;') Available online at www.sciencedirect.com

. . stochastic
S ScienceDirect processes
« BN and their
——— applications
LSEVIER Stochastic Processes and their Applications 149 (2022) 188-223 —_—

www.elsevier.com/locate/spa

A functional law of the iterated logarithm for weakly
hypoelliptic diffusions at time zero”

Marco Carfagnini®, Juraj Foldes™", David P. Herzog"

2 Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, Storrs, CT 06269-1009, United
States of America
Y Department of Mathematics, University of Virginia, 322 Kerchof Hall, Charlottesville, VA 22904-4137, United States
of America
¢ Department of Mathematics, lowa State University, 474 Carver, 411 Morrill Rd., Ames, IA 50011-2104, United States
of America

Received 24 June 2021; received in revised form 15 February 2022; accepted 24 March 2022
Available online 7 April 2022

Abstract

We study the almost sure behavior of solutions of stochastic differential equations (SDEs) as time
goes to zero. Our main general result establishes a functional law of the iterated logarithm (LIL) that
applies in the setting of SDEs with degenerate noise satisfying the weak Hormander condition but not the
strong Hormander condition. That is, SDEs in which the drift terms must be used in order to conclude
hypoellipticity. As a corollary of this result, we obtain the almost sure behavior as time goes to zero of
a given direction in the equation, even if noise is not present explicitly in that direction. The techniques
used to prove the main results are based on large deviations applied to a non-trivial rescaling of the
original system. In concrete examples, we show how to find the proper rescaling to obtain the functional
LIL. Furthermore, we apply the main results to the problem of identifying regular points for hypoelliptic
diffusions. Consequently, we obtain a control-theoretic criteria for a given point to be regular for the
process.
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1. Introduction

The law of the iterated logarithm (LIL) for an i.i.d. sequence of random variables
X1, X2, ..., X,, ... with mean zero and unit variance reads

. £S5,

hﬁgp +/2nloglogn !
where S, = X; + X» + --- + X,, and log denotes the natural logarithm. The formula (1.1)
was first established by Hartman and Whintner in 1941 [18] as a generalization of earlier
works of Khinchin in 1924 [24] and Kolmogorov in 1929 [28]. Analogously, an LIL holds for
a standard, real-valued Brownian motion W, as t — oo by replacing n by ¢ and S, by W,
in (1.1). Furthermore, one can use (1.1) for the Brownian motion at time infinity to obtain an
LIL at time zero

a.s., (1.1)

+W,
limsuyp ———— =1 as. 1.2)

-0+ +/2tloglogt~!
by Brownian inversion.

Note that LILs provide an asymptotic window, for example [—./2floglogz—!,
/2t loglogt—!] for the process W; as t — 0%, complementing the usual central limit scaling.
More precisely, it follows that the set of limit points of the scaled processes S, /,/2n loglogn as
n — oo or W;/y/2tloglogt—! as t — OV is the interval [—1, 1] [18]. A further generalization
of this limit set analysis is due to Strassen [36], which for W, at ¢+ = 0 establishes that, for
almost every w, the set of limit points (in the space of continuous paths €’([0, 1]; R)) of the
family

Wer(w)
V2elogloge—T’
as ¢ — 07 is the set of functions f € €°([0, 1]; R) with f, = 0 and fol |f‘s|2ds < 1. Here,

([0, 11; RY) := {f € €([0, 1;; RY) : f e L*([0, 1D}

Y () = telo, 1], (1.3)

Observe that, by the fundamental theorem of calculus and Jensen’s inequality, the condition
fol |fs|2ds < 1 implies that | f;| < 1. By choosing f; = =+s, the extremal values +1 of the
pointwise limit set [—1, 1] are attained, and, by setting # = 1 in (1.3), we obtain (1.2) as a
corollary of Strassen’s result.

The goal of this paper is to provide a framework for establishing Strassen-type LILs at time
zero that applies in the setting of weakly hypoellptic diffusions. To formulate our results, we
fix positive integers d, k € N, a non-empty, open set U C R?, and consider an It6 stochastic
differential equation (SDE) on U of the form

(1.4)

dx, = b(x,)dt + 6(x,)dB,,
xo=xeU,

where B, is a standard, k-dimensional Brownian motion defined on a probability space
(2, Z,P). In (14), weassume b : U —> R and 6 : U — My are locally Lipschitz on
U; that is, Lipschitz continuous on every compact subset of U, while M, denotes the set
of d x k matrices with real-valued entries. Under these assumptions, the solution (1.4) can be
defined pathwise until the first time t(x.) at which x, exits U. If 7(x.) is finite with positive
probability, we fix a death state A ¢ U and set x, = A for t > (x.).
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In this paper, we focus on degenerate diffusions, or equivalently on matrices & (x) that have
rank strictly less than d at the initial condition x, so that the dynamics x, defined by (1.4) is
not trivially dominated at time zero in every direction by the process x + ¢ (x)B;. Otherwise, a
functional LIL can be readily obtained by rescaling Eq. (1.4) according to the LIL Brownian
scaling (1.3) and passing to a (functional) limit using the theory of large deviations [2-4]. To
see why, suppose for simplicity that & is a constant d x k matrix on U and all expressions
below are well-defined. Then, the rescaled process

Xt — X

b= x+—on-——, t€][0,1], e >0, (1.5)

Vi = )
! V2¢elogloge~!

satisfies the integral equation

t "'BE
yi=x+ Lb(x”)ds + e B (1.6)

0 /2logloge~! 2elogloge—!
Since the integral in (1.6) is small in ¢, one then expects, and indeed it can be proved that, for
almost all w, the set of limit points of y°(w) in €([0, 1]; Rfyas e — 0is precisely the set of
g € €°([0, 11; RY) of the form

& =x+0f 1.7

for some f € €°([0, 1]; R*) with f, = 0 and fol |ﬂ|2ds < 1. Thus if rank(6(x)) = d, then
the asymptotic behavior of every component of y;, and consequently every component of x,,
can be readily characterized.

On the other hand, if rank(6(x)) < d, then the same rescaling (1.5) is valid but less
informative. In particular, for the directions that are in the range of & (x), the argument above
gives correct asymptotic behavior. However, for the directions in R perpendicular to the
range of & (x), the limiting trajectories are constant almost surely, meaning that the dynamics
restricted to this subspace is finer and thus a different scaling is required. Even if one can
heuristically estimate the right scale in the perpendicular directions, more work is needed to
establish Strassen’s law for the corresponding process.

In this direction, more general Strassen-type LILs for stochastic differential Eqs. (1.4) can be
found in the pioneering works of Baldi [3] (at time infinity) and later Caramellino [10] (at time
zero). Both works are limited by the permissible scaling transformations (called a sequence of
contractions) applied to the diffusion to obtain the LIL. In particular, such scalings do not allow
for weakly hypoelliptic diffusions; that is, diffusions that satisfy the weak Hormander condition
but not the strong Hormander condition (see Section 3 for further information). Intuitively,
weakly hypoelliptic diffusions are those in which the noise must spread through the drift so
that the process does not live on a lower-dimensional manifold of U in small times. On the
other hand, strongly hypoelliptic diffusions are those in which noise only spreads through the
diffusion matrix, i.e. the drift is not needed, in order to reach all directions of the phase space.
Weakly hypoelliptic diffusions arise in a number of natural settings, from finite-dimensional
stochastic models in turbulence, see [5-7,13,14,16,22,34,39], to canonical models in statistical
mechanics and machine learning, see [9,12,17,21,30,31], where local almost sure behavior at
time zero is not understood precisely but is nevertheless important. Usually, one can estimate
the behavior at time zero by finding the support of the process using control theory via the
Support Theorems [37,38]. This usually gives the behavior of the process in small times with
positive, usually very small, probability [20]. The LILs deduced here provide a refinement of
the support of the diffusion in small times.
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In this paper, we improve upon the main results in [3,10] by showing more general scaling
transformations are permitted to obtain the functional LIL using the theory of large deviations.
Specifically, our methods allow for different scalings in each component which need not be
functions of the standard elliptic/Brownian scaling /e logloge~! as in [3,10], but can be
general regularly varying functions in & as ¢ — 0T. See Definition 2.1 in conjunction with
Definition 2.2. In addition, in the setting of SDEs with additive noise, our transformations can
in fact be time dependent (see Example 3.2), which is needed for degenerate diffusions with
non-vanishing drift at the initial condition. There, because of the time dependence, the rescaled
problem has a more complicated structure, which is why we restrict to the case of additive
noise. Furthermore, we apply the main results to several nontrivial examples, e.g. the Iterated
Kolmogorov equation in general dimensions and a stochastic Lorenz 96 model, capturing the
a.s. behavior in each of these equations in each direction as time goes to zero started from the
origin.

Our original motivation for LILs in the setting of hypoelliptic diffusions was to derive a
probabilistic method for determining whether certain boundary points are regular or irregular
(cf. Section 7). Such information is crucial when solving second-order linear hypoelliptic
boundary-value problems, for example the Dirichlet or Poisson problems, in a domain [33].
Understanding when a particular point is regular or irregular is a long-standing open question
and we refer the reader to the work of Kogoj [26,27] which employs analytical methods from
PDEs to provide sufficient conditions for classical solvability of the Dirichlet problem and
Harnack-type estimates. In this paper, we use the LIL to derive a control theoretic condition
for a given boundary point to be regular or irregular (see Section 7).

The organization of this paper is as follows. In Section 2, we outline notation and state
our main general results while in Section 3 we apply these results to concrete examples.
We recommend the reader not familiar with the methods to first loosely read Section 3 to
obtain some ideas of how to arrive at an LIL in the weakly hypoelliptic setting before reading
Section 2. Section 4 outlines the needed results from the theory of large deviations to establish
the main general results pertaining to the LILs, which are proved in Section 5 and Section 6. In
Section 7, we derive our criteria for a point on the boundary to be regular or irregular. There,
we also discuss applications of this criteria to the design of piecewise C' boundaries on which
all points are regular.

2. Setting, notation and main results

The setup in this section is similar to that in Baldi [3] and Caramellino [10], but with
several differences. First, our setting is slightly more general, which allows for more general
transformations of the original process; that is, the process that satisfies (1.4). Second, we
work primarily in the space of explosive paths, as opposed to continuous paths, defined below,
and consequently, we employ notation and results from Azencott [2]. Note that the space of
explosive paths was considered in [10] as well, though many of the proofs are carried out in the
space of continuous paths. Importantly, the space of explosive paths allows us to work around
issues of finite-time explosion in both the SDE and its limiting ODE. In particular, we can
remove Assumption (A) (iii) of [10], although in many examples this condition is satisfied.

2.1. Laws of the iterated logarithm and large deviations

The crucial ingredient in the proof of the functional LIL is a change of coordinates, i.e. a
rescaling, for the system (1.4), allowing one to reformulate the problem using the theory of large
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deviations. Unless the diffusion (1.4) is uniformly elliptic at the initial state x, the change of
coordinates varies depending on the dynamics. To see how to construct such a transformation,
we provide concrete examples in Section 3.

Unlike in [3,10], instead of assuming a particular transformation, we simply associate
to Eq. (1.4) a small parameter &, > 0 and family of processes {y®}.c(,,] satisfying an SDE
of the form

dyf = b.(y)dt + =0, (yf) d B¢,

Vr(e) 2.1
Yo =X,
where for each ¢ € (0,¢,], we set B = LEBE,, where B, is the standard, k-dimensional
Brownian motion introduced in (1.4), and let
r(g) := logloge™'. (2.2)

We furthermore assume that the coefficients b,, o, satisfy the following conditions.

Assumption 1. There exist &, > 0, a non-empty open set U* C R? (not necessarily the
same as U) and locally Lipschitz functions b : U* — R? and ¢ : U* — My, such that the
following properties hold.

(i) For every ¢ € (0, &,], the coefficients b, : U* — RY, o, : U* —> M,y are locally
Lipschitz on U*.
(i1) For every compact K C U*,

lim sup |b(y) — b(y)| =0,

e—0t yek
lim sup |loz(y) —o(»)II =0,
=0T yek

where || - || denotes a matrix norm.

In Fig. 1, we have provided a sketch of all of some of the objects introduced thus far, with
a generic “mapping” &, relating the two processes, x, and y;.

Remark 2.1. Note that b and ¢ in Assumption | are not the same as b and & in Eq. (1.4).
One should think of (2.1) as a rescaled version of (1.4), where b, and o, depend on b and &.

Remark 2.2. When comparing the noise terms in (1.6) and in (2.1), note that the /¢ in the
denominator in (1.6) is included in B; in (2.1) while the V2 is included in o,.

2.2. The space of explosive trajectories &([0,t]; V)

In order to treat possible finite-time blow-up of either y® in (2.1) or g, (see (2.9) below),
we work in the space of explosive trajectories. That is, for any m € N, ¢t € (0, 1] and open
V C R™, we again, offering a slight abuse of notation, fix a death state A ¢ V and let V U{A}
be the Alexandroff compactification of V. Then, &([0, ¢]; V) denotes the space of continuous
mappings

g:[0,t] > VU{A} (2.3)
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D¢

U U

Fig. 1. A diagram representing a cartoon relationship between the process x; and y; via the generic mapping P,
which should be thought of as a rescaling of Eq. (1.4).

such that if g, = A for some #, € [0, ], then g, = A for all s € [to, t]. For any x € V and
t € (0, 1], we define &([0,]; V) :={g € &£(0,1]; V) : go = x}. If g € &[0, 1]; V), let

7,;(g) = inf{s € [0, ¢] : gs = A} 2.4)
denote the time of explosion of g, where we set inf ) = co. Define
&%0,11; V) = {g € &0, 11; V) : ¢ € L*([0, 5]) for any 5 < 7,(g),s <1}, 2.5)

where ¢ denotes the time derivative of g. In other words, g € &9([0, t]; V) means that g
belongs locally to the Sobolev space H'([0, 7,(2)) N[0, t]; V). We denote by € ([0, t]; V) and
€:([0,1]; V), x € V,t € (0, 1], respectively the space of continuous g : [0,7] — V and
continuous g : [0, t] — V with gy = x. In particular, g € ([0, t]; V) implies t,(g) = oo. Let

€10, 1]; V) = €([0,11; V) N &0, 1]; V) (2.6)

and observe that €°([0, ¢]; V) coincides with the Sobolev space H'([0, t], V).

It is important to equip the space &([0, ¢]; V) with a topology compatible with the topology
of €([0,1t]; V). As in [2], we define the closed sets in &([0, t]; V) by specifying convergent
sequences. That is, we say that a sequence g, € &([0, t]; V) converges to g € &([0,t]; V) as
n — oo if g, converges uniformly to g on compact subsets of [0, 7,(g))N[0, ¢], or equivalently,
if for any s € [0, 7;(g)), s < t, there exists N € N such that {g,},>y C €([0, s]; V)and g, — g
as n — oo in the space ¥([0, s]; V). The topologies on %°([0, t1; V) and &°([0, t]; V) are
then induced by the topologies on, respectively, €'([0, t]; V) and &([0, t]; V) intersected with
H}, ([0, 7() N[0, 1]: V).

For g, h € &([0,t]; V) and s < ¢, we define

dy(g, h) = (2.7)

Sup,co.s) 18 — hul s if s < 7 (g) A T(h)
o0 otherwise.

Clearly, d,(g, g) = 0 if s < 7,(g) and d(g, h) = d;(h, g), where both sides are either infinite
or finite and equal. Also note that for any f, g, h € &([0, t]; V) it follows that

dy(f, 8) = ds(f, h) +ds(h, g) (2.8)

since the above reduces to the usual triangle inequality in € ([0, s]; V) if s < 7,(f) A ©:(g) A
7,(h). On the other hand if s > 7,(f) A 7,(g) A T;(h), then the righthand side is always infinite,
so the inequality (2.8) is trivially satisfied.
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Remark 2.3. Note that d; is not a metric on &([0, t]; V) since, for example, d,(g, h) = oo if
g, h are identically equal to A. However, we do not need d to be a metric below.

For any A C €([0,t]; V) and any g € &([0, t]; V) we set
di(g, A) = inf{d,(g, h) : h € A}.

Remark 24. If g € &([0, 1]; U), then its restriction to [0, ¢], t € (0, 1], also belongs to
&([0,t]; U). Below, we slightly abuse notation by denoting this restriction g as well.

2.3. Statement of the main general results

To employ a large deviation principle for y; solving (2.1), the following family of
deterministic ODEs on the open set U* is of particular importance:

{g, =b(g) +0(g)f .

8o =X,

(2.9)

where b, o, U* are as in Assumption 1, f e €°([0, 17; R¥), and x € U*. By classical results
for equations with locally Lipschitz coefficients (see, for example, [2, Proposition 2.3, p. 75]),
if 7(g) denotes the first exit time of the solution of (2.9) from U*, Assumption |1 ensures that
for any f e €°([0, 1]; R¥) and x € U*, Eq. (2.9) has a unique solution g € &°([0, 1]; U*)
provided we set g(¢) = A for any ¢t > 7(g). We also assume that (2.9) is always satisfied for
any t > 7(g) and we let g = S, (f). Here, S : U* x €°([0, 1]; R*) — &°([0, 1]; U*) is the
mapping given by

(x, f) = g=8:(0). (2.10)
In general, the mapping S is not continuous. However, for every a > 0 the restriction of S to
U* x 6, where

Co=1{f € €°0, 1;RY) : [yl i dr <a}, @.11)

is continuous [2, Proposition 2.8, p.75]. Furthermore, by standard arguments (considering
the equation for the difference of solutions and estimating using Gronwall’s inequality)
Assumption 1 implies that for any compact sets K, L C U* with K C interior(L) and for
any a > 0, there exist constants 7 > 0, C > 0 such that

(pl) For all x € K and all f € €,, g = Sy(f) has 7;(g) > T and g([0, T]) C L.
(p2) Forallx,ye K, fe€%,,ands <T

dy(Se(f), Sy(f)) < e“lx — yl.
P3) If { f,} C €, converges in H'([0, 1]) to f € E,, then S,(f,) — S.(f) in €°([0, T1; U*).
An essential notion for us is the Cramer transform X : &([0, 1]; U*) — [0, oo] defined by
Ag) = inf{%f01|f,|2dt . f e €°(0, 1]; R¥) and Seo(f) =8}, (2.12)

where we set inf § = oo and f; = 0 for any s > 7,(g), or equivalently S,(f)(s) = g is
satisfied for any f if s > 1;(g). We remark that we can choose f, =0 for t > 7,(g) since
in this time range Eq. (2.9) is satisfied by definition for any f. Note that our definition is
equivalent to one introduced in [2, (4), Chapter IV] by [2, Proposition 2.10, Chapter IV]. Now,
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[2, Proposition 2.10, Chapter IV] yields that if A(g) < oo, then the infimum in (2.12) is attained,
g — A(g) is lower semi-continuous, and for any compact set K C U* and any a > 0, the set

{g€&(0,1U") : go€ K, AMg) <a} (2.13)
is compact in &([0, 1]; U*). It thus follows that for every x € U* the set
My =1{g € &(0,1:RY) : M(g) < 1} (2.14)

is also compact by choosing K = {x} and a = 1 in (2.13).
By property (pl) and the relation (2.12), for any compact set L C U* and x € interior(L)
there exists a time

t = t.(x) € (0, 1] (2.15)

such that for all g € J#;, g([0, t,]) C interior(L). Let #;(z,) be the set of functions in 7,
restricted to &([0, t,.]; U™); that is, ;. (t,) == {8100 8 € J}. Our goal is to show that, under
Assumptions 1 and 2 (defined below) %7, (t,) is the set of limit points, almost surely, of y*
solving (2.1) as ¢ — 0 (when restricted to [0, #.]). Then, we show how one can relate y° back
to the original process x; solving (1.4) to obtain the desired functional LIL.

Assumption 2. Consider the compact set L C U* and constant ¢, > 0 defined in (2.15). The
process y° with x € interior(L) solving (2.1) satisfies the following properties:

(i) For every § > 0, there exists ¢y € (0, 1) such that for any ¢ € (cp, 1) there is a P-almost
surely finite random variable J = J(w, c) € N such that j > J and ¢ € [/t ¢/ implies
y; € L forall t € [0, #,] and

d. (", y%) <. (2.16)

(ii) For &, > 0 as in Assumption 1, the mapping ¢ — y° : (0,&,) — & ([0,1.]; U*) is
continuous, P-almost surely.

Remark 2.5. Assumption 2 essentially allows one to reduce the proof of the main result
(Theorem 2.6) to the countable sequence {y'} instead of {y*}.

Theorem 2.6. Suppose that Assumptions 1 and 2 are both satisfied for some ¢, > 0 and
non-empty open U*. Fix compact L C U*, x € interior(L) and t, = t,(x) € (0, 1] as in (2.15).
Then, for P-almost every w, we have the following conclusions:

(i) The set # () = {y*(@)}ec(0.6,) Is relatively compact in &([0, t,]; U™).
(ii) d;, (y*(w), H#:(t)) — 0 as ¢ — 0.
(iii) For every h € J (1), {y°(w)}ec(.,] has a subsequence {ygi(‘”’h)(a))}‘]?o
as j — oo such that

2 withej(w,h) | 0

dt*(ygf(“”h)(a)), h)y— 0 as j— oo.

In Section 3 we make heavy use of the following corollary of Theorem 2.6, which is a basic
topological consequence of relative compactness and continuity.

Corollary 2.7. Under the hypotheses of Theorem 2.6, let X be a Hausdorff topological space
and suppose that F : &([0, t,]; U*) — X is continuous. Then for P-almost every o, F(¥ (w))
is relatively compact in X and F(#,(t,)) is the limit set of F(% (w)) as ¢ — O.
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Proof of Corollary 2.7. The second conclusion follows immediately by continuity. Since
% (w) is relatively compact almost surely, then %/ (w) is compact, almost surely. For P-almost
every w, F(% (w)) is compact since F is continuous, and therefore closed in the Hausdorff
topological space X. Hence, F(% (w)) C F(% (w)) implies F(# (w)) C F(%(w)). Since a
closed subset of a compact set is compact, the assertion follows. [

In practice, it is relatively straightforward to check Assumption 1. However, Assumption 2,
especially part (i), requires more work to validate. We next explore verifiable conditions under
which Assumption 2 holds.

2.4. Sufficient conditions for Assumption 2

Heuristically, if Assumption 1 is satisfied and the system (2.1) arises from the original
equation (1.4) under a reasonable change of coordinates, then Assumption 2 also holds.
However, even more is true if the noise is additive. That is, if o.(x) = o, is a constant matrix
for every ¢ € (0, ¢,] and Assumption | holds, then with an additional marginal continuity
hypothesis, Assumption 2 holds for (2.1) independent of any relationship to the original
equation (1.4).

To introduce an allowable change of coordinates that maps (1.4) to (2.1), we need further
notation. We denote by « = («;,...,a4) and B = (B, ..., Bs) multiindices taking values in
R?, and we write o > B (respectively « > B) if a; > B; (respectively o; > f;) for all i.
Note that this is equivalent to the partial ordering on the positive cone. When the context is

clear, we use 0 and 1 to denote the multiindices (0,0, ...,0) and (1, 1, ..., 1), respectively.
For multiindices «, B8, we let the product a8 denote the multiindex (o8, ..., ®qBs) and if
a = 0, we define the multiindex o~! = (ay 1, oy 1, ...,a;l). Finally, for any multi-index «,
we define

) = [> a?. (2.17)

Definition 2.1. Suppose that, for every multiindex o > 0, &, : U — U, is a C>-bijection,
where U, C R? is open. We call {®,}4-0 a family of weak contractions centered at x € U if
the following conditions are met:

(i) For every multiindex « > 0, @,(x) = x;
(i1) For all multiindices « > B > 0 we have

|Po(y) = Pa(2)] < [Pp(y) — Pp(2)]

forall y,z € U.

(iii) There exist k > 0 and an open set U* C R? such that x € U*, U* C U, for each
|a| < k, and for any compact set K C U* and any ¢ > O there exists § > 0 such that
lap~! — 1] < 8 and |a| < k, |B| < « imply

|@0 @5 () —yl <&
forall y € K.
Example 2.1. Let U be an open neighborhood of 0 € R¥, and for any multiindex o > 0, let
@l : U — R? be given by

By = ey st yaeg ). (2.18)
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Define the open set U, = @OIZ(U ). Then, {Q5al,}a>0 defines a family of weak contractions centered
at 0 € U. Also, by shifting everything above, if U now denotes an open neighborhood of
x € RY, the family {®,}q~0 defined by

P(y) =x — LX)+ B =x+ Sy —x), yeU,

is a family of weak contractions centered at x by setting U, = @,(U).

Remark 2.8. Compared with Baldi [3] and Caramellino [10], the index « in Definition 2.1 is
allowed to be a multiindex rather than a positive real parameter. With some minor additional
structure (see Definition 2.2), this affords more general transformations of (1.4) rather than
functions of /& loglogs~! alone (see Section 3). It is expected that a similar condition can be
used to deduce LILs for diffusions at time infinity as well.

In order to specify a change of coordinates from x, to y;, we need to impose assumptions
on the dependence of the multiindex « on ¢. Below, this dependence is determined using a
heuristic scaling argument which in turn dictates the asymptotic behavior of x; at time ¢ = 0.
The conditions outlined in the next definition are natural and satisfied in the examples in which
we are interested.

Definition 2.2. Fix g9 > 0. We call ¢ : [0, 9] — [O, oo)d an asymptotic index if all of the
following conditions are met:

(i) ¥ is continuous.
(i1) ¥(0) = 0 and ¥ (u) < ¥ (v) as a multiindex for any 0 < u < v < &.
(iii) For any ¢ > 0, there exists § € (0, 1) such that for all ¢ € (1 — §, 1) there exists J € N
such that for any j > J:

81,82 € [/, ¢/] implies [y(S)Y ()~ — 1] <e.

Example 2.2. For any positive integers £,k € N, and &,(¢,k) > 0 small enough, let
Ve - 0, ex(€, k)] — [0, 00) be given by

Vet(logloge=1)k  for € € (0, s,(¢, k)],
0 for ¢ = 0.

Then, for any (€1, k1), ..., (€4, ks) € N x N and ¢, := min{e.({;, k;) : i =1,...,d} > 0,
¥ 2 [0, e.] — [0, 00) defined as

V(&) = (W, (&), -y Ve iy ()

is an asymptotic index. Indeed, by standard calculations for ¢ € (0, ¢,] and &, > O small
enough we have

Yer(e) = (2.19)

d k
g(t/fg,k(s))z = &' (loglog e ~H¥! (E logloge™! — 10g81> >0, (2.20)

which implies (ii). Also, by just proved monotonicity, if It <8, <8 </

£ k
| < V(1) <51>§ loglog8;"\* 1 ( log(jlogc™h) )2 o)
T Yer(32) b)) loglogs,' | = ¢5 \log((j + Dloge™h) )~ ’
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Then, for any small ¢ > 0 there exists § > 0 such that cg >1— % forany c € (1 — 4, 1) and
by choosing J large, we obtain that for any j > J

k

log(j log ¢! 2

og(jlogc™) <145 (2.22)
log((j + Dlogc—1) 3

Thus, if € € (0, 1)
1 [
W k((sl) —1< + 2
1/’@ k(32) -3

Hence property (iii) follows. The case ¢/*!' < §; < 8§, < ¢/ follows analogously.

—l<e (2.23)

Example 2.3. In Example 2.2, instead of choosing each coordinate of the form (2.19), one
could replace Y, by a continuous, strictly increasing function ¢ : [0, e,] — [0, oo) with
¢(0) = 0 and ¢ regularly varying at O.

Using the previous two concepts, we now connect Egs. (1.4) and (2.1). Suppose that { @4 }4s0
is a family of weak contractions centered at x € U and v : [0, &,] — R is an asymptotic index.
We can choose ¢, small enough so that |y (e)| < k, where « is given in Definition 2.1(iii).
Observe that for any ¢ € (0, ¢,] and ¢ < e~ lt(x) (see (2.4)), the family of processes

Vi = Pye)(Xer) (2.24)

satisfies, by Itd’s formula, an SDE on U* of the form (2.1) with b, : U* — Ré, 0, : U* >
M« given by

be(y) = eL By (e)(Dy, ) (»), (2.25)

0 (y) = Ver(e)D By e (D i ()5 (P, (1), (2.26)
where

- 4 . 9 d 52

L= bix) a_ XZ: (G x5 ()" FrTS (2.27)

with b and & as in (1.4), and U* as in Assumption 1.

Lemma 2.9. Suppose that {®,}qs0 is a family of weak contractions centered at x € U
and ¥ : [0,e,] — RY is an asymptotic index and suppose |Y(e,)| < k, where k is as in
Definition 2.1(iii) for the appropriate U*. If b,, o, given by (2.25)—(2.26) satisfy Assumption 1
with already fixed ¢, > 0 and U, then the family of processes {y®}ce,e,] given by (2.24)
satisfies Assumption 2.

Lemma 2.9 is proved in Section 6 along with the following corollary.

Corollary 2.10. Consider the family of processes {y®}cc(,s, defined by relation (2.1) and
suppose that o.(x) = o, is a family of constant d x k matrices. If €., U*, b., o, satisfy
Assumption 1 and for every § € (0, e.] we have that o, — o5 and by — bs as ¢ — §
uniformly on compact subsets of U*, then {y®}cc.¢,] Satisfies Assumption 2.

Remark 2.11. Perhaps the most surprising consequence of Lemma 2.9 is that it is used to
prove Corollary 2.10, even though there is no reference to an underlying mapping from x; to

V-
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3. Law of the iterated logarithm examples in the weakly hypoelliptic setting
3.1. Weakly hypoelliptic diffusions

Since Theorem 2.6 is a generalization of the main result in [10], all applications discussed
there also follow from Theorem 2.6. We therefore refer the reader to [10] to see how to obtain
a functional LIL at time zero for d-dimensional Brownian motion, elliptic SDEs as well as
some iterated stochastic integrals. In particular, by the example in [10, Section 5], we see that
Theorem 2.6 can also be applied when the noise is state-dependent. Here, we provide examples
not covered by [10] which follow from Theorem 2.6.

All of the SDEs discussed below fall within the class of weakly hypoelliptic diffusions with
additive noise; that is, each SDE below is of the form (1.4), where b € C*°(U) and 6 (x) = 6 is
a d x k constant matrix such that the range of &, denoted by Z(&), has dimension strictly less
than d, but Hormander’s condition is satisfied. That is, we say that the columns 6', 52, ..., 6%
of & and 6°(x) := b(x), viewed as vector fields on U, satisfy Hormander’s condition on U if
the list

) 4 =1,2,...,k (H)
[6°, 62](x) 0,6, =0,1,...k
(6%, [6%, 65]1(x) 0,0, 03=0,1,....k

spans the tangent space at all points x € U. In the above, [X, Y] denotes the commutator of
the vector fields X and Y; that is, if X = (X;(x)) and Y = (¥;(x)), then

d d
(X, Y](x) = ZZ{Xi(X)BY’(X) 02X }i
j=1

i1 8x,~ 8x,- B.Xj ’

A celeb~rat9d theorem of ~Hérmander [23] shows that if condition (H) is satisfied, then the
operators L, L*, 8,:|:Ii, d,£L* are all hypoellintic on the respective domains U, U, (0, oozx U,
(0,00) x U, where L is as in (2.27) and L* denotes the formal L?(dx)-adjoint of L. As
a consequence, the distribution of the solution process x; restricted to Borel subsets of U
is absolutely continuous with respect to Lebesgue measure with transition density g,(x, y).
Furthermore, (¢, x, y) — ¢;(x,y) € C*((0,00) x U x U). If the process x; exits U in finite
time, then the law of x, has a singular component on dU. However, this component is not
present prior to exiting.

One interpretation of Hormander’s theorem is that condition (H) ensures that x, is not
locally restricted to a lower-dimensional submanifold of U. Indeed, the noise is either acting
explicitly in directions &', ..., &, or it propagates implicitly through the drift term 6° = b,
as represented by the commutators in (H). However, condition (H) does not guarantee that the
process reaches all points in a small neighborhood in short times. For example, the process
may be restricted to a cone (still satisfying Hormander condition) as opposed to a ball [20,
Example 3.4]. The goal of our LILs deduced below is to provide further insight into the a.s.,
small time behavior.

3.2. Examples

We now consider several concrete examples, starting with the so-called Iterated Kolmogorov
diffusion.
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Example 3.1 (Iterated Kolmogorov). Consider the following SDE on R?
dx|, = xp dt,
dx, = x3dt,
3.1
dxg_1 = xgdt,
dx; =dW;,
where W, is a standard one-dimensional Brownian motion defined on ({2, %, P) and the process
Xp = (xp(t), ..., xq(1))

has initial condition xy = (0,0, ..., 0). Our goal is to establish an LIL for the first coordinate
x1, which is given by the iterated time integral of the Brownian motion

t 15) tq
xl(t)zf / / dWdt;dty_ ...dt.
0 Jo 0

This was the one of the main goals of the paper [29] by Lachal. Historically, the case d = 2
in (3.1) is the first known example of a hypoelliptic diffusion, as discovered by Kolmogorov.
For further information, see the discussion in the introduction of [23].

For any multiindex o = (o1, @2, . .., ag) > 0, define &, : R — R by

Bo(y) = (e 'y, 05 oo g ya)

and note by Example 2.1, {®,}4-0 is a family of weak contractions centered at the origin in
R?. Furthermore, by Example 2.2, for ¢, > 0 small enough, v : [0, &,] — [O, oo)d given by

Y(e) = <\/82d*1 logloge—!, /23 logloge=!, ..., /e3logloge~!, /e loglog 8*1>

is an asymptotic index. To see that Assumption 1 is satisfied for the transformed diffusion y;?
defined by

yzs = éw(s)(xst)s (3.2)

we observe that, by construction, y; solves the following SDE

dy, = y2dt,
dyq—1 = yadt, 3.3)
dvs = dB.(t)
SEVEOR

with yo = (y1(0), ..., y4(0)) = 0 and B,(t) = ¢~'/>W,, being a standard Brownian motion on
R, and r(¢) = loglog ¢~!. Since, b, = b is a linear function on R? and o, = o is a constant
matrix, Assumption 1 is satisfied. In addition, by Lemma 2.9, Assumption 2 holds true for
y; . Furthermore, since the process is non-explosive, we may set t, = 1 in the statements of
Theorem 2.6 and Corollary 2.7.

For the projection 7 : RY — R onto the first coordinate, consider the continuous map
F : £(0,1]; RY) — R U {A} given by F(g) = ng; if gt € R? and F(g) = A if g = A,
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where g; = g;—;. Observe that RU {A} is a Hausdorff space. Then, Corollary 2.7 implies that
{F(*)}o<e<e, is relatively compact in R U { A}. Furthermore, for f € €°([0, 1]; R) let

1 153 tg—1
J](f)Z/ / / ftddld...dlz. 3.4
0 Jo 0

Then, the almost sure limit set of (y{); as € — 0 is given by
n%@=LMﬂ:%A%ﬁfmsly

The embedding H'([0, 1]) = L*°([0, 1]) implies that the constants
M=mmumﬂzéﬁiﬂfm$1h
m=mmuwéﬁbwwsu,

are finite and by choosing f; = =£s, one has M, m # 0, and therefore almost surely

lim sup *1(e) =M=>0,
e—0  +/e2d-1logloge~!
lim inf () =m
e—0 /82d71 IOg IOg 871
Moreover, m = —M since J is an odd function of f.

Example 3.2. This example shows the utility of Corollary 2.10. Consider again the same
system as in Example 3.1, but with d = 2 and the process x; = (x(¢), xo(¢)) starting from a
general initial condition xo = (x;(0), x2(0)) € R?. Equivalently, we can consider the process
solving

dx; = (x, + ¢)dt, dx, =dW, 3.5

for some ¢, with xo = 0. Again, our goal is to obtain a LIL for the first coordinate x;. If we
define

x1(er) — x1(0) — 16x2(0)

yit) = TR 00+ 10), (3.6)
iy = 28 =00 o),

JVelogloge!

then y; == (y{(¢), y5(¢)) satisfies

dyj = ys dt,
1
dy; = —T(S)de,

where (y{(0), 5(0)) = (x1(0), x2(0)) and W} = JLEWS,. Note that Assumption 1 is clearly
satisfied for the process y?. Due to the explicit dependence on time, the mapping x — y® in
(3.6) does not satisfy the assumptions of Lemma 2.9 if x,(0) # 0. However, Corollary 2.10
ensures that Assumption 2 is satisfied. Also, the solution of the associated deterministic
problem

=y, nm=f (3.7)
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is given by
»(t) = x2(0) + f(1), i) = x1(0) + x200) + [y f(s)ds , (3.8)
where £(0) = 0. If J; : €°([0, 1]; R) — R is given by
1
I(f) = f fds  and M =sup{Ji(f) : L[\ (f)?ds <1}, 3.9)
0

then as in Example 3.1, one has 0 < M < oo and, P-almost surely,

lim sup<x‘(8) —nO®- ”2(0)) M, (3.10)
e—0 Ve logloge~!

liminf<xl(8) — 0O - 8x2(0)> —_M. 3.11)
e=0 Ve3logloge!

Note that (3.10) implies that for any § > O there exists a (random) sequence ¢, = &,(w) > 0
such that &, — 0 as n — oo and

x1(e,) = x1(0) + £,x2(0) + /&3 loglog e, (M — §).

Similarly, using (3.11); for any § > O there exists &, = £,(w) > 0 such that &, - 0 asn — oo
and

x1(8n) < x1(0) + 8,%2(0) + /&3 log log &, ' (=M + 8).

Now suppose x,(0) > 0 as the case x,(0) < 0 is treated similarly. Since /g3 logloge~! « &
for small ¢, we obtain that x;(¢) > x;(0) for all small times ¢. Intuitively, if we rewrite our
system as (3.5), then since xo = 0 one has x, < ¢ = x,(0) for all small times. Thus, x; is
increasing for small times as our analysis shows. Observe that if there was a noise in the x;
coordinate, then it would change sign on the time scale /¢ > ¢, and therefore x;(r) — x1(0)
would change sign as well.

Example 3.3. As our next example, we consider the following diffusion on R?
dx) = (x} — x3)dt,
dx, =2x1x2dt +dB,,

where x, = (x1(¢), xo(¢)) has initial condition xy = (x;(0), x,(0)) = (0, 0) and B, is a standard,
one-dimensional Brownian motion on (2, .%, P). This particular diffusion has been extensively
studied (see [1,8,16,19]). In particular, one of the main results in these works is that the
diffusion defined by (3.12) is non-explosive for all initial conditions in R?. This is true despite
the fact that the associated deterministic dynamics (obtained by deleting d B, from (3.12))
explodes in finite time when started from (s, 0) with s > 0. Here, we study the behavior
at time zero of the first coordinate, x; (the behavior of the second coordinate is trivial).
First, define the family {®,},.o of weak contractions centered at (0, 0) € R? by

(3.12)

By (y1, y2) = (yioy ' yaoz ).

We also define, for ¢, > 0 small enough, the asymptotic index ¢ : [0, e,] — [0, oo)2 as
¥(e) = (¢? logloge ™", Ve logloge ™).

Then, by (2.25) and (2.26) the process

Vi = Dye)(Xer)
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satisfies the SDE
dy, =& loglogs_'yl2 dt — y% dt,

1
dy, = 2&° logloge™! dt + —— dB.,
Y2 g10g yiy2 m P

where (y1(0), y2(0)) = (0,0) and B, is a standard, one-dimensional Brownian motion. Note
that
be(y1, y2) = (¢” logloge™' yi — 33, 2¢’ logloge ™' yiy)

and o, = o is a constant matrix. Since

be(y1, y2) = b(y1, y2) = (=3, 0)

uniformly on compact subsets of R? as & — 0, it follows that Assumption 1 is satisfied and
by Lemma 2.9, Assumption 2 is also satisfied. Thus, Theorem 2.6 and Corollary 2.7 apply for
any sufficiently small ¢, € (0, 1]. However, because the limiting ODE

)']1 = _)’3 s

n=_r,
is well-defined for all times ¢ € [0, 1] for any f € €°([0, 1]; R?) (simply integrate it), we may
take 1, = 1.

With a slight abuse of notation, we let 7 : R*> — R denote the projection onto the first
coordinate, and F : &([0, 1]; R?) — R U {A} be such that F(g) = mg; if g € R* and A
otherwise (cf. Example 3.1). Corollary 2.7 implies that {F(y®)}ce(,¢,] 15 relatively compact in
R U {A}. Moreover, if J; : %5([0, 1]; R) = (—o00, 0] is given by

1
h(f) = - /0 2 ds.

then the a.s. limit set of F(y®) as ¢ — 0 is given by

1
F(t) = {h(f) : 3 /0 (f)?ds < 1}.

Note that
1
M=t 5§ [ Gds < 1) € (-0.0),
0

since H'([0, 1]) = L*([0, 1]), and consequently almost surely
x1(8) x1(&)

liminf ——M— = —-M, limsup —— =0
e~0 &3logloge! eso & logloge~!

Example 3.4. Next, we consider the following Lorenz 96 model with d =5
dxiy = (xo — x4)xsdt — x;dt +dBy ,
dx, = (x3 — xs5)x1dt —x,dt +dB;,
dxz = (x4 — x1)x2dt — x3dt, (3.13)
dxy = (x5 — x0)x3dt — x4 dt ,
dxs = (x; — x3)x4dt — x5dt
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where the process x; = (x1(¢), x2(¢), ..., x5(¢)) above is assumed to evolve on R’ starting
initially at xo = 0, and B;, i = 1, 2, are independent, standard Brownian motions defined on
(£2, 7, P). Using nearly identical computations, one can also treat the general Lorenz 96 model
in d dimensions, but for clarity we prefer the concrete scenario above. Our interest stems from
the fact that the nonlinearities mimic pairwise interactions in the Navier—Stokes equation. Here
we will analyze the small-time behavior of xs.

In this example, again the family {®,}s»0 of weak contractions centered at 0 € R is the
same as above

Po(y) = (yiey !, yoas ty o ysash.
For &, > 0 small enough, we define ¢ : [0, ¢] — [O, 00)’ by
V(e) = (velogloge!, elogloge!, e*logloge ™", v/e7(loglog )3, e>(loglog e~ 1)?)

and note that ¢ is an asymptotic index for (3.13).
Let y® be given by y; = Py )(x,) and note that y* solves the following SDE

1
dy; =b , V2, Va4, dt + ——=dB, .,
1 Le(Y1, Y2, Y4, ¥s) NGO Le

1
d = b ) ) ) + gy dB 3
Y2 = b2 (1, Y2, ¥3, ¥5) NGO 2.6

dys = —y1y2dt + b3 (2, y3, ya)dt ,
dys = —yry3dt + bs ((y3, ya, y5)dt ,
dys = y1yadt + bs o (y3, ya, ys)dt
where b; . — 0,i =1,2,3,4,5, as ¢ — 0 uniformly on compact subsets in R’. Furthermore,

one can check that the b; . are locally Lipschitz on R, so that Assumption 1 is satisfied. Thus
Theorem 2.6 and Corollary 2.7 both apply. In this case, the limiting ODE is

= fi, V2= fo, V3= —Y1y2, Y4 = —yy3, V5 = Y14, (3.14)

with y(0) = 0.

Note that we can solve (3.14) explicitly and take ¢, = 1 again. Indeed, let 75 : R> — R
denote the projection onto the fifth coordinate and, slightly abusing notation again, define
F :&(0,1]; R’) — RU{A} by F(g) = m5g, if g1 € R’ and F(g) = A otherwise. Applying
Corollary 2.7, we note that { F(y*)}o<e<e, is relatively compact in RU{A}. Furthermore, define
J3 1 65([0, 1]1; R?) — R as ys in (3.14)

1 t s
J3(f17f2)=/0 fl(f)</0 fz(S)</0 fl(r)fz(r)dr) dS>dt,

where f1(0) = f,(0) = 0. Let
1
M = sup{J5(f1, fo) %/O (fr I < 1)

1
m = inflJs(fi, fo) %/0 i Al < 1y

Setting f = ¢ = 1 we see that J3 clearly attains positive values. However, seeing that J3 can
realize negative is not immediately obvious. Nevertheless, by choosing f;(#) = sin(5¢) and
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f2(t) = sin(z) one has J3(fi, f2) & —0.00605. Thus by a proper rescaling to guarantee the
constraint on f; and f,, we obtain then (almost surely)

x5(&)

i _B® .
0T &5 (logloge 1)
liminf —5® .

e—0 g(logloge=1)2

for some M > 0 and m < O.

Remark 3.1. Because the LIL at time zero is local phenomena, there is nothing important
about the SDEs above being defined on all of R?. One can consider the same equations (or
different ones) defined in a neighborhood U of the initial condition x, with scalings taking the
same forms. One then applies the general results of this paper, but with U* in place of all of
R?. See also Example 2.1.

Remark 3.2. Let W, be a standard, real-valued Brownian motion defined on ({2, .%#,P).
Chung’s LIL [11] for W, at time zero states that, P-almost surely,
logloge~! T
—_— Wil = —. 3.15
{ . fhax |Wi 7 (3.15)

A natural question is whether Theorem 2.6 and Corollary 2.7 can be used to deduce a similar
results for SDEs in the examples above? The short answer is that the results do apply, but do
not obviously capture the precise asymptotic behavior that one would expect for the lim inf of
the running maximum. To see why in more detail, we have provided the next example.

Example 3.5. Consider (3.1) for d = 2 and define the maximum process for the first coordinate
x{(1) = supgcjo,, IX1(s)[. Using the scaling property [25, equation (2.1)]
O L21) V=0
along with inversion, one of the main results in [25] states that, P-almost surely,
*(g 32
fiminf ) — e )= —
e=0 ¢(e) (loglog e~1)3/2

for some deterministic constant ¢ € (0, oo). To investigate properties of x* in our framework,
let 7 : R> — R be the projection onto the first coordinate, and let F : £([0, 1]; R?) — RU{A}
be a continuous mapping given by F(g) = sup;jo.1) |7 gs| if g1 € R?>and F(g) = Aif g, = A.
Following Example 3.1, if J : €°([0, 1]; R) — R is given by

/Otfsds

then the almost sure limit set of F(y®) as ¢ — 0 is

(3.16)

J(f)= sup

0<t<l

) (3.17)

1
F(A) = U(f) : ) f (fiYds < 11,
0

Here, we recall that y® is as in (3.2) with d = 2. From this we deduce that, almost surely,

limsup —— 18 _ (3.18)

e—0 &3/2,/logloge~! B
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iminf — & _g (3.19)

=0 32 flogloge~!
for some constant M € (0, co). Note that while relation (3.18) provides precise asymptotics, the
second relation (3.19), though consistent with (3.16), does not establish (3.16). This is because
the liminf of x* acts on a smaller scale which is not captured by our scaling.

4. Large deviations

In this section, we outline two key results that are used to prove Theorem 2.6. Both
results follow almost immediately from the existing literature. Here, we only provide slight
adjustments, if needed, to connect with our setting.

The first result stated below is a consequence of [4, Theorem 1.1], which is an improvement
of [2, 2.4 Théoreme, Chapitre III]. The only difference here is that we are not assuming [4,
(A.3)], but our proof follows nearly identical localization procedure for an open set U* as
opposed to R in [4].

Recall that (x, f) — S,(f) is the solution operator of (2.9), r(¢) = logloge™!, and the
distance-like function d; is defined in (2.7). We also recall that for every ¢ > 0, B} = e~ 12B,,,
where B, denotes a standard Brownian motion on R¥, and that e, > 0 and U* were fixed in
Assumption 1.

Theorem 4.1. Suppose that Assumption 1 is satisfied and let K C U* be a compact set and
t € (0,1]. For every p > 0, R > 0,a > 0, there exist &g € (0, &,],« > 0 such that for all
x e K, fe?€°0,t]; RY and g = Sc(f) with

t
f \filds<a  and  g(0.1]) C K,
0

we have the following estimate

P{d,(ﬁlae, f) <a and d,(y°,g) > p} < e Rr®

forall 0 < ¢ < g

Proof. Since K is compact, there is py € (0, p] and a compact set K’ C U* containing a
20 neighborhood of K. Let V C R? be a bounded, open set such that K’ ¢ V C U* and let
¢ : R? — [0, 1] be C* function with ¢ = 1 on K’ and 0 on V. For any function p on U*
we define p, on R? by

po(y) = PMe(y) yeU*,
¢ 0 y ¢ U*.

Thus, to b, o, be, 0, we associate respectively by, 0y, by ¢, 04 . Then, by construction and
Assumption 1, by, 0y, by ¢, 0, are bounded and globally Lipschitz on RY and b, — b,,
0y.c = 0, uniformly on R? as ¢ — 0. Let y{ be the unique solution of the Itd SDE

dy: = by (y)dt + =0, () dB;,
Yo = X.

By standard arguments, the solution above belongs almost surely to %,([0,t]; U). Then
[4, Theorem 1.1] with A(e) = 1 and &2 replaced by r(e) < 72, provides the existence of
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g0 > 0, > 0 such that for all x € K, f € €°([0, t]: R¥) and g = S:(f) with

/ \filds<a  and  g(0,f]) C K
0

we have, for every ¢ € (0, &o]

P d’(ﬁBg’ f) <a and d(y,, g) > po} < e Fr@,

However, y; and y® coincide until the first time both y; and y* exit K ’. Since g([0,¢t]) C K
and p > po

P dz<\/r'(—€)B‘9,f) <a and d,(y",8) > p}

< P{dz(ﬁBa, f) <a and 4,(° ¢) > Po}

< P{dz(ﬁBa, f) <a and di(y;, g) > ,00}

< eer(a)

and the proof is finished. [J

Recall the Cramer transform A : &([0, 1]; U*) — [0, +o00] introduced in (2.12), and for any
A C &([0, 1]; U*) Borel set define

A(A) = inf A(g). 4.1
geA

Theorem 4.2. Suppose that Assumption 1 is satisfied. For any Borel set A C &;([0, 1]; U*),

1 1 _
— A(interior(A)) < liminf — log P{y® € A} < limsup — logP{y® € A} < —A(A),
e—=0 r(g) £—0 r(8)

4.2)
where interior(A) and A respectively denote the interior and closure of A.

For the proof of Theorem 4.2, we refer to [2, proof of 2.13 Théoréme, Chapitre III] with
&2 replaced by r(g), which works in our setting as one merely needs o to be locally Lipschitz
on U* rather than C'.

Given the previous two results, we are now prepared to prove Theorem 2.6.

5. Proof of Theorem 2.6

The proof of Theorem 2.6 is similar to the proof of the main result in Baldi [3] and also
Caramellino [10], but with a different topology and set of assumptions.
We first need some auxiliary results.

Proposition 5.1. Suppose that Assumption 1 is satisfied and x € U*, t,, and J,(t,) are as
in the statement of Theorem 2.6. Then the following assertions hold.

(i) For any c € (0, 1):

P{ lim d,,(y"', #(t,)) = 0} =1.
j—oo
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(1) If Assumption 2(i) is furthermore satisfied, then

P{li%dt*(yE,%(t*)) = 0} =L

Proof. To show (i), fix § > 0 and consider the set

Hys =g € &0, 1 UY) : dy (g, Hi(t) = 8} (5.1
First we claim that JZ; 5 is closed in &([0, 1]; U*). Indeed, if g, € J#; s converges to g in
&([0,1]; U*) as n — oo and g(t,) = A4, then d, (g, #:(t.)) = oo since, by the definition of
t*, h(t*) # A for any h € J#,(t.). Hence, g € J; s. If on the other hand g(z,) € U*, then
by the continuity of g, 71(g) > t. and by the definition of convergence in &([0, 1]; U*) one

has that 7,(g,) > t. for any sufficiently large n. Then, the triangle inequality (2.8) and the
definition of d,, imply for any i € J,(t,)

dy, (8n, 8) +d;, (8, h) = di,(gn, h) = 6. (5.2)

Passing n — oo, we obtain g € 7, 5.
We now claim that there exists 8’ > 0 for which A(%; s) > 1+ 6. Suppose to the contrary
that A(#; 5) < 1. By definition, there exists a sequence g, € %, s such that

lim A(gn) = A(Hy5) < 1.
n—0oQ
Thus, for all n large enough, g, € # = {g € &(0,11; U*) : A(g) < 2}. The set .#

is sequentially compact since .# is the image of the sequentially compact set (the compact
Sobolev embedding H' < %)

G =1{f € €0, 1;R) : 1[!fids <2}

under the continuous mapping S, : % — & ([0, 1]; U*) given by S,(f). Hence, the
sequence {g,} has a convergence subsequence {g,, } converging to some g € %, ;5. The lower
semicontinuity of A then implies

1 > liminfA(g,,) > A(g).
k—o00

In particular, g € #;, contradicting closedness and the definition of 7 5. Thus we have shown
that there is §' > 0 so that A(%;5) > 1+ 4.
By Theorem 4.2 and the fact that JZ; 5 is closed

1
lim sup @ logP{y® € A5} < —(1+§).
r

e—0

Hence, using the definition of r(¢) we have for all j large and ¢ € (0, 1)

Py € Ay <

(5.3)
j1+7

for some constant C = C(c) > 0. The Borel-Cantelli lemma then implies
P{lim sup d,*(y"j, HKo(ty)) > 8} =0.
j—oo
Since § > 0 was arbitrary, lim;_, o d;, (ycj, Jt(t,)) = 0 almost surely, finishing the proof of
part ().
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To establish part (ii), fix § > 0 and by Assumption 2(i) choose a constant ¢ € (0, 1) and a
(random) index Jy = Jy(w, ¢) > 0 such that for all j > Jy and ¢ € [¢/*!, ¢/]

j 8

yi eU” and d,(y,y%) < 5 (5.4)

By (5.3), we can increase J, if necessary so that j > J, implies
J 8

di, (5, Hilt)) < 5.
Using (5.4), the triangle inequality (2.8), for any j > Jy and & € [¢/*!, ¢/] one has

dl*(ys’ L%)C(l;k)) < 8’
and part (ii) follows. [
Proposition 5.2. Suppose that Assumption 1 is satisfied. Let g € 2 be such that M(g) < 1.
Then, for all € > 0 and ¢ € (0, 1) we have

P{d,*(y"j, g) < € for infinitely many j} = 1.
Proof. In the proof, we abbreviate for infinitely many j as io. j. Fix g € ., with
a =Mg) < 1andfix e > 0 and ¢ € (0, 1). Since the infimum in the definition of A (see
(2.12)) is attained, there exists f € %,([0, 1]; R¥) so that g = S:(f). By shifting f by a

constant value, we may assume without loss of generality that f; = 0, as the time derivative
is invariant under this shift. For a, > 0 and ¢ € (0, 1) define events

Fj= {dr* <ﬁ3 f) < a*} and  H;={d,(y".g) <e).
Then, Theorem 4.1 implies that there exist a, > 0 and J > 0 such that j > J implies
. C
P{F; N Hf} <exp(—2r(c’)) < -
’ ’ J

for some constant C > 0. The Borel-Cantelli lemma then implies P{F; N Hj‘f i.0.j} = 0. Now,
by Mueller [32] or Gantert [15] we have 1 = P{F; i.0. j}. Thus,

1 =P{F; i.o0. j} <P{F; N H; io. j} +P{F; N Hj io. j} <P{H; io. j},
as desired. [

We will also need the following topological result.

Lemma 5.3. Lett € (0,1], V C R? be open, x € V and suppose K C 6x([0,t]; V). Then,
K is compact in 6,([0, t]; V) if and only if K is compact in &:([0, t]; V).

Proof. Let K C %:([0,¢]; V) be compact in &([0, t]; V). To show that K is compact
in 6,([0,t]; V), it suffices to prove that if ¥ is open in %,([0, t]; V), then ¥ is open in
&:([0, t]; V). Equivalently, we show that # = &,([0, ¢]; V) \ 7 is closed in &;([0, t]; V). Let
gn € W be such that g, — g € &.([0,¢]; V). If g(t) = A, then clearly g ¢ ¥ C %,([0,t]; V),
and therefore g € # . On the other hand, if g(t) € V, then g € %,([0, t]; V) by definition
of &.([0, t]; V). By definition of the topology on &, ([0, t]; V), g, € # N %,([0, t]; V) for all
n > N, N > 0 large enough. Since # N 6,([0, t]; V) is closed and g, — g in the topology
of €,([0,t]; V), then g € #. Thus, # is closed in &;([0, t]; V).
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Conversely, suppose K C %, ([0,¢]; V) is compact in €,([0,t]; V). To prove that K
is compact in &,([0, t]; V), it is enough to show that if ¥ is open in & ([0, t]; V), then
¥ N6 ([0,1]; V) is open in %, ([0, t]; V). Note that this follows immediately from the fact
that if g, — g in ([0, ¢]; V), then g, — g in &([0,¢]; V). O

Given the previous three results, we next prove the main general result, Theorem 2.6.

Proof of Theorem 2.6. We have already established part (ii) in Proposition 5.1(ii). To prove
part (i), we need to show that %' (w) is relatively compact, almost surely. By Proposition 5.1(ii),
for any § > O there exists &g = &o(w,8) € (0, &,] such that d,, (y*, #.(t,)) < & for all
e € (0, go]. In particular, for any small § > 0, y*(z,) # A as. for any ¢ € [0, gy]. Hence,
¥ € 6:([0, t,]; U*) for any ¢ € (0, &], and therefore the closure of {y®}o. <4, in & ([0, #,.]; U*)
is the same as the closure in %% ([0, t.]; U*).

We claim that the closure of {y®}o<s<s, in & ([0, t,]; U*) in 64([0, t,]; U*) is compact
in %,([0,t]; U*), almost surely. Consequently, the closure of {y®}os<¢, is compact in
&, ([0, t.]; U*) almost surely by Lemma 5.3 finishing the proof of part (i) of the result. To prove
the claim, first note that by Assumption 2(ii), there exists a subset 2; C {2 with P({2)) = 1
such that t — y;(w) is continuous up to the time of explosion, for every w € (2, and every
e € (0,&,). Let {2 = {a) limg o di, V% (), Ky (1)) = 0}. Then by Proposition 5.1(ii), we
have that P(%) = 1. Hence, setting {2, , := {2, N {2, we also have P({2, ;) = 1. Note that we
have that t — y/(w) is continuous for every w € 2;, and every ¢ € (0, &y]. Let us now fix a
sequence {&,} C (0, g9]. By passing to a subsequence, we can suppose that &, — e € [0, &o].
If 5o > 0, then by Assumption 2(ii), y* (@) — y°**(w) in & ([0, t.]; U™), for all w € (2.
Note that this convergence happens in %, ([0, t,]; U*) for all ® € (2, , by definition of ;. If
€0 = 0, then by Proposition 5.1(i), y*(w) — Hi(t,) in 6,([0, t,]; U*) for all w € (2.
However, since 7, (t,) is compact, there exists a subsequence of {g,}, again denoted by {¢,},
such that y* converges to g € %x(t,), and therefore g belongs to the closure of {y®}o<;<s,. Our
claim now follows. We next prove part (iii) of the statement. Note that by Proposition 5.1(ii),
for any w € (2, the limit set #” of ¥ as ¢ — 0 is contained in J#Z;(¢,). To see the other
inclusion, first note that %, (z,) is compact and hence it contains a countable dense subset, say
D = {gm}py; With A(g,) < 1 for all m > 1. Note that we can find a countable dense subset
9’ of J,(t,) such that A(g) < 1 for all g € Z'. Indeed, for every g, € 2, the infimum in
(2.12) is attained and thus there exists f,, € €°([0, 1]; R¥) with

11,
3 / [ Pdt <1 and Si(f) = gm.
0

For each n > 1 define f = (1 — 1/n)f, and let g, = Sc(f,,). Clearly, A(g,) < 1 and

D" = {gn} a1 is the desired countable dense subset of 7, (z.). By Proposition 5.2, for every
k,n,m > 1, and c € (0, 1) the set

J 1
Dok = {a) : d,*(y‘j(a)), &) < % for infinitely many j}

satisfies P(£2,,x) = 1. Now, set 2 := [° 2,.mx and note that P(2) = 1. For any

n,m,k=1

g € J,(t,) with A(g) < 1 and for every k > 1 there exist n(k), m(k) > 1 and gz((];()) € 92’ such
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that d,, (g, g:’n((];))) < ﬁ Thus, by the triangle inequality, for every k > 1

j 1
2 clw:d, (ycj (), g:l((];())) <5 for infinitely many j}

. 1 n o
Ciw:dy, (y‘/(a)), g) < % +d,, (g, gm(gc))) for infinitely many j}

i 1
Clw: d,*(ycj (w), g) < Z for infinitely many j} .

Hence,

o0
i 1
' c ﬂ {a) : dt*(y”/ (w), g) < T for infinitely many j} .

k=1
Thus, we proved that there exists a set {2 with P(£2’) = 1 such that any g € J#;(t,) with
A(g) < 1 belongs to #” forall w € 2. O

6. Proof of Lemma 2.9 and Corollary 2.10

In this section, we prove Lemma 2.9 and Corollary 2.10, which give basic criteria for the
family {y®}o-¢<e, to satisfy Assumption 2. We begin with the:

Proof of Lemma 2.9. We first prove Assumption 2(i). Recall the definition of ¢, = t.(x) €
(0,11 and L C U* in (2.15) and recall that 7, (t,) is compact in both %, ([0, #,]; U*) and
&:([0, t,]; U*) by Lemma 5.3. From (2.15), it follows that g([0,z,]) € L C U* for all
g € Hi(t,). Choose a compact set L' C U* with L C interior(L’) and fix § > 0 such that
28 < dist(L’, dU*). Using compactness of JZ;(t,) in 6, ([0, t.]; U*), the Arzela—Ascoli theorem
implies that the set J#;(t,) is equicontinuous, and therefore for any ¢ € (0, 1) sufficiently close
to 1 one has

8
sup sup |h(t) — h(s)| < =. 6.1)
heHy(ty) TSE[O,I*] 3

€lct,t]
By properties (i) and (ii) in the definition of an asymptotic index (Definition 2.2), we can
decrease g if necessary such that |{(u)] < « for any u € [0, gp], where « is as in
Definition 2.1(iii). Then, since {®,} is a family of weak contractions centered at x, for all
c € (0, 1) close enough to 1, there exists J; > 0 (deterministic) such that for all j > J; and
all & € [¢/*!, ¢/] one has U* C U,(.j, and

. _ 8
Py © B0\ = ¥+ 2Py ey 0 B () = ¥l < 3 (6.2)

for all y € L'. Fix ¢ € (0, 1) sufficiently close to 1 such that (6.1) and (6.2) are satisfied.

By Proposition 5.1(i), for almost every @ we can choose a finite Jy = Jo(w, ¢) > J; such that
j > Jo implies y¢’ € L’ for any s € [0, #,]. Also, from (2.8) for all j > Jy and ¢ € [¢/*!, ¢/]
it follows that

di (5, ) S di (Pyiey 0 Dy 07D, Y )+ din(Pyey (e, Pyo)(Xes)- 63)
Let us prove that the second term on the right hand side is finite. First, observe that

-1 J
Dye)(Xir) = Py 0 D O7)-
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Thus, since j > Jy we have yscj € L’ for any s € [0, t,], and one has by (6.2)

S 8
diy(Pyey 0 By (), ) < 3 (6.4)

In particular, since 28 < dist(L’, dU*), Py )(x.j,) € U* for any ¢ € [0, t*].
Next, since ¥ is an asymptotic index and {®,}4-0 is a family of weak contractions centered
at x, one has for any t < t*, t < 7, ()%)

[Py e)(Xer) = Pyey(Xei )| = | Py iy (Xer) — Py ity (X )]
< sup [Py i+)(Xeis) — Pyeivt)(Xeip)l

s€lct,t]

< sup { |¢1//(c/+1)(xcfs) _y;jl

s€(ct,t]

Hﬁ—%wwmmﬂﬁ—ﬁ@

U ey e J j
< 2d,, (By i1y 0 D iy V)5 )+ 768[101?] lyi =y |-
se[c,t,’;]

Consequently, from (6.1) and (6.2) for any g € J£,(t,) and t < t, it follows

|<P¢,(S)(x5,) — QV/(S)(xc.ftN f de* (¢¢(cj+1) o) @];(]cj)(yc.l)’ yc./) + Zdt* (yc/ i g)

+ sup sup |A(r) — h(s)|
he Hy (ty) tel0,t4]
s€lct,t]

28 i
s?+mm%w

Since the left hand side is independent of g, we can take the infimum with respect to g € J#(t)
and obtain

268 J
| Pyter(er) = Pyon(ier)l < S+ 2, (v, Kl (6.5)
Thus, by Proposition 5.1, by increasing J, if needed, for any j > J, and ¢ € [0, #,] we have

| Dy e)(Xer) — Py (Xej)l < 6. (6.6)

Consequently, since 26 < dist(L’, dU*), employing (6.4) we obtain that y° € U™ for all
t €0, t.].
Returning to (6.3) and using (6.2), definition of d,,, and (6.6), we obtain for any j > J,

d. (", yc/) < dt*(gsw(s) ° %(lcj)(y"’), ycj) + sup | Pye)(xer) — Pye)(Xeip)l < 4?8 6.7)
1€[0, 1]
and Assumption 2(i) follows.

To prove Assumption 2(ii), fix €5 € (0, &4), let @ be a realization of the noise, and
t1 € [0, +(y*°(w))) with t;{ < t,. Similar to the proof of Theorem 2.6, let 2; be the
subset of {2 with P(£2;) = 1 such that y*(w) is continuous for every w € (2; and every
e € (0, g9]. The assertion follows once we prove that for all w € (2, for any sequence &,
with &, = &, as n — oo one has y* (w) — y*®(w) as n — oo in the space 6,([0, t;]; U*).
To simplify the notation, we will often drop the argument w below. Since #; < 7;+(y*®), then
8o = infyepo,4 dist(y;>, dU*) > 0. In particular y*>([0, #;]) C K for some compact K = K (w)
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with K C U* almost surely. Fix § € (0, §p] and large enough n such that ¢, > e4,/2 and
8
-1
for any y € K. Note that such n exists since &, — €, {Pnla~0 1S a sequence of weak

contractions and ¥ an asymptotic index.
Then, from (6.8) and the fact that y > Py /2)(y) € C*(U), we obtain for any ¢ < #; with

t < Tx(y*)

1" = 771 < 1Py Xent) = PytenyFea)| + [ Byey © P (37%) — 37|
S (6.9)
S Pyeoe/2)Xent) — Pyeses2)Keoor)| + 3

Using the fact that
s = xg(w) : [0, 1] — &([0,1]; U*) (6.10)

is continuous for all w € (2;, we obtain that for any sufficiently large n, dist(y;", d9U*) > 80 for
any t < t,t < 7+(y®"). Again, a standard extension argument implies that dist(y;", dU*) > > °
for any t < 11, and in particular #; < t;+(y®*). Finally, passing n — oo using (6.10), and s1nce
6 > 0 was arbitrary, the assertion follows. [

We now turn our attention to the proof of Corollary 2.10.

Proof of Corollary 2.10. Fix ¢ € (0,1),8 > 0, and ¢ € [¢/*!, ¢/]. By Proposition 5.1(i) there
is an almost surely finite random variable Jy = Jy(c, @) such that

¥ (10, t,]) C interior(L) for all j > J,

where t, and L are as in (2.15) (see also Definition 2.2). Define T, = T.(w) = inf{t > 0 :
y; ¢ interior(L)} and for every t > 0 set T,(t) = t A T,. Then, for any j > Jy and ¢ € [0, #,]
we obtain

. Te(0) o
sup |yf —y<'| < f |be(yg) — bei (g Dlds + SUp | ——— Bey — ———— B,j,
s<Te(t) 0 ’ s<ty | N EF ( ) Veir(ch) /
=81 + S(j, t). (6.11)

To estimate S;, note that since both y?, y”j map [0, T,(t,)] to the compact set L C U* for
Jj = Jo, we have by Assumption |

Te(1) Te(t)
Si= [ oD =b0ids+ [ b5 - b0 ids
0 0
Te(t) J
[ o0 =00 las
0

12 .
<2C;(L)t, + CL/ sup |ye — vy | ds
0

v=T(s)
where t < t,, C;(L),C, > 0 are deterministic constants and C;(L) — 0 as j — oo.
Combining the previous estimate with (6.11) and using Gronwall’s inequality gives
sup [y; — | < QC; (L)t + Sa(j, 1:))e "
§<Te(tx)
for any j > J.
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In order to estimate S,(J, t,), for any multiindex o > O belonging to RX, let @, : RF — Rf
and v : [0, ,] — R* be given by

Py (y) = (ylotl_l, A ykozk_l) and P(e) = (Velogloge=!, ..., Velogloge™1),

where ¢, € (0, e™!). By Example 2.1, { @, }aso is a family of weak contractions centered at 0 in
R¥ while by Example 2.2, for ¢, > 0 sufficiently small, ¢ : [0, e,] — [0, oo)k is an asymptotic
index. We can then estimate S,(j, t,) as follows

$2(J, 1) < sup Os(él//(s)(BSl) - Q/,(Cj)(Bcjt)) + sup |(oe — ch)éx/,(cj)(ijN

1<ty 1<ty

< e lldi, (Pye)(Be.), Pyciy(Bei)) + Djsup L ,

<t /¢’ loglogc™/

where D; is a deterministic constant with D; — 0 as j — oo and || - || denotes the matrix
norm. Now, the assumptions of Lemma 2.9 are satisfied with x; = B, solving (1.4) with b=0
and ¢ being the d x d identity matrix. For any M > 0, by Lemma 2.9 there is ¢ € (0, 1) and
Ji = Ji(w, ¢, M) > 0 such that for any j > J; and ¢ € [¢/*!, ¢/] we obtain

d, (P & Bs-v@ cl BC-V‘ = Mol =1
(e (Be), Pyeen(Bor)) = o=

By the standard LIL for Brownian motion, for any ¢ € (0, 1), there exists J, = Jr(w,c) > 0
such that for any j > J, it follows that, almost surely,

B .
sup —| re/] < 2.

t<ty \/c/ logloge=/
Overall, for any M > 0, there exists 8’ > 0 such that for any ¢ € (1 — §',1) there is
Js = J3(w, ¢, M) such that for all j > J; one has

sup |yf — y¢'| < QCH (L)t + M7V |o® || Dj)eCt <6
$s=<Te(t)
for all ¢ € [c¢/*!, ¢/]. By increasing M and J; if necessary, Proposition 5.1 part (i) ensures
T: > t., and therefore T,(t,) = t,, so that Assumption 2(i) is satisfied.

In order to establish Assumption 2 part (ii), fix &g € (0, ¢&,] and @ in a subset of (2
of full measure specified below and let t < 7, (y(w)) or t = t* if y’(w) # A. Since
s = y:%w) : [0,¢] — U* is continuous, there is a compact set K C U* such that the
image of [0, t] under the map s — y5%(w) is contained in K.

Fix any ¢ € (0, &,] and set S;(w) :=inf{r > 0 : y7 ¢ K} and S.(w, 5) = Se(w) A s for any
s > 0. To simplify the notation, we drop the explicit dependence on w and proceed as above
to find that for any s <t <1,

Se(s)

SS(S)
sup [yE — y&0| < / by (0) = by ()] d + / Ibey (v6) = bo(yE)|
v<8g(s) 0 0

=+ sup

v<t

% _p % g ‘
Veor(eg) 0 Jer(e)

Se(s)
< Ce ey (Kt + CEO(K)/ sup |y, — ¥ ldv
0

w=Se(v)
O¢ B O¢ B
T ———Dygy — T ——=Due
Jeor(ey) Y Jer(e)
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v<t
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where C; . (K), C¢,(K) are deterministic constants with C, ., (K) — 0 as ¢ — go. Gronwall’s
inequality, ¢, < 1, and the almost sure path continuity of Brownian motion then imply

sup |y — 0| < C/, (K)eCo®r
USSS(Z)

for some C;,SO such that C;,ao — 0 as ¢ — ¢&p. By continuity, and ¢ < t,*(y.5 %(w)) we obtain
for ¢ sufficiently close to gy that S.(f) = ¢, and therefore

sup |y8 — y&0| < Cp oy (K)eC0 K,

v<t

for any ¢ sufficiently close to &j. Passing ¢ — &( and using the definition of convergence in
& ([0, t.]; U*), we obtain the desired result. [

7. Application: Criteria for regular points on boundary of a bounded domain in R¢

Throughout this section, for simplicity we suppose U = U* = R¢ and V C R? is a non-
empty, open set. We moreover suppose that 3V := V \ V C R? is non-empty, where V denotes
the closure of V in RY.

For x € 9V, our goal is to use Theorem 2.6 to deduce criteria for the diffusion x;
solving (1.4) to be regular at x. Specifically, we say that x € dV is regular for (x;, V) if

P.{ty+ >0} =0,
where
tp=inf{t >0 : x, ¢ V}. (7.1

We call x irregular for (x;, V) otherwise.

Remark 7.1. Note that x € 9V irregular for (x,, V) means that x, spends, with positive
probability, a positive amount of time in V before exiting V. Because the event {r > 0}
belongs to the germ o-field (), -%;, Blumenthal’s 0 — 1 law implies that this event either has
probability 0 or 1. Thus x € 9V is irregular for (x,, V) if and only if P, {7z > 0} = 1.

In order to state the main result of this section we recall (cf. (2.9)) the deterministic system
associated to (2.1):

{gt = b(g) + G(gt)ft s

80 = X.

(7.2)

In this section, we view (7.2) as a control problem, with controls f belonging to the class (cf.

2.11))
1

% = (f € €0, 1] RY) : %/ P ds < 1), (1.3)
0

Let L be a compact set containing a neighborhood of x € 9V and let 7, > 0 be as in (2.15).
For any ¢ € [0, #,] and any f € €, let S.(f) € L denote the solution of (7.2) at time . For
t € [0, t.], let

A(x,t)={yeU : S.(f) =y for some f € €}, (7.4)
where € is as in (7.3) and
A <t)= (] d0x0. (7.5)
tel0,t]
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Consider the processes x; and y; defined by (1.4) and (2.1), respectively, both having initial
condition x € V.

Definition 7.1. We say that a point z € Vs asymptotically invariant at x if there exists
8 > 0 such that the following statement holds almost surely: whenever y? € Bs(z) (y° solves
(2.1)) for some ¢ € (0, t,] and some ¢ € (0, &,], then x,; € 728

Let .7, C V' be the set of asymptotically invariant points at x.

Example 7.1. Let x =0 € R? and
V={yeR?:y, <0}.

Suppose that @, : R? — R, « > 0, is of the form
Do (y) = (o oy ' yaag )

and ¢ : [0, e,] — [O, oo)d is an asymptotic index. If y{ = &y (x), then any z € Ve
asymptotically invariant at x. Indeed, choose any § > 0 such that Bs(z) C V¢ and use that

Ya(e) > 0.

We have the following result, which is a consequence of Theorem 2.6.

Theorem 7.2. Suppose that Assumptions 1 and 2 are satisfied. Then, x € 0V is regular for
(xl7 V) ;f

A (x, < t) NIy £ (7.6)
Proof. Suppose z € o7/ (x, < t,) N Z. Since z 1s asymptotically invariant, there exists § > 0
such that whenever y{ € Bs(z) we have x,, € V almost surely Since z € &/ (x, < t,), there
exist £ € (0,1,] and an f € % such that S'(f) = z € V'. Let g = S.(f) € €°([0, 1.]; RY)
and note that by definition, g € JZ.(t,). If A(g) = 1, then as in the proof of Theorem 2.6, we
can find g* with A(g*) < 1 and sup, (o + 18 — &'| < 8/2. If, on the other hand, A(g) < 1 we

simply set g* = g. By Proposition 5.2, there exists a deterministic sequence &, > &,+; > 0
with &, — 0 such that

)
P {dz*(ys", g < 5 for infinitely many n} =1,

and consequently
P{d, (y*", g) < § for infinitely many n} = 1.
Since g, = z, then
{|y€" — z| < § for infinitely many n} =1
Thus by the asymptotic invariance of z, x,,; € V¢ for infinitely many n, almost surely. Hence,
P.{ty =0} > P{d,, (y*", g) < ¢ for infinitely many n} = 1
and the proof is finished. O

The next two results provide sufficient conditions on the noise that guarantee a given
boundary point is regular. Before proceeding, we let Z(A) denote the range of the matrix
A, or equivalently the space spanned by the columns of A.
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Proposition 7.3. Let x € 90V and suppose that b e C®°RYRY) and 6 € CORY; Myyy).
Assume there exists v € Z(6(x)) satisfying the following two properties:

(qi) x + v eV forall x e (0,1].
(qii) For all » € (0, 1], there exists 8, > 0 such that if 8., = +/elogloge~!8;, and

Ae = Ay/elogloge~!, then
Bs,,(x +i0) CV°
for all ¢ > 0 small enough.

Then, x is regular for (x;, V).

Proof. For any multiindex o > 0, let &}, &, : R? — R be given by
L) = ey, ... yea;")  and B, (y) = y(y —x) + x.

By Example 2.1, {@,}4~0 is a family of weak contractions centered at x € aV C Re. If we
define, for ¢, > 0 small enough, ¥ : [0, &,] — [0, oo)d as

V(e) = (Velogloge ', ..., elogloge1),
then by Example 2.2, ¥ is an asymptotic index. For ¢ € (0, ¢,], define
}’f = ot(s)(xet)~ 7.7)

We thus see that for all < 7;(x.)e™" (see (2.4) for the definition of 7(x.)), y; satisfies an
SDE of the form (2.1) (c.f. (2.24)—(2.26)) and it is easy to check that

b.(y) > 0 and o:(y) = 7(x) (7.8)

as ¢ — 0 for every y € RY with the convergence above uniform on compact subsets of R.
Furthermore, b,, o, are locally Lipschitz on R¢ for every ¢ € (0, &,]. Thus Assumption 1 and,
by Lemma 2.9, Assumption 2 are both satisfied.

The associated deterministic system is

{gt =5()f,

8o =X,

(7.9)

where f € € = {h € €°(0,1]; R : %f01|ﬁ|2 ds < 1}. Note that (7.9) has constant
coefficients as x € 9V is the initial condition, which is fixed. Let v € Z(6(x)) satisfy (qi)
and (qii). In particular, v = 6 (x)w for some w € R*. Hence, for any small enough A € (0, 1],
fi == Atw € €, and then g, = x + Avt. Also, there is A° > 0 such that all points z € RY of
the form

Z=x+Av AG(O,AO]
belong to .2/ (x, < 1). Since Vs open, there exists 8,0 > 0 such that B,g/\o x+1%) c VC, and
then by property (qii), B(ss o+ 2v) C V¢ for all ¢ > 0 small enough. But, almost surely,
Yi € Bs o (x + A"v) if and only if x,, € Bs_,(x + A%v) C V". Hence,

x+2 v edx, < NI #0

and the proof follows from Theorem 7.2. 0O
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Corollary 7.4. Let x € 0V and suppose that b e C°RYGRY) and 6 € CORY; Myyp).
Assume that there exist a unit vector n(x) and § > 0 such that Bs(x + én(x)) is tangent to
dV at x and is contained in V* (also known as the exterior sphere condition). If there is
w € Z(6(x)) with w - n(x) > 0, then x is regular for (x;, V).

Proof. Without loss of generality, we can rotate and shift the set V so that x = 0 and n(0) = e,.
In what follows, we thus assume Bjs(dey) C Vs tangent to dV at 0 and there exists a vector
w € Z(6(0)) such that w - n(0) = wy > 0. Since wy > 0, there exists Ay > 0

Aw € Bs(ey) C VS forany A € (0, Agl.

Hence, for the choice of v = Aqw, Proposition 7.3 part (qi) is satisfied because v € Z(5(0)).
Since Bs(Sey) is open, there exists 8’ > 0 such that By (v) C Bs(Sey). By convexity, whenever
v € Bg(v) then A" € Bs(Sey) for all A € (0,1]. Since v € Bg(v) if and only if
Velogloge=!v' € By, (ve) for any small ¢ > 0, property (qii) of Proposition 7.3 follows.
An application of Proposition 7.3 finishes the proof. [

Using a nearly identical proof, we can also obtain the following result which is the so-called
exterior cone condition.

Corollary 7.5. Let x € 9V and suppose that b e C°RYGRY) and 6 € CORY: Myy).
Suppose that V satisfies the exterior cone condition at x; that is, there exists a basis
{x1,x2, ..., x4} ofRd such that

Cone(x; x1,...,xg) = {x+ X x14+ -+ Argxqg : 4 €0, 1)} cVv.

If the column space of 6(x) contains a vector w such that x +w € Cone(x; xy, ..., Xq), then
x is regular for (x;, V).

If Z(6(x)) is not all of R?, then identifying regular points for (x,, V) on dV can be
complicated, because one has to know the almost sure dynamics near the boundary point.
Moreover, the method used in the proof of Proposition 7.3 is not sufficient to characterize all
points. However, as the next examples illustrate, the techniques developed here can be still
useful.

Example 7.2. As in Example 3.2, we consider the iterated Kolmogorov equation in dimension
d = 2 and assume V = B,(0) for a given r > 0. Corollary 7.4 implies that all points on
xo0 = (x1(0), x2(0)) € aV with x,(0) # 0 have normal vector with non-zero second component,
and therefore are regular for (x;, V). On the other hand, if x,(0) = 0, then n(x) = (%1, 0) and
relations (3.10) and (3.11) with x(0) = 0 imply that points (%7, 0) are also regular for (x;, V).
Note that the same result holds if V = B, (0)°.

Example 7.3. Next, consider the same problem as in Examples 7.2 and 3.2 but with V C R?
assumed to be a general bounded open set with C* boundary dV. Then, by Corollary 7.4, all
points xg € 0V, where the outward unit normal n(xp) = (n1(xg), n2(xg)) to dV has ny(x) # 0
are regular. If, on the other hand, n(xy) = (£1, 0) for some xy € 3V, then (3.10) and (3.11)
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imply that xo is regular if and only if x,(0) > 0 and n(xg) = (+1,0), or x,(0) < 0 and
n(xg) = (=1, 0).

7.1. Modification of the boundary

If the domain V is not apriori specified, the idea of this section is to slightly modify V' so
that all points on the boundary are regular. We do this using polygonal approximations under
the assumption that there is noise in a uniform direction on the boundary and V is convex
and bounded with non-flat C! boundary dV; that is, 3V is C! and for each x € 9V and any
r > 0, the set 3V N B(x, r) is not a subset of a hyperplane. The latter condition is satisfied, for
example, if V is strictly convex, or if at each x € 9V there is at least one non-zero principal
curvature.

The construction of our polygonal approximations makes use of convex hulls of randomly
chosen points on the boundary. There are many different ways to do the selection of points, but
here we do it according to Hausdorff measure = on dV. That is, we will choose sufficiently
many vertices independently and according to law of . Intuitively, for a large number of
vertices, the convex hull of these points should be close to V. The main result in Schiitt and
Werner [35] makes this precise on a set of high probability. It turns out that such a resulting
polygon cannot have, almost surely, any face parallel to the uniform direction in which the
noise acts on the boundary. Thus, we can then apply Corollary 7.5.

Remark 7.6. Polygonal approximation of smooth domains is used, for example, in finite
element method (FEM) to numerically solve differential equations.

Theorem 7.7. Let d > 2, v € R? be a unit vector, and suppose that Y C RY is convex,
bounded and non-flat C' boundary V. Consider a_probability space ({2, F,Q) such that
&1,&,& ... are i.i.d. random variables defined on ({2, %, Q) with distribution . Then, for
every ¢ > 0, there exist n(¢) > 0 and a set S, with Q(S;) > 1 — & such that the following
properties are satisfied:

(i) For every collection of d-points in {§1,&, ..., &} there exists a unique hyperplane H
that contains those d points. Furthermore, H is not parallel to v.
(i) If [&1, &2, . . ., Ene)] denotes the closed convex hull of &1, &, ..., &), then

VI 165 Bl <€,
where |A| denotes the Lebesgue measure of A in R%.
In order to prove Theorem 7.7, we first establish the following auxiliary result.

Lemma 7.8. Suppose d > 2 and that V C RY is convex with C' non-flat boundary 3V . Then,
any hyperplane in R? intersects 3V only on a set of w-measure zero.

Remark 7.9. Note that in this result, we may drop the hypothesis that V is bounded.
Proof of Lemma 7.8. Without loss of generality, assume that the hyperplane & has normal
vector ey = (1,0,...,0) and & NIV # (. Define

£y =supfe e R: aVN{x : x; =a} #0d},

L_=infla e R: 3V N{x : x; =a} #0}.
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If the set {d € R : 9V N {x : x; = «}} is not bounded above (respectively below), we set
£, = oo (respectively £_ = —o0). Note that if £, € R, £ corresponds to the first coordinate
of the rightmost point on dV. Similarly, if £_ € R, £_ corresponds to the first coordinate of
the leftmost point. Observe that &2 NV # @ implies & = {x : x; = «} for some o with
ae[l_, 0], o <oo.

First assume o« = ¢, < oo. Without loss of generality, we may assume ¢, = 0 and
0e ZnN 8‘i>otherwise we shift both sets. To every X € & N3V, we associate its position
vector x = 0X. Let k be largest number of points {X;, X5, ..., X} C & N3V such that the
corresponding set of position vectors {x, x2, ..., x¢} is linearly independent. If k < d — 1, then
% :=span {x1, ..., x¢} is k < d—2 dimensional linear space, and therefore 3VNZ C LNF
is at most (d — 2)-dimensional. Thus, 7(3V N &) = 0 as desired. If k = d — 1, then by the
convexity of V and the fact that « = £, any convex combination of {x[, x», ..., x4—} belongs
to aV N Z. However, this implies that 9V is locally a hyperplane about some point on 9V, a
contradiction to the fact that dV is non-flat.

A similar argument can be applied in the case when o« = £_ > —o0.

Finally, suppose o € (¢_, £4). Fix x € 9V N & and note that the normal vector to dV at
x is not parallel to e;. Indeed, otherwise &2 is tangent to V and by convexity, V lies on one
side of &2, a contradiction to o € (£_, £,).

As above, we can without loss of generality assume o = 0 and x = 0. We parametrize 0V
as 3V = {y e R : &(y) = 0} for some C'-function ¢ : R? — R with $(0) = 0 and, by the
claim, V ®(0) # Ae; for any A € R. Then,

VN2 Cly=@0,y5,...,5): P20, y,...,y5) =0}. (7.10)

To solve &(0, yp,...,ys) = 0 we note that #(0) = 0 and there exists j > 2 such that
3}6/ 9(0) # 0. By the implicit function theorem, y; = ¢(¥2,..., Yj—1, Yj+1, - - - » Ya—1) locally
for some C' function ¢, and therefore 3V N &2 is locally a (d — 2)-dimensional manifold. In
particular 7(dV N & N B,) = 0 for some p > 0.

Since the countable union of set of zero measure is also set of zero measure, the result
follows. [

We are now ready to prove Theorem 7.7.

Proof of Theorem 7.7. For any measurable A; C 9V and any n, we have
Q{61 € Ay, ..., 5 € Ayl = (AT (A2) ... T(Ap).

For any collection of points yy, ..., y; denote the set of vectors {)Ty;, Jj > 1}by (yi, ..., )-
Observe that (yq, ..., yx) depends on the arrangement of points, but the span of the vectors
(¥1, ..., yx) does not. Note that z belongs to the affine space defined by y, ..., y if an only if
z € y1 +span{(y1, ..., yx)} = L (1, ..., ). Also, we denote yy, . ..ﬁj, ..., Y the sequence
of points (or similarly vectors), where the point y; is omitted from the list. For iy, i, ...,i; € N
all distinct with £ <d + 1, let

Djiy..i, = {w € 2 (&, (), &, (W), ..., &, (w)) are linearly independent}. (7.11)
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We claim that Q(D;,;,..;,) = 1. Indeed, since iy, iy, ..., i € N are all distinct with £ < d + 1,
then by Lemma 7.8

J4
QDL ) < > Q& € spanf(gy. ... Byl E)))

j=2
¢
= / JT(d)c,'j)7r€_1(dx,-l . ..d)?ij co.dx;,) =0,
j=2 Xl'j E,&?{(X,‘l ..... .)2,/ ..... x,-l)ﬂav
since & (x;,, ..., iij, ..., X;,) is at most (£ — 1)-dimensional affine space which intersects 9V
on a set of w-measure 0 (see Lemma 7.8).
Fix a vector v € RY. If (x1, x5, ..., x4_1) are independent vectors, define
AU(X],)CQ, e ,xd_]) = {xd edV :ve span(xl, . ,xd)}
and if (x,...,x4—;) are dependent define A,(x, x2,...,x4—1) = . Note that if v ¢&
(x1,x2,...,xq4) and (xy, x2,...,x4) are independent vectors, then A,(xi, x2, ..., x4) is the
intersection of 9V and the affine (d — 1)-dimensional space that contains points x;, X7, ..., X4
and is parallel to v. For any distinct collection iy, i2,...,iq € N, Dj, i, is a set of full

measure, and therefore

Q(Eliz...id) = Q({a) € ‘b : ﬂ(sil(wl siz(w)’ R ‘i:id(w)) is parallel to U})
= Q({w € Diliz...id : W(Sil(w), Eiz(w)r ceey Sld(w)) is parallel to U}) .

Hence, by the Fubini—Tonelli theorem

Q(Eliz...id) = Q({(I) € Diliz...id : Sij(a)) € Av(sil(a))’ RN} éij ((l)), s Eld(a)))})

:f TL’(de)TL’dil(dxl.,_fj__.dxd):07
{xjeAy(xy,sXjynxg)}
where in the last equality we used Lemma 7.8 and the fact that A,(xy,...,X;,...,xq) is at

most (d — 1)-dimensional affine space, and has w-measure zero when intersected with 9V
By taking finite unions,

F = U Fineis (7.12)

i14i0senig€{l N}
all distinct

we have Q(F) = 0. Thus for any N > d and any w € F¢, with Q(F¢) = 1 the realization
§1(w), (), ..., En(®)

satisfies (i).
To obtain (ii), fix ¢ > 0 and by [35, Theorem 1.1] there is a sufficiently large N > d + 1
such that

V] — Eqllé1, &. ... &n11 = |V] — EQlpe|[£1, &, ..., En] < €.
Since convexity of V implies|[£, &, ..., Ex]| < |V|, then by Chebyshev’s inequality
V| —Eqlpc|[é1, &2, ..., 8n]l -

&

Q{|V| - |[§1v$27 7%-N]| > 8} =

which concludes the proof. [

e, (7.13)

An almost immediate consequence of the previous result is the following corollary.
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Corollary 7.10. Suppose that V. C R, d > 2 is a non-empty, bounded, convex, non-flat
domain with C' boundary dV. Assume b e C®MRY:RY) and 6 € C®RY; Myy;) and there
exists a unit vector v € RY such that v € % (o (x)) for every x € dV. Then, for every & > 0,
there exists a non-empty, open convex domain D, C V with piecewise smooth boundary 0D,
such that every y € d D, is regular for (x;, D) and |V | — |D,| < e.

Proof. Fix ¢ > 0 and select points xj, xa, ..., X € 0V satisfying both (i) and (ii) of
Theorem 7.7. Define

D, = interior([xy, X2, . .., Xn(e)]).

and note that |V | — |D,| < & and d D, is piecewise C>. Since no face on the boundary 3D, is
parallel to v, Corollary 7.5 implies the assertion. [
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