of symbolic models, which
are discrete abstractions of continuous dynamics.

1) Symbolic abstraction: An abstraction X* for the vehicle
model in (1) is a transition system £ := (X%, X§,U% A?),
where X¢, X§ and U® are finite (symbolic) sets of states and
control inputs respectively, while A : X x U* — X% is a
transition relation. For constructing the symbolic sets and in
view of the control objective defined in Problem 1, the set X
of constraints on the state-space defined in (4) is decomposed
into three regions: an impact-free region, represented by the
set H in (8), a region of soft impact, represented by the set .S in
(9), and a remaining unsafe region given by X \ (HUS). Each
of these regions is represented in symbolic form as follows:

o We discretize the impact-free region #H into N > 1 half-
open intervals ¢; = (gi;@] using a finite partition. Since

v =
vy + Vallow

v =
%7 + Vallow

v <
vy + Vallow

Fig. 1: The state space is divided into three areas: the area
corresponding to set .S (bottom left cell), the area correspond-
ing to unsafe impacts (top left cell), and the area where no
impact has occurred (right cells).

‘H is unbounded, we follow the approach in [14, Section
V-B-3] which uses bounded and unbounded intervals to
construct the partition. The states of these regions are
represented by the green states in Figure 1.

« We use a unique state ¢, to model the safe-impact
region S, represented by the blue state in Figure 1.

o We use a unique state gyugqz to represent the unsafe region
X\ (HUS); see the red state in Figure 1.

The symbolic set X consists then of N +2 states X := {qi :

i =1,..., N} U {Gink: Qunsase }- The set of initial conditions

corresponds to X§ = {¢; : i = 1,...,N}. Moreover, we

discretize the set of inputs U into M > 2 values, with the

discrete input set given by U® := {uj i=1,..., M}

Assuming the controller to be designed is implemented by

a microprocessor with a sampling time 7 > 0, the transition

relation A : X% x U% = X* can be defined as follows. For

any ¢,q' € X% u € U?, ¢ = A(q,u) if and only if one of
the following scenarios holds:

(i) For ¢,¢ € X§ and v € U%, ¢ = A(q,u
Only if (I)([O, T];au U, Wmin, [emax; eL,min]) c
(I)(T; q, U, Winin, [emax; eL,min]) € q/;

@ii)) For ¢ € Xg U {qs,-nk} and v € U% qime =
A(g,u) if and only if ¢ = gy or there exists s €
[0, 7] such that ®(s;q, U, Wmin, [fmax; 0L min]) € S and
CI)([O7 T];@ Uy Wmin, [ema)d GLA,min]) g H U S;

(iii) For ¢ € X§ U {qumare} and uw € U%
Qunsafe = A(Qa u) if and Only if q =  Qunsafe OT
(I)([07 T];67 Uy Wmin [amax; 0L,min]) N (X \ (H U S)) 7é @

In each scenario, for each transition the vector of unknown
parameters [0yax; 01, min| are selected to maximize (minimize)
the acceleration of the ego (lead) vehicle during the sampling
period, depending on the control input applied. For example,
intuitively we want to underestimate how much air drag will
help the ego vehicle avoid a collision, and overestimate how

) if and
H and



much it will help the lead vehicle cause one. This represents
the worst-case values for the modelling parameters in (1).
Furthermore, wy,;, is the maximum braking torque for the lead
vehicle. For the construction of the transition relation, the first
scenario is used to represent the impact-free case where the
trajectory of the vehicles remains in the set X NH. The second
scenario represents the case of soft impact. Moreover, in this
second scenario we added a self-loop to the sink state g
to transform the reach-avoid specification in Problem 1 to a
safety problem. Finally, the last scenario is used to represent
the fact that the trajectory of the vehicle is unsafe, in the sense
that an unsafe impact violating (9) occurs.

Remark 1: In view of Problem 1, a transition to ¢
should be created from ¢ € X% and v € U® if
and only if ¢ = guu or there exists s € [0,7]
such that ®(s;q, U, Wmin, [fmax; 0L.min]) € S and also
([0, s]; G, w, Wiin, [max; 0L,min]) C HUS. The latter condi-
tion is replaced in (ii) by ®([0, 7]; @, %, Wimin, [max; 0L, min]) C
H U S in order to preserve the monotonicity property of the
transition system, at the cost of a small additional conser-
vatism.

2) Abstract control objective: Using such construction of the
symbolic abstraction ¥¢, the concrete control objective in
Problem 1 can be transformed to the following abstract control
objective:

Problem 2: Given the abstraction »® of the vehicle-
following model in (1), synthesize the maximal discrete safety
controller D : X% =2 U“ keeping the trajectories of the
transition system X% in the set X§ U {qsink }-

To synthesize the controller D, we rely on the use of the
monotonicity concepts introduced in Section II. We first have
the following result, characterizing the structural properties of
the abstraction 3* and the considered specification.

Proposition 1: The  transition  system  X¢ =
(X2, X§,U* A%) defined above is an input-state monotone
transition system and the safety specification X§ N {gin} is
lower closed.

Proof: We start by defining the partial order for the
discrete state and input spaces. We define a partial order <xa
over the set of discrete states X“ as follows: for ¢1, ¢2 € X¢,
q1 <xa qo if and only if §; <x @,. For the special states
Qunsafe a0d qgnx we have the following: for all ¢ € Xg,
q¢ <xe @ink <xeo Qunsafe- Moreover, since U* C U, the
partial order <7« on the discrete input space is inherited from
<p. The fact that the set X§ N gk is lower closed follows
immediately from the definition of the partial order <xa.

Let us show the monotonicity of the transition system
> Consider q1,q2 € X% up,us € U® with ¢
g2 and uq us. We will show that A(q,u1) <
A(ga,usz). From the definition of the monotonicity prop-
erty in (7), we have that ®(7;q;, U1, Wmin, [Pmax; 0L, min]) <
®(7; Gy, U2, Wiin, [Omax; 01,min]). To complete the proof, we
distinguish three cases:

<xa
<ye

e A(gr,u1) € X§: In this case, we have two options.
If A(ge,uz) € X§, then we get directly from (7)
that A(gr,u1) < A(ge,us). Otherwise, we have that
A(g2,u2) = Gsink oF A(g2,u2) = Qunsafe, Which implies

20
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80
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Fig. 2: Boundary of safe set Z C X for the strict (top surface)
and relaxed (bottom surface) vehicle-following specification.
The safe sets lay below the depicted boundaries.

from the construction of the partial order < x. above that
Aqr,u1) < A(ge, u2).

e A(q1,u1) = ¢sm: In this case, we have from (7) that
A(g2,u2) = Gsink OF A(G2,U2) = Qunsafe, Which implies
from the construction of the partial order <x. above that
Alqr,ur) < Alge, ug).

o A(q1,u1) = Qunsare: In this case we have either ¢; €
X§ or ¢1 = Quusafe- If 1 € X§, we have from the
construction of the transition relation A and using (7)
that A(g2, 2) = Qunsafe, Which implies that A(gy, u1) <
A(g2, uz). Otherwise, if g1 = Gunsate then g2 = Gunsqre and
A(Qla ul) = Qunsafe S A(q% uQ) = Qunsafe-

|
We now have all the ingredients to provide a solution to
Problem 1. First, using the lazy controller synthesis approach
for input-state upper monotone transition systems and directed
safety specification (see Section II-C.2) we can construct the
maximal abstract safety controller D : X =% U“ for the
transition system > and lower closed safety specification
X§ U{¢sink }» which is indeed a solution to Problem 2. Second,
using the construction of the abstraction X, one can show,
similarly to [9], that the abstraction X¢ is related to the original
system in (1) by an upper alternating simulation relation'. This
relation is useful for controller refinement for our lower closed
safety specification X§U{qym }. Based on this relationship, we
can refine the abstract controller D : X* = U* into a concrete
controller C : X == U, providing a solution to Problem 1. In
this case, the concrete controller C can be defined for z € X as
follows: C(z) = D(Q(x)), where @ is the quantizer associated
to the abstraction > and relating the continuous state-space
X to the discrete state-space X as follows: @ : X — X¢,
with Q(z) = ¢ if and only if x € q.
Using the lazy controller synthesis approach, we compute
a safe set (that is, the set Z = dom(C) C X where we can
enforce the given specification) with respect to both the strict
specification (8) and the relaxed specification given in Problem
1. The numerical values of the vehicle parameters and the

'While traditional alternating simulation relations [12] impose output
equivalence, the upper alternating simulation relation relaxes that condition
to an ordering relation. In our case, the upper alternating simulation relation
between the abstraction X% and the original system in (1) is defined for
(z,q) € X x X%, with ¢ = (¢;q), as (z,q) € R if and only if z < 7.



A

Fig. 3: Depiction of the states for the ego (blue) and oncoming
(yellow) vehicle in the unprotected left turn scenario.

control objective are as follows: M € [2000kg,2250kg],
R, € [0.30m,0.35m], « € [300,350], 8 € [0.10,0.25],
S [030,065], Umin = VL,min = 0m/s, Vmae = VL, maz =
20m/s, Umin, = —2500NmM, Umee = 1200Nm, wpi, =
—1800Nm, Wnae = 1200Nm, A, = Om, and vgow =
3m/s. Furthermore, we discretized the state and input using
the following resolutions: les = 2m, Ures = VL, res = 1m/s, and
Ties = 100Nm. As expected, relaxing the safety specification
expands the safe set. This allows the vehicles to drive more
closely together and improve traffic efficiency - for example,
in vehicle platooning [3].

V. UNPROTECTED LEFT TURN SCENARIO

In this section, we compute a safety controller for an
unprotected left turn scenario using the approach established
in Section III. Indeed, the vehicle dynamics in this scenario
are monotone, and collision avoidance only requires the ego
vehicle to adjust its velocity along its current path [11].

A. Monotone Vehicle Dynamics and Control Objective

We model the vehicle dynamics in the unprotected left turn
scenario as follows

[57 0, T] - [U7 f(uav30)7 UO] (10)

where s, v € R are the position and velocity of the ego
vehicle along its (curved) path, and r € R is the position
of the oncoming vehicle along its path. The positions s and r
increase in the direction of travel, and at the point s =7 =0
the vehicle paths cross. Furthermore, u € R is the ego vehicle
wheel torque, and the ego vehicle dynamics evolve as in
(1), where # € R® includes the modelling parameters from
the previous example. All of the modelling parameters in 6
are again unknown and only assumed to lie within bounded
intervals. Similarly, the value of vy > 0 is also uncertain here,
and we only assume vy € [V min, V0,max]> Where vg min > 0
and vg max > 0 are known.

To address the possibility of a collision between the ego
and oncoming vehicles, we define a conflict zone [15] around
this crossing point, and require the two vehicles to never
occupy the conflict zone simultaneously. Formally, we define
the following set of conflicting states

C:={x:|s| < land |r| < ¢}, (1D

-
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-60
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Fig. 4: Boundary of safe set Z%' C X ™4t for the unprotected
left turn scenario for the wait strategy, where all states below
the surface are in ZV*,

where ¢ > 0 is an adjustable parameter. To avoid the unsafe
set (11) at all times, the ego vehicle can either go first and
complete its turn before the oncoming vehicle enters the
intersection, or wait for the the oncoming vehicle to pass
through the intersection first, and then start its turn. For each
case, we define a respective goal set

GVt . {w:r>€}, G — {m:s>£}, (12)

which represents the opposite side of the intersection for each
vehicle. Next, we define the following constraint sets for the
state and input. For ¢ € {wait, go}, we have

< s<s v < v <o
i Smm — — max’ min — — max’
X" = xX . )

) %
Tmin S r S Tmax

U:= {u D Upin Su < umax}v (13)

where the bounds on each of the state variables depend on

the ego vehicle’s strategy for executing the turn. For example,
the set X&° will exclude states where the oncoming vehicle
occupies the intersection, since we want the ego vehicle to
go first in this case. With (11) - (13), we state our control
objective.

Problem 3: Our control objective is to ensure the conflict
set is avoided at all times, that is z(¢) ¢ C for ¢t > 0, and a goal
set is eventually reached, that is Jtg s.t. 2(t) € G* for t >
to and x(t) € X' fort € [0,t9], where i € {wait, go}
depending on the ego vehicle’s strategy for executing the turn.

We again wish to accurately characterize the set of states
Zwat . XWait and Z& C X2 from which it is possible
for the ego vehicle to safely execute its left turn, by either
waiting for the oncoming vehicle or going first, respectively.
Since the system dynamics are monotone, and since we are
again considering a (directed) reach-avoid type specification,
we are able to compute safe sets Z* and Z£° using the same
symbolic control approach outlined in Section III-C. The

numerical values are as follows: [ = 10m, AL = 8 =
Om/s, vt = vimee = 12m/s sya = sy, = —70m,
S‘,’Zf,‘;w = —10m, S%rg)az = 10m, T?,fgm = 10m, T%r(zam = —10m,
Umin = —2000Nm and w4, = 1200Nm. Furthermore,

vo € [8m/s, 12m/s], and we use the same uncertainty bounds
on # from the previous example. For each scenario, we
discretized the state and input using the following resolutions:



Sres = 2M, Upes = 0.5mM/S, 7o = 2m, and u,s = 100Nm.
The resulting safe sets are shown in Figure 4. Furthermore,
to demonstrate the computational advantages of our approach,
for this example we have also computed these sets using a
standard fixed-point algorithm. Indeed, computing safe sets
Z%4t and Z2° took 47.86s and 202.92s using the lazy fixed-
point algorithm, whereas the same computations took 3540.29s
and 9991.78s using the standard fixed-point algorithm. More-
over, the controller synthesized using the lazy approach can
be stored more efficiently, since it only needs to specify upper
and lower safety bounds on the control input u for each state.
This is in contrast to the controller synthesized using the
standard approach, which lists the set of safe control inputs for
each state. As a result, controllers C*t and C&° synthesized
using the lazy approach can each be stored with 254.2KB
of memory, but require 8744.2KB and 4706.4KB of memory,
respectively, when synthesized using the standard approach.

B. Two Oncoming Vehicles

We now apply safe sets Z"¥' and Z2° in an unprotected
left turn scenario with two oncoming vehicles. Our goal is
to design a controller for the ego vehicle such that it safely
cuts in-between the two oncoming vehicles to execute its
turn, i.e, a controller that keeps the state in Zviit N 780 gt
all times. The standard approach to resolve this problem
relies on the use of the classical fixed-point algorithm [12],
which consists of exploring all the states in Z%3t N Z2° and
all the inputs v € U. Since we represent the ‘wait’ and
‘go’ strategies for executing the turn as upper and lower-
closed safety specifications, we can do this by performing
an incremental synthesis procedure for the intersection of an
upper and lower-closed safety specification in two steps:

1) We synthesize the controllers Czwi and Cze for the lower
and upper closed safety specifications Z%¥' and Z%2°,
respectively.

2) We synthesize the maximal safety controller for the
transition system 7" and safety specification dom(C zwi) N
dom(Cze), where for each state © € dom(Cgwi) N
dom(Cze ), we explore only the inputs u € Cgwa(x) N
CZgo (33)

Figure 5 shows simulation results with this controller.
Since the velocity of each oncoming vehicle is uncertain, we
simulate the worst-case scenario where the first and second
oncoming vehicles travel at velocities vg min = Sm/s and
Vo,max = 12m/s, respectively. At each time step we obtain a
feasible range of inputs via the synthesized controller. As long
as a control input in this range is selected, the ego vehicle will
not conflict with either oncoming vehicle. A simple model-
predictive controller is used to choose the optimal control
input in this feasible range, with the objective of maintaining
a velocity of 11.5m/s. The input bounds and optimal input
are both plotted in the bottom of Figure 5.
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