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1. Introduction

The logarithmic Sobolev inequality has been first introduced and studied by L. Gross 
in [24] on a Euclidean space with the Gaussian measure, and since then it found many 
applications. In particular, a number of existing results concern the question on how the 
constant in the logarithmic Sobolev inequality depends on the geometry of the underlying 
space, mostly in the Riemannian setting, see for example [2, Section 5.7, Proposition 
5.7.1]. The logarithmic Sobolev constant in that case depends on the Ricci lower bound 
while it is independent of the dimension. The logarithmic Sobolev inequality is closely 
related to many important properties of the corresponding Markov semigroup such as 
hypercontractivity. Moreover, the fact that the logarithmic Sobolev constant often does 
not depend on the dimension makes it applicable in infinite-dimensional settings.

Such results in the Riemannian setting rely on ellipticity of the Laplace-Beltrami 
operator as well as on geometric methods such as a curvature-dimension inequality, or 
different versions of Γ calculus. In the current paper we consider non-isotropic Heisenberg 
groups which are the simplest non-trivial examples of sub-Riemannian manifolds. The 
corresponding Laplacians are not elliptic operators but hypoelliptic which makes analysis 
more challenging. In addition, the Riemannian curvature-dimension condition is not 
available. While recently such geometric methods have been developed for some sub-
Riemannian manifolds starting with [5], they are not easily applicable to non-isotropic 
Heisenberg groups of dimensions greater than 5.

We consider a family of non-isotropic Heisenberg groups of a symplectic space 
(
R2n, ω

)
defined as follows.
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Definition 1.1. A non-isotropic Heisenberg group Hn
ω is the set R2n × R equipped with 

the group law given by

(v, z) � (v′, z′) =
(

v + v′, z + z′ + 1
2ω (v, v′)

)
, (1.1)

v = (x1, y1, · · · , xn, yn) , v′ = (x′
1, y′

1, · · · , x′
n, y′

n) ∈ R2n,

ω : R2n × R2n −→ R,

where

ω (v, v′) :=
n∑

i=1
αi (xiy

′
i − x′

iyi) =
n∑

i=1
ωi (vi, v′

i) , (1.2)

ωi (vi, v′
i) = αi (xiy

′
i − x′

iyi)

vi = (xi, yi) , v′
i = (x′

i, y′
i)

is a symplectic form on R2n and α1, α2, · · · , αn are positive constants indexed in such a 
way that

0 < α1 � α2 � · · · � αp = αp+1 = · · · = αn.

Note that any non-degenerate symplectic form on R2n, that is, a bilinear anti-
symmetric form, can be written as a sum of symplectic forms on R2, as we describe in 
Appendix A. In particular, this explains why such groups are referred to as non-isotropic.

If α1 = · · · = αn = 1, we get the standard 2n + 1-dimensional Heisenberg group. 
Sometimes the parametrization α1 = · · · = αn = 4 is used for the standard Heisenberg 
group as in [7,33,35] et al. These are all isotropic Heisenberg groups referring to the fact 
that the corresponding symplectic space is isotropic as described in Appendix A.

We equip the group Hn
ω with a sub-Riemannian manifold structure and the cor-

responding distance depending on the symplectic form ω. The logarithmic Sobolev 
inequality we study is with respect to the heat kernel measure for the sub-Laplacian 
associated with the sub-Riemannian structure. One of the questions is how the loga-
rithmic Sobolev constant depends on the symplectic form ω and the dimension of the 
Heisenberg group Hn

ω.
Before describing our main result, let us review relevant mathematical literature. The 

logarithmic Sobolev inequality is known to hold in the isotropic case. For n = 1 this 
inequality has been established by H.-Q. Li in [33] with α1 = 4. His proof is based 
on pointwise upper and lower heat kernel estimates, and a gradient estimate known as 
the Driver-Melcher inequality. Motivated by [25] M. Bonnefont, D. Chafaï and R. Herry 
in [10] used a random walk approximation to study the case n = 1. For n � 1, W. 
Hebisch and B. Zegarlinski proved a logarithmic Sobolev inequality in [29] using the 
tensorization property of logarithmic Sobolev inequalities and a lifting to the product 
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group first introduced by [20, Section 3]. N. Eldredge in [18] proved the inequality on 
H-type groups using the hypoelliptic heat kernel estimates, such estimates on isotropic 
Heisenberg groups have been also shown in [31,34]. Another approach to use H.-Q. Li’s 
heat kernel estimates to derive L1 gradient bounds and a logarithmic Sobolev inequality 
has been used in [1].

The measure considered in [1,10,18,29] is the hypoelliptic heat kernel measure on Hn
ω

which can be regarded as an analogue of the Gaussian measure on the Euclidean space. In 
a different direction, [3] obtained a dimension-dependent upper bound for the logarithmic 
Sobolev constant with respect to the invariant measure of a subelliptic generator using 
a generalized curvature-dimension condition as developed in [5].

F. Baudoin and Q. Feng in [4] used Malliavin’s calculus to prove a version of loga-
rithmic Sobolev inequalities on the horizontal path space with a constant depending on 
the geometry of the underlying space. In [19] R. Frank and L. Lieb proved a logarithmic 
Sobolev inequality on a Heisenberg group, with the measure being a Haar measure. They 
also show that the logarithmic Sobolev constant is sharp. In this case the logarithmic 
Sobolev constant is dimension-dependent constant which is natural since they use a Haar 
measure instead of the heat kernel measure that we consider in the current paper.

All of the results we mentioned previously apply only to the isotropic case. In the 
non-isotropic setting, one special case of non-isotropic Heisenberg groups was considered 
by E. Bou Dagher and B. Zegarlinski recently in a preprint [12], in which they derived 
a dimension-dependent logarithmic inequality on such groups, but not for a heat kernel 
measure.

Moreover, the dependence of the logarithmic Sobolev constant on geometric charac-
teristics of Hn

ω has not been studied in either isotropic or non-isotropic cases. Our main 
motivation for such a study is an application to infinite-dimensional Heisenberg-type 
groups introduced in [14] and studied in the sub-Riemannian setting in [6,13], where 
non-isotropy is a consequence of the infinite-dimensional setting. This application is in 
spirit of the original use of a logarithmic Sobolev inequality but in a hypoelliptic infinite-
dimensional setting.

Our paper is organized as follows. We first consider the case n = 1 in Section 3. 
Next, we study the tensorization argument of logarithmic Sobolev inequalities in the 
sub-Riemannian setting. Then we deduce the logarithmic Sobolev inequality on the non-
isotropic Heisenberg group by regarding a non-isotropic Heisenberg group as a quotient 
group obtained from the product group. This allows us to use a dimension-independent 
constant in the logarithmic Sobolev inequality introduced in Section 4. Moreover, we 
show that the logarithmic Sobolev constant can be chosen to not depend on ω and the 
dimension. In Section 5, we discuss a second approach when tensorization and lifting are 
reversed.

Finally, we apply the results on non-isotropic Heisenberg groups to the infinite-
dimensional Heisenberg group with a one-dimensional center in Section 6. While the 
classical finite-dimensional definition of hypoellipticity can not be directly used in this 
setting, it is known that the heat kernel measure is smooth by [6,13]. Our results on 
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the logarithmic Sobolev inequalities in the simplest infinite-dimensional hypoelliptic set-
ting represent the next natural step in studying the logarithmic Sobolev inequalities for 
infinite-dimensional hypoelliptic diffusions.

2. Preliminaries

2.1. Non-isotropic Heisenberg groups as sub-Riemannian manifolds

A non-isotropic Heisenberg group Hn
ω introduced in Definition 1.1 is a Lie group, 

with the identity being e = (0, 0), and the inverse given by (v, z)−1 = (−v, −z). Its Lie 
algebra hω := L (Hn

ω) ∼= TeHn
ω can be identified with the space R2n+1 ∼= R2n × R with 

the Lie bracket given by

[(a1, c1) , (a2, c2)] = (0, ω (a1, a2)) . (2.1)

The group Hn
ω is a connected nilpotent group, and by [11, Theorem 1.2.1] both the 

exponential and logarithmic maps are global diffeomorphisms. Thus the exponential 
map exp : hω −→ Hn

ω, and its inverse map log : Hn
ω −→ hω are well-defined on the whole 

Lie algebra hω of Hn
ω. Moreover, we can describe them explicitly by

exp (a, c) = (a, c)

for any (a, c) ∈ hω and

log (v, z) = (v, z)

for any g = (v, z) ∈ Hn
ω. As a Carnot group Hn

ω has a one-parameter group of automor-
phisms called dilations

δλ : Hn
ω → Hn

ω, λ > 0,

δλ (v, z) :=
(
λv, λ2z

)
, g = (v, z) ∈ Hn

ω.

We refer to [9, Section 1.3] for more details.
Consider the following left-invariant vector fields on Hn

ω identified with differential 
operators on R2n+1 by

Xω
i (g) = ∂

∂xi
− αi

2 yi
∂

∂z
,

Y ω
i (g) = ∂

∂yi
+ αi

2 xi
∂

∂z
, i = 1, · · · , n (2.2)

Zω (g) = ∂

∂z
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for any g = (x1, y1, · · · , xn, yn, z) ∈ Hn
ω. Note that the only non-zero Lie brackets for 

left-invariant vector fields Xω
i and Y ω

i are

[Xω
i , Y ω

i ] = αiZ
ω, i = 1, ..., n,

so the vector fields {Xω
i , Y ω

i , i = 1, · · · , n} and their Lie brackets span the tangent space 
at every point, and therefore Hörmander’s condition is satisfied.

This implies that the group Hn
ω has a natural sub-Riemannian structure (Hn

ω, Hω,

〈·, ·〉ω
H), where

Hω = Hω
g = Span{Xω

i (g) , Y ω
i (g) , i = 1, · · · , n}

is the horizontal distribution and the left-invariant inner product 〈·, ·〉Hω is chosen in 
such a way that {Xω

i , Y ω
i : i = 1, · · · , n} is an orthonormal frame for the sub-bundle 

Hω. Note that both the vector space Hω
g and the left-invariant sub-Riemannian metric 

〈·, ·〉ω
H = 〈·, ·〉ω

Hω depend on the symplectic form ω.
We can equivalently describe the distribution Hω using a subspace of the Lie algebra 

hω. Namely, if a horizontal space H ⊂ hω
∼= TeHn

ω is equipped with the Euclidean inner 
product on R2n with the corresponding norm denoted by | · |H, then we can use the left 
translation to define the sub-bundle Hω with the induced left-invariant sub-Riemannian 
metric 〈·, ·〉ω

H and the corresponding left-invariant norm denoted by | · |Hω on Hω
g for any 

g ∈ Hn
ω. We will sometimes identify the horizontal distribution Hω and the horizontal 

space H.
Recall that the Maurer-Cartan form θ on a Lie group G is a Lie algebra-valued 1-form 

defined by θ (v) := θg (v) = Lg−1∗v, g ∈ G, v ∈ TgG.

Definition 2.1. A path γ : [a, b] −→ Hn
ω is said to be horizontal if γ is absolutely contin-

uous and θγ(t) (γ′(t)) ∈ H for a.e. t. The length of a horizontal path γ : [a, b] −→ Hn
ω is 

defined to be

lHω (γ) =
b∫

a

|θγ(t) (γ′(t)) |Hdt.

If γ is not horizontal we define lHω (γ) = ∞.
The Carnot-Carathéodory distance between g1, g2 ∈ Hn

ω is defined as

dω
CC(g1, g2) := inf {lHω (γ) , γ (a) = g1, γ (b) = g2} . (2.3)

The Chow-Rashevsky theorem (e.g. [9, Section 19]) asserts that Hörmander’s condi-
tion implies that any two points in Hn

ω can be joined by a horizontal path, therefore 
dω

CC(g1, g2) is finite for any g1, g2 ∈ Hn
ω.
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It is known that the infimum in (2.3) is attained, e.g. [9, Theorem 5.15.5]. In addi-
tion, the Carnot-Carathéodory distance is a left-invariant metric on Hn

ω, that is, for any 
g1, g2, g ∈ Hn

ω

dω
CC(g1, g2) = dω

CC((g2)−1g1, e),

dω
CC(g−1, e) = dω

CC(g, e),

e.g. [9, Proposition 5.2.3, Proposition 5.2.4].

Notation 2.2. For any g = (x1, y1, · · · , xn, yn, z) ∈ Hn
ω we denote by

dω
CC(g) := dω

CC(e, g)

the corresponding norm.

In addition to being left-invariant dω
CC(g) is a homogeneous norm (e.g. [9, Theorem 

5.2.8]) and therefore

dω
CC (δλ (g)) = λdω

CC (g) , λ > 0, g ∈ Hn
ω.

2.2. Sub-Laplacian and hypoelliptic heat kernel

Definition 2.3. For any f ∈ C∞(Hn
ω), we let

∇ω
Hf = ∇ω

Hω f :=
n∑

i=1
((Xω

i f)Xω
i + (Y ω

i f)Y ω
i )

to be the horizontal gradient.

By the classical result in [30] Hörmander’s condition implies that the sub-Laplacian

Δω
H = Δω

Hω :=
n∑

i=1

(
(Xω

i )2 + (Y ω
i )2

)
(2.4)

is a hypoelliptic operator. For more on properties of Δω
H in a more general setting we 

refer to [15, Section 3], some of which we describe below. In particular, the sub-Laplacian 
only depends on the sub-Riemannian metric 〈·, ·〉ω

Hω but it is independent of the choice 
of orthonormal frame by [23, Theorem 3.6].

Next, we define the hypoelliptic heat kernel measure on Hn
ω. First we choose a bi-

invariant Haar measure dg on Hn
ω to be the Lebesgue measure

dg = dx1dy1 · · · dxndyndz



8 M. Gordina, L. Luo / Journal of Functional Analysis 283 (2022) 109500
on R2n+1. The sub-Laplacian Δω
H is essentially self-adjoint on C∞

c (Hn
ω) in L2 (Hn

ω, dg). 
The corresponding semigroup by etΔω

H/2 admits a probability transition kernel μω
t (g, dh)

such that μω
t (g, A) � 0 for all Borel sets A and

(
etΔω

H/2f
)

(g) =
∫
Hn

ω

f (h) μω
t (g, dh)

for all f ∈ L2 (Hn
ω, dg).

As explained at [15, p. 952] the transition kernel measure μω
t (g, dh) admits a contin-

uous density, pω
t (g, h), with respect to the Haar measure dg

μω
t (g, dh) = pω

t (g, h) dh. (2.5)

Note that the sub-Laplacian Δω
H commutes with left translations which together with 

bi-invariance of the Haar measure imply that

pω
t (g, h) = pω

t

(
e, g−1h

)
, (2.6)

therefore it suffices to look at the function pω
t (e, g). From now on we use pω

t (g) to denote 
this function and we will refer to it as the heat kernel.

Remark 2.4. An explicit formula for pω
t (g) is

pω
t (g) = pω

t (v1, · · · , vn, z) (2.7)

= 1
(2πt)n+1

∫
R

e
1
t

(
2izs−

∑n
j=1

αj s

2 coth(αjs)‖vj‖2
) n∏

j=1

(
αjs

sinh (αjs)

)
ds

for any g = (v1, · · · , vn, z) = (x1, y1, · · · , xn, yn, z) ∈ Hn
ω with vj = (xj , yj) for j =

1, · · · , n and ‖ · ‖ is the Euclidean norm on R2; see for example [35]. By (2.7) we see that

pω
t (δλ(g)) = 1

λ2(n+1) pω
t

λ2
(g), g ∈ Hn

ω. (2.8)

Definition 2.5. We call a family of measures {μω
t }t>0 on Hn

ω with

dμω
t (g) = μω

t (dg) = μω
t (e, dg) = pω

t (g) dg

the heat kernel measure.

By [15, Theorem 3.4 (ii)], {μω
t }t>0 is a family of probability measures. In addition 

[16, Theorem 6.15] gives an equivalent way of defining the heat kernel measure, which 
we will use later. For completeness, we include its statement below.
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Proposition 2.6 (Theorem 6.15 in [16]). {μω
t }t>0 is the unique family of probability mea-

sures on Hn
ω that satisfies the heat equation as follows

d

dt

∫
Hn

ω

f (g) dμω
t (g) =

∫
Hn

ω

(
1
2

Δω
Hf

)
(g) dμω

t (g) , (2.9)

lim
t→0

∫
Hn

ω

f (g) dμω
t (g) = f(e)

for any t > 0 and any f ∈ C∞
c (Hn

ω).

Definition 2.7. We say that Hn
ω with the heat kernel measure μω

t satisfies a logarithmic 
Sobolev inequality with constant C (ω, t) if

∫
Hn

ω

f2 log f2dμω
t −

⎛
⎜⎝∫
Hn

ω

f2dμω
t

⎞
⎟⎠ log

⎛
⎜⎝∫
Hn

ω

f2dμω
t

⎞
⎟⎠ (2.10)

� C (ω, t)
∫
Hn

ω

|∇ω
Hf |2Hω dμω

t

for any f ∈ C∞
c (Hn

ω) and any t > 0. In such a case we also say that LSI (C (ω, t) , μω
t )

holds.

As we mentioned in the introduction, the logarithmic Sobolev inequality with respect 
to the heat kernel measure is known to hold in the isotropic case, both for n = 1 and 
n > 1, and we include the result for n = 1 for a later reference. For n > 1 we refer to 
[29, Theorem 7.3]. In the statement below we denote the standard symplectic form on 
R2 by ω0, and the corresponding 3-dimensional isotropic Heisenberg group by H1

ω0
.

Theorem 2.8 (Corollaire 1.2 in [33]). There is a constant C (ω0, t) ∈ (0, ∞) such that

∫
H1

ω0

f2 log f2dμω0
t −

⎛
⎜⎝ ∫
H1

ω0

f2dμω0
t

⎞
⎟⎠ log

⎛
⎜⎝ ∫
H1

ω0

f2dμω0
t

⎞
⎟⎠

� C (ω0, t)
∫

H1
ω0

|∇ω0
H f |2Hω0 dμω0

t

for any f ∈ C∞
c

(
H1

ω0

)
and any t > 0.

Remark 2.9. In addition to the statement above H.-Q. Li proved that

C (ω0, t) = C2t,
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where C is the constant in the Driver-Melcher inequality [33, Théorème 1.1] proved 
originally in [17] for p > 1. To the best of our knowledge there is no sharpness result for 
this inequality.

First we reduce consideration of the logarithmic Sobolev inequalities on Hn
ω by relying 

on time-homogeneity of the heat kernel (2.8) to concentrate on the case of t = 1.

Proposition 2.10. Suppose Hn
ω is an non-isotropic Heisenberg group, then if LSI(C (ω) ,

μω
1 ) holds, then LSI (C (ω, t) , μω

t ) holds for any t > 0, where C (ω, t) = C (ω) t.

Proof. Suppose f ∈ C∞
c (Hn

ω) and t > 0, then we have f ◦ δ√
t ∈ C∞

c (Hn
ω), and therefore

∫
Hn

ω

(
f ◦ δ√

t

)2 log
(
f ◦ δ√

t

)2
dμω

1

−

⎛
⎜⎝∫
Hn

ω

(f ◦ δ√
t)

2dμω
1

⎞
⎟⎠ log

⎛
⎜⎝∫
Hn

ω

(f ◦ δ√
t)

2dμω
1

⎞
⎟⎠ (2.11)

� C (ω)
∫
Hn

ω

∣∣∇ω
H(f ◦ δ√

t)
∣∣2
Hω dμω

1 .

Now we can use (2.8) with λ =
√

t to see that dμω
1 = tn+1pω

t

(
δ√

t(g)
)

dg. Then (2.10)
follows with C (ω, t) = C (ω) t by using the change of variables δ√

t(g) 
→ g in (2.11). �
3. Logarithmic Sobolev inequalities on H1

ω

3.1. Comparison between isotropic and non-isotropic Heisenberg groups for n = 1

For H1
ω

∼= R3 the group law defined by (1.1) can be written as follows

(x1, y1, z1) � (x2, y2, z2)

=
(

x1 + x2, y1 + y2, z1 + z2 + α

2 (x1y2 − x2y1)
)

(3.1)

for some α > 0. The isotropic Heisenberg group, H1
ω0

, corresponds to α = 1. The 
difference between H1

ω and H1
ω0

is the symplectic form ω on R2 which in this case is 
parameterized by α in (1.2). Our goal in this section is to study how the logarithmic 
Sobolev constant on H1

ω depends on the parameter α by comparing the non-isotropic 
and isotropic cases.

Consider the map

F : H1
ω → H1

ω,

0
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F (g) = F (x, y, z) := (x, y, αz) , g = (x, y, z) ∈ H1
ω0

. (3.2)

The next statement shows that we can view F as an isomorphism between sub-
Riemannian manifolds.

Lemma 3.1 (Comparison between H1
ω0

and H1
ω). The map F is a Lie group isomorphism 

commuting with the left translation Lg, namely,

F ◦ Lg = LF (g) ◦ F for any g ∈ H1
ω0

. (3.3)

The restriction of the differential of F to each fiber of the horizontal distribution at any 
g ∈ H1

ω0
, dFg|Hω0

g
: Hω0

g → Hω
F (g), is an isometry. Moreover, for any f ∈ C∞

c

(
H1

ω

)
|∇ω0

H (f ◦ F )|Hω0 = |∇ω
Hf |Hω ◦ F. (3.4)

The pushforward of the heat kernel measure μω0
t by F is the heat kernel measure μω

t on 
H1

ω.

Proof. Equation (3.3) follows directly from the multiplication law (3.1).
Using explicit formulas for the exponential map and F , we see that the differential of 

F at e, dFe : TeH1
ω0

→ TF (e)H
1
ω is given by

dFe(a, c) = (a, αc), (a, c) ∈ TeH
1
ω0

, (3.5)

which shows that dFe is a bijective linear transformation. By (2.1) we see that the 
Lie brackets are preserved under dFe, and thus dFe is a Lie algebra isomorphism. For 
connected and simply connected Lie groups H1

ω0
and H1

ω, the map F is a Lie group 
isomorphism by [28, Corollary 5.7].

At the identity we have Hω0
e = Hω

e = R2 ⊂ R3 and the differential of F at e restricted 
to Hω0

e is the identity map on R2 by (3.5), thus we have dFe|Hω0
e

: Hω0
e → Hω

e . Note that 
both 〈·, ·〉ω0

He
and 〈·, ·〉ω

He
are the same Euclidean inner products, so dFe|Hω0

e
: Hω0

e → Hω
e

is an isometry.
Now we can use the fact that F commutes with the left multiplication by (3.3) to 

extend this to fibers of the horizontal distribution at any g ∈ H1
ω0

. Consider dFg|Hω0
g

:
Hω0

g → Hω
F (g), then left-invariance of sub-Riemannian metrics on these groups and (3.3)

imply that dFg|Hω0
g

: Hω0
g → Hω

F (g) is an isometry on sub-Riemannian distributions.
Next, we see that the orthonormal frames {Xω, Y ω} on 

(
H1

ω, H, 〈·, ·〉ω
H

)
and 

{Xω0 , Y ω0} on 
(
H1

ω0
, H, 〈·, ·〉ω0

H
)

introduced by (2.2) satisfy

(dFg) (Xω0(g)) = Xω(F (g)), (3.6)

(dFg) (Y ω0(g)) = Y ω(F (g)). (3.7)

For any f ∈ C∞
c

(
H1

ω

)
, by (3.6) and (3.7) we have
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(∇ω
Hf) (F (g)) = ((Xωf)(F (g))) Xω(F (g)) + ((Y ωf)(F (g))) Y ω(F (g))

= (dFg) ((∇ω0
H (f ◦ F )) (g)) ,

therefore Equation (3.4) follows since dFg|Hω0
g

: Hω0
g → Hω

F (g) is an isometry.
Finally, we compute the pushforward measure F#μω0

t . For any Borel set E on H1
ω, 

change of variable gives
∫

F −1(E)

dμω0
t =

∫
E

pω0
t

(
F −1(g)

)
α

dg,

so F#μω0
t has the form

d (F#μω0
t ) =

pω0
t

(
F −1(g)

)
α

dg.

Alternatively one can check that F#μω0
t satisfies (2.9) using (3.6) and (3.7) without 

knowing its explicit formula as above. By the explicit formula for pω
t on H1

ω and Defini-
tion 2.5, we can show that the pushforward measure F#μω0

t is the heat kernel measure 
μω

t on H1
ω. �

3.2. Logarithmic Sobolev inequalities on H1
ω

We start by recalling that by Theorem 2.8 the logarithmic Sobolev inequality 
LSI (C (ω0) , μω0

1 ) holds on the isotropic Heisenberg group H1
ω0

.

Theorem 3.2. The logarithmic Sobolev inequality LSI(C (ω) t, μω
t ) holds on H1

ω with the 
logarithmic Sobolev constant C (ω) = C (ω0), the constant for the isotropic Heisenberg 
group H1

ω0
, and thus C (ω) can be chosen to be independent of ω.

Proof. By [29, Theorem 7.3] the isotropic Heisenberg group H1
ω0

satisfies a logarith-
mic Sobolev inequality LSI (C (ω0) , μω0

1 ). Note that by Proposition 2.10, it suffices to 
compare the constants at time t = 1, that is, to find constants in LSI (C (ω) , μω

1 ) and 
LSI (C (ω0) , μω0

1 ).
For any f ∈ C∞

c

(
H1

ω

)
, we have f ◦ F ∈ C∞

c

(
H1

ω0

)
, where F is the map defined by 

(3.2). Then we can use the logarithmic Sobolev inequality LSI (C (ω0) , μω0
1 ) on H1

ω0
for 

f ◦ F to see that

∫
H1

ω0

(f ◦ F )2 log(f ◦ F )2dμω0
1 −

⎛
⎜⎝ ∫
H1

ω0

(f ◦ F )2dμω0
1

⎞
⎟⎠ log

⎛
⎜⎝ ∫
H1

ω0

(f ◦ F )2dμω0
1

⎞
⎟⎠

� C (ω0)
∫

H1
ω0

|∇ω0
H (f ◦ F )|2Hω0 dμω0

1 .
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Using the change of variables F (g) 
→ g in this inequality together with Lemma 3.1, we see 
that LSI (C (ω0) , μω

1 ) holds on H1
ω, which implies that we can take C (ω) = C (ω0). �

Remark 3.3. Note that the argument used in the proof of Theorem 3.2 shows that if 
there is an optimizer for LSI (C (ω0) , μω0

1 ), we can find an optimizer for LSI (C (ω) , μω
1 )

using the change of variables. In this case, LSI (C (ω) t, μω
t ) and LSI (C (ω0) t, μω0

t ) would 
have the same optimal constant C (ω0), which is independent of the symplectic form ω
as well.

Remark 3.4. The map F can be regarded as a scaling of the metric on the horizontal 
space H. Indeed, a scaling of an orthogonal symplectic basis as described by Proposi-
tion A.3 is equivalent to changing parameters α1, ..., αn. Thus Theorem 3.2 shows that 
the logarithmic Sobolev constant (and the optimal one if it exists) in the case n = 1 is 
independent of the sub-Riemannian metric we equip R3. Note that this metric can be 
thought of as a scaling of a symplectic basis in Theorem A.2. The fact that the loga-
rithmic Sobolev constant is independent of ω is not surprising when compared to the 
phenomenon for the Gaussian measure on a Euclidean space equipped with a Riemannian 
metric corresponding to the covariance of the Gaussian measure.

4. Logarithmic Sobolev inequalities on Hn
ω

4.1. Tensorization in the sub-Riemannian setting

Tensorization is a fundamental property of logarithmic Sobolev inequalities, that is, 
the logarithmic Sobolev inequality holds on the product space of two probability spaces 
each of which satisfy a logarithmic Sobolev inequality (e.g. [27, Theorem 4.4]). Here we 
include a version of the tensorization of logarithmic Sobolev inequalities on the product 
group of three-dimensional non-isotropic Heisenberg groups.

Let {H1
ωj

}n
j=1 be a family of 3-dimensional Heisenberg groups. Then the product group 

H1
ω1

×· · ·×H1
ωn

is a sub-Riemannian manifold with the horizontal sub-bundle H := Hω1 ⊕
· · ·⊕Hωn defined fiberwise and the corresponding metric 〈·, ·〉H and norm | · |H. The sub-
Laplacian for the product group H1

ω1
×· · ·×H1

ωn
is 

∑n
j=1 Δωj

H which is an operator on the 
product space as considered in [40, Proposition 18]. For any f ∈ C∞

c

(
H1

ω1
× · · · × H1

ωn

)
, 

we denote the horizontal gradient by ∇Hf . Finally the corresponding heat kernel measure 
μt is the product measure μω1

t ⊗ · · · ⊗ μωn
t .

Applying [40, Proposition 18] together with Theorem 3.2 gives the following results 
for the product group H1

ω1
× · · · × H1

ωn
.

Proposition 4.1. The product group H1
ω1

× · · · × H1
ωn

satisfies a logarithmic Sobolev in-
equality LSI (C (ω1, · · · , ωn, t) , μω1

t ⊗ · · · ⊗ μωn
t ), where the constant can be chosen to be 

C (ω1, · · · , ωn, t) = C (ω0) t which is independent of the symplectic forms ω1, · · · , ωn and 
n.
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4.2. From the product group to a non-isotropic Heisenberg group

Given Hn
ω, we consider H1

ω1
× · · · × H1

ωn
, where ωi for i = 1, · · · , n are symplectic 

forms on R2 defined by (1.2). The following construction was introduced in [20, Section 
3] and used by [29, Theorem 7.3] for the isotropic Heisenberg group Hn

ω0
. Here we extend 

it to the non-isotropic case. Define

π : H1
ω1

× · · · × H1
ωn

→ Hn
ω,

π(g1, · · · , gn) := π(x1, y1, z1, · · · , xn, yn, zn) = (x1, y1, · · · , xn, yn, z), (4.1)

z =
n∑

i=1
zi

for any (g1, · · · , gn) ∈ H1
ω1

× · · · × H1
ωn

. The next statement shows that we can view π
as a homomorphism between sub-Riemannian manifolds.

Proposition 4.2 (Hn
ω and H1

ω1
× · · · × H1

ωn
). The map π is a Lie group homomorphism 

commuting with the left translation L(g1,··· ,gn) on the product group as follows

π ◦ L(g1,··· ,gn) = Lπ(g1,··· ,gn) ◦ π, (4.2)

(g1, · · · , gn) ∈ H1
ω1

× · · · × H1
ωn

.

The restriction of the differential of π to horizontal spaces,

dπ(g1,··· ,gn)|H(g1,··· ,gn) : H(g1,··· ,gn) → Hω
π(g1,··· ,gn)

is an isometry. Moreover, for any f ∈ C∞
c (Hn

ω)

|∇H(f ◦ π)|H = |∇ω
Hf |Hω ◦ π. (4.3)

In addition, the pushforward by π of the heat kernel measure μt on H1
ω1

× · · · × H1
ωn

is 
the heat kernel measure μω

t on Hn
ω.

Proof. Equation (4.2) follows directly from the multiplication law given by (1.1).
Recall again that for connected and simply connected Lie groups to show that a map 

is a Lie group homomorphism it is enough to check that its differential at the identity 
is a Lie algebra homomorphism by [28, Theorem 5.6]. Applying this to H1

ω1
× · · · ×H1

ωn

and Hn
ω, we see it is enough to check that the differential of π at the identity is a Lie 

algebra homomorphism between T(e1,··· ,en)
(
H1

ω1
× · · · × H1

ωn

) ∼= Te1H
1
ω1

⊕ · · · ⊕ Ten
H1

ωn

and Tπ(e1,··· ,en)H
n
ω. Based on the explicit formula of the exponential map and π, we have

(
dπ(e1,··· ,en)

)
(a1, c1, · · · , an, cn) =

(
a1, · · · , an,

n∑
ci

)

i=1



M. Gordina, L. Luo / Journal of Functional Analysis 283 (2022) 109500 15
(a1, c1, · · · , an, cn) ∈ T(e1,··· ,en)
(
H1

ω1
× · · · × H1

ωn

)
.

By (2.1) we see that the Lie brackets are preserved under dπ(e1,··· ,en), and thus dπ(e1,··· ,en)
is a Lie algebra homomorphism.

At the identity (e1, · · · , en), we have H(e1,··· ,en) = Hω
e = R2n and the differential 

of π at (e1, · · · , en) restricted to H(e1,··· ,en) is the identity map on R2n. Note that 
〈·, ·〉H(e1,··· ,en) and 〈·, ·〉ω

He
are the same Euclidean inner products, so

dπ(e1,··· ,en)
∣∣
H(e1,··· ,en)

: H(e1,··· ,en) −→ Hω
e

is an isometry.
Now we can use the fact that π commutes with the left multiplication by Equation 

(4.2) to extend this to fibers of the horizontal distribution at any g ∈ H1
ω1

× · · · × H1
ωn

. 
Namely, the left-invariance of sub-Riemannian metrics on these groups and (4.2) imply 
that

dπ(g1,··· ,gn)
∣∣
H(g1,··· ,gn)

: H(g1,··· ,gn) −→ Hω
π(g1,··· ,gn)

is an isometry on the fibers of these sub-Riemannian distributions.
For any (g1, · · · , gn) = (x1, y1, z1, · · · , xn, yn, zn) ∈ H1

ω1
× · · · × H1

ωn
and i = 1, · · · , n

consider vector fields

Xωi (g1, · · · , gn) = ∂

∂xi
− αi

2 yi
∂

∂zi
,

Y ωi(g1, · · · , gn) = ∂

∂yi
+ αi

2 xi
∂

∂zi
.

Under the product sub-Riemannian structure {Xωi , Y ωi : i = 1 · · · , n} form an or-
thonormal frame for 

(
H1

ω1
× · · · × H1

ωn
, H, 〈·, ·〉H

)
. We see that the orthonormal frames 

{Xωi , Y ωi : i = 1, · · · , n} on the product manifold 
(
H1

ω1
× · · · × H1

ωn
, H, 〈·, ·〉H

)
and 

{Xω
i , Y ω

i : i = 1, · · · , n} on (Hn
ω, Hω, 〈·, ·〉ω

H) defined by (2.2) satisfy

(dπ(g1,··· ,gn)) (Xωi(g1, · · · , gn)) = Xω
i (π(g1, · · · , gn)) , (4.4)

(dπ(g1,··· ,gn)) (Y ωi(g1, · · · , gn)) = Y ω
i (π(g1, · · · , gn)) . (4.5)

This shows that for any f ∈ C∞
c (Hn

ω)

(∇ω
Hf) (π(g1, · · · , gn))

=
n∑

i=1
[((Xω

i f) Xω
i ) (π (g1, · · · , gn)) + ((Y ω

i f) Y ω
i ) (π (g1, · · · , gn))]

= (dπ(g1,··· ,gn)) (∇H(f ◦ π))(g1, · · · , gn)) ,
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which proves (4.3) since dπ(g1,··· ,gn) restricted to H(g1,··· ,gn) is an isometry.
Finally, to show that the pushforward of the heat kernel measure μt by π is the heat 

kernel measure μω
t on Hn

ω we will use Proposition 2.6. For any f ∈ C∞
c (Hn

ω), we have 
f ◦ π ∈ C∞

c

(
H1

ω1
× · · · × H1

ωn

)
, and therefore by (4.4) and (4.5)

(
n∑

i=1
Δωi

H

)
(f ◦ π) = (Δω

Hf) ◦ π. (4.6)

By Proposition 2.6 applied to the heat kernel measure μt we see that

d

dt

∫
H1

ω1 ×···×H1
ωn

(f ◦ π) (g1, · · · , gn) dμt

=
∫

H1
ω1 ×···×H1

ωn

((
1
2

n∑
i=1

Δωi

H

)
(f ◦ π)

)
(g1, · · · , gn) dμt,

lim
t→0

∫
H1

ω1
×···×H1

ωn

(f ◦ π) (g1, · · · , gn) dμt = (f ◦ π)(e1, · · · , en).

Then by Equation (4.6) and using the change of variables in the heat equation for μt

together with Proposition 2.6 applied to π#μt implies that π#μt is the heat kernel 
measure μω

t on Hn
ω. �

Remark 4.3. From the proof of Proposition 4.2, we see that we can identify Hω
g

∼= Hω1
g1

⊕
· · · ⊕ Hωn

gn
for g ∈ Hn

ω and (g1, · · · , gn) ∈ H1
ω1

× · · · × H1
ωn

with g = π(g1, · · · , gn).

Remark 4.4. The results in [20, p. 38] say that we can identify the isotropic Heisenberg 
group Hn

ω0
with a quotient group. By Proposition 4.2, we can also identify Hn

ω with 
a quotient group G/N where G = H1

ω1
× · · · × H1

ωn
and N = {(0, z1, · · · , 0, zn) ∈

H1
ω1

× · · · × H1
ωn

:
∑n

i=1 zi = 0}.

Theorem 4.5. The logarithmic Sobolev inequality LSI (C (ω) t, μω
t ) holds on Hn

ω, where 
C (ω) can be chosen to be equal to C (ω0). In particular, the logarithmic Sobolev constant 
C (ω) is independent of both the symplectic form ω and the dimension of the group Hn

ω.

Proof. For any f ∈ C∞
c (Hn

ω), we have f ◦ π ∈ C∞
c

(
H1

ω1
× · · · × H1

ωn

)
where π is de-

fined by (4.1). Then by Proposition 4.1 we can apply the logarithmic Sobolev inequality 
LSI (C (ω0) t, μt) on H1

ω1
× · · · × H1

ωn
to f ◦ π to see that

∫
H1 ×···×H1

(f ◦ π)2 log(f ◦ π)2dμt
ω1 ωn
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−

⎛
⎜⎝ ∫
H1

ω1
×···×H1

ωn

(f ◦ π)2dμt

⎞
⎟⎠ log

⎛
⎜⎝ ∫
H1

ω1
×···×H1

ωn

(f ◦ π)2dμt

⎞
⎟⎠

� C (ω0) t

∫
H1

ω1 ×···×H1
ωn

|∇H(f ◦ π)|2Hdμt.

Using the change of variable π (g1, · · · , gn) 
−→ g in this inequality together with Propo-
sition 4.2, we see that LSI (C (ω0) t, μω

t ) holds on Hn
ω. Thus we can take C (ω) = C (ω0)

which is independent of ω, n and the dimension of the group Hn
ω. �

5. The second approach: tensorization and lifting reversed

This section describes an approach where the order of tensorization and the lifting to 
the product group is reversed. Define

πω : H1
ω0

× · · · × H1
ω0

→ Hn
ω,

πω(g1, · · · , gn) := πω(x1, y1, z1, · · · , xn, yn, zn) = (x1, y1, · · · , xn, yn, z), (5.1)

z =
n∑

i=1
αizi

for any (g1, · · · , gn) ∈ H1
ω0

× · · · × H1
ω0

, where αi are given by Equation (1.2) for i =
1, · · · , n. Note that in this approach the lifting depends on the symplectic form ω. The 
next statement shows that we can still view πω as an homomorphism between sub-
Riemannian manifolds.

Proposition 5.1 (Hn
ω and H1

ω0
× · · · × H1

ω0
). The map πω is a Lie group homomorphism 

such that for any (g1, · · · , gn) ∈ H1
ω0

× · · · × H1
ω0

, it commutes with the left-translation 
L(g1,··· ,gn), i.e.

πω ◦ L(g1,··· ,gn) = Lπω(g1,··· ,gn) ◦ πω, (5.2)

and the differential of πω at (g1, · · · , gn) restricted to horizontal spaces, d (πω)(g1,··· ,gn)
|H(g1,··· ,gn) : H(g1,··· ,gn) → Hω

πω(g1,··· ,gn) is an isometry. Moreover, for any f ∈ C∞
c (Hn

ω)

|∇H(f ◦ πω)|H = |∇ω
Hf |Hω ◦ πω. (5.3)

In addition, the pushforward of the heat kernel measure μt by πω is the heat kernel 
measure μω

t on Hn
ω.

Proof. In this case, the explicit formula for the differential of πω at (e1, · · · , en), 
d(πω)(e1,··· ,en) : T(e1,··· ,en)

(
H1

ω × · · · × H1
ω

)
→ Tπω(e1,··· ,en)H

n
ω is
0 0
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(
d (πω)(e1,··· ,en)

)
(a1, c1, · · · , an, cn) =

(
a1, · · · , an,

n∑
i=1

αici

)
,

(a1, c1, · · · , an, cn) ∈ T(e1,··· ,en)
(
H1

ω0
× · · · × H1

ω0

) ∼= Te1H
1
ω0

⊕ · · · ⊕ Ten
H1

ω0
.

The rest of the proof is similar to the proof of Proposition 4.2. �
Using the lifting πω, we can also prove Theorem 4.5 as follows.

Second proof of Theorem 4.5. First we can apply Proposition 4.1 to the group H1
ω0

×
· · · × H1

ω0
to see that it satisfies a logarithmic Sobolev inequality LSI(C (ω0, n, t) , μω0

t ⊗
· · · ⊗ μω0

t ), where the logarithmic Sobolev constant can be chosen to be C (ω0, n, t) =
C (ω0) t. For any f ∈ C∞

c (Hn
ω), we have f ◦ πω ∈ C∞

c

(
H1

ω0
× · · · × H1

ω0

)
where πω is 

defined by (5.1). As in the first proof of Theorem 4.5, we can use the change of variables 
πω (g1, · · · , gn) 
→ g in the logarithmic Sobolev inequality on H1

ω0
× · · · ×H1

ω0
for f ◦ πω, 

and together with Proposition 5.1 we get the same result. �
6. Logarithmic Sobolev inequalities on infinite-dimensional Heisenberg groups

In this section, we consider an application of the results on non-isotropic Heisenberg 
groups to infinite-dimensional Heisenberg groups with a one-dimensional center. We aim 
to prove the logarithmic Sobolev inequality on such an infinite-dimensional Heisenberg 
group by the finite-dimensional projection approximation approach used in [6,14]. That 
is, we will approximate the logarithmic Sobolev inequality on the infinite-dimensional 
Heisenberg group by logarithmic Sobolev inequalities on finite-dimensional projection 
groups which are non-isotropic Heisenberg groups discussed in previous sections. The 
crucial ingredient here is that we proved previously that the LSI constant can be chosen 
to be independent of the dimension of finite-dimensional projection groups.

We start by reviewing the definitions for infinite-dimensional Heisenberg-like groups, 
which are infinite-dimensional Lie groups modeled on an abstract Wiener space, and 
collect some properties of the finite-dimensional projection approximation. We may omit 
some details, but much of the material in this section also appears in [14,21], and subse-
quently in [6,13,22].

6.1. Abstract Wiener spaces

We start by summarizing several well-known properties of Gaussian measures and 
abstract Wiener spaces that are needed later. These results as well as more details on 
abstract Wiener spaces may be found in [8,32].

Suppose that W is a real separable Banach space and BW is the Borel σ-algebra on 
W .
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Definition 6.1. A measure μ on (W, BW ) is called a (mean zero, non-degenerate) Gaussian 
measure provided that its characteristic functional is given by

μ̂(u) :=
∫
W

eiu(x)dμ(x) = e− 1
2 q(u,u), for all u ∈ W ∗, (6.1)

for q = qμ : W ∗ × W ∗ → R a symmetric, positive definite quadratic form. That is, q is 
a real inner product on W ∗.

A proof of the following standard theorem may be found for example in [14, Appendix 
A] and [6, Lemma 3.2, Theorem 3.3].

Theorem 6.2. Let μ be a Gaussian measure on a real separable Banach space W . For 
p ∈ [1, ∞), let

Cp :=
∫
W

‖w‖p
W dμ(w). (6.2)

For w ∈ W , let

‖w‖H := sup
u∈W ∗\{0}

|u(w)|√
q(u, u)

and define the Cameron-Martin subspace H ⊂ W by

H := {h ∈ W : ‖h‖H < ∞}.

Then

(1) For all p ∈ [1, ∞), Cp < ∞.
(2) H is a dense subspace of W .
(3) There exists a unique inner product 〈·, ·〉H on H such that ‖h‖2

H = 〈h, h〉H for all 
h ∈ H, and H is a separable Hilbert space with respect to this inner product.

(4) For any h ∈ H, ‖h‖W ≤
√

C2‖h‖H .
(5) If {ej}∞

j=1 is an orthonormal basis for H, then for any u, v ∈ H∗

q(u, v) = 〈u, v〉H∗ =
∞∑

j=1
u(ej)v(ej).

(6) If u, v ∈ W ∗, then
∫

u(w)v(w) dμ(w) = q(u, v).

W
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It follows from (4) that any u ∈ W ∗ restricted to H is in H∗. Therefore, by (5) and (6)

∫
W

u2(w) dμ(w) = q(u, u) = ‖u‖2
H∗ =

∞∑
j=1

|u(ej)|2. (6.3)

6.2. Infinite-dimensional Heisenberg-like groups

We revisit the definition of the infinite-dimensional Heisenberg-like groups that were 
first considered in [14]. Note that since we are interested in hypoelliptic heat kernel 
measures on these groups, we consider the topology described previously in [6,13,21]. 
First we set the following notation which will be used for the rest of the paper. Note 
that we consider only the case of the one-dimensional center.

Notation 6.3. Let (W, H, μ) be a real abstract Wiener space. Suppose ω : W × W → R

is a continuous anti-symmetric bilinear form on W .

Remark 6.4. As stated in [14, Proposition 3.14] it is surprising to see that the continuity 
of the symplectic form ω implies that

‖ω‖2
2 := ‖ω‖2

H∗⊗H∗⊗R :=
∞∑

i,j=1
|ω (ei, ej)|2 < ∞,

where {ei}∞
i=1 is an orthonormal basis for H, and thus the Hilbert-Schmidt norm of ω is 

finite.

Definition 6.5. Let g denote W ×R when thought of as a Lie algebra with the Lie bracket 
given by

[(X1, V1), (X2, V2)] := (0, ω(X1, X2)). (6.4)

Let G denote W × R when thought of as a group with multiplication given by

g1g2 := g1 + g2 + 1
2[g1, g2],

where g1 and g2 are viewed as elements of g. For gi = (wi, ci), this may be written 
equivalently as

(w1, c1) · (w2, c2) =
(

w1 + w2, c1 + c2 + 1
2ω(w1, w2)

)
. (6.5)

We will call G constructed in this way an infinite-dimensional Heisenberg group.
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It is easy to verify that, given this bracket and multiplication, g is indeed a Lie algebra 
and G is a group. Note that g−1 = −g and the identity e = (0, 0).

Notation 6.6. Let gCM denote H×R when thought of as a Lie subalgebra of g, and we will 
refer to gCM as the Cameron-Martin subalgebra of g. Similarly, let GCM denote H × R

when thought of as a subgroup of G, and we will refer to GCM as the Cameron-Martin 
subgroup of G.

We will equip g = G with the homogeneous norm

‖(w, c)‖g :=
√

‖w‖2
W + |c|,

and analogously on gCM = GCM we define

‖(A, a)‖gCM
:=

√
‖A‖2

H + |a|.

One may easily see that G and GCM are topological groups with respect to the 
topologies induced by the homogeneous norms, see for example [21, Lemma 2.9].

Before proceeding, we describe the basic examples for the construction of these infinite-
dimensional Heisenberg groups.

Example 6.7 (Finite-dimensional non-isotropic Heisenberg group). Let W = H ∼= R2n. 
Suppose ω is a symplectic form on R2n. Then G = R2n × R equipped with the group 
operation defined by (6.5) is a non-isotropic Heisenberg group with the group law defined 
by (1.1).

Example 6.8 (Heisenberg group of a symplectic vector space). Let (K, 〈·, ·〉) be a Hilbert 
space and Q be a strictly positive trace class operator on K. For h, k ∈ K, let 〈h, k〉Q :=
〈h, Qk〉 and ‖h‖Q :=

√
〈h, h〉Q, and let (KQ, 〈·, ·〉Q) denote the Hilbert space completion 

of (K, ‖ · ‖Q). Then W = (KQ)Re and H = KRe determines an abstract Wiener space 
(see, for example, of [32, Exercise 17 on p. 59]). Letting

ω(w, z) := Im〈w, z〉Q,

then G = (KQ)Re ×R equipped with a group operation as defined by (6.5) is an infinite-
dimensional Heisenberg-like group.

6.3. Finite-dimensional projection groups

The finite-dimensional projections of G defined in this section will be important in 
the sequel. The construction of these projections is quite natural as they come from the 
usual projections of the abstract Wiener space; however, the projections defined here are 
not group homomorphisms.
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As before, let (W, H, μ) denote an abstract Wiener space. Let i : H → W be the 
inclusion map, and i∗ : W ∗ → H∗ be its transpose so that i∗� := � ◦ i for all � ∈ W ∗. 
Also, let

H∗ := {h ∈ H : 〈·, h〉H ∈ Range(i∗) ⊂ H∗}.

That is, for h ∈ H, h ∈ H∗ if and only if 〈·, h〉H ∈ H∗ extends to a continuous linear 
functional on W , which we will continue to denote by 〈·, h〉H . Because H is a dense 
subspace of W , i∗ is injective and thus has a dense range. Since H � h 
→ 〈·, h〉H ∈ H∗

is a linear isometric isomorphism, it follows that H∗ � h 
→ 〈·, h〉H ∈ W ∗ is a linear 
isomorphism also, and so H∗ is a dense subspace of H.

Suppose that P : H → H is a finite rank orthogonal projection such that PH ⊂ H∗. 
Let {ej}n

j=1 be an orthonormal basis for PH. Then we may extend P to a (unique) 
continuous operator from W → H (still denoted by P ) by letting

Pw :=
n∑

j=1
〈w, ej〉Hej (6.6)

for all w ∈ W .

Notation 6.9. Let Proj(W ) denote the collection of finite rank projections on W such 
that

(1) PW ⊂ H∗,
(2) P |H : H → H is an orthogonal projection (that is, P has the form given in equation 

(6.6)), and
(3) PW is sufficiently large to satisfy Hörmander’s condition (that is, {ω(A, B) : A, B ∈

PW} = R).

For each P ∈ Proj(W ), we define GP := PW × R ⊂ H∗ × R and a corresponding 
projection πP : G → GP

πP (w, x) := (Pw, x).

We will also let gP = Lie(GP ) = PW × R.

Note that for each P ∈ Proj(W ), GP is a finite-dimensional connected unimodular 
Lie group, and gP is step 2 stratified Lie algebra with H = PH and V = R. Moreover, 
when ω is restricted to PW × PW , we see that ω|P W ×P W : PW × PW → R is a 
symplectic form from the non-degeneracy and the anti-symmetry of ω. By Theorem A.2
we have dim PW is even. Together with Proposition A.3 and (6.5), we see that for each 
P ∈ Proj(W ), GP is a non-isotropic Heisenberg group equipped with the group law given 
by
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(v1, c1) · (v2, c2) =
(

v1 + v2, c1 + c2 + 1
2

ω(v1, v2)
)

=
(

v1 + v2, c1 + c2 + 1
2ω|P W ×P W (v1, v2)

)

for any (vi, ci) = (Pwi, ci) ∈ PW × R, which is consistent with (1.1).

6.4. Subelliptic Laplacian and the heat kernel measure on G

6.4.1. Subelliptic Laplacian and horizontal gradient on G
In this section, we give the definition of the subelliptic Laplacian and the horizontal 

gradient on G analogously to how it is done in the non-isotropic case. To begin with, we 
recall some definitions of derivatives on G. For more details, we refer to [14, p. 8-10] and 
[6, Section 3.4].

For x ∈ G we denote by Lx : G → G the left multiplication by x. As G is a vector 
space, to each x ∈ G we can associate the tangent space TxG to G at x, which is naturally 
isomorphic to G.

Notation 6.10 (Linear and group derivatives). Let f : G → C denote a Fréchet smooth 
function for G considered as a Banach space with respect to the norm

|(w, c)|G :=
√

‖w‖2
W + |c|2.

Then, for x ∈ G, and h, k ∈ g, let

f ′(x)h := ∂hf(x) = d

dt

∣∣∣∣
0
f(x + th)

and

f ′′(x) (h ⊗ k) := ∂h∂kf(x).

For v, x ∈ G, let vx ∈ TxG denote the tangent vector satisfying vxf = f ′(x)v. If x(t) is 
any smooth curve in G such that x(0) = x and ẋ(0) = v (for example, x(t) = x + tv), 
then

Lg∗vx = d

dt

∣∣∣∣
0
g · x(t).

In particular, for x = e and ve = h ∈ g, again we let h̃(g) := Lg∗h, so that h̃ is the 
unique left invariant vector field on G such that h̃(e) = h. As usual we view h̃ as a first 
order differential operator acting on smooth functions by

(h̃f)(x) = d
∣∣∣∣ f(x · σ(t)),
dt 0
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where σ(t) is a smooth curve in G such that σ(0) = e and σ̇(0) = h (for example, 
σ(t) = th).

The explicit formula to compute h̃f is given in [14, Proposition 3.7]. Moreover, [14, 
Proposition 3.7] shows that the Lie algebra structure on g induced by the Lie algebra 
structure on the left invariant vector fields on G is the same as the Lie algebra structure 
defined by (6.4), which is consistent with the finite-dimensional setting.

Now we recall the definition of some special class of functions that are used often in 
this setting.

Definition 6.11. A function f : G → C is a (smooth) cylinder function if it may be 
written as f = F ◦ πP , for some P ∈ Proj(W ) and (smooth) function F : GP → C. A 
cylinder polynomial is a cylinder function, f = F ◦ πP : G → C, where P ∈ Proj(W )
and F is a real or complex polynomial function on GP .

We consider the second-order differential operator below as an analogue of the sub-
Laplacian in the finite-dimensional setting.

Definition 6.12. Let {ej}∞
j=1 be an orthonormal basis for H. For any smooth cylinder 

function f : G → R, we define the subelliptic Laplacian as

Lf(x) :=
∞∑

j=1

[
˜(ej , 0)

2
f

]
(x). (6.7)

By [6, Proposition 3.17], (6.7) is well-defined and independent of the choice of basis.

Definition 6.13. For any cylinder polynomial u, define the horizontal gradient gradH :
G → H of u by

〈gradH u, h〉H = ˜(h, 0)u (6.8)

for any h ∈ H.

Let {ej}∞
j=1 be an orthonormal basis for H. Then we have

gradH u =
∞∑

j=1

(
˜(ej , 0)u

)
(x) .

For the finite-dimensional groups GP we may define the same operators LP f and 
gradP

H f for f ∈ C∞(GP ). In particular, if {ei}n
i=1 is an orthonormal basis of PH, then

LP f =
n∑

˜(ej , 0)
2
f and gradP

H f =
n∑

˜(ej , 0)f

j=1 j=1
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which are consistent with (2.4) and Definition 2.3.

6.4.2. Distances on GCM

The sub-Riemannian distance on GCM can be defined similarly to how it is done in 
finite dimensions. We recall its definition and relevant properties, including the fact that 
the topology induced by this metric is equivalent to the topology induced by ‖ · ‖gCM

. 
We do not use these facts, but we include them for completeness.

Notation 6.14 (Horizontal distance on GCM ).

(1) For x = (A, a) ∈ GCM , let

|x|2gCM
:= ‖A‖2

H + |a|2.

The length of a C1-path σ : [a, b] → GCM is defined as

�(σ) :=
b∫

a

|Lσ−1(s)∗σ̇(s)|gCM
ds.

(2) A C1-path σ : [a, b] → GCM is horizontal if Lσ(t)−1∗σ̇(t) ∈ H × {0} for a.e. t. Let 
C1,h

CM denote the set of horizontal paths σ : [0, 1] → GCM .
(3) The horizontal distance between x, y ∈ GCM is defined by

d(x, y) := inf{�(σ) : σ ∈ C1,h
CM such that σ(0) = x and σ(1) = y}.

The horizontal distance is defined analogously on GP and will be denoted by dP .

Remark 6.15. Note that if σ(t) = (A(t), a(t)) is a horizontal path, then

Lσ(t)−1∗σ̇(t) =
(

Ȧ(t), ȧ(t) − 1
2ω(A(t), Ȧ(t))

)
∈ H × {0}

implies that σ must satisfy

a(t) = a(0) + 1
2

t∫
0

ω(A(s), Ȧ(s)) ds,

and the length of σ is given by

�(σ) =
1∫

|Lσ−1(s)∗σ̇(s)|gCM
ds =

1∫
‖Ȧ(s)‖H ds.
0 0
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The following statement is [21, Proposition 2.17, Proposition 2.18]. We refer the reader 
to that paper for the proofs.

Proposition 6.16 (Proposition 2.17 and Proposition 2.18 in [21]). If the symplectic form ω
is a surjective map onto R, then there exist finite constants K1 = K1(ω) and K2 = K2(ω)
such that

K1(‖A‖H +
√

|a|) � d(e, (A, a)) � K2(‖A‖H +
√

|a|),

for all (A, a) ∈ gCM . In particular, the topologies induced by d and ‖ ·‖gCM
are equivalent.

Remark 6.17. The equivalence of the homogeneous norm and horizontal distance topolo-
gies is a standard result in finite dimensions. However, the usual proof of this result relies 
on compactness arguments that must be avoided in infinite dimensions. Thus, the proof 
for Proposition 6.16 included in [21] necessarily relies on different methods particular to 
the structure of the present groups. The reader is referred to [21] for further details.

As stated in [6, Lemma 3.25], the horizontal distances on GCM and GP are connected 
as follows.

Lemma 6.18 (Lemma 3.25 in [6]). Let {Pn}∞
n=1 ⊂ Proj(W ) such that Pn|H ↑ IH . For 

any n ∈ N and x ∈ GPn
, then

dPn
(e, x) → d (e, x) , as n → ∞.

6.4.3. Heat kernel measure on G
In this section, we recall the definition of the heat kernel measure on G and some 

relevant properties. For simplicity, we only include the key ideas and we refer to [6, 
Section 5.1], [21, Section 2.6] and [13, Section 4, 8] for more details.

First, we recall the definition of hypoelliptic Brownian motion {gt}t≥0 on G and state 
its basic properties. Let {Bt}t≥0 be a Brownian motion on W with variance determined 
by

E [〈Bs, h〉H〈Bt, k〉H ] = 〈h, k〉H min(s, t),

for all s, t ≥ 0 and h, k ∈ H∗. A hypoelliptic Brownian motion on G is the continuous 
G-valued process given by

gt =

⎛
⎝Bt,

1
2

t∫
ω(Bs, dBs)

⎞
⎠

0
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where 
∫ t

0 ω(Bs, dBs) is taken to be the limiting process defined in [14, Proposition 4.1]
and its well-definedness relies on the finiteness of the Hilbert-Schmidt norm of ω. By [6, 
Proposition 5.6], 1

2L is the generator for {gt}t≥0.
Now we define the heat kernel measure on G as the end point distribution of a Brow-

nian motion.

Definition 6.19. We call a family of measures {νt}t>0 on G defined by νt = Law(gt) for 
any t > 0 the heat kernel measure at time t.

Analogously to the heat kernel measure on non-isotropic Heisenberg groups, [6, Corol-
lary 5.7] shows that {νt}t>0 satisfies the heat equation as follows

d

dt

∫
G

f (g) dνt (g) =
∫
G

(
1
2Lf

)
(g) dνt (g) ,

lim
t→0

∫
G

f (g) dνt (g) = f(e)

for any t > 0 and any cylinder polynomial f .
We include the following proposition (see [21, Proposition 2.30]) which states that, as 

the name suggests, the Cameron-Martin subgroup is a subspace of heat kernel measure 
0.

Proposition 6.20 (Proposition 2.30 in [21]). For all t > 0, νt(GCM ) = 0.

Finally, we collect some results that connect gt and νt with the Brownian motion and 
the heat kernel measure on finite-dimensional projection groups. They can be found in 
[6] and [21].

Notation 6.21. For P ∈ Proj(W ), let gP
t be the continuous process on GP defined by

gP
t =

⎛
⎝PBt,

1
2

t∫
0

ω(PBs, dPBs)

⎞
⎠

and let νP
t := Law(gP

t ).

As stated in [6, Proposition 5.4], gP
t is a Brownian motion on GP and {gt}t>0 can be 

approximated by the hypoelliptic Brownian motion on the finite-dimensional projection 
groups. In particular, for all p ∈ [1, ∞) and t > 0, for a family of increasing projections 
{Pn}∞

n=1 ⊂ Proj(W ), we have

lim
n→∞

E

[
sup
τ≤t

‖gPn
τ − gτ ‖p

g

]
= 0. (6.9)
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For all projections satisfying Hörmander’s condition, the Brownian motions on GP

are subelliptic diffusions and thus their laws are absolutely continuous with respect to 
the finite-dimensional reference measure and their transition kernels are smooth. By [21, 
Lemma 2.27], for all P ∈ Proj(W ) and t > 0, we have

νP
t (dx) = pP

t (x)dx (6.10)

where dx is the Riemannian volume measure (equal to Haar measure) and pP
t (x) is the 

heat kernel on GP . This is consistent with Definition 2.5.

6.5. Closability of the Dirichlet form and logarithmic Sobolev inequalities on 
infinite-dimensional Heisenberg groups

We start by proving the closability of the Dirichlet form corresponding to the hori-
zontal gradient.

Theorem 6.22. Given cylinder polynomials u, v on G, let

E0
t (u, v) :=

∫
G

〈gradH u, gradH v〉Hdνt. (6.11)

Then E0
t is closable and its closure, Et, is a Dirichlet form on L2 (G, νt).

Proof. The closability of E0
t is equivalent to the closability of the horizontal gradient 

operator gradH : L2 (νt) → L2 (νt) ⊗ H with the domain D (gradH) being the space of 
cylinder polynomials on G. To check the latter statement, by [38, Theorem VIII.1], it 
suffices to show that gradH has a densely defined adjoint. For this we use an integration 
by parts formula for the hypoelliptic heat kernel measure νt. Namely, for any h ∈ H and 
any cylindrical polynomials u and v we have

〈gradH u, v · h〉L2(νt)⊗H =
∫
G

˜(h, 0)u · vdνt

=
∫
G

(
˜(h, 0) (u · v) − u · ˜(h, 0)v

)
dνt

= 〈u, v ˜(h, 0)
∗
1 − ˜(h, 0)v〉L2(νt),

where we used (6.8) in the first equality, the product rule in the second equality and the 
integration by parts formula for νt (see [13, Corollary 8.10] for the explicit expression 

for ˜(h, 0)
∗
) in the third equality. This shows that v · h is in the domain of the adjoint of 

gradH . This completes the proof since functions of the form v ·h are total in L2 (νt)⊗H. 
Therefore, we can see that the closure of E0

t , Et is a Dirichlet form on L2 (G, νt). �
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By [36, Chapter IV, Section 4b] or [39, Proposition 3.1], such a closed Dirichlet form 
Et that we constructed is quasi-regular, which allows us to study the associated process 
in the infinite-dimensional setting we are considering. In this section, we will extend our 
consideration of functions to a wider class and then prove a hypoelliptic logarithmic 
Sobolev inequality on G.

Definition 6.23. We say that G with the heat kernel measure νt satisfies a logarithmic 
Sobolev inequality with constant C (ω, t) if

∫
G

f2 log f2dνt −

⎛
⎝∫

G

f2dνt

⎞
⎠ log

⎛
⎝∫

G

f2dνt

⎞
⎠ � C (ω, t) Et (f, f) (6.12)

for any f ∈ D (Et) and any t > 0. In such a case we also say that LSI (C (ω, t) , νt) holds.

We can now prove a hypoelliptic logarithmic Sobolev inequality on G.

Theorem 6.24. The logarithmic Sobolev inequality LSI (C (ω, t) , νt) holds on G where the 
logarithmic Sobolev constant can be chosen to be C (ω, t) = C (ω0) t.

Before we proceed to the proof we observe that the logarithmic Sobolev constant is 
the same as in Theorem 4.5 independent of ω.

Proof. Our proof uses an approximation argument which is similar to the elliptic case 
in [14, Section 8.2], even though we do not have uniform curvature bounds.

Any f ∈ D (Et) can be approximated by the case when the functions are cylinder 
polynomials by a standard limiting argument similarly to [26, Example 2.7], so it suffices 
to consider f : G → R to be a cylinder polynomial as in Definition 6.11. Let {Pn}∞

n=1 ⊂
Proj(W ) such that Pn|H ↑ IH , then {GPn

}n�1 is a family of non-isotropic Heisenberg 
groups. By Theorem 4.5 together with (6.10), we have

∫
GPn

f2 log f2dνPn
t −

⎛
⎜⎝ ∫

GPn

f2dνPn
t

⎞
⎟⎠ log

⎛
⎜⎝ ∫

GPn

f2dνPn
t

⎞
⎟⎠

� C (ω0) t

∫
GPn

∥∥∥gradPn

H f
∥∥∥2

H
dνPn

t .

Letting n → ∞ in the above inequality, by (6.9) and the Dominated Convergence theo-
rem, we can prove (6.12). Thus we can take C (ω, t) = C (ω0) t which is the same as the 
constant for the non-isotropic finite-dimensional Heisenberg group, which is essentially 
the constant on the three-dimensional isotropic Heisenberg group, and therefore it is 
independent of ω. �
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Appendix A. Symplectic forms

The exposition below is based on [37, Chapter 2]. Suppose V is a real vector space. 
In what follows we assume that all objects are defined over R.

Definition A.1. An anti-symmetric bilinear form is a bilinear form ω : V × V −→ R such 
that ω (v, w) = −ω (w, v) for all v, w ∈ V . A symplectic form is a non-degenerate anti-
symmetric bilinear form, that is, such an anti-symmetric bilinear form that if ω (v, w) = 0
for all v ∈ V , then w = 0. We call V equipped with a symplectic form a symplectic space
(V, ω).

Note that for an anti-symmetric form we have ω (v, v) = 0.

Theorem A.2. Suppose (V, ω) is a symplectic space. Then dim V is even and there exists 
a symplectic basis of V , that is,

ω (pi, qi) = −ω (qi, pi) = 1,

ω (pi, qj) = 0, i �= j,

ω (pi, pj) = ω (qi, qj) = 0

for i, j = 1, .., n, where dim V = 2n.

Such a basis also is called an ω-standard basis. Observe that this notion does not 
require V to be equipped with any inner product.

Proof. We prove it by induction on dim V . The base case is evident due to the non-
degeneracy of ω. Assume now dim V = n and assume the result holds for all vector 
spaces of dimension n − 2. Suppose q ∈ V is non-zero. The form ω is non-degenerate, 
there exists p ∈ V such that ω (p, q) �= 0. We can normalize p and q in such a way 
ω (p, q) = 1. Denote

W := {v ∈ V : ω (v, p) = 0 and ω (v, q) = 0} .

We claim that W ∩ Span {p, q} = {0}. Indeed, suppose v ∈ W ∩ Span {p, q}. Then 
v = ap + bq for some a, b ∈ R. Since v ∈ W , we have that ω (v, p) = 0. At the same 
time ω (v, p) = −b, so b = 0. Similarly a = 0, hence v = 0. Now we can use that ω is 
non-degenerate, so dim W +dim Span {p, q} = dim V , and therefore V = W ⊕Span {p, q}.
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To use the inductive hypotheses, we need to check that the restriction of ω to W is 
a symplectic form. It is obviously anti-symmetric, so we just need to check that it is 
non-degenerate. Take w ∈ W, w �= 0, then there is a v ∈ V such that ω (v, w) �= 0. Then 
we can write w = v1 + v2 with v1 ∈ W and v2 ∈ Span {p, q}. As ω (v2, w) = 0, then 
ω (v1, w) �= 0, that is, ω is non-degenerate on W . We complete the proof by applying the 
inductive hypothesis to W equipped with the restriction of the symplectic form ω. �

Suppose that in addition to ω the vector space V is equipped with an inner product. 
A different proof gives simultaneous normalization of the symplectic form ω and an inner 
product on V , and as a by-product the existence of a symplectic basis.

Proposition A.3 (Lemma 2.42 in [37]). Suppose (V, ω) is a symplectic space of dimension 
2n, and g : V × V −→ R is an inner product on V . Then there is a symplectic basis 
{pi, qj}n

i,j=1 such that it is g-orthogonal and

g (pi, pi) = g (qi, qi) , i = 1, ..., n.

Proof. It is enough to show that for R2n with the standard inner product there is an 
orthogonal basis diagonalizing a non-degenerate anti-symmetric form. We define a 2n ×2n

matrix A by

ω (u, v) =: 〈u, Av〉.

Then A is non-degenerate and AT = −A, and therefore iA ∈ C2n×2n is Hermitian. This 
means that the spectrum of A is purely imaginary and there is an orthonormal basis of 
eigenvectors in C2n for A. That is, there are αj > 0 and (orthonormal) uj + ivj ∈ C2n

such that A (uj + ivj) = iαj (uj + ivj), and then A (uj − ivj) = −iαj (uj − ivj). So 
uj − ivj is an eigenvector for −iαj , and therefore it is orthogonal to the eigenvector 
uj + ivj since A is skew-symmetric. Thus we have

A (uj + ivj) = iαj (uj + ivj) , j = 1, ..., n,

(uj + ivj)T (uk + ivk) = δjk,

(uj − ivj)T (uk + ivk) = 0.

By equating real and imaginary parts, we have

Auj = −αjvj , j = 1, ..., n,

Avj = αjuj , j = 1, ..., n,

(uj + ivj)T (uk + ivk) = δjk.

Then
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Auj = −αjvj , j = 1, ..., n,

Avj = αjuj , j = 1, ..., n,

uT
j uk = uT

j vk = vT
j vk = 0.

This gives ω (uj , vj) = uT
j Avj = αj |uj |2 > 0 and the rest of the identities needed to 

complete the proof. �
We call a symplectic space (V, ω) isotropic if such a symplectic basis is not only 

orthogonal with respect to the metric g, but orthonormal. Otherwise the space in non-
isotropic and the lengths of the orthogonal basis are used to parameterize the symplectic 
form ω in Equation (1.2).
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