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Abstract

We study the almost sure behavior of solutions of stochastic differential equations (SDEs) as time
oes to zero. Our main general result establishes a functional law of the iterated logarithm (LIL) that
pplies in the setting of SDEs with degenerate noise satisfying the weak Hörmander condition but not the

strong Hörmander condition. That is, SDEs in which the drift terms must be used in order to conclude
hypoellipticity. As a corollary of this result, we obtain the almost sure behavior as time goes to zero of
a given direction in the equation, even if noise is not present explicitly in that direction. The techniques
used to prove the main results are based on large deviations applied to a non-trivial rescaling of the
original system. In concrete examples, we show how to find the proper rescaling to obtain the functional
LIL. Furthermore, we apply the main results to the problem of identifying regular points for hypoelliptic
diffusions. Consequently, we obtain a control-theoretic criteria for a given point to be regular for the
process.
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1. Introduction

The law of the iterated logarithm (LIL) for an i.i.d. sequence of random variables
X1, X2, . . . , Xn, . . . with mean zero and unit variance reads

lim sup
n→∞

±Sn√
2n log log n

= 1 a.s. , (1.1)

here Sn := X1 + X2 + · · · + Xn and log denotes the natural logarithm. The formula (1.1)
as first established by Hartman and Whintner in 1941 [18] as a generalization of earlier
orks of Khinchin in 1924 [24] and Kolmogorov in 1929 [28]. Analogously, an LIL holds for
standard, real-valued Brownian motion Wt as t → ∞ by replacing n by t and Sn by Wt

in (1.1). Furthermore, one can use (1.1) for the Brownian motion at time infinity to obtain an
IL at time zero

lim sup
t→0+

±Wt√
2t log log t−1

= 1 a.s. (1.2)

y Brownian inversion.
Note that LILs provide an asymptotic window, for example [−

√
2t log log t−1,

2t log log t−1] for the process Wt as t → 0+, complementing the usual central limit scaling.
ore precisely, it follows that the set of limit points of the scaled processes Sn/

√
2n log log n as

n → ∞ or Wt/
√

2t log log t−1 as t → 0+ is the interval [−1, 1] [18]. A further generalization
f this limit set analysis is due to Strassen [36], which for Wt at t = 0 establishes that, for
lmost every ω, the set of limit points (in the space of continuous paths C ([0, 1]; R)) of the
amily

Y ε
t (ω) :=

Wεt (ω)√
2ε log log ε−1

, t ∈ [0, 1], (1.3)

as ε → 0+ is the set of functions f ∈ C 0([0, 1]; R) with f0 = 0 and
∫ 1

0 | ḟs |
2

ds ≤ 1. Here,

C 0([0, 1]; Rk) := { f ∈ C ([0, 1]; Rk) : ḟ ∈ L2([0, 1])}.

Observe that, by the fundamental theorem of calculus and Jensen’s inequality, the condition∫ 1
0 | ḟs |

2
ds ≤ 1 implies that | f1| ≤ 1. By choosing fs = ±s, the extremal values ±1 of the

pointwise limit set [−1, 1] are attained, and, by setting t = 1 in (1.3), we obtain (1.2) as a
corollary of Strassen’s result.

The goal of this paper is to provide a framework for establishing Strassen-type LILs at time
zero that applies in the setting of weakly hypoellptic diffusions. To formulate our results, we
fix positive integers d, k ∈ N, a non-empty, open set U ⊂ Rd , and consider an Itô stochastic
differential equation (SDE) on U of the form{

dxt = b̃(xt ) dt + σ̃ (xt ) d Bt ,

x0 = x ∈ U,
(1.4)

where Bt is a standard, k-dimensional Brownian motion defined on a probability space
(Ω ,F ,P). In (1.4), we assume b̃ : U → Rd and σ̃ : U → Md×k are locally Lipschitz on

; that is, Lipschitz continuous on every compact subset of U , while Md×k denotes the set
of d × k matrices with real-valued entries. Under these assumptions, the solution (1.4) can be
defined pathwise until the first time τ (x·) at which xt exits U . If τ (x·) is finite with positive

probability, we fix a death state ∆ /∈ U and set xt = ∆ for t ≥ τ (x·).
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In this paper, we focus on degenerate diffusions, or equivalently on matrices σ̃ (x) that have
ank strictly less than d at the initial condition x , so that the dynamics xt defined by (1.4) is
ot trivially dominated at time zero in every direction by the process x + σ̃ (x)Bt . Otherwise, a
unctional LIL can be readily obtained by rescaling Eq. (1.4) according to the LIL Brownian
caling (1.3) and passing to a (functional) limit using the theory of large deviations [2–4]. To
ee why, suppose for simplicity that σ̃ is a constant d × k matrix on U and all expressions
elow are well-defined. Then, the rescaled process

yεt := x +
xεt − x√

2ε log log ε−1
, t ∈ [0, 1], ε > 0, (1.5)

satisfies the integral equation

yεt = x +

∫ t

0

√
ε√

2 log log ε−1
b(xεs) ds +

σ̃ Bεt√
2ε log log ε−1

. (1.6)

ince the integral in (1.6) is small in ε, one then expects, and indeed it can be proved that, for
lmost all ω, the set of limit points of yε

·
(ω) in C ([0, 1]; Rk) as ε → 0 is precisely the set of

g ∈ C 0([0, 1]; Rd ) of the form

gt = x + σ̃ ft (1.7)

for some f ∈ C 0([0, 1]; Rk) with f0 = 0 and
∫ 1

0 | ḟs |
2

ds ≤ 1. Thus if rank(σ̃ (x)) = d , then
he asymptotic behavior of every component of yεt , and consequently every component of xt ,

can be readily characterized.
On the other hand, if rank(σ̃ (x)) < d, then the same rescaling (1.5) is valid but less

nformative. In particular, for the directions that are in the range of σ̃ (x), the argument above
ives correct asymptotic behavior. However, for the directions in Rd perpendicular to the
ange of σ̃ (x), the limiting trajectories are constant almost surely, meaning that the dynamics
estricted to this subspace is finer and thus a different scaling is required. Even if one can
euristically estimate the right scale in the perpendicular directions, more work is needed to
stablish Strassen’s law for the corresponding process.

In this direction, more general Strassen-type LILs for stochastic differential Eqs. (1.4) can be
ound in the pioneering works of Baldi [3] (at time infinity) and later Caramellino [10] (at time
ero). Both works are limited by the permissible scaling transformations (called a sequence of
ontractions) applied to the diffusion to obtain the LIL. In particular, such scalings do not allow
or weakly hypoelliptic diffusions; that is, diffusions that satisfy the weak Hörmander condition
ut not the strong Hörmander condition (see Section 3 for further information). Intuitively,
eakly hypoelliptic diffusions are those in which the noise must spread through the drift so

hat the process does not live on a lower-dimensional manifold of U in small times. On the
ther hand, strongly hypoelliptic diffusions are those in which noise only spreads through the
iffusion matrix, i.e. the drift is not needed, in order to reach all directions of the phase space.
eakly hypoelliptic diffusions arise in a number of natural settings, from finite-dimensional

tochastic models in turbulence, see [5–7,13,14,16,22,34,39], to canonical models in statistical
echanics and machine learning, see [9,12,17,21,30,31], where local almost sure behavior at

ime zero is not understood precisely but is nevertheless important. Usually, one can estimate
he behavior at time zero by finding the support of the process using control theory via the
upport Theorems [37,38]. This usually gives the behavior of the process in small times with
ositive, usually very small, probability [20]. The LILs deduced here provide a refinement of

he support of the diffusion in small times.
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In this paper, we improve upon the main results in [3,10] by showing more general scaling
ransformations are permitted to obtain the functional LIL using the theory of large deviations.
pecifically, our methods allow for different scalings in each component which need not be
unctions of the standard elliptic/Brownian scaling

√
ε log log ε−1 as in [3,10], but can be

eneral regularly varying functions in ε as ε → 0+. See Definition 2.1 in conjunction with
efinition 2.2. In addition, in the setting of SDEs with additive noise, our transformations can

n fact be time dependent (see Example 3.2), which is needed for degenerate diffusions with
on-vanishing drift at the initial condition. There, because of the time dependence, the rescaled
roblem has a more complicated structure, which is why we restrict to the case of additive
oise. Furthermore, we apply the main results to several nontrivial examples, e.g. the Iterated
olmogorov equation in general dimensions and a stochastic Lorenz ’96 model, capturing the
.s. behavior in each of these equations in each direction as time goes to zero started from the
rigin.

Our original motivation for LILs in the setting of hypoelliptic diffusions was to derive a
robabilistic method for determining whether certain boundary points are regular or irregular
cf. Section 7). Such information is crucial when solving second-order linear hypoelliptic
oundary-value problems, for example the Dirichlet or Poisson problems, in a domain [33].
nderstanding when a particular point is regular or irregular is a long-standing open question

nd we refer the reader to the work of Kogoj [26,27] which employs analytical methods from
DEs to provide sufficient conditions for classical solvability of the Dirichlet problem and
arnack-type estimates. In this paper, we use the LIL to derive a control theoretic condition

or a given boundary point to be regular or irregular (see Section 7).
The organization of this paper is as follows. In Section 2, we outline notation and state

ur main general results while in Section 3 we apply these results to concrete examples.
e recommend the reader not familiar with the methods to first loosely read Section 3 to

btain some ideas of how to arrive at an LIL in the weakly hypoelliptic setting before reading
ection 2. Section 4 outlines the needed results from the theory of large deviations to establish

he main general results pertaining to the LILs, which are proved in Section 5 and Section 6. In
ection 7, we derive our criteria for a point on the boundary to be regular or irregular. There,
e also discuss applications of this criteria to the design of piecewise C1 boundaries on which

ll points are regular.

. Setting, notation and main results

The setup in this section is similar to that in Baldi [3] and Caramellino [10], but with
everal differences. First, our setting is slightly more general, which allows for more general
ransformations of the original process; that is, the process that satisfies (1.4). Second, we
ork primarily in the space of explosive paths, as opposed to continuous paths, defined below,

nd consequently, we employ notation and results from Azencott [2]. Note that the space of
xplosive paths was considered in [10] as well, though many of the proofs are carried out in the
pace of continuous paths. Importantly, the space of explosive paths allows us to work around
ssues of finite-time explosion in both the SDE and its limiting ODE. In particular, we can
emove Assumption (A) (iii) of [10], although in many examples this condition is satisfied.

.1. Laws of the iterated logarithm and large deviations

The crucial ingredient in the proof of the functional LIL is a change of coordinates, i.e. a
escaling, for the system (1.4), allowing one to reformulate the problem using the theory of large
191
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deviations. Unless the diffusion (1.4) is uniformly elliptic at the initial state x , the change of
oordinates varies depending on the dynamics. To see how to construct such a transformation,
e provide concrete examples in Section 3.
Unlike in [3,10], instead of assuming a particular transformation, we simply associate

o Eq. (1.4) a small parameter ε∗ > 0 and family of processes {yε}ε∈(0,ε∗] satisfying an SDE
f the form{

dyεt = bε(yεt ) dt +
1

√
r (ε)σε(yεt ) d Bεt ,

yε0 = x,
(2.1)

here for each ε ∈ (0, ε∗], we set Bεt :=
1

√
ε

Bεt , where Bt is the standard, k-dimensional
rownian motion introduced in (1.4), and let

r (ε) := log log ε−1. (2.2)

e furthermore assume that the coefficients bε, σε satisfy the following conditions.

ssumption 1. There exist ε∗ > 0, a non-empty open set U ∗
⊂ Rd (not necessarily the

ame as U ) and locally Lipschitz functions b : U ∗
→ Rd and σ : U ∗

→ Md×k such that the
ollowing properties hold.

(i) For every ε ∈ (0, ε∗], the coefficients bε : U ∗
→ Rd , σε : U ∗

→ Md×k are locally
Lipschitz on U ∗.

(ii) For every compact K ⊂ U ∗,

lim
ε→0+

sup
y∈K

|bε(y) − b(y)| = 0 ,

lim
ε→0+

sup
y∈K

∥σε(y) − σ (y)∥ = 0 ,

where ∥ · ∥ denotes a matrix norm.

In Fig. 1, we have provided a sketch of all of some of the objects introduced thus far, with
generic “mapping” Φε relating the two processes, xt and yεt .

emark 2.1. Note that b and σ in Assumption 1 are not the same as b̃ and σ̃ in Eq. (1.4).
ne should think of (2.1) as a rescaled version of (1.4), where bε and σε depend on b̃ and σ̃ .

emark 2.2. When comparing the noise terms in (1.6) and in (2.1), note that the
√
ε in the

enominator in (1.6) is included in Bεt in (2.1) while the
√

2 is included in σε.

.2. The space of explosive trajectories E ([0, t]; V )

In order to treat possible finite-time blow-up of either yε in (2.1) or gt (see (2.9) below),
we work in the space of explosive trajectories. That is, for any m ∈ N, t ∈ (0, 1] and open
V ⊂ Rm , we again, offering a slight abuse of notation, fix a death state ∆ /∈ V and let V ∪{∆}

be the Alexandroff compactification of V . Then, E ([0, t]; V ) denotes the space of continuous
mappings

g : [0, t] → V ∪ {∆} (2.3)
192
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Fig. 1. A diagram representing a cartoon relationship between the process xt and yεt via the generic mapping Φε ,
which should be thought of as a rescaling of Eq. (1.4).

such that if gt0 = ∆ for some t0 ∈ [0, t], then gs = ∆ for all s ∈ [t0, t]. For any x ∈ V and
t ∈ (0, 1], we define Ex ([0, t]; V ) := {g ∈ E ([0, t]; V ) : g0 = x}. If g ∈ E ([0, t]; V ), let

τt (g) = inf{s ∈ [0, t] : gs = ∆} (2.4)

denote the time of explosion of g, where we set inf ∅ = ∞. Define

E 0([0, t]; V ) = {g ∈ E ([0, t]; V ) : ġ ∈ L2([0, s]) for any s < τt (g), s ≤ t} , (2.5)

where ġ denotes the time derivative of g. In other words, g ∈ E 0([0, t]; V ) means that g
belongs locally to the Sobolev space H 1([0, τt (g)) ∩ [0, t]; V ). We denote by C ([0, t]; V ) and

x ([0, t]; V ), x ∈ V , t ∈ (0, 1], respectively the space of continuous g : [0, t] → V and
ontinuous g : [0, t] → V with g0 = x . In particular, g ∈ C ([0, t]; V ) implies τt (g) = ∞. Let

C 0([0, t]; V ) = C ([0, t]; V ) ∩ E 0([0, t]; V ) (2.6)

nd observe that C 0([0, t]; V ) coincides with the Sobolev space H 1([0, t], V ).
It is important to equip the space E ([0, t]; V ) with a topology compatible with the topology

f C ([0, t]; V ). As in [2], we define the closed sets in E ([0, t]; V ) by specifying convergent
equences. That is, we say that a sequence gn ∈ E ([0, t]; V ) converges to g ∈ E ([0, t]; V ) as
→ ∞ if gn converges uniformly to g on compact subsets of [0, τt (g))∩[0, t], or equivalently,

f for any s ∈ [0, τt (g)), s ≤ t , there exists N ∈ N such that {gn}n≥N ⊂ C ([0, s]; V ) and gn → g
s n → ∞ in the space C ([0, s]; V ). The topologies on C 0([0, t]; V ) and E 0([0, t]; V ) are
hen induced by the topologies on, respectively, C ([0, t]; V ) and E ([0, t]; V ) intersected with
H 1

loc([0, τt (g)) ∩ [0, t]; V ).
For g, h ∈ E ([0, t]; V ) and s ≤ t , we define

ds(g, h) =

{
supu∈[0,s] |gu − hu | , if s < τt (g) ∧ τt (h)
∞ otherwise.

(2.7)

learly, ds(g, g) = 0 if s < τt (g) and ds(g, h) = ds(h, g), where both sides are either infinite
r finite and equal. Also note that for any f, g, h ∈ E ([0, t]; V ) it follows that

ds( f, g) ≤ ds( f, h) + ds(h, g) (2.8)

ince the above reduces to the usual triangle inequality in C ([0, s]; V ) if s < τt ( f ) ∧ τt (g) ∧

t (h). On the other hand if s ≥ τt ( f ) ∧ τt (g) ∧ τt (h), then the righthand side is always infinite,
o the inequality (2.8) is trivially satisfied.
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Remark 2.3. Note that ds is not a metric on E ([0, t]; V ) since, for example, ds(g, h) = ∞ if
g, h are identically equal to ∆. However, we do not need d to be a metric below.

For any A ⊂ C ([0, t]; V ) and any g ∈ E ([0, t]; V ) we set

dt (g, A) = inf{dt (g, h) : h ∈ A}.

Remark 2.4. If g ∈ E ([0, 1]; U ), then its restriction to [0, t], t ∈ (0, 1], also belongs to
([0, t]; U ). Below, we slightly abuse notation by denoting this restriction g as well.

.3. Statement of the main general results

To employ a large deviation principle for yεt solving (2.1), the following family of
eterministic ODEs on the open set U ∗ is of particular importance:{

ġt = b(gt ) + σ (gt ) ḟt ,

g0 = x ,
(2.9)

here b, σ,U ∗ are as in Assumption 1, f ∈ C 0([0, 1]; Rk), and x ∈ U ∗. By classical results
or equations with locally Lipschitz coefficients (see, for example, [2, Proposition 2.3, p. 75]),
f τ (g) denotes the first exit time of the solution of (2.9) from U ∗, Assumption 1 ensures that
or any f ∈ C 0([0, 1]; Rk) and x ∈ U ∗, Eq. (2.9) has a unique solution g ∈ E 0([0, 1]; U ∗)
rovided we set g(t) = ∆ for any t ≥ τ (g). We also assume that (2.9) is always satisfied for
ny t ≥ τ (g) and we let g = Sx ( f ). Here, S : U ∗

× C 0([0, 1]; Rk) → E 0([0, 1]; U ∗) is the
apping given by

(x, f ) ↦→ g = Sx ( f ) . (2.10)

n general, the mapping S is not continuous. However, for every a ≥ 0 the restriction of S to
∗
× Ca where

Ca := { f ∈ C 0([0, 1]; Rk) :
∫ 1

0| ḟt |
2

dt ≤ a} , (2.11)

s continuous [2, Proposition 2.8, p.75]. Furthermore, by standard arguments (considering
he equation for the difference of solutions and estimating using Gronwall’s inequality)
ssumption 1 implies that for any compact sets K , L ⊂ U ∗ with K ⊂ interior(L) and for

ny a > 0, there exist constants T > 0,C > 0 such that

(p1) For all x ∈ K and all f ∈ Ca , g = Sx ( f ) has τ1(g) > T and g([0, T ]) ⊂ L .
(p2) For all x, y ∈ K , f ∈ Ca , and s ≤ T

ds(Sx ( f ), Sy( f )) ≤ eCs
|x − y|.

(p3) If { fn} ⊂ Ca converges in H 1([0, 1]) to f ∈ Ca , then Sx ( fn) → Sx ( f ) in C 0([0, T ]; U ∗).

An essential notion for us is the Cramer transform λ : E ([0, 1]; U ∗) → [0,∞] defined by

λ(g) = inf{ 1
2

∫ 1
0 | ḟt |

2
dt : f ∈ C 0([0, 1]; Rk) and Sg0 ( f ) = g} , (2.12)

here we set inf ∅ = ∞ and ḟs = 0 for any s ≥ τ1(g), or equivalently Sx ( f )(s) = gs is
atisfied for any f if s ≥ τ1(g). We remark that we can choose ḟt = 0 for t > τ1(g) since
n this time range Eq. (2.9) is satisfied by definition for any f . Note that our definition is
quivalent to one introduced in [2, (4), Chapter IV] by [2, Proposition 2.10, Chapter IV]. Now,
194
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[2, Proposition 2.10, Chapter IV] yields that if λ(g) < ∞, then the infimum in (2.12) is attained,
g ↦→ λ(g) is lower semi-continuous, and for any compact set K ⊂ U ∗ and any a ≥ 0, the set

{g ∈ E ([0, 1]; U ∗) : g0 ∈ K , λ(g) ≤ a} (2.13)

s compact in E ([0, 1]; U ∗). It thus follows that for every x ∈ U ∗ the set

Kx = {g ∈ Ex ([0, 1]; Rd ) : λ(g) ≤ 1} (2.14)

s also compact by choosing K = {x} and a = 1 in (2.13).
By property (p1) and the relation (2.12), for any compact set L ⊂ U ∗ and x ∈ interior(L)

here exists a time

t∗ = t∗(x) ∈ (0, 1] (2.15)

uch that for all g ∈ Kx , g([0, t∗]) ⊂ interior(L). Let Kx (t∗) be the set of functions in Kx

estricted to E ([0, t∗]; U ∗); that is, Kx (t∗) := {g|[0,t∗] , g ∈ Kx }. Our goal is to show that, under
ssumptions 1 and 2 (defined below) Kx (t∗) is the set of limit points, almost surely, of yε

olving (2.1) as ε → 0 (when restricted to [0, t∗]). Then, we show how one can relate yε back
o the original process xt solving (1.4) to obtain the desired functional LIL.

ssumption 2. Consider the compact set L ⊂ U ∗ and constant t∗ > 0 defined in (2.15). The
rocess yε with x ∈ interior(L) solving (2.1) satisfies the following properties:

(i) For every δ > 0, there exists c0 ∈ (0, 1) such that for any c ∈ (c0, 1) there is a P-almost
surely finite random variable J = J (ω, c) ∈ N such that j ≥ J and ε ∈ [c j+1, c j ] implies
yεt ∈ L for all t ∈ [0, t∗] and

dt∗ (yc j
, yε) < δ. (2.16)

(ii) For ε∗ > 0 as in Assumption 1, the mapping ε ↦→ yε : (0, ε∗) → Ex ([0, t∗]; U ∗) is
continuous, P-almost surely.

emark 2.5. Assumption 2 essentially allows one to reduce the proof of the main result
Theorem 2.6) to the countable sequence {yc j

} instead of {yε}.

heorem 2.6. Suppose that Assumptions 1 and 2 are both satisfied for some ε∗ > 0 and
on-empty open U ∗. Fix compact L ⊂ U ∗, x ∈ interior(L) and t∗ = t∗(x) ∈ (0, 1] as in (2.15).
hen, for P-almost every ω, we have the following conclusions:

(i) The set Y (ω) := {yε(ω)}ε∈(0,ε∗] is relatively compact in E ([0, t∗]; U ∗).
(ii) dt∗ (yε(ω),Kx (t∗)) → 0 as ε → 0.

(iii) For every h ∈ Kx (t∗), {yε(ω)}ε∈(0,ε∗] has a subsequence {yε j (ω,h)(ω)}∞j=1 with ε j (ω, h) ↓ 0
as j → ∞ such that

dt∗ (yε j (ω,h)(ω), h) → 0 as j → ∞.

In Section 3 we make heavy use of the following corollary of Theorem 2.6, which is a basic
opological consequence of relative compactness and continuity.

orollary 2.7. Under the hypotheses of Theorem 2.6, let X be a Hausdorff topological space
nd suppose that F : E ([0, t∗]; U ∗) → X is continuous. Then for P-almost every ω, F(Y (ω))
s relatively compact in X and F(K (t )) is the limit set of F(Y (ω)) as ε → 0.
x ∗
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Proof of Corollary 2.7. The second conclusion follows immediately by continuity. Since
(ω) is relatively compact almost surely, then Y (ω) is compact, almost surely. For P-almost

very ω, F(Y (ω)) is compact since F is continuous, and therefore closed in the Hausdorff
opological space X . Hence, F(Y (ω)) ⊂ F(Y (ω)) implies F(Y (ω)) ⊂ F(Y (ω)). Since a

closed subset of a compact set is compact, the assertion follows. □

In practice, it is relatively straightforward to check Assumption 1. However, Assumption 2,
especially part (i), requires more work to validate. We next explore verifiable conditions under
which Assumption 2 holds.

2.4. Sufficient conditions for Assumption 2

Heuristically, if Assumption 1 is satisfied and the system (2.1) arises from the original
quation (1.4) under a reasonable change of coordinates, then Assumption 2 also holds.

However, even more is true if the noise is additive. That is, if σε(x) ≡ σε is a constant matrix
for every ε ∈ (0, ε∗] and Assumption 1 holds, then with an additional marginal continuity
ypothesis, Assumption 2 holds for (2.1) independent of any relationship to the original
quation (1.4).

To introduce an allowable change of coordinates that maps (1.4) to (2.1), we need further
otation. We denote by α = (α1, . . . , αd ) and β = (β1, . . . , βd ) multiindices taking values in
d , and we write α ⪰ β (respectively α ≻ β) if αi ≥ βi (respectively αi > βi ) for all i .
ote that this is equivalent to the partial ordering on the positive cone. When the context is

lear, we use 0 and 1 to denote the multiindices (0, 0, . . . , 0) and (1, 1, . . . , 1), respectively.
or multiindices α, β, we let the product αβ denote the multiindex (α1β1, . . . , αdβd ) and if
≻ 0, we define the multiindex α−1

= (α−1
1 , α−1

2 , . . . , α−1
d ). Finally, for any multi-index α,

e define

|α| =

√∑
i

α2
i . (2.17)

efinition 2.1. Suppose that, for every multiindex α ≻ 0, Φα : U → Uα is a C2-bijection,
here Uα ⊂ Rd is open. We call {Φα}α≻0 a family of weak contractions centered at x ∈ U if

he following conditions are met:

(i) For every multiindex α ≻ 0, Φα(x) = x ;
(ii) For all multiindices α ⪰ β ≻ 0 we have

|Φα(y) − Φα(z)| ≤ |Φβ(y) − Φβ(z)|

for all y, z ∈ U .
(iii) There exist κ > 0 and an open set U ∗

⊂ Rd such that x ∈ U ∗, U ∗
⊂ Uα for each

|α| < κ , and for any compact set K ⊂ U ∗ and any ε > 0 there exists δ > 0 such that
|αβ−1

− 1| < δ and |α| < κ, |β| < κ imply

|Φα ◦ Φ−1
β (y) − y| < ε

for all y ∈ K .

xample 2.1. Let U be an open neighborhood of 0 ∈ Rd , and for any multiindex α ≻ 0, let
1
α : U → Rd be given by

1 −1 −1 −1
Φα(y) := (y1α1 , y2α2 , . . . , ydαd ). (2.18)
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Define the open set Uα = Φ1
α(U ). Then, {Φ1

α}α≻0 defines a family of weak contractions centered
at 0 ∈ U . Also, by shifting everything above, if U now denotes an open neighborhood of
x ∈ Rd , the family {Φα}α≻0 defined by

Φα(y) = x − Φ1
α(x) + Φ1

α(y) = x + Φ1
α(y − x), y ∈ U,

is a family of weak contractions centered at x by setting Uα = Φα(U ).

Remark 2.8. Compared with Baldi [3] and Caramellino [10], the index α in Definition 2.1 is
allowed to be a multiindex rather than a positive real parameter. With some minor additional
structure (see Definition 2.2), this affords more general transformations of (1.4) rather than
functions of

√
ε log log ε−1 alone (see Section 3). It is expected that a similar condition can be

used to deduce LILs for diffusions at time infinity as well.

In order to specify a change of coordinates from xt to yεt , we need to impose assumptions
on the dependence of the multiindex α on ε. Below, this dependence is determined using a
heuristic scaling argument which in turn dictates the asymptotic behavior of xt at time t = 0.
The conditions outlined in the next definition are natural and satisfied in the examples in which
we are interested.

Definition 2.2. Fix ε0 > 0. We call ψ : [0, ε0] → [0,∞)d an asymptotic index if all of the
following conditions are met:

(i) ψ is continuous.
(ii) ψ(0) = 0 and ψ(u) ≺ ψ(v) as a multiindex for any 0 < u < v ≤ ε0.

(iii) For any ε > 0, there exists δ ∈ (0, 1) such that for all c ∈ (1 − δ, 1) there exists J ∈ N
such that for any j ≥ J :

δ1, δ2 ∈ [c j+1, c j ] implies |ψ(δ1)ψ(δ2)−1
− 1| < ε.

Example 2.2. For any positive integers ℓ, k ∈ N, and ε∗(ℓ, k) > 0 small enough, let
ℓ,k : [0, ε∗(ℓ, k)] → [0,∞) be given by

ψℓ,k(ε) =

{√
εℓ(log log ε−1)k for ε ∈ (0, ε∗(ℓ, k)] ,

0 for ε = 0.
(2.19)

hen, for any (ℓ1, k1), . . . , (ℓd , kd ) ∈ N × N and ε∗ := min{ε∗(ℓi , ki ) : i = 1, . . . , d} > 0,
ψ : [0, ε∗] → [0,∞)d defined as

ψ(ε) = (ψℓ1,k1 (ε), . . . , ψℓd ,kd (ε))

is an asymptotic index. Indeed, by standard calculations for ε ∈ (0, ε∗] and ε∗ > 0 small
enough we have

d
dε

(ψℓ,k(ε))2
= εℓ−1(log log ε−1)k−1

(
ℓ log log ε−1

−
k

log ε−1

)
> 0 , (2.20)

hich implies (ii). Also, by just proved monotonicity, if c j+1
≤ δ2 ≤ δ1 ≤ c j

1 ≤
ψℓ,k(δ1)
ψ (δ )

=

(
δ1

δ

) ℓ
2
(

log log δ−1
1
−1

) k
2

≤
1
ℓ

(
log( j log c−1)

log(( j + 1) log c−1)

) k
2

. (2.21)

ℓ,k 2 2 log log δ2 c 2
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Then, for any small ε > 0 there exists δ > 0 such that c
ℓ
2 > 1 −

ε
3 for any c ∈ (1 − δ, 1) and

y choosing J large, we obtain that for any j ≥ J(
log( j log c−1)

log(( j + 1) log c−1)

) k
2

< 1 +
ε

3
. (2.22)

hus, if ε ∈ (0, 1)

0 ≤
ψℓ,k(δ1)
ψℓ,k(δ2)

− 1 ≤
1 +

ε
3

1 −
ε
3

− 1 < ε. (2.23)

ence property (iii) follows. The case c j+1
≤ δ1 ≤ δ2 ≤ c j follows analogously.

xample 2.3. In Example 2.2, instead of choosing each coordinate of the form (2.19), one
ould replace ψℓ,k by a continuous, strictly increasing function ϕ : [0, ε∗] → [0,∞) with
ϕ(0) = 0 and ϕ regularly varying at 0.

Using the previous two concepts, we now connect Eqs. (1.4) and (2.1). Suppose that {Φα}α≻0
is a family of weak contractions centered at x ∈ U and ψ : [0, ε∗] → Rd is an asymptotic index.

e can choose ε∗ small enough so that |ψ(ε)| < κ , where κ is given in Definition 2.1(iii).
bserve that for any ε ∈ (0, ε∗] and t < ε−1τ (x·) (see (2.4)), the family of processes

yεt := Φψ(ε)(xεt ) (2.24)

atisfies, by Itô’s formula, an SDE on U ∗ of the form (2.1) with bε : U ∗
→ Rd , σε : U ∗

→

Md×k given by

bε(y) = ε L̃Φψ(ε)(Φ−1
ψ(ε)(y)), (2.25)

σε(y) =

√
εr (ε)DΦψ(ε)(Φ−1

ψ(ε)(y))σ̃ (Φ−1
ψ(ε)(y)) , (2.26)

where

L̃ =

d∑
i=1

b̃i (x)
∂

∂xi
+

1
2

d∑
i, j=1

(σ̃ (x)σ̃ (x)T )i j
∂2

∂xi∂x j
(2.27)

ith b̃ and σ̃ as in (1.4), and U ∗ as in Assumption 1.

emma 2.9. Suppose that {Φα}α≻0 is a family of weak contractions centered at x ∈ U
nd ψ : [0, ε∗] → Rd is an asymptotic index and suppose |ψ(ε∗)| < κ , where κ is as in

Definition 2.1(iii) for the appropriate U ∗. If bε, σε given by (2.25)–(2.26) satisfy Assumption 1
with already fixed ε∗ > 0 and U ∗, then the family of processes {yε}ε∈(0,ε∗] given by (2.24)
atisfies Assumption 2.

Lemma 2.9 is proved in Section 6 along with the following corollary.

orollary 2.10. Consider the family of processes {yε}ε∈(0,ε∗] defined by relation (2.1) and
suppose that σε(x) ≡ σε is a family of constant d × k matrices. If ε∗, U ∗, bε, σε satisfy
Assumption 1 and for every δ ∈ (0, ε∗] we have that σε → σδ and bε → bδ as ε → δ

niformly on compact subsets of U ∗, then {yε}ε∈(0,ε∗] satisfies Assumption 2.

emark 2.11. Perhaps the most surprising consequence of Lemma 2.9 is that it is used to
prove Corollary 2.10, even though there is no reference to an underlying mapping from xt to
yε.
t
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3. Law of the iterated logarithm examples in the weakly hypoelliptic setting

3.1. Weakly hypoelliptic diffusions

Since Theorem 2.6 is a generalization of the main result in [10], all applications discussed
here also follow from Theorem 2.6. We therefore refer the reader to [10] to see how to obtain

functional LIL at time zero for d-dimensional Brownian motion, elliptic SDEs as well as
ome iterated stochastic integrals. In particular, by the example in [10, Section 5], we see that
heorem 2.6 can also be applied when the noise is state-dependent. Here, we provide examples
ot covered by [10] which follow from Theorem 2.6.

All of the SDEs discussed below fall within the class of weakly hypoelliptic diffusions with
dditive noise; that is, each SDE below is of the form (1.4), where b̃ ∈ C∞(U ) and σ̃ (x) ≡ σ̃ is
d × k constant matrix such that the range of σ̃ , denoted by R(σ̃ ), has dimension strictly less

han d, but Hörmander’s condition is satisfied. That is, we say that the columns σ̃ 1, σ̃ 2, . . . , σ̃ k

f σ̃ and σ̃ 0(x) := b̃(x), viewed as vector fields on U , satisfy Hörmander’s condition on U if
he list

σ̃ ℓ1 (x) ℓ1 = 1, 2, . . . , k (H)

[σ̃ ℓ1 , σ̃ ℓ2 ](x) ℓ1, ℓ2 = 0, 1, . . . , k

[σ̃ ℓ1 , [σ̃ ℓ2 , σ̃ ℓ3 ]](x) ℓ1, ℓ2, ℓ3 = 0, 1, . . . , k
...

...

pans the tangent space at all points x ∈ U . In the above, [X, Y ] denotes the commutator of
he vector fields X and Y ; that is, if X = (X j (x)) and Y = (Y j (x)), then

[X, Y ](x) :=

d∑
j=1

d∑
i=1

{
X i (x)

∂Y j (x)
∂xi

− Yi (x)
∂X j (x)
∂xi

}
∂

∂x j
.

A celebrated theorem of Hörmander [23] shows that if condition (H) is satisfied, then the
operators L̃ , L̃∗, ∂t ± L̃ , ∂t ± L̃∗ are all hypoelliptic on the respective domains U , U , (0,∞)×U ,
(0,∞) × U , where L̃ is as in (2.27) and L̃∗ denotes the formal L2(dx)-adjoint of L̃ . As
a consequence, the distribution of the solution process xt restricted to Borel subsets of U
is absolutely continuous with respect to Lebesgue measure with transition density qt (x, y).
Furthermore, (t, x, y) ↦→ qt (x, y) ∈ C∞((0,∞) × U × U ). If the process xt exits U in finite
time, then the law of xt has a singular component on ∂U . However, this component is not
present prior to exiting.

One interpretation of Hörmander’s theorem is that condition (H) ensures that xt is not
locally restricted to a lower-dimensional submanifold of U . Indeed, the noise is either acting
explicitly in directions σ̃ 1, . . . , σ̃ k , or it propagates implicitly through the drift term σ̃ 0

= b̃,
as represented by the commutators in (H). However, condition (H) does not guarantee that the
process reaches all points in a small neighborhood in short times. For example, the process
may be restricted to a cone (still satisfying Hörmander condition) as opposed to a ball [20,
Example 3.4]. The goal of our LILs deduced below is to provide further insight into the a.s.,
small time behavior.

3.2. Examples

We now consider several concrete examples, starting with the so-called Iterated Kolmogorov
diffusion.
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Example 3.1 (Iterated Kolmogorov). Consider the following SDE on Rd

dx1 = x2 dt ,

dx2 = x3 dt ,
...

...

dxd−1 = xd dt ,

dxd = dWt ,

(3.1)

where Wt is a standard one-dimensional Brownian motion defined on (Ω ,F ,P) and the process

xt := (x1(t), . . . , xd (t))

has initial condition x0 = (0, 0, . . . , 0). Our goal is to establish an LIL for the first coordinate
x1, which is given by the iterated time integral of the Brownian motion

x1(t) =

∫ t

0

∫ t2

0
· · ·

∫ td

0
dWs dtd dtd−1 . . . dt2.

This was the one of the main goals of the paper [29] by Lachal. Historically, the case d = 2
in (3.1) is the first known example of a hypoelliptic diffusion, as discovered by Kolmogorov.
For further information, see the discussion in the introduction of [23].

For any multiindex α = (α1, α2, . . . , αd ) ≻ 0, define Φα : Rd
→ Rd by

Φα(y) = (α−1
1 y1, α

−1
2 y2, . . . , α

−1
d yd )

and note by Example 2.1, {Φα}α≻0 is a family of weak contractions centered at the origin in
Rd . Furthermore, by Example 2.2, for ε∗ > 0 small enough, ψ : [0, ε∗] → [0,∞)d given by

ψ(ε) =

(√
ε2d−1 log log ε−1,

√
ε2d−3 log log ε−1, . . . ,

√
ε3 log log ε−1,

√
ε log log ε−1

)
s an asymptotic index. To see that Assumption 1 is satisfied for the transformed diffusion yεt
efined by

yεt = Φψ(ε)(xεt ), (3.2)

e observe that, by construction, yεt solves the following SDE

dy1 = y2 dt ,
...

...

dyd−1 = yd dt ,

dyd =
d Bε(t)
√

r (ε)
,

(3.3)

ith y0 = (y1(0), . . . , yd (0)) = 0 and Bε(t) = ε−1/2Wεt being a standard Brownian motion on
, and r (ε) = log log ε−1. Since, bε ≡ b is a linear function on Rd and σε ≡ σ is a constant
atrix, Assumption 1 is satisfied. In addition, by Lemma 2.9, Assumption 2 holds true for

yεt . Furthermore, since the process is non-explosive, we may set t∗ = 1 in the statements of
heorem 2.6 and Corollary 2.7.

For the projection π : Rd
→ R onto the first coordinate, consider the continuous map

F : E ([0, 1]; Rd ) → R ∪ {∆} given by F(g) = πg if g ∈ Rd and F(g) = ∆ if g = ∆,
1 1 1
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where g1 = gt=1. Observe that R ∪ {∆} is a Hausdorff space. Then, Corollary 2.7 implies that
F(yε)}0<ε<ε∗ is relatively compact in R ∪ {∆}. Furthermore, for f ∈ C 0([0, 1]; R) let

J1( f ) =

∫ 1

0

∫ t2

0
. . .

∫ td−1

0
ftd dtd . . . dt2 . (3.4)

hen, the almost sure limit set of (yε1)1 as ε → 0 is given by

F(K0) = {J1( f ) :
1
2

∫ 1

0
( ḟs)2 ds ≤ 1}.

he embedding H 1([0, 1]) ↪→ L∞([0, 1]) implies that the constants

M = sup{J1( f ) :
1
2

∫ 1

0
( ḟs)2 ds ≤ 1},

m = inf{J1( f ) :
1
2

∫ 1

0
( ḟs)2 ds ≤ 1},

re finite and by choosing fs = ±s, one has M,m ̸= 0, and therefore almost surely

lim sup
ε→0

x1(ε)√
ε2d−1 log log ε−1

= M > 0 ,

lim inf
ε→0

x1(ε)√
ε2d−1 log log ε−1

= m.

Moreover, m = −M since J is an odd function of f .

Example 3.2. This example shows the utility of Corollary 2.10. Consider again the same
system as in Example 3.1, but with d = 2 and the process xt = (x1(t), x2(t)) starting from a
general initial condition x0 = (x1(0), x2(0)) ∈ R2. Equivalently, we can consider the process
solving

dx1 = (x2 + c) dt, dx2 = dWt (3.5)

for some c, with x0 = 0. Again, our goal is to obtain a LIL for the first coordinate x1. If we
define

yε1(t) =
x1(εt) − x1(0) − tεx2(0)√

ε3 log log ε−1
+ x1(0) + t x2(0) , (3.6)

yε2(t) =
x2(tε) − x2(0)√
ε log log ε−1

+ x2(0) ,

hen yεt := (yε1(t), yε2(t)) satisfies

dyε1 = yε2 dt ,

dyε2 =
1

√
r (ε) dW ε

t ,

here (yε1(0), yε2(0)) = (x1(0), x2(0)) and W ε
t =

1
√
ε
Wεt . Note that Assumption 1 is clearly

atisfied for the process yεt . Due to the explicit dependence on time, the mapping x ↦→ yε in
(3.6) does not satisfy the assumptions of Lemma 2.9 if x2(0) ̸= 0. However, Corollary 2.10
ensures that Assumption 2 is satisfied. Also, the solution of the associated deterministic
problem

ẏ = y , ẏ = ḟ (3.7)
1 2 2
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is given by

y2(t) = x2(0) + f (t), y1(t) = x1(0) + x2(0)t +
∫ t

0 f (s)ds , (3.8)

here f (0) = 0. If J1 : C 0([0, 1]; R) → R is given by

J1( f ) =

∫ 1

0
fs ds and M = sup{J1( f ) :

1
2

∫ 1
0 ( ḟs)2 ds ≤ 1}, (3.9)

hen as in Example 3.1, one has 0 < M < ∞ and, P-almost surely,

lim sup
ε→0

(
x1(ε) − x1(0) − εx2(0)√

ε3 log log ε−1

)
= M , (3.10)

lim inf
ε→0

(
x1(ε) − x1(0) − εx2(0)√

ε3 log log ε−1

)
= −M. (3.11)

ote that (3.10) implies that for any δ > 0 there exists a (random) sequence εn = εn(ω) > 0
such that εn → 0 as n → ∞ and

x1(εn) ≥ x1(0) + εn x2(0) +

√
ε3

n log log ε−1
n (M − δ).

Similarly, using (3.11); for any δ > 0 there exists ε̄n = ε̄n(ω) > 0 such that ε̄n → 0 as n → ∞

nd

x1(ε̄n) ≤ x1(0) + ε̄n x2(0) +

√
ε̄3

n log log ε̄−1
n (−M + δ).

Now suppose x2(0) > 0 as the case x2(0) < 0 is treated similarly. Since
√
ε3 log log ε−1 ≪ ε

for small ε, we obtain that x1(t) ≥ x1(0) for all small times t . Intuitively, if we rewrite our
system as (3.5), then since x0 = 0 one has x2 < c = x2(0) for all small times. Thus, x1 is
ncreasing for small times as our analysis shows. Observe that if there was a noise in the x1
oordinate, then it would change sign on the time scale

√
ε ≫ ε, and therefore x1(t) − x1(0)

ould change sign as well.

xample 3.3. As our next example, we consider the following diffusion on R2

dx1 = (x2
1 − x2

2 ) dt ,

dx2 = 2x1x2 dt + d Bt ,
(3.12)

here xt = (x1(t), x2(t)) has initial condition x0 = (x1(0), x2(0)) = (0, 0) and Bt is a standard,
ne-dimensional Brownian motion on (Ω ,F ,P). This particular diffusion has been extensively
tudied (see [1,8,16,19]). In particular, one of the main results in these works is that the
iffusion defined by (3.12) is non-explosive for all initial conditions in R2. This is true despite
he fact that the associated deterministic dynamics (obtained by deleting d Bt from (3.12))
xplodes in finite time when started from (s, 0) with s > 0. Here, we study the behavior
t time zero of the first coordinate, x1 (the behavior of the second coordinate is trivial).

First, define the family {Φα}α≻0 of weak contractions centered at (0, 0) ∈ R2 by

Φα(y1, y2) =
(
y1α

−1
1 , y2α

−1
2

)
.

e also define, for ε∗ > 0 small enough, the asymptotic index ψ : [0, ε∗] → [0,∞)2 as

ψ(ε) = (ε2 log log ε−1,
√
ε log log ε−1).

Then, by (2.25) and (2.26) the process

yε = Φ (x )
t ψ(ε) εt
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satisfies the SDE

dy1 = ε3 log log ε−1 y2
1 dt − y2

2 dt,

dy2 = 2ε3 log log ε−1 y1 y2 dt +
1

√
r (ε)

d Bε ,

here (y1(0), y2(0)) = (0, 0) and Bε is a standard, one-dimensional Brownian motion. Note
that

bε(y1, y2) = (ε3 log log ε−1 y2
1 − y2

2 , 2ε3 log log ε−1 y1 y2)

nd σε ≡ σ is a constant matrix. Since

bε(y1, y2) → b(y1, y2) = (−y2
2 , 0)

niformly on compact subsets of R2 as ε → 0, it follows that Assumption 1 is satisfied and
y Lemma 2.9, Assumption 2 is also satisfied. Thus, Theorem 2.6 and Corollary 2.7 apply for
ny sufficiently small t∗ ∈ (0, 1]. However, because the limiting ODE

ẏ1 = −y2
2 ,

ẏ2 = ḟ ,

s well-defined for all times t ∈ [0, 1] for any f ∈ C 0([0, 1]; R2) (simply integrate it), we may
ake t∗ = 1.

With a slight abuse of notation, we let π : R2
→ R denote the projection onto the first

oordinate, and F : E ([0, 1]; R2) → R ∪ {∆} be such that F(g) = πg1 if g1 ∈ R2 and ∆
therwise (cf. Example 3.1). Corollary 2.7 implies that {F(yε)}ε∈(0,ε∗] is relatively compact in
∪ {∆}. Moreover, if J2 : C0([0, 1]; R) → (−∞, 0] is given by

J2( f ) = −

∫ 1

0
f 2
s ds,

hen the a.s. limit set of F(yε) as ε → 0 is given by

F(K0) = {J2( f ) :
1
2

∫ 1

0
( ḟs)2 ds ≤ 1}.

ote that

−M := inf{J2( f ) :
1
2

∫ 1

0
( ḟs)2 ds ≤ 1} ∈ (−∞, 0),

ince H 1([0, 1]) ↪→ L∞([0, 1]), and consequently almost surely

lim inf
ε→0

x1(ε)
ε3 log log ε−1 = −M , lim sup

ε→0

x1(ε)
ε3 log log ε−1 = 0.

xample 3.4. Next, we consider the following Lorenz 96 model with d = 5

dx1 = (x2 − x4)x5 dt − x1 dt + d B1 ,

dx2 = (x3 − x5)x1 dt − x2 dt + d B2 ,

dx3 = (x4 − x1)x2 dt − x3 dt ,

dx4 = (x5 − x2)x3 dt − x4 dt ,
(3.13)
dx5 = (x1 − x3)x4 dt − x5 dt ,
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where the process xt = (x1(t), x2(t), . . . , x5(t)) above is assumed to evolve on R5 starting
nitially at x0 = 0, and Bi , i = 1, 2, are independent, standard Brownian motions defined on
Ω ,F ,P). Using nearly identical computations, one can also treat the general Lorenz 96 model
n d dimensions, but for clarity we prefer the concrete scenario above. Our interest stems from
he fact that the nonlinearities mimic pairwise interactions in the Navier–Stokes equation. Here
e will analyze the small-time behavior of x5.
In this example, again the family {Φα}α≻0 of weak contractions centered at 0 ∈ R5 is the

ame as above

Φα(y) = (y1α
−1
1 , y2α

−1
2 , . . . , y5α

−1
5 ).

or ε∗ > 0 small enough, we define ψ : [0, ε] → [0,∞)5 by

ψ(ε) = (
√
ε log log ε−1,

√
ε log log ε−1, ε2 log log ε−1,

√
ε7(log log ε)3, ε5(log log ε−1)2)

nd note that ψ is an asymptotic index for (3.13).
Let yε be given by yεt = Φψ(ε)(xεt ) and note that yε solves the following SDE

dy1 = b1,ε(y1, y2, y4, y5) dt +
1

√
r (ε)

d B1,ε ,

dy2 = b2,ε(y1, y2, y3, y5) +
1

√
r (ε)

d B2,ε ,

dy3 = −y1 y2 dt + b3,ε(y2, y3, y4) dt ,

dy4 = −y2 y3 dt + b4,ε(y3, y4, y5) dt ,

dy5 = y1 y4 dt + b5,ε(y3, y4, y5) dt ,

here bi,ε → 0, i = 1, 2, 3, 4, 5, as ε → 0 uniformly on compact subsets in R5. Furthermore,
ne can check that the bi,ε are locally Lipschitz on R5, so that Assumption 1 is satisfied. Thus
heorem 2.6 and Corollary 2.7 both apply. In this case, the limiting ODE is

ẏ1 = ḟ1 , ẏ2 = ḟ2 , ẏ3 = −y1 y2 , ẏ4 = −y2 y3 , ẏ5 = y1 y4 , (3.14)

ith y(0) = 0.
Note that we can solve (3.14) explicitly and take t∗ = 1 again. Indeed, let π5 : R5

→ R
enote the projection onto the fifth coordinate and, slightly abusing notation again, define

F : E ([0, 1]; R5) → R ∪ {∆} by F(g) = π5g1 if g1 ∈ R5 and F(g) = ∆ otherwise. Applying
orollary 2.7, we note that {F(yε)}0<ε≤ε∗ is relatively compact in R∪{∆}. Furthermore, define

J3 : C0([0, 1]; R2) → R as y5 in (3.14)

J3( f1, f2) =

∫ 1

0
f1(t)

(∫ t

0
f2(s)

(∫ s

0
f1(r ) f2(r ) dr

)
ds
)

dt,

here f1(0) = f2(0) = 0. Let

M = sup{J3( f1, f2) :
1
2

∫ 1

0
|( ḟ1, ḟ2)|

2
≤ 1}

m = inf{J3( f1, f2) :
1
2

∫ 1

0
|( ḟ1, ḟ2)|

2
≤ 1} .

etting ḟ = ġ = 1 we see that J3 clearly attains positive values. However, seeing that J3 can
ealize negative is not immediately obvious. Nevertheless, by choosing f (t) = sin(5t) and
1

204



M. Carfagnini, J. Földes and D.P. Herzog Stochastic Processes and their Applications 149 (2022) 188–223

f

d
s
R

R

A

f
l
b
F

t

H

f2(t) = sin(t) one has J3( f1, f2) ≈ −0.00605. Thus by a proper rescaling to guarantee the
constraint on ḟ1 and ḟ2, we obtain then (almost surely)

lim sup
ε→0

x5(ε)
ε5(log log ε−1)2 = M ,

lim inf
ε→0

x5(ε)
ε5(log log ε−1)2 = m ,

or some M > 0 and m < 0.

Remark 3.1. Because the LIL at time zero is local phenomena, there is nothing important
about the SDEs above being defined on all of Rd . One can consider the same equations (or
ifferent ones) defined in a neighborhood U of the initial condition x , with scalings taking the
ame forms. One then applies the general results of this paper, but with U ∗ in place of all of
d . See also Example 2.1.

emark 3.2. Let Wt be a standard, real-valued Brownian motion defined on (Ω ,F ,P).
Chung’s LIL [11] for Wt at time zero states that, P-almost surely,

lim inf
ε→0

{√
log log ε−1

ε
max
0⩽t⩽ε

|Wt |

}
=

π
√

8
. (3.15)

natural question is whether Theorem 2.6 and Corollary 2.7 can be used to deduce a similar
results for SDEs in the examples above? The short answer is that the results do apply, but do
not obviously capture the precise asymptotic behavior that one would expect for the lim inf of
the running maximum. To see why in more detail, we have provided the next example.

Example 3.5. Consider (3.1) for d = 2 and define the maximum process for the first coordinate
x∗

1 (t) := sups∈[0,t] |x1(s)|. Using the scaling property [25, equation (2.1)]

x∗

1 (t) d
= t3/2x∗

1 (1) ∀t ≥ 0

along with inversion, one of the main results in [25] states that, P-almost surely,

lim inf
ε→0

x∗

1 (ε)
φ(ε)

= c, φ(ε) :=
ε3/2

(log log ε−1)3/2 , (3.16)

or some deterministic constant c ∈ (0,∞). To investigate properties of x∗ in our framework,
et π : R2

→ R be the projection onto the first coordinate, and let F : E ([0, 1]; R2) → R∪{∆}

e a continuous mapping given by F(g) = sups∈[0,1] |πgs | if g1 ∈ R2 and F(g) = ∆ if g1 = ∆.
ollowing Example 3.1, if J : C 0([0, 1]; R) → R is given by

J ( f ) = sup
0≤t≤1

⏐⏐⏐⏐ ∫ t

0
fs ds

⏐⏐⏐⏐ , (3.17)

hen the almost sure limit set of F(yε) as ε → 0 is

F(K0) = {J ( f ) :
1
2

∫ 1

0
( ḟs)2 ds ≤ 1}.

ere, we recall that yε is as in (3.2) with d = 2. From this we deduce that, almost surely,

lim sup
x∗

1 (ε)
3/2
√

−1
= M, (3.18)
ε→0 ε log log ε
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lim inf
ε→0

x∗

1 (ε)

ε3/2
√

log log ε−1
= 0, (3.19)

or some constant M ∈ (0,∞). Note that while relation (3.18) provides precise asymptotics, the
second relation (3.19), though consistent with (3.16), does not establish (3.16). This is because
the lim inf of x∗ acts on a smaller scale which is not captured by our scaling.

4. Large deviations

In this section, we outline two key results that are used to prove Theorem 2.6. Both
results follow almost immediately from the existing literature. Here, we only provide slight
adjustments, if needed, to connect with our setting.

The first result stated below is a consequence of [4, Theorem 1.1], which is an improvement
of [2, 2.4 Théorème, Chapitre III]. The only difference here is that we are not assuming [4,
(A.3)], but our proof follows nearly identical localization procedure for an open set U ∗ as
opposed to Rd in [4].

Recall that (x, f ) ↦→ Sx ( f ) is the solution operator of (2.9), r (ε) = log log ε−1, and the
distance-like function dt is defined in (2.7). We also recall that for every ε > 0, Bεt = ε−1/2 Bεt ,
where Bt denotes a standard Brownian motion on Rk , and that ε∗ > 0 and U ∗ were fixed in
Assumption 1.

Theorem 4.1. Suppose that Assumption 1 is satisfied and let K ⊂ U ∗ be a compact set and
t ∈ (0, 1]. For every ρ > 0, R > 0, a > 0, there exist ε0 ∈ (0, ε∗], α > 0 such that for all
x ∈ K , f ∈ C 0([0, t]; Rk) and g = Sx ( f ) with∫ t

0
| ḟs |

2
ds ≤ a and g([0, t]) ⊂ K ,

we have the following estimate

P
{

dt

(
1

√
r (ε) Bε, f

)
≤ α and dt (yε, g) > ρ

}
≤ e−Rr (ε)

for all 0 < ε ≤ ε0.

Proof. Since K is compact, there is ρ0 ∈ (0, ρ] and a compact set K ′
⊂ U ∗ containing a

2ρ0 neighborhood of K . Let V ⊂ Rd be a bounded, open set such that K ′
⊂ V ⊂ U ∗ and let

ϕ : Rd
→ [0, 1] be C∞ function with ϕ = 1 on K ′ and 0 on V c. For any function p on U ∗

we define pϕ on Rd by

pϕ(y) =

{
p(y)ϕ(y) y ∈ U ∗ ,

0 y /∈ U ∗ .

Thus, to b, σ, bε, σε we associate respectively bϕ, σϕ, bϕ,ε, σϕ,ε. Then, by construction and
Assumption 1, bϕ, σϕ, bϕ,ε, σϕ,ε are bounded and globally Lipschitz on Rd and bϕ,ε → bϕ ,
ϕ,ε → σϕ uniformly on Rd as ε → 0. Let yεϕ be the unique solution of the Itô SDE{

dyt = bϕ,ε(yt ) dt +
1

√
r (ε)σϕ,ε(yt ) d Bεt ,

y0 = x .

By standard arguments, the solution above belongs almost surely to Cx ([0, t]; U ). Then
[4, Theorem 1.1] with h(ε) ≡ 1 and ε−2 replaced by r (ε) < ε−2, provides the existence of
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ε0 > 0, α > 0 such that for all x ∈ K , f ∈ C 0([0, t]; Rk) and g = Sx ( f ) with∫ t

0
| ḟs |

2
ds ≤ a and g([0, t]) ⊂ K

e have, for every ε ∈ (0, ε0]

P
{

dt

(
1

√
r (ε) Bε, f

)
≤ α and dt (yεϕ, g) > ρ0

}
≤ e−Rr (ε).

However, yεϕ and yε coincide until the first time both yεϕ and yε exit K ′. Since g([0, t]) ⊂ K
and ρ > ρ0

P
{

dt

(
1

√
r (ε) Bε, f

)
≤ α and dt (yε, g) > ρ

}
≤ P

{
dt

(
1

√
r (ε) Bε, f

)
≤ α and dt (yε, g) > ρ0

}
≤ P

{
dt

(
1

√
r (ε) Bε, f

)
≤ α and dt (yεϕ, g) > ρ0

}
≤ e−Rr (ε)

nd the proof is finished. □

Recall the Cramer transform λ : E ([0, 1]; U ∗) → [0,+∞] introduced in (2.12), and for any
A ⊂ Ex ([0, 1]; U ∗) Borel set define

Λ(A) = inf
g∈A

λ(g). (4.1)

heorem 4.2. Suppose that Assumption 1 is satisfied. For any Borel set A ⊂ Ex ([0, 1]; U ∗),

−Λ(interior(A)) ≤ lim inf
ε→0

1
r (ε)

log P{yε ∈ A} ≤ lim sup
ε→0

1
r (ε)

log P{yε ∈ A} ≤ −Λ(A) ,

(4.2)

here interior(A) and A respectively denote the interior and closure of A.

For the proof of Theorem 4.2, we refer to [2, proof of 2.13 Théorème, Chapitre III] with
−2 replaced by r (ε), which works in our setting as one merely needs σ to be locally Lipschitz

on U ∗ rather than C1.
Given the previous two results, we are now prepared to prove Theorem 2.6.

5. Proof of Theorem 2.6

The proof of Theorem 2.6 is similar to the proof of the main result in Baldi [3] and also
Caramellino [10], but with a different topology and set of assumptions.

We first need some auxiliary results.

Proposition 5.1. Suppose that Assumption 1 is satisfied and x ∈ U ∗, t∗, and Kx (t∗) are as
n the statement of Theorem 2.6. Then the following assertions hold.

(i) For any c ∈ (0, 1):

P
{

lim dt∗ (yc j
,Kx (t∗)) = 0

}
= 1.
j→∞
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(ii) If Assumption 2(i) is furthermore satisfied, then

P
{

lim
ε→0

dt∗ (yε,Kx (t∗)) = 0
}

= 1.

roof. To show (i), fix δ > 0 and consider the set

Kx,δ = {g ∈ Ex ([0, 1]; U ∗) : dt∗ (g,Kx (t∗)) ≥ δ}. (5.1)

irst we claim that Kx,δ is closed in E ([0, 1]; U ∗). Indeed, if gn ∈ Kx,δ converges to g in
([0, 1]; U ∗) as n → ∞ and g(t∗) = ∆, then dt∗ (g,Kx (t∗)) = ∞ since, by the definition of

∗, h(t∗) ̸= ∆ for any h ∈ Kx (t∗). Hence, g ∈ Kx,δ . If on the other hand g(t∗) ∈ U ∗, then
y the continuity of g, τ1(g) > t∗ and by the definition of convergence in E ([0, 1]; U ∗) one
as that τ1(gn) > t∗ for any sufficiently large n. Then, the triangle inequality (2.8) and the
efinition of dt∗ imply for any h ∈ Kx (t∗)

dt∗ (gn, g) + dt∗ (g, h) ≥ dt∗ (gn, h) ≥ δ. (5.2)

assing n → ∞, we obtain g ∈ Kx,δ .
We now claim that there exists δ′ > 0 for which Λ(Kx,δ) > 1 + δ′. Suppose to the contrary

that Λ(Kx,δ) ≤ 1. By definition, there exists a sequence gn ∈ Kx,δ such that

lim
n→∞

λ(gn) = Λ(Kx,δ) ≤ 1.

Thus, for all n large enough, gn ∈ M := {g ∈ Ex ([0, 1]; U ∗) : λ(g) ≤ 2}. The set M
is sequentially compact since M is the image of the sequentially compact set (the compact
Sobolev embedding H 1 ↪→ C )

C2 = { f ∈ C ([0, 1]; Rk) :
1
2

∫ 1
0 | ḟs |

2
ds ≤ 2}

nder the continuous mapping Sx : C2 → Ex ([0, 1]; U ∗) given by Sx ( f ). Hence, the
equence {gn} has a convergence subsequence {gnk } converging to some g ∈ Kx,δ . The lower
emicontinuity of λ then implies

1 ≥ lim inf
k→∞

λ(gnk ) ≥ λ(g).

n particular, g ∈ Kx , contradicting closedness and the definition of Kx,δ . Thus we have shown
that there is δ′ > 0 so that Λ(Kx,δ) > 1 + δ′.

By Theorem 4.2 and the fact that Kx,δ is closed

lim sup
ε→0

1
r (ε)

log P{yε ∈ Kx,δ} ≤ −(1 + δ′).

ence, using the definition of r (ε) we have for all j large and c ∈ (0, 1)

P{yc j
∈ Kx,δ} ≤

C

j1+
δ′

2

(5.3)

for some constant C = C(c) > 0. The Borel–Cantelli lemma then implies

P
{

lim sup
j→∞

dt∗ (yc j
,Kx (t∗)) ≥ δ

}
= 0.

Since δ > 0 was arbitrary, lim j→∞ dt∗ (yc j
,Kx (t∗)) = 0 almost surely, finishing the proof of

part (i).
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To establish part (ii), fix δ > 0 and by Assumption 2(i) choose a constant c ∈ (0, 1) and a
random) index J0 = J0(ω, c) > 0 such that for all j ≥ J0 and ε ∈ [c j+1, c j ]

yεt∗ ∈ U ∗ and dt∗ (yc j
, yε) <

δ

2
. (5.4)

By (5.3), we can increase J0 if necessary so that j ≥ J0 implies

dt∗ (yc j
,Kx (t∗)) <

δ

2
.

sing (5.4), the triangle inequality (2.8), for any j ≥ J0 and ε ∈ [c j+1, c j ] one has

dt∗ (yε,Kx (t∗)) < δ,

and part (ii) follows. □

Proposition 5.2. Suppose that Assumption 1 is satisfied. Let g ∈ Kx be such that λ(g) < 1.
Then, for all ε > 0 and c ∈ (0, 1) we have

P{dt∗ (yc j
, g) < ε for infinitely many j} = 1.

Proof. In the proof, we abbreviate for infinitely many j as i.o. j . Fix g ∈ Kx with
:= λ(g) < 1 and fix ε > 0 and c ∈ (0, 1). Since the infimum in the definition of λ (see

(2.12)) is attained, there exists f ∈ Ca([0, 1]; Rk) so that g = Sx ( f ). By shifting f by a
onstant value, we may assume without loss of generality that f0 = 0, as the time derivative
s invariant under this shift. For a∗ > 0 and c ∈ (0, 1) define events

F j =

{
dt∗

(
1√
r (c j )

Bc j
, f
)
< a∗

}
and H j = {dt∗ (yc j

, g) < ε}.

Then, Theorem 4.1 implies that there exist a∗ > 0 and J > 0 such that j ≥ J implies

P{F j ∩ H c
j } ≤ exp(−2r (c j )) ≤

C
j2

for some constant C > 0. The Borel–Cantelli lemma then implies P{F j ∩ H c
j i.o. j} = 0. Now,

y Mueller [32] or Gantert [15] we have 1 = P{F j i.o. j}. Thus,

1 = P{F j i.o. j} ≤ P{F j ∩ H j i.o. j} + P{F j ∩ H c
j i.o. j} ≤ P{H j i.o. j},

as desired. □

We will also need the following topological result.

Lemma 5.3. Let t ∈ (0, 1], V ⊂ Rd be open, x ∈ V and suppose K ⊂ Cx ([0, t]; V ). Then,
K is compact in Cx ([0, t]; V ) if and only if K is compact in Ex ([0, t]; V ).

Proof. Let K ⊂ Cx ([0, t]; V ) be compact in Ex ([0, t]; V ). To show that K is compact
n Cx ([0, t]; V ), it suffices to prove that if V is open in Cx ([0, t]; V ), then V is open in
x ([0, t]; V ). Equivalently, we show that W = Ex ([0, t]; V ) \ V is closed in Ex ([0, t]; V ). Let

gn ∈ W be such that gn → g ∈ Ex ([0, t]; V ). If g(t) = ∆, then clearly g /∈ V ⊂ Cx ([0, t]; V ),
nd therefore g ∈ W . On the other hand, if g(t) ∈ V , then g ∈ Cx ([0, t]; V ) by definition
f Ex ([0, t]; V ). By definition of the topology on Ex ([0, t]; V ), gn ∈ W ∩ Cx ([0, t]; V ) for all
≥ N , N > 0 large enough. Since W ∩ Cx ([0, t]; V ) is closed and gn → g in the topology

f C ([0, t]; V ), then g ∈ W . Thus, W is closed in E ([0, t]; V ).
x x
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Conversely, suppose K ⊂ Cx ([0, t]; V ) is compact in Cx ([0, t]; V ). To prove that K
s compact in Ex ([0, t]; V ), it is enough to show that if V is open in Ex ([0, t]; V ), then

∩ Cx ([0, t]; V ) is open in Cx ([0, t]; V ). Note that this follows immediately from the fact
hat if gn → g in Cx ([0, t]; V ), then gn → g in Ex ([0, t]; V ). □

Given the previous three results, we next prove the main general result, Theorem 2.6.

roof of Theorem 2.6. We have already established part (ii) in Proposition 5.1(ii). To prove
art (i), we need to show that Y (ω) is relatively compact, almost surely. By Proposition 5.1(ii),
or any δ > 0 there exists ε0 = ε0(ω, δ) ∈ (0, ε∗] such that dt∗ (yε,Kx (t∗)) ≤ δ for all
∈ (0, ε0]. In particular, for any small δ > 0, yε(t∗) ̸= ∆ a.s. for any ε ∈ [0, ε0]. Hence,

yε ∈ Cx ([0, t∗]; U ∗) for any ε ∈ (0, ε0], and therefore the closure of {yε}0<ε≤ε0 in Ex ([0, t∗]; U ∗)
s the same as the closure in Cx ([0, t∗]; U ∗).

We claim that the closure of {yε}0<ε≤ε0 in Ex ([0, t∗]; U ∗) in Cx ([0, t∗]; U ∗) is compact
n Cx ([0, t∗]; U ∗), almost surely. Consequently, the closure of {yε}0<ε≤ε0 is compact in
x ([0, t∗]; U ∗) almost surely by Lemma 5.3 finishing the proof of part (i) of the result. To prove

he claim, first note that by Assumption 2(ii), there exists a subset Ω1 ⊂ Ω with P(Ω1) = 1
uch that t ↦→ yεt (ω) is continuous up to the time of explosion, for every ω ∈ Ω1 and every
∈ (0, ε∗). Let Ω2 :=

{
ω : limε→0 dt∗ (yε(ω),Kx (t∗)) = 0

}
. Then by Proposition 5.1(ii), we

ave that P(Ω2) = 1. Hence, setting Ω1,2 := Ω1 ∩ Ω2, we also have P(Ω1,2) = 1. Note that we
ave that t ↦→ yεt (ω) is continuous for every ω ∈ Ω1,2 and every ε ∈ (0, ε0]. Let us now fix a
equence {εn} ⊂ (0, ε0]. By passing to a subsequence, we can suppose that εn → ε∞ ∈ [0, ε0].
f ε∞ > 0, then by Assumption 2(ii), yεn (ω) → yε∞ (ω) in Ex ([0, t∗]; U ∗), for all ω ∈ Ω1,2.
ote that this convergence happens in Cx ([0, t∗]; U ∗) for all ω ∈ Ω1,2 by definition of ε0. If

∞ = 0, then by Proposition 5.1(ii), yεn (ω) → Kx (t∗) in Cx ([0, t∗]; U ∗) for all ω ∈ Ω1,2.
owever, since Kx (t∗) is compact, there exists a subsequence of {εn}, again denoted by {εn},

uch that yεn converges to g ∈ Kx (t∗), and therefore g belongs to the closure of {yε}0<ε<ε0 . Our
laim now follows. We next prove part (iii) of the statement. Note that by Proposition 5.1(ii),
or any ω ∈ Ω1,2 the limit set K ′ of Y as ε → 0 is contained in Kx (t∗). To see the other
nclusion, first note that Kx (t∗) is compact and hence it contains a countable dense subset, say

= {gm}
∞

m=1 with λ(gm) ⩽ 1 for all m ≥ 1. Note that we can find a countable dense subset
′ of Kx (t∗) such that λ(g) < 1 for all g ∈ D ′. Indeed, for every gm ∈ D , the infimum in

2.12) is attained and thus there exists fm ∈ C 0([0, 1]; Rk) with

1
2

∫ 1

0
| ḟmt |

2
dt ≤ 1 and Sx ( fm) = gm .

For each n > 1 define f n
m = (1 − 1/n) fm and let gn

m := Sx ( f n
m). Clearly, λ(gn

m) < 1 and
′
:= {gn

m}
∞

m,n=1 is the desired countable dense subset of Kx (t∗). By Proposition 5.2, for every
, n,m ≥ 1, and c ∈ (0, 1) the set

Ωn,m,k :=

{
ω : dt∗ (yc j

(ω), gn
m) <

1
2k

for infinitely many j
}

atisfies P(Ωn,m,k) = 1. Now, set Ω ′
:=

⋂
∞

n,m,k=1 Ωn,m,k and note that P(Ω ′) = 1. For any
g ∈ K (t ) with λ(g) ≤ 1 and for every k ≥ 1 there exist n(k),m(k) ≥ 1 and gn(k)

∈ D ′ such
x ∗ m(k)
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that dt∗ (g, gn(k)
m(k)) <

1
2k . Thus, by the triangle inequality, for every k ≥ 1

Ω ′
⊂

{
ω : dt∗

(
yc j

(ω), gn(k)
m(k)

)
<

1
2k

for infinitely many j
}

⊂

{
ω : dt∗ (yc j

(ω), g) <
1

2k
+ dt∗

(
g, gn(k)

m(k)

)
for infinitely many j

}
⊂

{
ω : dt∗ (yc j

(ω), g) <
1
k

for infinitely many j
}
.

ence,

Ω ′
⊂

∞⋂
k=1

{
ω : dt∗ (yc j

(ω), g) <
1
k

for infinitely many j
}
.

hus, we proved that there exists a set Ω ′ with P(Ω ′) = 1 such that any g ∈ Kx (t∗) with
(g) ≤ 1 belongs to K ′ for all ω ∈ Ω ′. □

. Proof of Lemma 2.9 and Corollary 2.10

In this section, we prove Lemma 2.9 and Corollary 2.10, which give basic criteria for the
amily {yε}0<ε≤ε∗ to satisfy Assumption 2. We begin with the:

roof of Lemma 2.9. We first prove Assumption 2(i). Recall the definition of t∗ = t∗(x) ∈

0, 1] and L ⊂ U ∗ in (2.15) and recall that Kx (t∗) is compact in both Cx ([0, t∗]; U ∗) and
x ([0, t∗]; U ∗) by Lemma 5.3. From (2.15), it follows that g([0, t∗]) ⊂ L ⊂ U ∗ for all

g ∈ Kx (t∗). Choose a compact set L ′
⊂ U ∗ with L ⊂ interior(L ′) and fix δ > 0 such that

δ < dist(L ′, ∂U ∗). Using compactness of Kx (t∗) in Cx ([0, t∗]; U ∗), the Arzelà–Ascoli theorem
mplies that the set Kx (t∗) is equicontinuous, and therefore for any c ∈ (0, 1) sufficiently close
o 1 one has

sup
h∈Kx (t∗)

sup
t∈[0,t∗]
s∈[ct,t]

|h(t) − h(s)| <
δ

3
. (6.1)

y properties (i) and (ii) in the definition of an asymptotic index (Definition 2.2), we can
ecrease ε0 if necessary such that |ψ(u)| < κ for any u ∈ [0, ε0], where κ is as in
efinition 2.1(iii). Then, since {Φα} is a family of weak contractions centered at x , for all
∈ (0, 1) close enough to 1, there exists J1 > 0 (deterministic) such that for all j ≥ J1 and

ll ε ∈ [c j+1, c j ] one has U ∗
⊂ Uψ(c j ) and

|Φψ(ε) ◦ Φ−1
ψ(c j )(y) − y| + 2|Φψ(c j+1) ◦ Φ−1

ψ(c j )(y) − y| <
δ

3
(6.2)

or all y ∈ L ′. Fix c ∈ (0, 1) sufficiently close to 1 such that (6.1) and (6.2) are satisfied.
By Proposition 5.1(i), for almost every ω we can choose a finite J0 = J0(ω, c) ≥ J1 such that

j ≥ J0 implies yc j
s ∈ L ′ for any s ∈ [0, t∗]. Also, from (2.8) for all j ≥ J0 and ε ∈ [c j+1, c j ]

it follows that

dt∗ (yε, yc j
) ≤ dt∗

(
Φψ(ε) ◦ Φ−1

ψ(c j )(yc j
), yc j )

+ dt∗ (Φψ(ε)(xε·),Φψ(ε)(xc j ·)). (6.3)

Let us prove that the second term on the right hand side is finite. First, observe that

Φ (x j ) = Φ ◦ Φ−1 (yc j
).
ψ(ε) c t ψ(ε) ψ(c j ) t
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Thus, since j ⩾ J0 we have yc j
s ∈ L ′ for any s ∈ [0, t∗], and one has by (6.2)

dt∗ (Φψ(ε) ◦ Φ−1
ψ(c j )(yc j

·
), yc j

·
) <

δ

3
. (6.4)

n particular, since 2δ < dist(L ′, ∂U ∗), Φψ(ε)(xc j t ) ∈ U ∗ for any t ∈ [0, t∗].
Next, since ψ is an asymptotic index and {Φα}α>0 is a family of weak contractions centered

t x , one has for any t ≤ t∗, t < τt∗ (yε)

|Φψ(ε)(xεt ) − Φψ(ε)(xc j t )| ≤ |Φψ(c j+1)(xεt ) − Φψ(c j+1)(xc j t )|

≤ sup
s∈[ct,t]

|Φψ(c j+1)(xc j s) − Φψ(c j+1)(xc j t )|

≤ sup
s∈[ct,t]

{
|Φψ(c j+1)(xc j s) − yc j

s |

+ |yc j

t − Φψ(c j+1)(xc j t )| + |yc j

t − yc j

s |

}
≤ 2dt∗

(
Φψ(c j+1) ◦ Φ−1

ψ(c j )(yc j
), yc j )

+ sup
t∈[0,t∗]
s∈[ct,t]

|yc j

t − yc j

s |.

Consequently, from (6.1) and (6.2) for any g ∈ Kx (t∗) and t ≤ t∗ it follows

|Φψ(ε)(xεt ) − Φψ(ε)(xc j t )| ≤ 2dt∗

(
Φψ(c j+1) ◦ Φ−1

ψ(c j )(yc j
), yc j )

+ 2dt∗ (yc j
, g)

+ sup
h∈Kx (t∗)

sup
t∈[0,t∗]
s∈[ct,t]

|h(t) − h(s)|

≤
2δ
3

+ 2dt∗ (yc j
, g).

Since the left hand side is independent of g, we can take the infimum with respect to g ∈ Kx (t∗)
and obtain

|Φψ(ε)(xεt ) − Φψ(ε)(xc j t )| ≤
2δ
3

+ 2dt∗ (yc j
,Kx (t∗)). (6.5)

Thus, by Proposition 5.1, by increasing J2 if needed, for any j ≥ J2 and t ∈ [0, t∗] we have

|Φψ(ε)(xεt ) − Φψ(ε)(xc j t )| ≤ δ . (6.6)

Consequently, since 2δ < dist(L ′, ∂U ∗), employing (6.4) we obtain that yεt ∈ U ∗ for all
t ∈ [0, t∗].

Returning to (6.3) and using (6.2), definition of dt∗ , and (6.6), we obtain for any j ≥ J2

dt∗ (yε, yc j
) ≤ dt∗

(
Φψ(ε) ◦ Φ−1

ψ(c j )(yc j
), yc j )

+ sup
t∈[0,t∗]

|Φψ(ε)(xεt ) − Φψ(ε)(xc j t )| ≤
4δ
3

(6.7)

nd Assumption 2(i) follows.
To prove Assumption 2(ii), fix ε∞ ∈ (0, ε∗), let ω be a realization of the noise, and

1 ∈ [0, τt∗ (yε∞ (ω))) with t1 ≤ t∗. Similar to the proof of Theorem 2.6, let Ω1 be the
ubset of Ω with P(Ω1) = 1 such that yε

·
(ω) is continuous for every ω ∈ Ω1 and every

∈ (0, ε0]. The assertion follows once we prove that for all ω ∈ Ω1, for any sequence εn

ith εn → ε∞ as n → ∞ one has yεn (ω) → yε∞ (ω) as n → ∞ in the space Cx ([0, t1]; U ∗).
o simplify the notation, we will often drop the argument ω below. Since t1 < τt∗ (yε∞ ), then

ε∞ ∗ ε∞
0 := inft∈[0,t1] dist(yt , ∂U ) > 0. In particular y ([0, t1]) ⊂ K for some compact K = K (ω)
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with K ⊂ U ∗ almost surely. Fix δ ∈ (0, δ0] and large enough n such that εn > ε∞/2 and

|Φψ(εn ) ◦ Φ−1
ψ(ε∞)(y) − y| <

δ

3
(6.8)

or any y ∈ K . Note that such n exists since εn → ε∞, {Φα}α≻0 is a sequence of weak
ontractions and ψ an asymptotic index.

Then, from (6.8) and the fact that y ↦→ Φψ(ε∞/2)(y) ∈ C2(U ), we obtain for any t ≤ t1 with
< τt∗ (yεn )

|yεn
t − yε∞t | ≤ |Φψ(εn )(xεn t ) − Φψ(εn )(xε∞t )| + |Φψ(εn ) ◦ Φ−1

ψ(ε∞)(yε∞t ) − yε∞t |

≤ |Φψ(ε∞/2)(xεn t ) − Φψ(ε∞/2)(xε∞t )| +
δ

3
.

(6.9)

sing the fact that

s ↦→ xs(ω) : [0, t] → Ex ([0, t]; U ∗) (6.10)

is continuous for all ω ∈ Ω1, we obtain that for any sufficiently large n, dist(yεn
t , ∂U ∗) ≥

δ0
2 for

ny t ≤ t1, t < τt∗ (yεn ). Again, a standard extension argument implies that dist(yεn
t , ∂U ∗) ≥

δ0
2

or any t ≤ t1, and in particular t1 < τt∗ (yεn ). Finally, passing n → ∞ using (6.10), and since
> 0 was arbitrary, the assertion follows. □

We now turn our attention to the proof of Corollary 2.10.

roof of Corollary 2.10. Fix c ∈ (0, 1), δ > 0, and ε ∈ [c j+1, c j ]. By Proposition 5.1(i) there
s an almost surely finite random variable J0 = J0(c, ω) such that

yc j
([0, t∗]) ⊂ interior(L) for all j ≥ J0,

here t∗ and L are as in (2.15) (see also Definition 2.2). Define Tε = Tε(ω) = inf{t ≥ 0 :

yεt /∈ interior(L)} and for every t ≥ 0 set Tε(t) = t ∧ Tε. Then, for any j ≥ J0 and t ∈ [0, t∗]
e obtain

sup
s≤Tε(t)

|yεs − yc j

s | ≤

∫ Tε(t)

0
|bε(yεs ) − bc j (yc j

s )| ds + sup
s≤t∗

⏐⏐⏐⏐ σε
√
εr (ε)

Bεs −
σc j√

c jr (c j )
Bc j s

⏐⏐⏐⏐
=: S1 + S2( j, t∗). (6.11)

o estimate S1, note that since both yε, yc j
map [0, Tε(t∗)] to the compact set L ⊂ U ∗ for

j ≥ J0, we have by Assumption 1

S1 ≤

∫ Tε(t)

0
|bε(yεs ) − b(yεs )| ds +

∫ Tε(t)

0
|bc j (yc j

s ) − b(yc j

s )| ds

+

∫ Tε(t)

0
|b(yεs ) − b(yc j

s )| ds

≤ 2C j (L)t∗ + CL

∫ t

0
sup

v≤Tε(s)
|yεv − yc j

v | ds

here t ≤ t∗, C j (L),CL > 0 are deterministic constants and C j (L) → 0 as j → ∞.
ombining the previous estimate with (6.11) and using Gronwall’s inequality gives

sup
s≤Tε(t∗)

|yεs − yc j

s | ≤ (2C j (L)t∗ + S2( j, t∗))eCL t∗

or any j ≥ J .
0
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In order to estimate S2( j, t∗), for any multiindex α > 0 belonging to Rk , let Φα : Rk
→ Rk

nd ψ : [0, ε∗] → Rk be given by

Φα(y) = (y1α
−1
1 , . . . , ykα

−1
k ) and ψ(ε) = (

√
ε log log ε−1, . . . ,

√
ε log log ε−1),

where ε∗ ∈ (0, e−1). By Example 2.1, {Φα}α≻0 is a family of weak contractions centered at 0 in
Rk while by Example 2.2, for ε∗ > 0 sufficiently small, ψ : [0, ε∗] → [0,∞)k is an asymptotic
index. We can then estimate S2( j, t∗) as follows

S2( j, t∗) ≤ sup
t≤t∗

⏐⏐⏐⏐σε(Φψ(ε)(Bεt ) − Φψ(c j )(Bc j t )
)⏐⏐⏐⏐+ sup

t≤t∗
|(σε − σc j )Φψ(c j )(Btc j )|

≤ ∥σε∥dt∗ (Φψ(ε)(Bε·),Φψ(c j )(Bc j ·)) + D j sup
t≤t∗

|Btc j |√
c j log log c− j

,

where D j is a deterministic constant with D j → 0 as j → ∞ and ∥ · ∥ denotes the matrix
norm. Now, the assumptions of Lemma 2.9 are satisfied with xt = Bt solving (1.4) with b̃ = 0
and σ̃ being the d × d identity matrix. For any M > 0, by Lemma 2.9 there is c ∈ (0, 1) and
J1 = J1(ω, c,M) > 0 such that for any j ≥ J1 and ε ∈ [c j+1, c j ] we obtain

dt∗ (Φψ(ε)(Bε·),Φψ(c j )(Bc j ·)) ≤
1

M(∥σ∥ + 1)
.

By the standard LIL for Brownian motion, for any c ∈ (0, 1), there exists J2 = J2(ω, c) > 0
uch that for any j ≥ J2 it follows that, almost surely,

sup
t≤t∗

|Btc j |√
c j log log c− j

≤ 2.

Overall, for any M > 0, there exists δ′ > 0 such that for any c ∈ (1 − δ′, 1) there is
J3 = J3(ω, c,M) such that for all j ≥ J3 one has

sup
s≤Tε(t∗)

|yεs − yc j

s | ≤ (2C j (L)t∗ + M−1
∥σ ε∥D j )eCL t∗ < δ

for all ε ∈ [c j+1, c j ]. By increasing M and J3 if necessary, Proposition 5.1 part (i) ensures
Tε > t∗, and therefore Tε(t∗) = t∗, so that Assumption 2(i) is satisfied.

In order to establish Assumption 2 part (ii), fix ε0 ∈ (0, ε∗] and ω in a subset of Ω
f full measure specified below and let t < τt∗ (yε0

· (ω)) or t = t∗ if yε0
t∗ (ω) ̸= ∆. Since

↦→ yε0
s (ω) : [0, t] → U ∗ is continuous, there is a compact set K ⊂ U ∗ such that the

mage of [0, t] under the map s ↦→ yε0
s (ω) is contained in K .

Fix any ε ∈ (0, ε∗] and set Sε(ω) := inf{t ≥ 0 : yεt /∈ K } and Sε(ω, s) = Sε(ω) ∧ s for any
> 0. To simplify the notation, we drop the explicit dependence on ω and proceed as above

o find that for any s ≤ t ≤ t∗

sup
v≤Sε(s)

|yεv − yε0
v | ≤

∫ Sε(s)

0
|bε0 (yε0

v ) − bε0 (yεv )| dv +

∫ Sε(s)

0
|bε0 (yεv ) − bε(yεv )| dv

+ sup
v≤t

⏐⏐⏐⏐ σε0
√
ε0r (ε0)

Bvε0 −
σε

√
εr (ε)

Bvε

⏐⏐⏐⏐
≤ Cε,ε0 (K )t∗ + Cε0 (K )

∫ Sε(s)

0
sup

w≤Sε(v)
|yεw − yε0

w | dv

+ sup
⏐⏐⏐⏐ σε0
√ Bvε0 −

σε
√ Bvε

⏐⏐⏐⏐ ,

v≤t ε0r (ε0) εr (ε)
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where Cε,ε0 (K ), Cε0 (K ) are deterministic constants with Cε,ε0 (K ) → 0 as ε → ε0. Gronwall’s
nequality, t∗ ≤ 1, and the almost sure path continuity of Brownian motion then imply

sup
v≤Sε(t)

|yεv − yε0
v | ≤ C ′

ε,ε0
(K )eCε0 (K )t

or some C ′
ε,ε0

such that C ′
ε,ε0

→ 0 as ε → ε0. By continuity, and t < τt∗ (yε0
· (ω)) we obtain

or ε sufficiently close to ε0 that Sε(t) = t , and therefore

sup
v≤t

|yεv − yε0
v | ≤ Cε,ε0 (K )eCε0 (K )t .

or any ε sufficiently close to ε0. Passing ε → ε0 and using the definition of convergence in
x ([0, t∗]; U ∗), we obtain the desired result. □

. Application: Criteria for regular points on boundary of a bounded domain in Rd

Throughout this section, for simplicity we suppose U = U ∗
= Rd and V ⊂ Rd is a non-

mpty, open set. We moreover suppose that ∂V := V \V ⊂ Rd is non-empty, where V denotes
he closure of V in Rd .

For x ∈ ∂V , our goal is to use Theorem 2.6 to deduce criteria for the diffusion xt
olving (1.4) to be regular at x . Specifically, we say that x ∈ ∂V is regular for (xt , V ) if

Px {τV > 0} = 0,

here

τV = inf{t > 0 : xt /∈ V } . (7.1)

e call x irregular for (xt , V ) otherwise.

Remark 7.1. Note that x ∈ ∂V irregular for (xt , V ) means that xt spends, with positive
probability, a positive amount of time in V before exiting V . Because the event {τV > 0}

elongs to the germ σ -field
⋂

t>0 Ft , Blumenthal’s 0 − 1 law implies that this event either has
probability 0 or 1. Thus x ∈ ∂V is irregular for (xt , V ) if and only if Px {τV > 0} = 1.

In order to state the main result of this section we recall (cf. (2.9)) the deterministic system
ssociated to (2.1):{

ġt = b(gt ) + σ (gt ) ḟt ,

g0 = x .
(7.2)

n this section, we view (7.2) as a control problem, with controls f belonging to the class (cf.
(2.11))

C1 = { f ∈ C 0([0, 1]; Rk) :
1
2

∫ 1

0
| ḟs |

2
ds ≤ 1}. (7.3)

et L be a compact set containing a neighborhood of x ∈ ∂V and let t∗ > 0 be as in (2.15).
or any t ∈ [0, t∗] and any f ∈ C1, let St

x ( f ) ∈ L denote the solution of (7.2) at time t . For
∈ [0, t∗], let

A (x, t) = {y ∈ U : St
x ( f ) = y for some f ∈ C1} , (7.4)

here C1 is as in (7.3) and

A (x,≤ t∗) =

⋃
A (x, t). (7.5)
t∈[0,t∗]
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Consider the processes xt and yεt defined by (1.4) and (2.1), respectively, both having initial
ondition x ∈ ∂V .

efinition 7.1. We say that a point z ∈ V
c

is asymptotically invariant at x if there exists
> 0 such that the following statement holds almost surely: whenever yεt ∈ Bδ(z) (yε solves

(2.1)) for some t ∈ (0, t∗] and some ε ∈ (0, ε∗], then xεt ∈ V
c
.

Let Ix ⊂ V
c

be the set of asymptotically invariant points at x .

xample 7.1. Let x = 0 ∈ Rd and

V = {y ∈ Rd
: yd < 0}.

uppose that Φα : Rd
→ Rd , α > 0, is of the form

Φα(y) = (y1α
−1
1 , y2α

−1
2 , . . . , ydα

−1
d )

nd ψ : [0, ε∗] → [0,∞)d is an asymptotic index. If yεt := Φψ(ε)(xεt ), then any z ∈ V
c

is
symptotically invariant at x . Indeed, choose any δ > 0 such that Bδ(z) ⊂ V c and use that
d (ε) > 0.

We have the following result, which is a consequence of Theorem 2.6.

heorem 7.2. Suppose that Assumptions 1 and 2 are satisfied. Then, x ∈ ∂V is regular for
xt , V ) if

A (x,≤ t∗) ∩ Ix ̸= ∅. (7.6)

roof. Suppose z ∈ A (x,≤ t∗) ∩ Ix . Since z is asymptotically invariant, there exists δ > 0
uch that whenever yεt ∈ Bδ(z) we have xεt ∈ V

c
, almost surely. Since z ∈ A (x,≤ t∗), there

xist t ∈ (0, t∗] and an f ∈ C1 such that St
x ( f ) = z ∈ V

c
. Let g = S·

x ( f ) ∈ C 0([0, t∗]; Rd )
nd note that by definition, g ∈ Kx (t∗). If λ(g) = 1, then as in the proof of Theorem 2.6, we
an find g∗ with λ(g∗) < 1 and supt∈[0,t∗] |gt − g∗

t | < δ/2. If, on the other hand, λ(g) < 1 we
imply set g∗

= g. By Proposition 5.2, there exists a deterministic sequence εn > εn+1 > 0
with εn → 0 such that

P
{

dt∗ (yεn , g∗) <
δ

2
for infinitely many n

}
= 1,

and consequently

P
{
dt∗ (yεn , g) < δ for infinitely many n

}
= 1 .

Since gt = z, then

P
{
|yεn

t − z| < δ for infinitely many n
}

= 1.

Thus by the asymptotic invariance of z, xεn t ∈ V
c

for infinitely many n, almost surely. Hence,

Px {τV = 0} ≥ P{dt∗ (yεn , g) < δ for infinitely many n} = 1

nd the proof is finished. □

The next two results provide sufficient conditions on the noise that guarantee a given
oundary point is regular. Before proceeding, we let R(A) denote the range of the matrix

A, or equivalently the space spanned by the columns of A.
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Proposition 7.3. Let x ∈ ∂V and suppose that b̃ ∈ C∞(Rd
; Rd ) and σ̃ ∈ C∞(Rd

; Md×k).
ssume there exists v ∈ R(σ̃ (x)) satisfying the following two properties:

(qi) x + λv ∈ V
c

for all λ ∈ (0, 1].
(qii) For all λ ∈ (0, 1], there exists δλ > 0 such that if δε,λ =

√
ε log log ε−1δλ and

λε = λ
√
ε log log ε−1, then

Bδε,λ (x + λεv) ⊂ V
c

for all ε > 0 small enough.

Then, x is regular for (xt , V ).

Proof. For any multiindex α > 0, let Φ1
α,Φα : Rd

→ Rd be given by

Φ1
α(y) = (y1α

−1
1 , . . . , ydα

−1
d ) and Φα(y) = Φ1

α(y − x) + x .

By Example 2.1, {Φα}α>0 is a family of weak contractions centered at x ∈ ∂V ⊂ Rd . If we
define, for ε∗ > 0 small enough, ψ : [0, ε∗] → [0,∞)d as

ψ(ε) = (
√
ε log log ε−1, . . . ,

√
ε log log ε−1) ,

then by Example 2.2, ψ is an asymptotic index. For ε ∈ (0, ε∗], define

yεt = Φα(ε)(xεt ) . (7.7)

We thus see that for all t < τ1(x·)ε−1 (see (2.4) for the definition of τ1(x·)), yεt satisfies an
DE of the form (2.1) (c.f. (2.24)–(2.26)) and it is easy to check that

bε(y) → 0 and σε(y) → σ̃ (x) (7.8)

s ε → 0 for every y ∈ Rd with the convergence above uniform on compact subsets of Rd .
urthermore, bε, σε are locally Lipschitz on Rd for every ε ∈ (0, ε∗]. Thus Assumption 1 and,
y Lemma 2.9, Assumption 2 are both satisfied.

The associated deterministic system is{
ġt = σ̃ (x) ḟt ,

g0 = x ,
(7.9)

where f ∈ C1 = {h ∈ C 0([0, 1]; Rk) :
1
2

∫ 1
0 | ḟs |

2
ds ≤ 1}. Note that (7.9) has constant

oefficients as x ∈ ∂V is the initial condition, which is fixed. Let v ∈ R(σ̃ (x)) satisfy (qi)
nd (qii). In particular, v = σ̃ (x)w for some w ∈ Rk . Hence, for any small enough λ ∈ (0, 1],
ft := λtw ∈ C1 and then gt = x + λvt . Also, there is λ0 > 0 such that all points z ∈ Rd of
he form

z = x + λv λ ∈ (0, λ0]

elong to A (x,≤ 1). Since V
c

is open, there exists δλ0 > 0 such that Bδ
λ0 (x +λ0v) ⊂ V

c
, and

hen by property (qii), Bδ
ε,λ0 (x + λ0

εv) ⊂ V
c

for all ε > 0 small enough. But, almost surely,

yεt ∈ Bδ
λ0 (x + λ0v) if and only if xεt ∈ Bδ

ε,λ0 (x + λ0
εv) ⊂ V

c
. Hence,

x + λ0v ∈ A (x,≤ 1) ∩ Ix ̸= ∅

and the proof follows from Theorem 7.2. □
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Corollary 7.4. Let x ∈ ∂V and suppose that b̃ ∈ C∞(Rd
; Rd ) and σ̃ ∈ C∞(Rd

; Md×k).
ssume that there exist a unit vector n(x) and δ > 0 such that Bδ(x + δn(x)) is tangent to
V at x and is contained in V

c
(also known as the exterior sphere condition). If there is

∈ R(σ̃ (x)) with w · n(x) > 0, then x is regular for (xt , V ).

Proof. Without loss of generality, we can rotate and shift the set V so that x = 0 and n(0) = ed .
In what follows, we thus assume Bδ(δed ) ⊂ V

c
is tangent to ∂V at 0 and there exists a vector

∈ R(σ̃ (0)) such that w · n(0) = wd > 0. Since wd > 0, there exists λ0 > 0

λw ∈ Bδ(δed ) ⊂ V
c

for any λ ∈ (0, λ0].

ence, for the choice of v = λ0w, Proposition 7.3 part (qi) is satisfied because v ∈ R(σ̃ (0)).
ince Bδ(δed ) is open, there exists δ′ > 0 such that Bδ′ (v) ⊂ Bδ(δed ). By convexity, whenever
′

∈ Bδ′ (v) then λv′
∈ Bδ(δed ) for all λ ∈ (0, 1]. Since v′

∈ Bδ′ (v) if and only if
ε log log ε−1v′

∈ Bδε (vε) for any small ε > 0, property (qii) of Proposition 7.3 follows.
n application of Proposition 7.3 finishes the proof. □

Using a nearly identical proof, we can also obtain the following result which is the so-called
exterior cone condition.

Corollary 7.5. Let x ∈ ∂V and suppose that b̃ ∈ C∞(Rd
; Rd ) and σ̃ ∈ C∞(Rd

; Md×k).
Suppose that V satisfies the exterior cone condition at x; that is, there exists a basis
{x1, x2, . . . , xd} of Rd such that

Cone(x; x1, . . . , xd ) := {x + λ1x1 + · · · + λd xd : λi ∈ (0, 1)} ⊂ V
c
.

f the column space of σ̃ (x) contains a vector w such that x +w ∈ Cone(x; x1, . . . , xd ), then
x is regular for (xt , V ).

If R(σ̃ (x)) is not all of Rd , then identifying regular points for (xt , V ) on ∂V can be
complicated, because one has to know the almost sure dynamics near the boundary point.
Moreover, the method used in the proof of Proposition 7.3 is not sufficient to characterize all
points. However, as the next examples illustrate, the techniques developed here can be still
useful.

Example 7.2. As in Example 3.2, we consider the iterated Kolmogorov equation in dimension
d = 2 and assume V = Br (0) for a given r > 0. Corollary 7.4 implies that all points on
x0 = (x1(0), x2(0)) ∈ ∂V with x2(0) ̸= 0 have normal vector with non-zero second component,
and therefore are regular for (xt , V ). On the other hand, if x2(0) = 0, then n(x0) = (±1, 0) and
relations (3.10) and (3.11) with x2(0) = 0 imply that points (±r, 0) are also regular for (xt , V ).
Note that the same result holds if V = Br (0)c.

Example 7.3. Next, consider the same problem as in Examples 7.2 and 3.2 but with V ⊂ R2

assumed to be a general bounded open set with C∞ boundary ∂V . Then, by Corollary 7.4, all
points x0 ∈ ∂V , where the outward unit normal n(x0) = (n1(x0), n2(x0)) to ∂V has n2(x) ̸= 0

re regular. If, on the other hand, n(x0) = (±1, 0) for some x0 ∈ ∂V , then (3.10) and (3.11)

218



M. Carfagnini, J. Földes and D.P. Herzog Stochastic Processes and their Applications 149 (2022) 188–223

n

7

t
t
a
r
e

p

L

P

imply that x0 is regular if and only if x2(0) ≥ 0 and n(x0) = (+1, 0), or x2(0) ≤ 0 and
(x0) = (−1, 0).

.1. Modification of the boundary

If the domain V is not apriori specified, the idea of this section is to slightly modify V so
hat all points on the boundary are regular. We do this using polygonal approximations under
he assumption that there is noise in a uniform direction on the boundary and V is convex
nd bounded with non-flat C1 boundary ∂V ; that is, ∂V is C1 and for each x ∈ ∂V and any
> 0, the set ∂V ∩ B(x, r ) is not a subset of a hyperplane. The latter condition is satisfied, for

xample, if V is strictly convex, or if at each x ∈ ∂V there is at least one non-zero principal
curvature.

The construction of our polygonal approximations makes use of convex hulls of randomly
chosen points on the boundary. There are many different ways to do the selection of points, but
here we do it according to Hausdorff measure π on ∂V . That is, we will choose sufficiently
many vertices independently and according to law of π . Intuitively, for a large number of
vertices, the convex hull of these points should be close to V . The main result in Schütt and
Werner [35] makes this precise on a set of high probability. It turns out that such a resulting
polygon cannot have, almost surely, any face parallel to the uniform direction in which the
noise acts on the boundary. Thus, we can then apply Corollary 7.5.

Remark 7.6. Polygonal approximation of smooth domains is used, for example, in finite
element method (FEM) to numerically solve differential equations.

Theorem 7.7. Let d ≥ 2, v ∈ Rd be a unit vector, and suppose that V ⊂ Rd is convex,
bounded and non-flat C1 boundary ∂V . Consider a probability space (Ω̃ , F̃ ,Q) such that
ξ1, ξ2, ξ3 . . . are i.i.d. random variables defined on (Ω̃ , F̃ ,Q) with distribution π . Then, for
every ε > 0, there exist n(ε) > 0 and a set Sε with Q(Sε) > 1 − ε such that the following
roperties are satisfied:

(i) For every collection of d-points in {ξ1, ξ2, . . . , ξn(ε)} there exists a unique hyperplane H
that contains those d points. Furthermore, H is not parallel to v.

(ii) If [ξ1, ξ2, . . . , ξn(ε)] denotes the closed convex hull of ξ1, ξ2, . . . , ξn(ε), then

|V | − |[ξ1, ξ2, . . . , ξn(ε)]| < ε ,

where |A| denotes the Lebesgue measure of A in Rd .

In order to prove Theorem 7.7, we first establish the following auxiliary result.

emma 7.8. Suppose d ≥ 2 and that V ⊂ Rd is convex with C1 non-flat boundary ∂V . Then,
any hyperplane in Rd intersects ∂V only on a set of π -measure zero.

Remark 7.9. Note that in this result, we may drop the hypothesis that V is bounded.

roof of Lemma 7.8. Without loss of generality, assume that the hyperplane P has normal
vector e1 = (1, 0, . . . , 0) and P ∩ ∂V ̸= ∅. Define

ℓ+ = sup{α ∈ R : ∂V ∩ {x : x1 = α} ̸= ∅},
ℓ− = inf{α ∈ R : ∂V ∩ {x : x1 = α} ̸= ∅}.
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If the set {α ∈ R : ∂V ∩ {x : x1 = α}} is not bounded above (respectively below), we set
+ = ∞ (respectively ℓ− = −∞). Note that if ℓ+ ∈ R, ℓ+ corresponds to the first coordinate
f the rightmost point on ∂V . Similarly, if ℓ− ∈ R, ℓ− corresponds to the first coordinate of
he leftmost point. Observe that P ∩ ∂V ̸= ∅ implies P = {x : x1 = α} for some α with
∈ [ℓ−, ℓ+], |α| < ∞.
First assume α = ℓ+ < ∞. Without loss of generality, we may assume ℓ+ = 0 and

∈ P ∩ ∂V , otherwise we shift both sets. To every X ∈ P ∩ ∂V , we associate its position
ector x =

−→
0X . Let k be largest number of points {X1, X2, . . . , Xk} ⊂ P ∩ ∂V such that the

orresponding set of position vectors {x1, x2, . . . , xk} is linearly independent. If k < d −1, then
:= span {x1, . . . , xk} is k ≤ d−2 dimensional linear space, and therefore ∂V ∩P ⊂ L ∩P

s at most (d − 2)-dimensional. Thus, π (∂V ∩ P) = 0 as desired. If k = d − 1, then by the
onvexity of V and the fact that α = ℓ+, any convex combination of {x1, x2, . . . , xd−1} belongs
o ∂V ∩ P . However, this implies that ∂V is locally a hyperplane about some point on ∂V , a
ontradiction to the fact that ∂V is non-flat.

A similar argument can be applied in the case when α = ℓ− > −∞.
Finally, suppose α ∈ (ℓ−, ℓ+). Fix x ∈ ∂V ∩ P and note that the normal vector to ∂V at

x is not parallel to e1. Indeed, otherwise P is tangent to V and by convexity, V lies on one
ide of P , a contradiction to α ∈ (ℓ−, ℓ+).

As above, we can without loss of generality assume α = 0 and x = 0. We parametrize ∂V
s ∂V = {y ∈ Rd

: Φ(y) = 0} for some C1-function Φ : Rd
→ R with Φ(0) = 0 and, by the

laim, ∇Φ(0) ̸= λe1 for any λ ∈ R. Then,

∂V ∩ P ⊂ {y = (0, y2, . . . , yd ) : Φ(0, y2, . . . , yd ) = 0} . (7.10)

o solve Φ(0, y2, . . . , yd ) = 0 we note that Φ(0) = 0 and there exists j ≥ 2 such that
x jΦ(0) ̸= 0. By the implicit function theorem, y j = φ(y2, . . . , y j−1, y j+1, . . . , yd−1) locally
or some C1 function φ, and therefore ∂V ∩ P is locally a (d − 2)-dimensional manifold. In
articular π (∂V ∩ P ∩ Bρ) = 0 for some ρ > 0.

Since the countable union of set of zero measure is also set of zero measure, the result
ollows. □

We are now ready to prove Theorem 7.7.

roof of Theorem 7.7. For any measurable Ai ⊂ ∂V and any n, we have

Q{ξ1 ∈ A1, . . . , ξn ∈ An} = π (A1)π (A2) . . . π(An).

or any collection of points y1, . . . , yk denote the set of vectors {
−−→y1 y j , j > 1} by ⟨y1, . . . , yk⟩.

bserve that ⟨y1, . . . , yk⟩ depends on the arrangement of points, but the span of the vectors
y1, . . . , yk⟩ does not. Note that z belongs to the affine space defined by y1, . . . , yk if an only if

z ∈ y1 + span{⟨y1, . . . , yk⟩} =: A (y1, . . . , yk). Also, we denote y1, . . . ŷ j , . . . , yk the sequence
f points (or similarly vectors), where the point y j is omitted from the list. For i1, i2, . . . , iℓ ∈ N
ll distinct with ℓ ≤ d + 1, let

D = {ω ∈ Ω̃ : ⟨ξ (ω), ξ (ω), . . . , ξ (ω)⟩ are linearly independent}. (7.11)
i1i2...iℓ i1 i2 iℓ
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We claim that Q(Di1i2...iℓ ) = 1. Indeed, since i1, i2, . . . , iℓ ∈ N are all distinct with ℓ ≤ d + 1,
then by Lemma 7.8

Q(Dc
i1i2...iℓ

) ≤

ℓ∑
j=2

Q{
−→
ξi1ξ i j ∈ span{⟨ξi1 , . . . , ξ̂i j , . . . , ξiℓ⟩}}

=

ℓ∑
j=2

∫
xi j ∈A (xi1 ,...,x̂i j ,...,xiℓ )∩∂V

π (dxi j )π
ℓ−1(dxi1 . . . dx̂i j . . . dxiℓ ) = 0 ,

since A (xi1 , . . . , x̂i j , . . . , xiℓ ) is at most (ℓ− 1)-dimensional affine space which intersects ∂V
on a set of π -measure 0 (see Lemma 7.8).

Fix a vector v ∈ Rd . If ⟨x1, x2, . . . , xd−1⟩ are independent vectors, define

Av(x1, x2, . . . , xd−1) = {xd ∈ ∂V : v ∈ span⟨x1, . . . , xd⟩}

and if ⟨x1, . . . , xd−1⟩ are dependent define Av(x1, x2, . . . , xd−1) = ∅. Note that if v ̸∈

⟨x1, x2, . . . , xd⟩ and ⟨x1, x2, . . . , xd⟩ are independent vectors, then Av(x1, x2, . . . , xd ) is the
intersection of ∂V and the affine (d − 1)-dimensional space that contains points x1, x2, . . . , xd
nd is parallel to v. For any distinct collection i1, i2, . . . , id ∈ N, Di1i2...id is a set of full
easure, and therefore

Q(Fi1i2...id ) := Q({ω ∈ Ω̃ : A (ξi1 (ω), ξi2 (ω), . . . , ξid (ω)) is parallel to v})
= Q({ω ∈ Di1i2...id : A (ξi1 (ω), ξi2 (ω), . . . , ξid (ω)) is parallel to v}) .

ence, by the Fubini–Tonelli theorem

Q(Fi1i2...id ) = Q({ω ∈ Di1i2...id : ξi j (ω) ∈ Av(ξi1 (ω), . . . , ξ̂i j (ω), . . . , ξid (ω))})

=

∫
{x j ∈Av (x1,...,x̂ j ,...,xd )}

π (dx j )πd−1(dx1 . . . x̂ j . . . dxd ) = 0 ,

here in the last equality we used Lemma 7.8 and the fact that Av(x1, . . . , x̂ j , . . . , xd ) is at
ost (d − 1)-dimensional affine space, and has π -measure zero when intersected with ∂V .
By taking finite unions,

F :=

⋃
i1,i2,...,id ∈{1,...,N }

all distinct

Fi1i2...id , (7.12)

e have Q(F) = 0. Thus for any N ≥ d and any ω ∈ Fc, with Q(Fc) = 1 the realization

ξ1(ω), ξ2(ω), . . . , ξN (ω)

atisfies (i).
To obtain (ii), fix ε > 0 and by [35, Theorem 1.1] there is a sufficiently large N ≥ d + 1

uch that

|V | − EQ|[ξ1, ξ2, . . . , ξN ]| = |V | − EQ1Fc |[ξ1, ξ2, . . . , ξN ]| < ε2.

ince convexity of V implies|[ξ1, ξ2, . . . , ξN ]| ≤ |V |, then by Chebyshev’s inequality

Q{|V | − |[ξ1, ξ2, . . . , ξN ]| > ε} ≤
|V | − EQ1Fc |[ξ1, ξ2, . . . , ξN ]|

ε
< ε , (7.13)

hich concludes the proof. □

An almost immediate consequence of the previous result is the following corollary.
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Corollary 7.10. Suppose that V ⊂ Rd , d ≥ 2 is a non-empty, bounded, convex, non-flat
omain with C1 boundary ∂V . Assume b̃ ∈ C∞(Rd

; Rd ) and σ̃ ∈ C∞(Rd
; Md×k) and there

exists a unit vector v ∈ Rd such that v ∈ R(σ (x)) for every x ∈ ∂V . Then, for every ε > 0,
there exists a non-empty, open convex domain Dε ⊂ V with piecewise smooth boundary ∂Dε

such that every y ∈ ∂Dε is regular for (xt , Dε) and |V | − |Dε| < ε.

roof. Fix ε > 0 and select points x1, x2, . . . , xn(ε) ∈ ∂V satisfying both (i) and (ii) of
Theorem 7.7. Define

Dε = interior([x1, x2, . . . , xn(ε)]).

and note that |V | − |Dε| < ε and ∂Dε is piecewise C2. Since no face on the boundary ∂Dε is
parallel to v, Corollary 7.5 implies the assertion. □
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