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1. Introduction

The logarithmic Sobolev inequality has been first introduced and studied by L. Gross
in [24] on a Euclidean space with the Gaussian measure, and since then it found many
applications. In particular, a number of existing results concern the question on how the
constant in the logarithmic Sobolev inequality depends on the geometry of the underlying
space, mostly in the Riemannian setting, see for example [2, Section 5.7, Proposition
5.7.1]. The logarithmic Sobolev constant in that case depends on the Ricci lower bound
while it is independent of the dimension. The logarithmic Sobolev inequality is closely
related to many important properties of the corresponding Markov semigroup such as
hypercontractivity. Moreover, the fact that the logarithmic Sobolev constant often does
not depend on the dimension makes it applicable in infinite-dimensional settings.

Such results in the Riemannian setting rely on ellipticity of the Laplace-Beltrami
operator as well as on geometric methods such as a curvature-dimension inequality, or
different versions of I' calculus. In the current paper we consider non-isotropic Heisenberg
groups which are the simplest non-trivial examples of sub-Riemannian manifolds. The
corresponding Laplacians are not elliptic operators but hypoelliptic which makes analysis
more challenging. In addition, the Riemannian curvature-dimension condition is not
available. While recently such geometric methods have been developed for some sub-
Riemannian manifolds starting with [5], they are not easily applicable to non-isotropic
Heisenberg groups of dimensions greater than 5.

We consider a family of non-isotropic Heisenberg groups of a symplectic space (IR2", w)
defined as follows.
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Definition 1.1. A non-isotropic Heisenberg group H" is the set R?" x R equipped with
the group law given by

(v, 2) % (v, 2') = (v+v’,z+z'—|— %w(v,v')), (1.1)

/

o / / 2n
v:(l‘hyla"'axnayn)’v :(x17y17"'7xn7yn)€R )

w: R xR — R,

where
n n
w(v,v') = Zai (v — 2ly;) = Zwi (vi, Vi), (1.2)
i=1 i=1
wi (vi, vi) = o (23y; — 27Y:)
v; = (xia yz) aV; = (.’[;, y;)
is a symplectic form on R?" and a1, aq, - - , o, are positive constants indexed in such a
way that

O<op Sa < - <ap=0pp1 =+ = Q.

Note that any non-degenerate symplectic form on R2?", that is, a bilinear anti-
symmetric form, can be written as a sum of symplectic forms on R?, as we describe in
Appendix A. In particular, this explains why such groups are referred to as non-isotropic.

If g =+ = a, = 1, we get the standard 2n + 1-dimensional Heisenberg group.
Sometimes the parametrization oy = -+ = «,, = 4 is used for the standard Heisenberg
group as in [7,33,35] et al. These are all isotropic Heisenberg groups referring to the fact
that the corresponding symplectic space is isotropic as described in Appendix A.

We equip the group H7 with a sub-Riemannian manifold structure and the cor-
responding distance depending on the symplectic form w. The logarithmic Sobolev
inequality we study is with respect to the heat kernel measure for the sub-Laplacian
associated with the sub-Riemannian structure. One of the questions is how the loga-
rithmic Sobolev constant depends on the symplectic form w and the dimension of the
Heisenberg group H7’.

Before describing our main result, let us review relevant mathematical literature. The
logarithmic Sobolev inequality is known to hold in the isotropic case. For n = 1 this
inequality has been established by H.-Q. Li in [33] with a; = 4. His proof is based
on pointwise upper and lower heat kernel estimates, and a gradient estimate known as
the Driver-Melcher inequality. Motivated by [25] M. Bonnefont, D. Chafai and R. Herry
in [10] used a random walk approximation to study the case n = 1. For n > 1, W.
Hebisch and B. Zegarlinski proved a logarithmic Sobolev inequality in [29] using the
tensorization property of logarithmic Sobolev inequalities and a lifting to the product
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group first introduced by [20, Section 3]. N. Eldredge in [18] proved the inequality on
H-type groups using the hypoelliptic heat kernel estimates, such estimates on isotropic
Heisenberg groups have been also shown in [31,34]. Another approach to use H.-Q. Li’s
heat kernel estimates to derive L' gradient bounds and a logarithmic Sobolev inequality
has been used in [1].

The measure considered in [1,10,18,29] is the hypoelliptic heat kernel measure on H"
which can be regarded as an analogue of the Gaussian measure on the Euclidean space. In
a different direction, [3] obtained a dimension-dependent upper bound for the logarithmic
Sobolev constant with respect to the invariant measure of a subelliptic generator using
a generalized curvature-dimension condition as developed in [5].

F. Baudoin and Q. Feng in [4] used Malliavin’s calculus to prove a version of loga-
rithmic Sobolev inequalities on the horizontal path space with a constant depending on
the geometry of the underlying space. In [19] R. Frank and L. Lieb proved a logarithmic
Sobolev inequality on a Heisenberg group, with the measure being a Haar measure. They
also show that the logarithmic Sobolev constant is sharp. In this case the logarithmic
Sobolev constant is dimension-dependent constant which is natural since they use a Haar
measure instead of the heat kernel measure that we consider in the current paper.

All of the results we mentioned previously apply only to the isotropic case. In the
non-isotropic setting, one special case of non-isotropic Heisenberg groups was considered
by E. Bou Dagher and B. Zegarlinski recently in a preprint [12], in which they derived
a dimension-dependent logarithmic inequality on such groups, but not for a heat kernel
measure.

Moreover, the dependence of the logarithmic Sobolev constant on geometric charac-
teristics of H7, has not been studied in either isotropic or non-isotropic cases. Our main
motivation for such a study is an application to infinite-dimensional Heisenberg-type
groups introduced in [14] and studied in the sub-Riemannian setting in [6,13], where
non-isotropy is a consequence of the infinite-dimensional setting. This application is in
spirit of the original use of a logarithmic Sobolev inequality but in a hypoelliptic infinite-
dimensional setting.

Our paper is organized as follows. We first consider the case n = 1 in Section 3.
Next, we study the tensorization argument of logarithmic Sobolev inequalities in the
sub-Riemannian setting. Then we deduce the logarithmic Sobolev inequality on the non-
isotropic Heisenberg group by regarding a non-isotropic Heisenberg group as a quotient
group obtained from the product group. This allows us to use a dimension-independent
constant in the logarithmic Sobolev inequality introduced in Section 4. Moreover, we
show that the logarithmic Sobolev constant can be chosen to not depend on w and the
dimension. In Section 5, we discuss a second approach when tensorization and lifting are
reversed.

Finally, we apply the results on non-isotropic Heisenberg groups to the infinite-
dimensional Heisenberg group with a one-dimensional center in Section 6. While the
classical finite-dimensional definition of hypoellipticity can not be directly used in this
setting, it is known that the heat kernel measure is smooth by [6,13]. Our results on
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the logarithmic Sobolev inequalities in the simplest infinite-dimensional hypoelliptic set-
ting represent the next natural step in studying the logarithmic Sobolev inequalities for
infinite-dimensional hypoelliptic diffusions.

2. Preliminaries
2.1. Non-isotropic Heisenberg groups as sub-Riemannian manifolds

A non-isotropic Heisenberg group HJ, introduced in Definition 1.1 is a Lie group,
with the identity being e = (0,0), and the inverse given by (v, z)fl = (—v,—2z). Its Lie
algebra b, := £ (H") = T.H" can be identified with the space R?"*! = R?" x R with
the Lie bracket given by

[(ah 01) ) (327 02)] = (07w (al7a2)) : (2'1)

The group H, is a connected nilpotent group, and by [11, Theorem 1.2.1] both the
exponential and logarithmic maps are global diffeomorphisms. Thus the exponential
map exp : b, — H?, and its inverse map log : H? — h,, are well-defined on the whole
Lie algebra b, of HJ;. Moreover, we can describe them explicitly by

exp (a,6) = (a,¢)
for any (a,c) € b, and
log (v, 2) = (v, 2)

for any g = (v, z) € H'. As a Carnot group H, has a one-parameter group of automor-
phisms called dilations

8y : HY — H" A > 0,
6x (v,z) == (Av,A\%2), g = (v,2) € H].
We refer to [9, Section 1.3] for more details.

Consider the following left-invariant vector fields on H identified with differential
operators on R2"*1 by

0 Q5 0

X7 == - S Y5
8 (673 8 .

Y;w(g):ay 5 za ) ZZL"'&” (22)
0

Z°(9) = o
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for any g = (z1,y1, "+ ,Tn,Yn,2) € H”. Note that the only non-zero Lie brackets for
left-invariant vector fields X{” and Y;* are

(X7 Y] =0 2% i =1,...,n,

so the vector fields {X*,Y*,i=1,--- ,n} and their Lie brackets span the tangent space
at every point, and therefore Hérmander’s condition is satisfied.
This implies that the group H” has a natural sub-Riemannian structure (H”, H*,

(-,)%,), where
HY =My = Span{X{ (9),Y;" (9),i=1,--- ,n}

is the horizontal distribution and the left-invariant inner product (-,-)3w is chosen in
such a way that {X¢, V¥ : ¢ = 1,--- ,n} is an orthonormal frame for the sub-bundle
H*. Note that both the vector space H; and the left-invariant sub-Riemannian metric
()%, = (-, )%~ depend on the symplectic form w.

We can equivalently describe the distribution H“ using a subspace of the Lie algebra
be. Namely, if a horizontal space H C b, = T H? is equipped with the Euclidean inner
product on R?" with the corresponding norm denoted by | - |3, then we can use the left
translation to define the sub-bundle H* with the induced left-invariant sub-Riemannian
metric (-, )%, and the corresponding left-invariant norm denoted by |- |3« on H{ for any
g € H];. We will sometimes identify the horizontal distribution H* and the horizontal
space H.

Recall that the Maurer-Cartan form 6 on a Lie group G is a Lie algebra-valued 1-form
defined by 6 (v) := 04 (v) = Ly-1,v, g € G, v € T,G.

Definition 2.1. A path 7 : [a,b] — H” is said to be horizontal if 7 is absolutely contin-

uous and 6, (7/(t)) € H for a.e. t. The length of a horizontal path 7 : [a,b] — H} is
defined to be

b
e (7) = / 160y (4 (1)) [pedt.

If «y is not horizontal we define Iy« (y) = 0.
The Carnot-Carathéodory distance between g1, go € H, is defined as

déc (g1, 92) == inf {lne (7) 7 (@) = g1,7 (b) = ga} - (2.3)

The Chow-Rashevsky theorem (e.g. [9, Section 19]) asserts that Hérmander’s condi-
tion implies that any two points in H, can be joined by a horizontal path, therefore
d%c(g1,g2) is finite for any g1, g2 € H?.
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It is known that the infimum in (2.3) is attained, e.g. [9, Theorem 5.15.5]. In addi-
tion, the Carnot-Carathéodory distance is a left-invariant metric on H?, that is, for any
g1,92,9 € HZ

d&o(91,92) = déo((92) " gn,€),

LCU'C(g_17 6) = d‘éc(ga 6)7
e.g. [9, Proposition 5.2.3, Proposition 5.2.4].

Notation 2.2. For any g = (21,1, , Zn,Yn, 2) € H? we denote by

ce(9) = déc(e, g)
the corresponding norm.

In addition to being left-invariant d¢(g) is a homogeneous norm (e.g. [9, Theorem
5.2.8]) and therefore

déc (02 (9)) = Mdec (9) ;A > 0,9 € H.

2.2. Sub-Laplacian and hypoelliptic heat kernel

Definition 2.3. For any f € C*°(H”), we let

n

S =Viuf =Y (X£HXP+ (Y2 )YP)

=1

to be the horizontal gradient.

By the classical result in [30] Hérmander’s condition implies that the sub-Laplacian

n

5= Mg =3 (X9 + (v)?) (2.4)

=1

is a hypoelliptic operator. For more on properties of A%, in a more general setting we
refer to [15, Section 3], some of which we describe below. In particular, the sub-Laplacian
only depends on the sub-Riemannian metric (-,-)§,. but it is independent of the choice
of orthonormal frame by [23, Theorem 3.6].

Next, we define the hypoelliptic heat kernel measure on H,. First we choose a bi-
invariant Haar measure dg on H[, to be the Lebesgue measure

dg = dz1dy; - - - dr,dy,dz
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on R?"*1. The sub-Laplacian A, is essentially self-adjoint on C° (H?) in L? (H?, dg).

The corresponding semigroup by e*2%/2 admits a probability transition kernel uy (g, dh)

such that ¢ (g, A) > 0 for all Borel sets A and
(e2528) (9) = [ £ Wit (9.1
Hn

for all f € L? (H2,dg).
As explained at [15, p. 952] the transition kernel measure u¢ (g, dh) admits a contin-
uous density, p¥ (g, h), with respect to the Haar measure dg

pi (g, dh) = py’ (g, h) dh. (2.5)

Note that the sub-Laplacian A§; commutes with left translations which together with
bi-invariance of the Haar measure imply that

pY (g, h) =pf (e,97'h), (2.6)

therefore it suffices to look at the function p¥ (e, g). From now on we use p¥ (g) to denote
this function and we will refer to it as the heat kernel.

Remark 2.4. An explicit formula for p¥(g) is

pr(9) =p;y (Vi, -V, 2) (2.7)
1 HES > DIvI2) 7
(2nt)ntl /e 1:[ smh (e8) s
2 =
for any g = (v1,---,Vp,2) = (T1,¥1,  , Tn, Yn,2) € HY, with v; = (z;,y;) for j =
1,---,nand || is the Euclidean norm on R?; see for example [35]. By (2.7) we see that
w 1 w n
Py (0a(9)) = mpfz_(g)a g € H. (2.8)

Definition 2.5. We call a family of measures {u% }1~o on H” with
dpy (9) = py (dg) = pf’ (e, dg) = pt (9) dg
the heat kernel measure.

By [15, Theorem 3.4 (ii)], {¥}+>0 is a family of probability measures. In addition
[16, Theorem 6.15] gives an equivalent way of defining the heat kernel measure, which
we will use later. For completeness, we include its statement below.
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Proposition 2.6 (Theorem 6.15 in [16]). {u¥ }iso s the unique family of probability mea-
sures on H7, that satisfies the heat equation as follows

g [t = [ (5850) @ @), 29)
Hz

n
w

t—0

lim / £ (9) dif (9) = £(e)
]H[n

for any t >0 and any f € C*° (H").

Definition 2.7. We say that H, with the heat kernel measure puy satisfies a logarithmic
Sobolev inequality with constant C (w,t) if

[ s i | [ Pae |og| [ Pau (2.10)
Hn Hr Hr
<Cwt) [ V57 Beodi

H

for any f € C° (H) and any t > 0. In such a case we also say that LSI(C (w,t), u¥)
holds.

As we mentioned in the introduction, the logarithmic Sobolev inequality with respect
to the heat kernel measure is known to hold in the isotropic case, both for n = 1 and
n > 1, and we include the result for n = 1 for a later reference. For n > 1 we refer to
[29, Theorem 7.3]. In the statement below we denote the standard symplectic form on
R? by wp, and the corresponding 3-dimensional isotropic Heisenberg group by H&JO.

Theorem 2.8 (Corollaire 1.2 in [33]). There is a constant C (wo,t) € (0,00) such that

[ o~ | [ e og | [ s
HZ, HZ, HZ,
<Clont) [ 195 o
HZ,
for any f € C (Hio) and any t > 0.
Remark 2.9. In addition to the statement above H.-Q. Li proved that

C (wo,t) = C*t,
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where C' is the constant in the Driver-Melcher inequality [33, Théoréme 1.1] proved
originally in [17] for p > 1. To the best of our knowledge there is no sharpness result for
this inequality.

First we reduce consideration of the logarithmic Sobolev inequalities on H} by relying
on time-homogeneity of the heat kernel (2.8) to concentrate on the case of t = 1.

Proposition 2.10. Suppose H is an non-isotropic Heisenberg group, then if LSI(C (w),
u1y) holds, then LSI(C (w,t), uy) holds for any t > 0, where C (w,t) = C (w)t.

Proof. Suppose f € C2° (H}}) and ¢ > 0, then we have fod ; € C (H), and therefore

/(foé\/—)Qlog(foéﬁ)Qd,uf

(fod)%duy | log /(foé\/g)Qdu‘f (2.11)

11 n
w

O /’VH 0(5\/— ‘de/’l’l'

Now we can use (2.8) with A = /¢ to see that dus = t""'pi (6 ;(g)) dg. Then (2.10)
follows with C'(w,t) = C'(w)t by using the change of variables 0 ;(g) + g in (2.11). O

3. Logarithmic Sobolev inequalities on ]HILIU
3.1. Comparison between isotropic and non-isotropic Heisenberg groups for n =1
For H}, = R? the group law defined by (1.1) can be written as follows

(w1,y1,21) * (T2, Y2, 22)

«
= (961 + 22, y1 +Y2,21 + 22 + 5 (x1y2 — xzyl)) (3.1)

for some a > 0. The isotropic Heisenberg group, H}

wy» corresponds to a = 1. The

difference between H! and H&,o is the symplectic form w on R? which in this case is
parameterized by « in (1.2). Our goal in this section is to study how the logarithmic
Sobolev constant on H! depends on the parameter o by comparing the non-isotropic
and isotropic cases.

Consider the map

F:H., — H.,
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F(g) =F (2,y,2) = (2,y,02) 9 = (2,y,2) € Hy,. (3.2)

The next statement shows that we can view F' as an isomorphism between sub-
Riemannian manifolds.

Lemma 3.1 (Comparison between H}UD and HY, ). The map F is a Lie group isomorphism
commuting with the left translation Lg, namely,

FoLy=LpgoF foranygeH,,. (3.3)

The restriction of the differential of F' to each fiber of the horizontal distribution at any
g€ Hi,o, ng|H;0 CHG — H“Ié(g), is an isometry. Moreover, for any f € C° (Hi)

V3. (f o F)lawo = [V flaw o F. (3.4)

The pushforward of the heat kernel measure uy® by F is the heat kernel measure uy on
HL,

Proof. Equation (3.3) follows directly from the multiplication law (3.1).
Using explicit formulas for the exponential map and F', we see that the differential of
F at e, dF, : TeHSJO — TF(e)Hl is given by

w

dF.(a,c) = (a,ac), (a,c) € Te]HIi,07 (3.5)
which shows that dF, is a bijective linear transformation. By (2.1) we see that the
Lie brackets are preserved under dF,, and thus dF, is a Lie algebra isomorphism. For
connected and simply connected Lie groups Hi)o and H}, the map F is a Lie group
isomorphism by [28, Corollary 5.7].

At the identity we have H¥° = H% = R? C R? and the differential of I at e restricted
to H° is the identity map on R? by (3.5), thus we have dF,[;«0 : HE® — HY. Note that
both (-,-)3 and (-, -)$;, are the same Euclidean inner products, so dFe|zo : HZ® — H
is an isometry.

Now we can use the fact that F' commutes with the left multiplication by (3.3) to
extend this to fibers of the horizontal distribution at any g € H[, . Consider dFglye0
Hgo — 7—[‘;-,( ) then left-invariance of sub-Riemannian metrics on these groups and (3.3)
imply that ng|H;vo CHG — H“Ié( 9) is an isometry on sub-Riemannian distributions.

Next, we see that the orthonormal frames {X“ ,Y“} on (HZ,H,(--)%) and
{Xwo Yol on (HY, ,H, (,-)57) introduced by (2.2) satisfy

wo?

(dFy) (X*°(9)) = X*(F(9)), (3.6)
(dFy) (Y*°(g)) = Y*(F(9)). (3.7)

For any f € C2° (HL), by (3.6) and (3.7) we have
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(V3F) (F(9)) = (X¥[)(F(9))) X*(F(g)) + (Y F)(F(9))) Y*(F(9))

= (dFy) (V3. (f 2 £)) (9))

therefore Equation (3.4) follows since dFy|ywo : Hg® — Hi ) is an isometry.
Finally, we compute the pushforward measure Fyu;®. For any Borel set £ on H,
change of variable gives

/ i = / ),

F-1(E) E

so Fyup© has the form

woy _ PP (F 7N (9)

a(Fyir) = ) g,
Alternatively one can check that Fupu® satisfies (2.9) using (3.6) and (3.7) without
knowing its explicit formula as above. By the explicit formula for p& on H. and Defini-
tion 2.5, we can show that the pushforward measure Flypuy® is the heat kernel measure

e on HY. O
3.2. Logarithmic Sobolev inequalities on H,

We start by recalling that by Theorem 2.8 the logarithmic Sobolev inequality
LSI(C (wo) , 1) holds on the isotropic Heisenberg group H, .

Theorem 3.2. The logarithmic Sobolev inequality LSI(C (w)t, u¥’) holds on HY with the

logarithmic Sobolev constant C (w) = C (wp), the constant for the isotropic Heisenberg

1

group H, , and thus C (w) can be chosen to be independent of w.

Proof. By [29, Theorem 7.3] the isotropic Heisenberg group Hia satisfies a logarith-
mic Sobolev inequality LSI(C (wo), 13°). Note that by Proposition 2.10, it suffices to
compare the constants at time ¢t = 1, that is, to find constants in LSI(C (w),u{) and
LST(C (w) , 15").

For any f € Cg° (HY), we have fo F € C° (HL ), where F is the map defined by
(3.2). Then we can use the logarithmic Sobolev inequality LSI(C' (wo), #7") on H,  for
f o F to see that

[ orrogtrorpau — | [ (rorpan g [ (7o

H} HL H!
wo

“o «“o

<Clwn) [ IV5(F 0 F)endii.

1
Hwo
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Using the change of variables F'(g) — ¢ in this inequality together with Lemma 3.1, we see
that LSI(C (wo), ) holds on H}, which implies that we can take C (w) = C (wp). O

Remark 3.3. Note that the argument used in the proof of Theorem 3.2 shows that if
there is an optimizer for LSI(C (wo), 13°), we can find an optimizer for LSI (C (w), i)
using the change of variables. In this case, LSI (C (w) t, u¥’) and LSI(C' (wp) ¢, p3°) would
have the same optimal constant C (wp), which is independent of the symplectic form w
as well.

Remark 3.4. The map F can be regarded as a scaling of the metric on the horizontal
space H. Indeed, a scaling of an orthogonal symplectic basis as described by Proposi-
tion A.3 is equivalent to changing parameters aq, ..., @,. Thus Theorem 3.2 shows that
the logarithmic Sobolev constant (and the optimal one if it exists) in the case n = 1 is
independent of the sub-Riemannian metric we equip R3. Note that this metric can be
thought of as a scaling of a symplectic basis in Theorem A.2. The fact that the loga-
rithmic Sobolev constant is independent of w is not surprising when compared to the
phenomenon for the Gaussian measure on a Euclidean space equipped with a Riemannian
metric corresponding to the covariance of the Gaussian measure.

4. Logarithmic Sobolev inequalities on H
4.1. Tensorization in the sub-Riemannian setting

Tensorization is a fundamental property of logarithmic Sobolev inequalities, that is,
the logarithmic Sobolev inequality holds on the product space of two probability spaces
each of which satisfy a logarithmic Sobolev inequality (e.g. [27, Theorem 4.4]). Here we
include a version of the tensorization of logarithmic Sobolev inequalities on the product
group of three-dimensional non-isotropic Heisenberg groups.

Let {]H[}UJ —1 be a family of 3-dimensional Heisenberg groups. Then the product group
HY, x---xH,, is asub-Riemannian manifold with the horizontal sub-bundle H := H“' &
- @H“n defined fiberwise and the corresponding metric (-, -)3; and norm |-|3. The sub-
Laplacian for the product group IHIUIJ1 XX H&,n is Z?Zl A:Lj which is an operator on the
product space as considered in [40, Proposition 18]. For any f € C° (Hijl X +ee X Hin),
we denote the horizontal gradient by Vy f. Finally the corresponding heat kernel measure
pt is the product measure py' @ -+ @ py™.

Applying [40, Proposition 18] together with Theorem 3.2 gives the following results
for the product group HY, x --- x HY .
Proposition 4.1. The product group Hi,l X oo X Hi)n satisfies a logarithmic Sobolev in-
equality LS (C (w1, -+ ywn,t), pi* @ -+ @ u™), where the constant can be chosen to be
C (w1, ywn,t) = C(wo)t which is independent of the symplectic forms wy,- -+ ,wy, and
n.
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4.2. From the product group to a non-isotropic Heisenberg group

Given H”

: 1 1
&, we consider H, x --- x H

wn?

where w; for ¢ = 1,--- ,n are symplectic
forms on R? defined by (1.2). The following construction was introduced in [20, Section
3] and used by [29, Theorem 7.3] for the isotropic Heisenberg group H;, . Here we extend
it to the non-isotropic case. Define

LTl 1 n
miH,, x---x H, — HJ,

7T<gl7 e agn) = 7T($17y13217 e 7xn7yn72n> = (5517y17 e 7xn7ynaz)a (41)
n
i=1
for any (g1, ,gn) € HL, x --- x H}, . The next statement shows that we can view

as a homomorphism between sub-Riemannian manifolds.

Proposition 4.2 (H? and H}, x --- x H}, ). The map = is a Lie group homomorphism
commuting with the left translation Lg, ... .y on the product group as follows

ﬂ-OL(gl,~~ Lﬂ.( yom, (42)

Sgn) T g1, 9n

(glv"' 7gn) GHSH X XHz,lun'

The restriction of the differential of ™ to horizontal spaces,

w

dﬂ-(gl»'” ’gn)|7{<91,-~- om) ,H(glx'“ gn) 7 Hﬂ(g1,-~- gn)

is an isometry. Moreover, for any f € C° (H])

IV (fom)ly =|Viflae om. (4.3)

In addition, the pushforward by w of the heat kernel measure p; on H&,l X - X Hin 18
the heat kernel measure py on H.

Proof. Equation (4.2) follows directly from the multiplication law given by (1.1).
Recall again that for connected and simply connected Lie groups to show that a map
is a Lie group homomorphism it is enough to check that its differential at the identity
is a Lie algebra homomorphism by [28, Theorem 5.6]. Applying this to H, x--- x H,
and H”

&, we see it is enough to check that the differential of 7 at the identity is a Lie

“sen) (H1 X X H&Jn) = TelHil D-- ‘@TenH({)n

algebra homomorphism between T, .. o
and Tr(e, ... e, )H{;. Based on the explicit formula of the exponential map and 7, we have

=1

n
(dﬂ(el,w 7en)) (317017 crc s, An, Cn) = (ala cc s, Ap, ZQ)
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(alvclv T 7anacn) € T(el,---,en) (Hivl X X Hi;n) .

By (2.1) we see that the Lie brackets are preserved under drm e, ,.. and thus dm,

Cen)s en
is a Lie algebra homomorphism. : :

At the identity (e1,---,en), we have Hee, ... o) = HE = R?” and the differential
of m at (e1,---,e,) restricted to H(c, ... ,) is the identity map on R?". Note that
(s )My eny and (-, )3, are the same Euclidean inner products, so

dm( T Her o en) — HE

er, ’En)|H(el,»-»

en)

is an isometry.

Now we can use the fact that 7 commutes with the left multiplication by Equation
(4.2) to extend this to fibers of the horizontal distribution at any g € H} X --- x HJ .
Namely, the left-invariance of sub-Riemannian metrics on these groups and (4.2) imply
that

w

- HW(gn“ 29n)

(s 9 la,, oy Flan o)

is an isometry on the fibers of these sub-Riemannian distributions.
For any (g1, - ,9n) = (T1,Y1,21, " » Tns Yn,y 2n) € Hi,l X o X HLH andi=1,---,n
consider vector fields

0 (673 0
Xwi - _ .
(g17 7gn) axz 2 yl 821"
0 (67 0
ywi e gn) = —— 4 —a——.
(917 9 ) 8?/1 + 9 x 821
Under the product sub-Riemannian structure {X“i, Y% : ¢ = 1--- n} form an or-

thonormal frame for (HY, x -+ x HY ,#,(-,-)3). We see that the orthonormal frames
{X“i Y% : 4 =1,---,n} on the product manifold (Hil X oo X H&JH,H, <-,->H) and
{Xp, V¥ i=1,--- ,n}on (H, H, (-, )%) defined by (2.2) satisfy

i

(dﬂ-(gh'“ ,gn)) (sz (glv e 7977,)) = X;U (77(917 e 7gn)> ) (44)
(dﬂ-(gl,'“ ,gn)) (YM (917 e 7971)) = Yriw (71'(91, t ,gn)) . (45)

This shows that for any f € C° (H)
(Vi f) (g, -+ gn))
= Z[((Xff)Xf) (T (g1, 9n) + (V2 F) V) (7 (g1, 9n))]

= (dﬂ'(ghm ,gn)) (Vu(fom)(gr, -+ 5 9n)),
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which proves (4.3) since dm(g, ... q4,) restricted to Hg, ... 4,) is an isometry.

Finally, to show that the pushforward of the heat kernel measure u; by 7 is the heat
kernel measure p$ on H, we will use Proposition 2.6. For any f € Cg° (H”), we have
fome O (HYL, x---x HY ), and therefore by (4.4) and (4.5)

(ZA““> (fom)= (A% f)om. (4.6)

By Proposition 2.6 applied to the heat kernel measure p; we see that

ka / (Form) (g1, »gn) din
H}ulx---x]HILn

= / << ZA“1> f07r>(91,---,gn)dut7
H! H,

w1><...><

lim / (fom)(gr,--- ,gn)due = (fom)(er, - ,en).

Then by Equation (4.6) and using the change of variables in the heat equation for
together with Proposition 2.6 applied to mgu; implies that mxpu, is the heat kernel
measure puf on HY. O

Remark 4.3. From the proof of Proposition 4.2, we see that we can identify H = Hg! &
@ Her for g € HY and (g1, -+, gn) € HY, x--- x H}, with g =7(gy,--- ,gn)

Remark 4.4. The results in [20, p. 38] say that we can identify the isotropic Heisenberg
group H, ~with a quotient group. By Proposition 4.2, we can also identify H, with
a quotient group G/N where G = H}, x --- x H, and N = {(0,z1,---,0,z,) €
HY, > x HE 0> 2z =0}

Wn,

Theorem 4.5. The logarithmic Sobolev inequality LSI(C (w)t, u¥’) holds on H, where

w?’
C (w) can be chosen to be equal to C (wp). In particular, the logarithmic Sobolev constant

C (w) 1is independent of both the symplectic form w and the dimension of the group H.

Proof. For any f € C° (HZ), we have for € C2° (HL, x--- x H} ) where 7 is de-
fined by (4.1). Then by Proposition 4.1 we can apply the logarithmic Sobolev inequality
LSI(C (wo) t, pt¢) on HY, x -+ x HY to fom to see that

[ e os(r o

1 s...xHL
HE,, x--xHE
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_ ({H / (fo 7‘[‘)2th log / (fo 7T>2th
< C (wo)

xHL Lox...xHL

w1 wn

’ / Vel f o m)Byd.

1 1
HE, x--xHE

Using the change of variable 7 (g1, -, g,) — ¢ in this inequality together with Propo-
sition 4.2, we see that LSI (C (wg)t, 1¥’) holds on H. Thus we can take C' (w) = C (wo)
which is independent of w, n and the dimension of the group H,. O

5. The second approach: tensorization and lifting reversed

This section describes an approach where the order of tensorization and the lifting to
the product group is reversed. Define
Tt HY, x oo x HY — HZ,

ﬂ-UJ(glﬁ"' agn) = ﬂ-w(xlayhzlf" ax’ruy’ruzn) = (-rlayl,"' 7mn,yn7z)a (51)
n

Z:Zaizi
1=1

for any (g1, ,gn) € HL, x --- x H}, , where a; are given by Equation (1.2) for i =
1,--- ,n. Note that in this approach the lifting depends on the symplectic form w. The
next statement shows that we can still view 7, as an homomorphism between sub-

Riemannian manifolds.

Proposition 5.1 (H, and Hio X oo X ]HI}JO). The map 7, is a Lie group homomorphism

such that for any (g1, ,gn) € HUIJO X o+ X HUEO, it commutes with the left-translation
L(gh... gn)s €

Tw © Lgy o gn) = L (g1, 9n) © T (5.2)

and the differential of m,, at (g1, - ,gn) restricted to horizontal spaces, al(7rw)(g1 e gn)

o omy  Fgiresan) = Mo (g1 gy 18 an isometry. Moreover, for any f € CZ° (H")

IVau(f o)l = Vi flae oo (5.3)

In addition, the pushforward of the heat kernel measure u; by m, is the heat kernel
measure py on HT.

Proof. In this case, the explicit formula for the differential of m, at (ej,- - ,en),
A(T0)(er o en) * Tlerren) (g X o X HE ) = T ey e e HE



18 M. Gordina, L. Luo / Journal of Functional Analysis 283 (2022) 109500

(d (ww)(el7<.~ _,en)) (a17 C1,"*+ ,Qn, Cn) = (ah crt,An, Zaici> )
i=1
(alv Ciy- aanacn) € T(el,-u en) (H(}JO X X Hi;o) = TelHijo S D Ten,Hizo'
The rest of the proof is similar to the proof of Proposition 4.2. O
Using the lifting 7, we can also prove Theorem 4.5 as follows.

Second proof of Theorem 4.5. First we can apply Proposition 4.1 to the group HSJO X
-+ x H, to see that it satisfies a logarithmic Sobolev inequality LSI(C (wo,n,t) , u° ®

<+ @ puy®), where the logarithmic Sobolev constant can be chosen to be C (wp,n,t)
C (wo) t. For any f € C2° (H?), we have fom, € C2° (HL, x--- x HL ) where m, is
defined by (5.1). As in the first proof of Theorem 4.5, we can use the change of variables
Tw (91, » gn) + g in the logarithmic Sobolev inequality on HY, x --- x H}, for fom,,
and together with Proposition 5.1 we get the same result. O

6. Logarithmic Sobolev inequalities on infinite-dimensional Heisenberg groups

In this section, we consider an application of the results on non-isotropic Heisenberg
groups to infinite-dimensional Heisenberg groups with a one-dimensional center. We aim
to prove the logarithmic Sobolev inequality on such an infinite-dimensional Heisenberg
group by the finite-dimensional projection approximation approach used in [6,14]. That
is, we will approximate the logarithmic Sobolev inequality on the infinite-dimensional
Heisenberg group by logarithmic Sobolev inequalities on finite-dimensional projection
groups which are non-isotropic Heisenberg groups discussed in previous sections. The
crucial ingredient here is that we proved previously that the LSI constant can be chosen
to be independent of the dimension of finite-dimensional projection groups.

We start by reviewing the definitions for infinite-dimensional Heisenberg-like groups,
which are infinite-dimensional Lie groups modeled on an abstract Wiener space, and
collect some properties of the finite-dimensional projection approximation. We may omit
some details, but much of the material in this section also appears in [14,21], and subse-
quently in [6,13,22].

6.1. Abstract Wiener spaces

We start by summarizing several well-known properties of Gaussian measures and
abstract Wiener spaces that are needed later. These results as well as more details on
abstract Wiener spaces may be found in [8,32].

Suppose that W is a real separable Banach space and By, is the Borel o-algebra on
w.
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Definition 6.1. A measure p on (W, By ) is called a (mean zero, non-degenerate) Gaussian
measure provided that its characteristic functional is given by

f(u) == /eiu(w)du(:ﬁ) = 724w, for all u € W*, (6.1)
w

for ¢ = qu : W* x W* — R a symmetric, positive definite quadratic form. That is, ¢ is
a real inner product on W*.

A proof of the following standard theorem may be found for example in [14, Appendix
A] and [6, Lemma 3.2, Theorem 3.3].

Theorem 6.2. Let p be a Gaussian measure on a real separable Banach space W. For
p € [1,00), let

Cyi= [ Tl duw). (6.2)
w

Forw e W, let

sup |u(w)|
uew=\{0} \/q(u,u)

and define the Cameron-Martin subspace H C W by

[wllar o=

H:={heW:|h|g < oo}
Then

(1) Forallp € [1,00), C, < 0.

(

(3) There exists a unique inner product (-,-)g on H such that ||h||% = (h,h)y for all
h € H, and H is a separable Hilbert space with respect to this inner product.

(4) For any h € H, ||hllw < VCa||h|m-

(5) If {e;}32, is an orthonormal basis for H, then for any u,v € H*

()

) H is a dense subspace of W.

q(u,v) = (u,0)me =Y ule;)v(e;).

j=1

(6) If u,v € W*, then

w(w)o(w) dp(w) = q(u, v).

S—
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It follows from (4) that any v € W* restricted to H is in H*. Therefore, by (5) and (6)
/Uz(w) dp(w) = q(u,u) = |[ullFe =D |u(e;)|*. (6.3)
w J=1
6.2. Infinite-dimensional Heisenberg-like groups

We revisit the definition of the infinite-dimensional Heisenberg-like groups that were
first considered in [14]. Note that since we are interested in hypoelliptic heat kernel
measures on these groups, we consider the topology described previously in [6,13,21].
First we set the following notation which will be used for the rest of the paper. Note
that we consider only the case of the one-dimensional center.

Notation 6.3. Let (W, H, 1) be a real abstract Wiener space. Suppose w : W x W — R
is a continuous anti-symmetric bilinear form on W.

Remark 6.4. As stated in [14, Proposition 3.14] it is surprising to see that the continuity
of the symplectic form w implies that

o0
2 2 2
lwll3 == lwllipre-or == P lw(eie)]* < oo,
i,j=1

where {e;}9°, is an orthonormal basis for H, and thus the Hilbert-Schmidt norm of w is
finite.

Definition 6.5. Let g denote W x R when thought of as a Lie algebra with the Lie bracket
given by

[(X1,V1), (X2, V2)] == (0,w(X1, X2)). (6.4)

Let G denote W x R when thought of as a group with multiplication given by

1
9192 == g1 + g2 + 5[91,92],

where g; and go are viewed as elements of g. For g; = (w;,¢;), this may be written
equivalently as

1
(wi,¢1) « (wa, ) = (w1 4+ wo,c1 +co + 5&)(’([)1,’([}2)) . (6.5)

We will call G constructed in this way an infinite-dimensional Heisenberg group.
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It is easy to verify that, given this bracket and multiplication, g is indeed a Lie algebra
and G is a group. Note that g~ = —g and the identity e = (0, 0).

Notation 6.6. Let gcops denote H xR when thought of as a Lie subalgebra of g, and we will
refer to gops as the Cameron-Martin subalgebra of g. Similarly, let Gops denote H x R
when thought of as a subgroup of G, and we will refer to Geps as the Cameron-Martin
subgroup of G.

We will equip g = G with the homogeneous norm

1w, llg =/ lwll + e,

and analogously on goy = Gey we define

1(A; @) llgen == 1/ IAll + lal.

One may easily see that G and G¢ps are topological groups with respect to the
topologies induced by the homogeneous norms, see for example [21, Lemma 2.9)].

Before proceeding, we describe the basic examples for the construction of these infinite-
dimensional Heisenberg groups.

Example 6.7 (Finite-dimensional non-isotropic Heisenberg group). Let W = H = R?".
Suppose w is a symplectic form on R?”. Then G = R?" x R equipped with the group
operation defined by (6.5) is a non-isotropic Heisenberg group with the group law defined

by (1.1).

Example 6.8 (Heisenberg group of a symplectic vector space). Let (K, (-,-)) be a Hilbert
space and @ be a strictly positive trace class operator on K. For h, k € K, let (h,k)g =
(h, Qk) and ||h||q := +/(h, h)q, and let (Kq, (-,-)g) denote the Hilbert space completion
of (K,|-|lg). Then W = (Kg)re and H = Kge determines an abstract Wiener space
(see, for example, of [32, Exercise 17 on p. 59]). Letting

w(w, 2) == Im(w, 2)q,

then G = (Kg)re X R equipped with a group operation as defined by (6.5) is an infinite-
dimensional Heisenberg-like group.

6.3. Finite-dimensional projection groups

The finite-dimensional projections of G defined in this section will be important in
the sequel. The construction of these projections is quite natural as they come from the
usual projections of the abstract Wiener space; however, the projections defined here are
not group homomorphisms.
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As before, let (W, H, ) denote an abstract Wiener space. Let ¢ : H — W be the
inclusion map, and * : W* — H* be its transpose so that i*¢ := £ o i for all £ € W*.
Also, let

H,:={h € H: (- h)g € Range(i*) C H*}.

That is, for h € H, h € H, if and only if (-, h)y € H* extends to a continuous linear
functional on W, which we will continue to denote by (-, h)y. Because H is a dense
subspace of W, ¢* is injective and thus has a dense range. Since H > h+— (-, hyy € H*
is a linear isometric isomorphism, it follows that H, > h — (-,h)g € W* is a linear
isomorphism also, and so H, is a dense subspace of H.

Suppose that P : H — H is a finite rank orthogonal projection such that PH C H,.
Let {e;}7_; be an orthonormal basis for PH. Then we may extend P to a (unique)
continuous operator from W — H (still denoted by P) by letting

n

Pw := Z(w,ej>Hej (6.6)

j=1
for all w € W.

Notation 6.9. Let Proj(W) denote the collection of finite rank projections on W such
that

(1) PW C H,,

(2) P|g : H — H is an orthogonal projection (that is, P has the form given in equation
(6.6)), and

(3) PW is sufficiently large to satisfy Hérmander’s condition (that is, {w(A, B) : A,B €
PW} =R).

For each P € Proj(W), we define Gp := PW x R C H, x R and a corresponding
projection mp : G — Gp

wp(w,z) = (Pw,x).
We will also let gp = Lie(Gp) = PW x R.

Note that for each P € Proj(W), Gp is a finite-dimensional connected unimodular
Lie group, and gp is step 2 stratified Lie algebra with H = PH and V = R. Moreover,
when w is restricted to PW x PW, we see that w|pwxpw : PW x PW — R is a
symplectic form from the non-degeneracy and the anti-symmetry of w. By Theorem A.2
we have dim PW is even. Together with Proposition A.3 and (6.5), we see that for each
P € Proj(W), Gp is a non-isotropic Heisenberg group equipped with the group law given
by
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1
(vi,¢1) - (v2,c2) = (Ul +vg,c1 + 2+ 200(’[1171)2))

1
= (Ul +vg,c1 + 2+ 2W|PW><PW('UlaU2))

for any (v;, ¢;) = (Pw;, ¢;) € PW x R, which is consistent with (1.1).
6.4. Subelliptic Laplacian and the heat kernel measure on G

6.4.1. Subelliptic Laplacian and horizontal gradient on G

In this section, we give the definition of the subelliptic Laplacian and the horizontal
gradient on G analogously to how it is done in the non-isotropic case. To begin with, we
recall some definitions of derivatives on G. For more details, we refer to [14, p. 8-10] and
[6, Section 3.4].

For z € G we denote by L, : G — G the left multiplication by z. As G is a vector
space, to each z € G we can associate the tangent space T, G to G at x, which is naturally
isomorphic to G.

Notation 6.10 (Linear and group derivatives). Let f : G — C denote a Fréchet smooth
function for G considered as a Banach space with respect to the norm

|(w, )le ==/ llwllf + |ef*-

Then, for x € G, and h, k € g, let

Fa)h = onf(a) = o

f(x +th)
0

and
f”(!L’) (h ® k) = 8h8kf(x)

For v,z € G, let v, € T, G denote the tangent vector satisfying v, f = f/'(x)v. If z(¢) is
any smooth curve in G such that z(0) = x and ©(0) = v (for example, z(t) = x + tv),
then

d

9 x(t).

0

Lg*U:c =

In particular, for z = e and v, = h € g, again we let iL(g) := Lg.h, so that h is the
unique left invariant vector field on G such that h(e) = h. As usual we view h as a first
order differential operator acting on smooth functions by




24 M. Gordina, L. Luo / Journal of Functional Analysis 283 (2022) 109500

where o(t) is a smooth curve in G such that ¢(0) = e and ¢(0) = h (for example,
o(t) = th).

The explicit formula to compute h f is given in [14, Proposition 3.7]. Moreover, [14,
Proposition 3.7] shows that the Lie algebra structure on g induced by the Lie algebra
structure on the left invariant vector fields on G is the same as the Lie algebra structure
defined by (6.4), which is consistent with the finite-dimensional setting.

Now we recall the definition of some special class of functions that are used often in
this setting.

Definition 6.11. A function f : G — C is a (smooth) cylinder function if it may be
written as f = F o7p, for some P € Proj(W) and (smooth) function F : Gp — C. A
cylinder polynomial is a cylinder function, f = Fonp : G — C, where P € Proj(WW)
and F is a real or complex polynomial function on Gp.

We consider the second-order differential operator below as an analogue of the sub-
Laplacian in the finite-dimensional setting.

Definition 6.12. Let {ej};il be an orthonormal basis for H. For any smooth cylinder
function f: G — R, we define the subelliptic Laplacian as

Lf(x) = i; [(675)24 (@). (6.7)

By [6, Proposition 3.17], (6.7) is well-defined and independent of the choice of basis.

Definition 6.13. For any cylinder polynomial u, define the horizontal gradient grady :
G — H of u by

—

(grad g u, h) g = (h,0)u (6.8)
for any h € H.

Let {e; }j’;l be an orthonormal basis for H. Then we have

gradyu = i ((;v,())u) ().

Jj=1

For the finite-dimensional groups Gp we may define the same operators Lpf and
gradly f for f € C°°(Gp). In particular, if {e;}?, is an orthonormal basis of PH, then

no_ 2 ne—_~
Lpf=Y (e;,0) f and grad f=) (e;,0)f
j=1 j=1
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which are consistent with (2.4) and Definition 2.3.

6.4.2. Distances on Geop

The sub-Riemannian distance on Gy can be defined similarly to how it is done in
finite dimensions. We recall its definition and relevant properties, including the fact that
the topology induced by this metric is equivalent to the topology induced by || -

||ECM'
We do not use these facts, but we include them for completeness.

Notation 6.14 (Horizontal distance on Gy ).
(1) For x = (A,a) € Gow, let
2[5y, = 14N + laf*.

The length of a C'-path o : [a,b] — Gy is defined as

/‘LU 1(s)* |ECMd

(2) A C'-path o : [a,b] = Gew is horizontal if Lyyy-1,6(t) € H x {0} for a.e. t. Let
C’é;} denote the set of horizontal paths o : [0,1] = G-
(3) The horizontal distance between x,y € Gy is defined by
d(z,y) == inf{l(0) : 0 € C’CM such that 0(0) = = and o(1) = y}.
The horizontal distance is defined analogously on Gp and will be denoted by dp.

Remark 6.15. Note that if o(¢t) = (A(t),a(t)) is a horizontal path, then

Loy-1:6(t) = (A(t),a(t) - %W(A(t),A(t))> € H x {0}

implies that ¢ must satisfy

and the length of o is given by

1 1
— [ 1o 6)pens ds = [ IAG L ds.
0 0
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The following statement is [21, Proposition 2.17, Proposition 2.18]. We refer the reader
to that paper for the proofs.

Proposition 6.16 (Proposition 2.17 and Proposition 2.18 in [21]). If the symplectic form w
is a surjective map onto R, then there exist finite constants K1 = K1 (w) and Koy = Ko (w)
such that

K1 ([|Allz + Vlal) < d(e, (A, a)) < Ka([[All + V/]al),
for all (A, a) € gom. In particular, the topologies induced by d and ||-| 4o, are equivalent.

Remark 6.17. The equivalence of the homogeneous norm and horizontal distance topolo-
gies is a standard result in finite dimensions. However, the usual proof of this result relies
on compactness arguments that must be avoided in infinite dimensions. Thus, the proof
for Proposition 6.16 included in [21] necessarily relies on different methods particular to
the structure of the present groups. The reader is referred to [21] for further details.

As stated in [6, Lemma 3.25], the horizontal distances on Gy and Gp are connected
as follows.

Lemma 6.18 (Lemma 3.25 in [6]). Let {P,}>, C Proj(W) such that P,|g T Ig. For
anyn € N and x € Gp,, then

dp, (e,z) = d(e,z), asn — oo.

6.4.3. Heat kernel measure on G

In this section, we recall the definition of the heat kernel measure on G and some
relevant properties. For simplicity, we only include the key ideas and we refer to [6,
Section 5.1], [21, Section 2.6] and [13, Section 4, 8] for more details.

First, we recall the definition of hypoelliptic Brownian motion {g;};>0 on G and state
its basic properties. Let {By;}:>0 be a Brownian motion on W with variance determined
by

E [(Bs, h) g {Bt, k) ] = (h, k) g min(s, t),

for all s,t > 0 and h,k € H.. A hypoelliptic Brownian motion on G is the continuous
G-valued process given by

t
1
9= | Buy [wlBaaB)
0
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where fgw(Bs,st) is taken to be the limiting process defined in [14, Proposition 4.1]
and its well-definedness relies on the finiteness of the Hilbert-Schmidt norm of w. By 6,
Proposition 5.6], 3L is the generator for {g}¢>0.

Now we define the heat kernel measure on GG as the end point distribution of a Brow-
nian motion.

Definition 6.19. We call a family of measures {14}:~¢ on G defined by v, = Law(g;) for
any t > 0 the heat kernel measure at time t.

Analogously to the heat kernel measure on non-isotropic Heisenberg groups, [6, Corol-
lary 5.7] shows that {14}:~¢ satisfies the heat equation as follows

%/f(g) dvy (9)2/(%Lf) (9)dve (9),
G G

lim/f(g)dl/t (9) = f(e)
G

t—0

for any ¢ > 0 and any cylinder polynomial f.

We include the following proposition (see [21, Proposition 2.30]) which states that, as
the name suggests, the Cameron-Martin subgroup is a subspace of heat kernel measure
0.

Proposition 6.20 (Proposition 2.30 in [21]). For allt > 0, 1,(Gop) = 0.

Finally, we collect some results that connect ¢g; and v; with the Brownian motion and
the heat kernel measure on finite-dimensional projection groups. They can be found in
[6] and [21].

Notation 6.21. For P € Proj(W), let g/’ be the continuous process on Gp defined by

t
1
gl = PBt,i/w(PBs,dPBS)
0

and let v} := Law(g?).

As stated in [6, Proposition 5.4], g¥ is a Brownian motion on G'p and {g; }¢~o can be
approximated by the hypoelliptic Brownian motion on the finite-dimensional projection
groups. In particular, for all p € [1,00) and ¢t > 0, for a family of increasing projections
{Pn}2; C Proj(W), we have

lim E [sup||g5 — g, P} =0. 6.9
i E fsup g~ orl (69)
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For all projections satisfying Hérmander’s condition, the Brownian motions on Gp
are subelliptic diffusions and thus their laws are absolutely continuous with respect to
the finite-dimensional reference measure and their transition kernels are smooth. By [21,
Lemma 2.27], for all P € Proj(W) and ¢ > 0, we have

vl (dx) = pF (x)dx (6.10)

where dz is the Riemannian volume measure (equal to Haar measure) and pf () is the
heat kernel on G p. This is consistent with Definition 2.5.

6.5. Closability of the Dirichlet form and logarithmic Sobolev inequalities on
infinite-dimensional Heisenberg groups

We start by proving the closability of the Dirichlet form corresponding to the hori-
zontal gradient.

Theorem 6.22. Given cylinder polynomials u, v on G, let

Y (u,v) = /(gradH u, grad ;7 v) gdvy. (6.11)
el

Then &) is closable and its closure, &, is a Dirichlet form on L? (G, v;).

Proof. The closability of & is equivalent to the closability of the horizontal gradient
operator grady : L? (1) — L? (1) ® H with the domain D (grad;) being the space of
cylinder polynomials on G. To check the latter statement, by [38, Theorem VIIL.1], it
suffices to show that grad; has a densely defined adjoint. For this we use an integration
by parts formula for the hypoelliptic heat kernel measure v;. Namely, for any h € H and
any cylindrical polynomials u and v we have

(gradg u,v - h) 1208 :/mu-vdyt

o~

G

— [ (®0) (w-0) ~u- (000 d
G

— N*l - (h,O)U>L2(W),

.0
(u,v(h,0)

where we used (6.8) in the first equality, the product rule in the second equality and the
integration by parts formula for v; (see [13, Corollary 8.10] for the explicit expression

—

for (h,0) ) in the third equality. This shows that v - h is in the domain of the adjoint of
grad ;. This completes the proof since functions of the form v-h are total in L? (1) ® H.
Therefore, we can see that the closure of £, & is a Dirichlet form on L? (G, ). O
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By [36, Chapter IV, Section 4b] or [39, Proposition 3.1], such a closed Dirichlet form
& that we constructed is quasi-regular, which allows us to study the associated process
in the infinite-dimensional setting we are considering. In this section, we will extend our
consideration of functions to a wider class and then prove a hypoelliptic logarithmic
Sobolev inequality on G.

Definition 6.23. We say that G with the heat kernel measure 1, satisfies a logarithmic
Sobolev inequality with constant C' (w,t) if

/f2 log f2dv, — /deVt log /deut < C(w,t) & (S, f) (6.12)
G

G G

for any f € D (&) and any ¢ > 0. In such a case we also say that LSI(C (w,t),14) holds.
We can now prove a hypoelliptic logarithmic Sobolev inequality on G.

Theorem 6.24. The logarithmic Sobolev inequality LSI (C (w,t),v¢) holds on G where the
logarithmic Sobolev constant can be chosen to be C (w,t) = C (wp) t.

Before we proceed to the proof we observe that the logarithmic Sobolev constant is
the same as in Theorem 4.5 independent of w.

Proof. Our proof uses an approximation argument which is similar to the elliptic case
in [14, Section 8.2], even though we do not have uniform curvature bounds.

Any f € D(&) can be approximated by the case when the functions are cylinder
polynomials by a standard limiting argument similarly to [26, Example 2.7], so it suffices
to consider f: G — R to be a cylinder polynomial as in Definition 6.11. Let {P,}52, C
Proj(W) such that P,|g 1T Ig, then {Gp, }n>1 is a family of non-isotropic Heisenberg
groups. By Theorem 4.5 together with (6.10), we have

/ f2log f2dvl — / fdv | log / frdvln
Gpn Gpn GPT,,

< C(wo)t / ‘

Gpn

2
gradﬁ" fHH dytp".

Letting n — oo in the above inequality, by (6.9) and the Dominated Convergence theo-
rem, we can prove (6.12). Thus we can take C (w,t) = C (wp) ¢t which is the same as the
constant for the non-isotropic finite-dimensional Heisenberg group, which is essentially
the constant on the three-dimensional isotropic Heisenberg group, and therefore it is
independent of w. O
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Appendix A. Symplectic forms

The exposition below is based on [37, Chapter 2]. Suppose V is a real vector space.
In what follows we assume that all objects are defined over R.

Definition A.1. An anti-symmetric bilinear form is a bilinear form w : V' x V' — R such
that w (v,w) = —w (w,v) for all v,w € V. A symplectic form is a non-degenerate anti-
symmetric bilinear form, that is, such an anti-symmetric bilinear form that if w (v, w) = 0
for all v € V, then w = 0. We call V' equipped with a symplectic form a symplectic space
(V,w).

Note that for an anti-symmetric form we have w (v,v) = 0.

Theorem A.2. Suppose (V,w) is a symplectic space. Then dimV is even and there exists
a symplectic basis of V', that is,

w(pi, i) = —w (g, pi) = 1,
w(pian) = 07Z 7& j7
w (pi,pj) = w (4, q5) =0

fori,j=1,..,n, where dimV = 2n.

Such a basis also is called an w-standard basis. Observe that this notion does not
require V to be equipped with any inner product.

Proof. We prove it by induction on dim V. The base case is evident due to the non-
degeneracy of w. Assume now dimV = n and assume the result holds for all vector
spaces of dimension n — 2. Suppose ¢ € V is non-zero. The form w is non-degenerate,
there exists p € V such that w(p,q) # 0. We can normalize p and ¢ in such a way
w (p,q) = 1. Denote

W:i={veV:w(,p) =0and w(v,q) =0}.

We claim that W N Span {p,q} = {0}. Indeed, suppose v € W N Span {p, ¢}. Then
v = ap + bg for some a,b € R. Since v € W, we have that w (v,p) = 0. At the same
time w (v,p) = —b, so b = 0. Similarly a = 0, hence v = 0. Now we can use that w is
non-degenerate, so dim W+dim Span {p, ¢} = dim V, and therefore V.= W ®Span {p, ¢}.
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To use the inductive hypotheses, we need to check that the restriction of w to W is
a symplectic form. It is obviously anti-symmetric, so we just need to check that it is
non-degenerate. Take w € W, w # 0, then there is a v € V such that w (v,w) # 0. Then
we can write w = v1 + vy with v; € W and va € Span{p,q}. As w(va,w) = 0, then
w (v1,w) # 0, that is, w is non-degenerate on W. We complete the proof by applying the
inductive hypothesis to W equipped with the restriction of the symplectic form w. O

Suppose that in addition to w the vector space V' is equipped with an inner product.
A different proof gives simultaneous normalization of the symplectic form w and an inner
product on V', and as a by-product the existence of a symplectic basis.

Proposition A.3 (Lemma 2.42 in [37]). Suppose (V,w) is a symplectic space of dimension
2n, and g : V. xV — R 1is an inner product on V. Then there is a symplectic basis
{pi, qj}?j:l such that it is g-orthogonal and

g (p“pl) = g(Qi;Qi) >i = 17 vy T

Proof. It is enough to show that for R?" with the standard inner product there is an
orthogonal basis diagonalizing a non-degenerate anti-symmetric form. We define a 2nx2n
matrix A by

w (u,v) =: {u, Av).

Then A is non-degenerate and A” = —A, and therefore iA € C2"*2" is Hermitian. This
means that the spectrum of A is purely imaginary and there is an orthonormal basis of
eigenvectors in C?" for A. That is, there are a; > 0 and (orthonormal) u; + iv; € C?"
such that A (u; +iv;) = i (u; +iv;), and then A (u; —iv;) = —ia; (u; —iv;). So
u; — tv; is an eigenvector for —ic;, and therefore it is orthogonal to the eigenvector
u; + v; since A is skew-symmetric. Thus we have

A(uj +ivj) =t (uj +ivj),j=1,...,n,
(uj + )" (ux + ivg) = 65,
(uj — z'vj)T (ug + ivg) = 0.
By equating real and imaginary parts, we have
Auj = —ajv4,5 =1,...,n,
AUj = OéjUj,j = 1, N,

(u; + ivj)T (ug + ivg) = k-

Then
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Auj = —ajv4,5 =1,...,n,
Avj = ajuy,j =1,...,n,

T, _ . T, _ T, _
ujuk—ujvk—vjvk—O.

This gives w (uj,v;) = u;‘-FAvj = ajlu;|> > 0 and the rest of the identities needed to
complete the proof. O

We call a symplectic space (V,w) isotropic if such a symplectic basis is not only
orthogonal with respect to the metric g, but orthonormal. Otherwise the space in non-
isotropic and the lengths of the orthogonal basis are used to parameterize the symplectic
form w in Equation (1.2).
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