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Abstract— This paper extends the notion of delta dissipativity,
originally introduced in a game theoretic context, to general
interconnections of dynamical systems. The main contribution
of this paper is a compositionality result that presents conditions
under which a large-scale interconnection of delta dissipative
systems is delta dissipative. We adapt this result to also analyze
stability and asymptotic stability of equilibrium points for the
interconnection. Additionally, we formulate a sum-of-squares
program for verifying delta dissipativity of a (polynomial)
system. The results are illustrated with examples.

Index Terms— Large-scale systems, Lyapunov methods, Sta-
bility of nonlinear systems

I. INTRODUCTION

Existing computational tools for control synthesis and
verification do not scale well to large scale, interconnected
systems, such as multi-agent robotic systems, traffic flow
networks, and biological networks. Recent advances, such
as sum-of-squares (SOS) methods, have made it possible to
numerically search for Lyapunov functions and to certify
measures of performance; however, these procedures are
applicable only to problems of modest size. To broaden the
applicability of such procedures to large systems, compo-
sitional approaches that infer system-level guarantees from
appropriate subsystem properties are becoming widespread.
In particular, an approach that makes use of dissipativity
properties [1] of the subsystems has been developed and
combined with computational tools, as summarized in [2].

An obstacle to complete modularity in the dissipativity
approach is that the analysis of the subsystems must be
performed with the knowledge of the equilibrium of the
interconnected system. However, the value of such an equi-
librium depends on all other subsystems; if any subsystem
is added, removed, or modified, then the equilibrium has to
be calculated again and the analysis repeated. This motivates
the development of tools that don’t require the knowledge of
equilibrium. One such tool is equilibrium independent dissi-
pativity (EID), where dissipativity is certified with respect to
every point that has the potential to become an equilibrium
[2]-[4]. Although this notion decouples the analysis of
subsystems from the equilibrium, the resulting Lyapunov
function for the interconnection is equilibrium-dependent.

An alternative approach, called delta dissipativity, has
recently emerged in the study of a class of evolutionary
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dynamics arising in population games [5]. A notion of delta
passivity was introduced in [6] to characterize convergence
to Nash equilibria and was further explored in [7], [8]. A
more general notion of delta dissipativity was introduced in
[9] to broaden the admissible evolutionary dynamics.

Delta dissipativity is complementary to EID and offers
several advantages. As demonstrated in the references above,
it is applicable in classes of evolutionary dynamics where
the construction of a storage function verifying EID re-
mains elusive. Furthermore, unlike EID, which generates
an equilibrium-dependent Lyapunov function for the inter-
connection, delta dissipativity builds a Lyapunov function
that vanishes when the vector field defining the dynamics
vanishes, thereby avoiding an explicit dependence on the
equilibrium. This idea is comparable to — but more general
than — Krasovskii’s construction of Lyapunov functions that
are quadratic in the vector field [10].

The idea of composing Lyapunov functions for intercon-
nections goes back to the early literature on large-scale sys-
tems (see e.g. [11]) and has been revisited in [12] with small-
gain theorems based on input-to-state stability [13]. However,
these studies do not account for unknown equilibrium points.

Other related notions include incremental dissipativity
[14], [15] and differential dissipativity [16], which define
storage functions in the extended space of pairs of tra-
jectories, and in the tangent bundle of the manifold on
which the trajectories evolve, respectively. In contrast, delta
dissipativity defines storage functions on the extended space
of state and input variables and is interpreted as dissipativity
from the time derivative of the input to that of the output.

The aforementioned studies of delta dissipativity focused
on dynamical models in population games, which consist
of the interconnection of two subsystems: one describing
how the distribution of the population into different strategies
evolves in response to the payoff of each strategy, and the
other describing how the payoff evolves with the population
state. In this paper we expand the scope of this notion
from the game theoretic context to a general interconnection
of dynamical systems. The main contribution of this paper
is a compositionality result: conditions under which the
composition of delta dissipative systems is delta dissipative.

In Section II, we define delta dissipativity and provide
two examples of classes of systems where delta dissipativity
can be readily verified. In Section III, we consider an
interconnection of subsystems that each satisfy a delta dis-
sipativity property and provide compositionality conditions
for delta dissipativity, as well as stability conditions for the
equilibrium point of the interconnection. In Section IV, we



formulate a SOS optimization problem to search for storage
functions to verify delta dissipativity.

II. DELTA DISSIPATIVITY

Consider the dynamical system

x(t) = f(x(t),u(t)) (D

y(t) = h(x(t),u(t)) 2)
with x(t) € R™, u(t) € R™, y(¢) € RP, and continuously
differentiable f : R™ x R™ — R™ and h : R® x R™ — RP,
We use bold letters to denote signals (x : R — R™) and
non-bold letters to denote points (z € R™).

Definition 1. The system (1)-(2) is delta dissipative with
supply rate s : R™ x RP — R if there exists a storage
Sfunction S : R" x R™ — R with the following properties:

Property 1. S(z,u) > 0 for all x € R™ and v € R™, and
S(z,u)=0 < f(z,u)=0

Property 2. For all x € R", w € R™, v € R™,

V.o S(z,u) " fz,u) + VuS(z,u) v < s(v, w(z,u,v))

where w(x, u,v) = %(x,u)f(x,u) + %(m, u)v.

We may interpret delta dissipativity as the conventional
dissipativity property from the time derivative of the input
u to the time derivative of the output y, that is, dissipativity
of the system (1)-(2) augmented with

u(t) = v(t), y(t)=wx(),u(t),v(t)),

from the new input v = u to the new output y.
In this paper, we restrict our attention to quadratic supply

rates of the form
T T
v v v XU X2 v
o =[] (o)=L [ = 2] @
where X! € R™*™ and the choice of X defines the type
of dissipativity. In the case m = p,

1
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corresponds to the notion of delta passivity.

For a memoryless system y(t) = h(u(t)), we take the
storage function to be zero and interpret delta dissipativity
as the static inequality

s(v,w(u,v)) >0 Vu,veR™, 3)
where w(u,v) = %(u)v. For a supply rate of the form (3),
condition (5) becomes:

11" I .
on(w)| X |onw)| =0 VueR™.
ou ou

Example 1. In this example we show that the system (1)-(2)
is delta dissipative with storage function

S(x’u) :f(z7u)TPf(Ivu) (6)

if P = PT » 0 satisfies for all z € R and u € R™:
[Pgﬁ(:z:,u) + %(z,u)TP Pgi(x,u)]

g)uc (z, u)TP 0 @

T
0 1 0 1
- < 0.
B0 o] ¥[pew geal=0
First note that S(z,w) is nonnegative definite and vanishes
only when f(z,u) = 0. Next, if we multiply (7) from the
left by [f(z,u)" v"] and from the right by [f(x,u)" vT]T,
and substitute

[‘2.2(2&) &’;(Quﬂ V(i’ u)} - [w@f’ J ’

we obtain the inequality

Flz,u)T (Pgi(x,u) + gi(:&u)TP) F(z,u)
4 2f(x,u)TP%(x,u)v < [w(mj’uw)} TX Lu(x’vu,v)] .

Since the left hand side of this inequality matches
VeS(z,u) T f(z,u) + VuS(z,u) "o, we conclude delta dis-
sipativity. For a linear system with f(z,u) = Az + Bu,
h(z,u) = Cx 4+ Du, condition (7) becomes

PA+ATP PB] [0 1]’ o I]_,
B'P 0 C D C D|—7

which is identical to the standard dissipativity property.
Note that the structure of the storage function (6) resembles
Krasovskii’s construction of Lyapunov functions in the form
of a quadratic function of the vector field [10, Exercise 4.10].

The following example constructs a storage function to
certify delta passivity for a system with an input nonlinearity.
This storage function will be useful for Example 3 below.

Example 2. Consider the dynamical system (1)-(2), with

flz,u) = —ax+g(u), h(z,u) ==z, (8)

in which o > 0 and the state dimension n is identical to
that of the input and output. We assume g : R" — R" is
surjective, and g = V7~ for a strictly convex, continuously
differentiable function v : R®™ — R. Let L be a global
Lipschitz constant for V~, which we take to be oo when
V7 is not globally Lipschitz. Combined with the convexity
of ~, this implies for all v € R", 4 € R",

0< (u—a)" (Vy(u) = Vy(a)) < Lfju —a|?
or, equivalently by [17, Theorem 2.1.5],
1
(u=a)" (Vy(u) = V(@) = Z[Vy(w) = V(@)]*.

We now construct a storage function S satisfying



which implies that the system is delta passive with ¢ = o/ L.
In constructing S we use the Legendre Transform of ~:

7 () = max (aTu — (),
which is well defined for all z, since =" u — y(u) is strictly
concave in u and has a unique maximizer. For each z, the

maximizing u satisfies Vy(u) = x, which has a solution
since we assumed surjectivity of g = V+. Then the choice

S(a,u) = v () —

satisfies S(x,u) > 0 by the definition of v*. S(xz,u) = 0
if and only if u is the maximizer of ax"u — ~(u), which
means ax = V~(u) or, equivalently, f(xz,u) = 0. Note that

VuS(z,u) = —ax + Vy(u) = f(z,u)
V.S(z,u) = a(Vy* (az) — u)

= VoS(x,u)" fz,u) + Vi S(z,u) v
@ (Vy*(ax) —u) " (—ow+ Vy(w) + flz,u) v, (A1)

where we substituted f(z,u) from (8). Next we claim that

(u=Vy(az)) " (Vy(u) - az) = *Ilf(a? u)ll?,

which, when substituted back in (11), establishes the delta
dissipativity property (10). To see how (12) follows, define
@ = V~*(y) and note that y = V~(a) by [18, Theorem
26.5], which states that the inverse function of V~* is V7.
Then substitute & = V~y*(y) and V(%) = y in (9) to obtain

(=97 ) (V(w) ~9) > 7 [V2(w) ]

Finally, substitute y = ax in (13) and note from (8) that the
right hand side of (13) is then || f(z,w)||?. This proves (12)
and, thus, the delta dissipativity property (10).

(au’z —7y(u))

(12)

(13)

ITII. COMPOSITIONAL ANALYSIS OF
INTERCONNECTED SYSTEMS

Consider the interconnection in Figure 1 with exogenous
disturbance input d(¢) € R™ and performance output e(t) €
RP. The subsystems G;, i = 1,..., N, are described by

%i(t) = fi(xi(t), wi(t))
yi(t) = hi(xi(t), ui(t)),

x;(t) € R™, u;(t) € R™, y;(t) € RP:. The matrix M
specifies the subsystem inputs and performance output by

L -a =T e[

where u := [u] ---up]", y:= [y ---yL]T, and the parti-
T T

tioning of M is block conformal. We let x := [z, ---zy

(14)
5)

(16)

[l

f(x,u) = [fl(xlaul)—r : 'fN(xNqu)T]T’ h(xau) =
[hl(scl,ul)T '-hN(l‘N,uN)T]T, and n = n1 + -+ ny.
We assume well-posedness, in the sense that

u = Myyh(z,u) + Myqd 17)

Gy
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Fig. 1: Interconnected system with exogenous input d and perfor-
mance output e.

has a unique solution v = v(z,d) and, thus, the intercon-
nected system can be written in the monolithic form

x(t) = f(X(t),V(X(t)vd(t))) (18)
e(t) = Meyh(x(t), v(x(t),d(t))) + Mead(t)  (19)
= ( (t),d(t))-

Our goal now is to certify the delta dissipativity of the
interconnected system with respect to the supply rate

=[] ]

where the choice of W defines a performance objective, and
q and r play the respective roles of v and w from (3) for the
interconnected system.

We assume each subsystem is delta dissipative with a
quadratic supply rate defined by a matrix X;, and we employ
the candidate storage function

sz

where p; > 0, ¢ =1,..., N. The theorem below presents a
condition under which weights {p;}?; can be found such
that (21) serves as a storage function certifying delta dissi-
pativity of the interconnection with respect to the supply rate
(20). The main condition (22) is a linear matrix inequality,
which can be solved with semidefinite program solvers.

(20)

(4, vi(z,d)), 21

Theorem 1. Suppose each subsystem (14)-(15) is delta
dissipative as in Definition 1, with storage function S;
and quadratic supply rate defined by a matrix X;.

For j,k = 1,2, define Xik(p Xy,...,onXN) =
blkdiag(py X1, ... . pn X3F) and let
Xll(') X12(')
X() - |:X21(~) X22(') .
If there exist p; > 0,9 =1,..., N, such that
! X(p1 X XnN) ]Wluy s
pP1A1, ..., PNAN 0 0
[*1 [ 0 wllo 1 |=%
Mey Med
(22)

where [*] is inferred from symmetry, then the interconnection
is delta dissipative with respect to the supply rate (20), and
(21) is a storage function.



Proof. Suppose there exist {p;}?; such that (22) holds.
To show that (21) certifies delta dissipativity with respect
to (20), we must show that (21) satisfies Properties 1 and
2 of Definition 1 with input variable d, state equation (18),
and output equation (19). Property 1 follows because S; > 0
and p; >0,i=1,..., N, imply S(z,d) > 0 and

S(l’,d) =0 & SZ(I'Z,I/l(.’ﬂ,d)) = 0, V1
< filxg,vi(z,d) =0, Vi & f(z,v(z,d) =

The remainder of the proof shows that S satisfies Property 2,
ie., for all z € R", d € R™, and ¢ € R™,

V.S(x,d)" flz,v(z,d) + VaS(x,d) q

S{m%%gJTWWM%%ﬂJ’

where 7(z,d, q) := gz (z,d)f(z,v(z,d)) + %Z(x, d)q. First,
we expand the left hand side of this expression as:

(23)

N
VoS (@, d) " f (e, d) = 3 pi(Va Siwiru) T filws, wi)

i=1

81/2-

u=v(z,d)
a ov;
T , . TOV;
VaiS(z,d) ' q = ;pl (VuiSl(acZ,uz) 5d ) o)
Adding these expressions together, we have
VoS(x,d) flz,v(z,d) + VaS(z,d) g
N
= Zpi <Va:i5i($z‘, i) " fil@i,u;)
i=1
ov; ov;
(s ) T[22 v
98 w) (2 () + 2 q)) oy
N Vi T Vi
= Z;pi {wi(xi,ui,vi))} X |:wi(xivuivvi)):|
T
v(z,d, q) v(z,d, q)
- |:’LU(.T,d, q):| X(pleavaXN) {w(m,d,q) ) (24)

where we used the subsystem dissipativity properties in the
inequality step, and

ov ov
v(z,d,q) = %(x,d)f(x,u(x,d)) ad(x d)q
oh Oh
’LU(J?, da Q) = %(x,u)f(x,u) + %(JC,U,)’U(J),(L q>|u:u(w,d)'

Then, to establish (23), it suffices to show that
U(Z‘,d, q) _ Muy Mud ’lU(lZJ,d, q)
r(z,d,q)| | Mey Meaq q ’

Indeed, if we multiply (22) by [w' ¢"] from the left and its
transpose from the right and ugre (25) to simplify, then we

can upper bound (24) with L(Z] w [ﬂ, which shows (23).

(25)

Now we show that (25) holds.
well-posedness  assumption  (17)
Myyh(z,v(z,d)) + Myqd. Then

gz (x,d) = My, <g];(x,u) + %(m u)g (x, d))

Recall from the
that v(x,d) =

u=v(z,d)
8 8h 8V
Therefore,
v v
o dsa) = 2w, d) v, )+ O

= Moy Gt o) + S o) G ) )

oh
+ o) G o)
= uyw(xa d, q) + Mudq~

+ Mudq

u=v(z,d

Similarly, we have

oh oh oh v

pe —(z,d) = M., (ax(aﬁ,u) + %(w u)a (z, d)) (o)
oh oh v

9 —(z,d) = M, <8u(z,u)ad(x, d)> o) + M.q.

Thus, r(z,d,q) =

Moy (G o)) + S o) 5 o ) )

oh ov
+ o) G o)
= eyw(mada Q) +MedQ~

M.
u=v(z,d) + a4

Hence we have showed (25), concluding the proof. |
When there are no exogenous inputs (d = 0), we adapt
the analysis above to provide a condition for stability.

Corollary 1 (Stability). Suppose the interconnection (16)
with d = 0 admits a unique equilibrium x* and each
subsystem (14)-(15) is delta dissipative as in Definition I,
with storage function S; and quadratic supply rate defined
by a matrix X;. If there exist p; > 0,1 =1,..., N, such that

-
M, M,
|: Iuy:| X(p1X1a7pNXN) I: Iy:| j 0)

then x* is stable and V' (x)
with S as in (21).

(26)

= S(x,0) is a Lyapunov function,

Proof. Since d = 0, we let M,y = 0 without loss of
generality. Then, setting W = 0, (22) and (26) are equivalent,
so the conclusions of Theorem 1 hold for W = 0. We will
show that V(x) = S(z,0) is a Lyapunov function for the
system with d = 0, i.e.,

x(t) = f(x(t), v(x(t),0))-

Since S satisfies Property 1 of Definition 1, we have V(z) >
0 for all z € R™ and

V(z)=5(z,0) =0« f(z,v(z,0)) =0z =2z". (27)



Secondly, since S satisfies Property 2 of Definition 1 with
W =0, we have for all x € R", d € R™, and g € R™,

VoS(@,d)" f(z,v(2,d)) + VaS(w,d) g < 0.
Plugging in d = 0 and ¢ = 0, we have for all z € R",
V.S(x,0)" f(z,v(x,0)) <O0.

Hence, V(x) =
the stability of z*

(28)

S(z,0) is a Lyapunov function that certifies
[10]. |

Corollary 2 (Asymptotic Stability). Under the same assump-
tions of Corollary 1, we can prove asymptotic stability of z*
if we replace Property 2 of Definition 1 with Property 2+ be-
low. Furthermore, if V(z) = S(«,0) is radially unbounded,
then z* is globally asymptotically stable.

Property 2+. For all x € R", uw € R™, and v € R™,

V. S(x,u) " f(z,u) + ViS(z,u) v
< —o(z,u) + s(v,w(z, u,v)),

where o : R" x R™ — R satisfies o(xz,u) > 0 for all
x € R and uw € R™, and o(x,u) =0 < f(z,u) =0.

Proof. The proof is identical to that of Corollary 1,
where now the right hand side of (28) becomes
SN —oi(wi, vi(z,0)). Hence, V,.S(z,0)T f(x,v(z,0)) <
0 for all z € R™ and

VeS(x,0)" f(z,v(x,0) =0 < o4z, vi(2,0) =0V
= f7(1177,l/1(56,0)):0vz S ="

Hence, the Lyapunov function V(z) = S(x,0) verifies
asymptotic stability of z*. ]

For an example of Property 2+, consider the system (8)
from Example 2. If € > 0, choose £ € (0,¢) and define

(e = O)If (=, w3

Let X be of the form (4) with parameter €. Then the system
satisfies Property 2+ with supply rate defined by X.

Now we present an example where a three-state system
is decomposed into an interconnection of three single-state
systems and a Lyapunov function for the interconnection is
constructed using storage functions of the subsystems. The
cyclical structure of this network is representative of ring
oscillator models in circuits and biology [2], [19]. Although
we selected a three-state model for illustration, the method
is scalable to any size for which the LMI (26) can be solved.

o(x,u) = (29)

Example 3. Consider the cyclical feedback interconnection

X1 (t) = —1X1 (t) + ¢1 (X3 (t)), 30)
Xg(t) = —a2x2(t) + ¢2(X1 (t)), (3])
x3(t) = —asx3(t) + ¢3(x2(1)), (32)

where o; > 0 and ¢; : R — R is surjective and strictly
decreasing with Lipschitz constant L; < oo. Using the
cyclical structure of the dynamics and the strict decreasing

property of the ¢; functions, it is simple to show that there
exists a unique equilibrium z*.

To analyze the stability of this equilibrium without hav-
ing to compute its exact value, we can decompose the
system (30)-(32) into three systems of the form (8). Let
hi(zi,u;) = x5, ¢ = 1,2,3, and let w = M,,y, where

0 0 -1
My,=|-1 0 0

Define g;(u;) = ¢i(—u;), ¢ = 1,2, 3. Then each g; is strictly
increasing, so we can find a strictly convex function -~;
satisfying V+y; = g;. Then each subsystem is of the form (8),
so it follows from Example 2 that each subsystem is delta
dissipative with storage function

Si(wi, i) = ) () — (ovu] i — vi(us))
and X; as in (4) with ¢; = f Then (26) is equivalent to
P(M,, — E)+ (M, — E)TP =<0, (33)

where P = diag(py, ... ,pN) and E = diag(ey,...,en).
It follows (see [19] or [2, Section 2.3.2]) that p; > 0,
i =1,2,3, satisfying (33) exist if and only if e1e9¢3 > 1/8.
If this condition holds, then the equilibrium is stable by
Corollary 1 and a Lyapunov function is

sz

If €193 > 1/8, we can use the method in Corollary 2 to
certify asymptotic stability. Specifically, choose &; € (0, ¢;)
such that £1€263 > 1/8. Each S; satisfies Property 2+ with
o; as in (29) and supply rate of the form (4) with parameter
&;. Since &1€2€3 > 1/8, there exist py, pa, p3 satisfying (26)
so by Corollary 2, z* is asymptotically stable.

xlvl/z )

Remark 1. Note that we have a choice when we decompose
the system (30)-(32) into three subsystems: we can place the
nonlinearity at the input (as in Example 3) or at the output
(e.g., 11 = ¢a(x1)). When certifying delta dissipativity,
Example 2 shows how to construct a storage function when
the nonlinearity is at the input, but not when it is at
the output. Conversely, when certifying the EID property
mentioned in the Introduction, [2] shows how to construct a
storage function for an output linearity but not for an input
nonlinearity. Decomposing (30)-(32) with the nonlinearity at
the output, we can follow the methods of [2] to obtain the
Lyapunov function

Zpl

Vi(z,27) = 72(— 1) = 72(=27) + g2(—27) (21 — 27)

Va(a2,23) = 3(—22) — y3(—23) + gs(—23) (22 — mz)

Va(as, 23) = 1(—z3) — n(—23) + g1(—23) (3 — 23).
Note that, unlike V, Vgp depends on the equilibrium x*.

The settings in which these two methods are applicable is
an area of further study.

VEID

xl? ’L



Remark 2. Corollaries 1 and 2 assumed uniqueness of the
equilibrium z* for simplicity. The same idea can be used to
establish convergence to a set of equilibria, as the Lyapunov
function vanishes on the entire set by construction.

IV. SOS PROGRAM

Consider a system of the form (1)-(2) where f and h are
polynomials. Instead of trying to find a storage function by
hand, we can use a SOS program to automate the search for
a storage function of the form

S(.T,U) = ¢($7u)TP(x, U)i//(xvu),

where the entries of P(x,u) are polynomial of a fixed order
in  and u, and v is a user-specified function that has the
property ¥(z,u) = 0 < f(x,u) = 0. One simple choice
is ¥(z,u) = f(x,u), in which case the storage function
resembles the form of the storage function in Example 1.
In order to certify delta dissipativity, a storage function of
this form must satisfy two constraints. First, we require

(34)

P(z,u) >0 VzeR" uecR™

This constraint ensures that S(z,u) satisfies Property 1
of Definition 1. We can encode this condition as a SOS
constraint by choosing a small constant § > 0 and using
a dummy variable [ € R™ as follows [20, Lemma 5]:

1T (P(x,u) — 8I)l € X[z, u,l], (35)

where X[¢] is the set of SOS polynomials in £. Second,
S(x,u) must satisfy Property 2 of Definition 1. We can relax
this condition as a SOS constraint as follows:

s(v,w(z,u,v)) — (VIS(I,U)Tf(:U,u) + VnS(:U,u)Tv)
€ X[z, u,v], (36)
where w(z,u,v) = Wf(a:, u)+%v. This is a SOS
constraint for any polynomial supply rate s, including the
quadratic choice in (3). We combine these constraints into a
SOS feasibility program, and we use the toolbox SOSOPT
[21] to find P(x,u) satisfying (35) and (36).

Example 4. Consider the dynamical system (1)-(2), with

flx,u) = -z — 2% +u, h(z,u)=z+u

We aim to certify delta dissipativity for the supply rate
defined by (4) with € = 0. Here, we let (x,u) = f(z,u)
and so we search for a storage function of the form S(z, u) =
P(z,u)f(z,u)?. When we restrict P(z,u) = const., the
SOS program returns P = 0.211, which belongs to the range
of feasible values of P in (7) from Example 1. Nonconstant
solutions for P(x,u) can also be identified by allowing P
to be a polynomial in (x, u).

However, we note that SOS solvers are prone to numerical
issues. In particular, there are problems where an equality
constraint is implicitly present in the SOS constraint (36). For
example, if (36) contains linear terms in v but no quadratic
terms in v, then the coefficient of the linear term must
equal zero. Identifying these equality constraints and adding

them explicitly as constraints in the SOS program can help
mitigate numerical issues.

Remark 3 (Global Algorithm). The SOS program above
searches for a storage function for a single system. To find
a storage function for the interconnection in Figure 1, we
can adapt the algorithm from [22] for EID, which uses
the alternating direction method of multipliers (ADMM) to
separate the search for a storage function into: 1) a global
subproblem that searches for candidate subsystem supply
rate matrices X; that satisfy (23), which is a semidefinite
program; 2) a paralellizable local subproblem that, for each
subsystem, searches for a storage function .S; and supply rate
matrix X; that is as close to the proposed supply rate X; as
possible. For delta dissipativity, the first step is identical,
and the second step is accomplished by modifying the SOS
program in the previous section by letting X; be a decision
variable and adding a cost function that penalizes || X; — X;].

REFERENCES

[1] J. C. Willems, “Dissipative dynamical systems, Part I: General theory,”
Archive for Rational Mechanics & Analysis, vol. 45, pp. 39-50, 1972.
[2] M. Arcak, C. Meissen, and A. Packard, Networks of Dissipative
Systems: Compositional Certification of Stability, Performance, and
Safety. Springer, 2016.
[3] G. H. Hines, M. Arcak, and A. K. Packard, “Equilibrium-independent
passivity: A new definition and numerical certification,” Automatica,
vol. 47, no. 9, pp. 1949-1956, 2011.
[4] M. Biirger, D. Zelazo, and F. Allgower, “Duality and network theory
in passivity-based cooperative control,” Automatica, vol. 50, no. 8,
pp. 2051-2061, 2014.
[5] W. H. Sandholm, Population games and evolutionary dynamics. MIT
Press, 2010.
[6] M. J. Fox and J. S. Shamma, “Population games, stable games, and
passivity,” Games, vol. 4, pp. 561-583, 2013.
[7]1 S. Park, J. S. Shamma, and N. C. Martins, “Passivity and evolutionary
game dynamics,” in IEEE Conference on Decision and Control, 2018.
[8] S. Park, N. C. Martins, and J. S. Shamma, “From population games
to payoff dynamics models: A passivity-based approach,” in IEEE
Conference on Decision and Control, pp. 6584-6601, 2019.
[9] M. Arcak and N. C. Martins, “Dissipativity tools for convergence to
Nash equilibria in population games,” IEEE Transactions on Control
of Network Systems, vol. 8, no. 1, pp. 39-50, 2021.
[10] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[11] A. Michel and R. Miller, Qualitative Analysis of Large Scale Dynam-
ical Systems. New York: Academic Press, 1977.
[12] S. Dashkovskiy, H. Ito, and F. Wirth, “On a small gain theorem for ISS
networks in dissipative Lyapunov form,” European Journal of Control,
vol. 17, no. 4, pp. 357-365, 2011.
[13] E. Sontag, “Smooth stabilization implies coprime factorization,” IEEE
Transactions on Automatic Control, vol. 34, pp. 435-443, 1989.
[14] G.-B. Stan and R. Sepulchre, “Analysis of interconnected oscillators by
dissipativity theory,” IEEE Transactions on Automatic Control, vol. 52,
no. 2, pp. 256-270, 2007.
[15] A. Pavlov and L. Marconi, “Incremental passivity and output regula-
tion,” Systems Control Letters, vol. 57, no. 5, pp. 400—409, 2008.
[16] F. Forni and R. Sepulchre, “On differentially dissipative dynamical
systems,” IFAC Proceedings Volumes, vol. 46, no. 23, pp. 15-20, 2013.
[17] Y. Nesterov, Introductory lectures on convex optimization: a basic
course. Kluwer Academic Publishers, 2004.
[18] R. Rockafellar, Convex analysis. Princeton University Press, 1996.
[19] M. Arcak and E. Sontag, “Diagonal stability of a class of cyclic
systems and its connection with the secant criterion,” Automatica,
vol. 42, no. 9, pp. 1531-1537, 2006.
[20] J. Theis, Sum-of-Squares Applications in Nonlinear Controller Syn-
thesis. PhD thesis, 03 2012.
[21] P. Seiler, “SOSOPT: A toolbox for polynomial optimization,” 2013.
[22] C. Meissen, L. Lessard, M. Arcak, and A. K. Packard, “Compositional
performance certification of interconnected systems using ADMM,”
Automatica, vol. 61, pp. 55-63, 2015.



