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Abstract

We consider an iterated Kolmogorov diffusion Xt of step n. The small ball problem for
Xt is solved by means of the Gaussian correlation inequality. We also prove Chung’s
laws of iterated logarithm for Xt both at time zero and infinity.
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1 Introduction

Let {Xt}06t6T be an Rn-valued stochastic process with continuous paths such that
X0 = 0 a.s. where T > 0 is fixed. Denote by W0(Rn) the space of Rn-valued continuous
functions on [0, T ] starting at zero. Given a norm ‖ · ‖ on W0(Rn), the small ball problem
for Xt consists in finding the rate of explosion of

− logP (‖X‖ < ε)

as ε→ 0. More precisely, a process Xt is said to satisfy a small deviation principle with
rates α and β if there exist a constant c > 0 such that

lim
ε→0
−εα| log ε|β logP (‖X‖ < ε) = c. (1.1)

The values of α, β and c depend on the process Xt and on the chosen norm on W0 (Rn).
Small deviation principles have many applications including metric entropy estimates
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Small deviations, Chung’s LIL Kolmogorov

and Chung’s law of the iterated logarithm. We refer to the survey paper [13] for more
details.

We say that a process Xt satisfies Chung’s law of the iterated logarithm (LIL) as
t→∞ (resp. as t→ 0) with rate a ∈ R+ if there exists a constant C such that

lim inf
t→∞

(
log log t

t

)a
max
06s6t

|Xs| = C, a.s. (1.2)

(resp. lim inft→0

(
log | log t|

t

)a
max06s6t |Xs| = C a.s.). When Xt is a Brownian motion, it

was proven in a famous paper by K.-L. Chung in 1948 that (1.2) holds with a = 1
2 and

C = π√
8
. To find the rates α and β such that the limit in (1.1) exists, and then findind the

constant c is an extremely hard problem in general. Even the estimation of the rate of
explosion of (1.1) is usually a difficult problem. Indeed, as can be surmised in [10, 15],
the small ball problem for Gaussian processes is equivalent to metric entropy problems
in functional analysis. In [11] and [20] a Brownian sheet in Hölder and uniform norm
is considered, and the integrated Brownian motion in the uniform norm is the content
of [8], and the m-fold integrated Brownian motion in both the uniform and L2-norm
is considered in [4]. In [17] and [3] a small deviation principle and Chung’s LIL are
proved for a class of stochastic integrals and for a hypoelliptic Brownian motion on the
Heisenberg group. When Xt is a Gaussian process with stationary increments, upper
and lower bounds on (1.1) can be found in [19, 16].

In this paper we consider the Kolmogorov diffusion of step n.

Definition 1.1. Let T > 0 and bt be a one-dimensional standard Brownian motion. The
stochastic process {Xt}06t6T on Rn defined by

Xt :=

(
bt,

∫ t

0

bt2dt2,

∫ t

0

∫ t2

0

bt3dt3dt2, . . . ,

∫ t

0

∫ t2

0

. . .

∫ tn−1

0

btndtn . . . dt2

)
is the Kolmogorov diffusion of step n.

{Xt}06t6T is a Markov process with generator given by L = 1
2
∂2

∂x2
1

+
∑n
d=2 xd−1

∂
∂xd

. In

particular, when n = 2 Xt is the Markov process associated to the differential operator
L = 1

2
∂2

∂x2 +x ∂
∂y and it was first introduced by A. N. Kolmogorov in [9], where he obtained

an explicit expression for its transition density. Later, L. Hörmander in [6] used L as the
simplest example of a hypoelliptic second order differential operator. More precisely, the
operator L satisfies the weak Hörmander condition. {Xt}06t6T is a Gaussian process
and its law µ is a Gaussian measure on the Banach space (W0(Rn), ‖ · ‖), where

‖f‖ := max
06t6T

|f(t)|, ∀f ∈W0(Rn).

The main result of this paper is Theorem 2.6, where we prove the small deviation principle
(1.1) forXt with rates α = 2, β = 0, and constant c = π√

8
. Our proof relies on the Gaussian

correlation inequality (GCI), see e.g. [18, 12], applied to the Gaussian measure µ on
W0(Rn). A different application of the GCI to estimate small balls probabilities is given
in [14]. In Theorem 2.6 we also state Chung’s LIL at time zero and infinity for Xt with
rates given by a = 1

2 and a = 2n−1
2 respectively.

The stochastic processes considered in [8, 17, 3] all satisfy a scaling property, that is,

there exists a scaling constant δ ∈ (0,∞) such that Xεt
(d)
= εδXt. Properties of Gaussian

measures on Banach spaces and scaling properties have been used to show the existence
of a small deviation principle for some processes such as a Brownian motion with values
in a finite dimensional Banach space in [5] and an integrated Brownian motion in [8].
Moreover, in [8, 17, 3] the scaling rate δ coincides with the rate of Chung’s LIL at infinity,

ECP 27 (2022), paper 20.
Page 2/7

https://www.imstat.org/ecp

https://doi.org/10.1214/22-ECP459
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Small deviations, Chung’s LIL Kolmogorov

and the small deviations’ rates are given by β = 0, α = 1
δ . The Kolmogorov diffusion

does not satisfy a scaling property with respect to the standard Euclidean norm, and the
small deviations rate α is not related to the Chung’s LIL rate.

Lastly, large deviations and Chung’s LIL at time zero for the limsup of the Kolmogorov
diffusion are discussed in Section [1, Section 4.2] and [2, Example 3.5] respectively.

The paper is organized as follows. In Section 2 we collect some examples and state
the main result of this paper, namely, small deviation principle and Chung’s LIL at time
zero and infinity for a step n Kolmogorov diffusion. Section 3 contains the proof of the
main result.

2 The setting and main results

Notation 2.1. 4 Let Xt be an Rn-valued stochastic process with X0 = 0 a.s. Then X∗t
denotes the process defined by

X∗t := max
06s6t

|Xs|,

where | · | denotes the Euclidean norm.

Notation 2.2. [Dirichlet eigenvalues in Rn] We denote by λ
(n)
1 the lowest Dirichlet

eigenvalue of − 1
2∆Rn on the unit ball in Rn.

Let us collect some examples of Chung’s LIL and small deviation principle.

Example 2.3. [Brownian motion] Let Xt be a standard Brownian motion. Then Xεt
(d)
=

ε
1
2Xt, and it satisfies the small deviation principle

lim
ε→0
−ε2 logP (X∗T < ε) = λ

(1)
1 T, (2.1)

where λ(1)1 is defined in Notation 2.2, see e.g. [7, Lemma 8.1]. Moreover, in a famous
paper by K.-L. Chung in 1948 it was proven that

lim inf
t→∞

(
log log t

t

) 1
2

max
06s6t

|Xt| =
√
λ
(1)
1 a.s. (2.2)

Example 2.4. [Integrated Brownian motion]. Let Xt :=
∫ t
0
bsds, where bs is a one-

dimensional standard Brownian motion. It is easy to see that Xεt
(d)
= ε

3
2Xt. In [8] it is

shown that there exists a finite constant c0 > 0 such that

lim inf
t→∞

(
log log t

t

) 3
2

max
06s6t

|Xt| = c0 a.s. (2.3)

and (2.3) was used to prove that

lim
ε→0
−ε 2

3 logP (X∗1 < ε) = c
2
3
0 .

Example 2.5. [Iterated integrated Brownian motion] Let bt be a one-dimensional Brow-
nian motion starting at zero. Denote by X1(t) := bt and

Xd(t) :=

∫ t

0

Xd−1(s)ds, t > 0, d > 2,

the d-fold integrated Brownian motion for a positive integer d. Note that Xd(εt)
(d)
=

ε
2d−1

2 Xd(t). In [4] it was shown that for any integer d there exists a constant γd > 0 such
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that

lim
ε→0
−ε

2
2d−1 logP

(
max
06t61

|Xd(t)| < ε

)
= γ

2
2d−1

d ,

lim inf
t→∞

(
log log t

t

) 2d−1
2

max
06s6t

|Xd(s)| = γd a.s. (2.4)

Our main object is the Kolmogorov diffusion on Rn defined by

Xt := (X1(t), . . . , Xn(t)) ,

where

Xd(t) :=

∫ t

0

∫ t2

0

· · ·
∫ td−1

0

btddtd · · · dt2, for d = 3, . . . , n,

and X2(t) :=
∫ t
0
bsds, X1(t) := bt, where bt is a one-dimensional standard Brownian

motion. Note that Xd(εt)
(d)
= ε

2d−1
2 Xd(t) for all d = 1, . . . , n, and hence the process Xt

does not have a scaling property with respect to the Euclidean norm | · | in Rn.

Theorem 2.6. Let T > 0 and Xt be the Kolmogorov diffusion on Rn. Then

lim
ε→0
−ε2 logP (X∗T < ε) = λ

(1)
1 T, (2.5)

lim inf
t→0

√
log | log t|

t
max
06s6t

|Xs| =
√
λ
(1)
1 a.s. (2.6)

lim inf
t→∞

(
log log t

t

) 2n−1
2

max
06s6t

|Xs| = γn a.s. (2.7)

where λ(1)1 is defined in Notation 2.2, and γn is given by (2.4)

Remark 2.7. By (2.2) and Brownian inversion, it follows that a standard Brownian
motion satisfies Chung’s LIL at time zero and infinity with rate a = 1

2 , and it satisfies
a small deviation principle with rate α = 2. By (2.5), the n-step Kolmogorov diffusion
Xt satisfies the same small deviation principle as a one-dimensional standard Brownian
motion. As far as Chung’s LIL for Xt is concerned, the first component dominates when
t→ 0 with rate a = 1

2 , and the n-th component dominates as t→∞ with rate a = 2n−1
2 .

3 Proofs

Proof of Theorem 2.6. Let us first prove the small deviation principle (2.5). One has that
P (X∗T < ε) 6 P (b∗T < ε), and hence by (2.1) it follows that

λ
(1)
1 T 6 lim inf

ε→0
−ε2P (X∗T < ε) .

Let us now show that

lim sup
ε→0

−ε2P (X∗T < ε) 6 λ
(1)
1 T.

For any x1, . . . , xn ∈ (0, 1) such that x1 + · · ·+ xn = 1 we have that

P (X∗T < ε) > P

(
max
06t6T

|X1(t)| < x1ε, . . . , max
06t6T

|Xn(t)| < xnε,

)
> P

(
max
06t6T

|X1(t)| < x1ε

)
· · ·P

(
max
06t6T

|Xn(t)| < xnε

)
,
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where in the second line we used the Gaussian correlation inequality for the law of the
process {Xt}06t6T which is a Gaussian measure on W0(Rn). Thus,

−ε2 logP (X∗T < ε) 6 −
n∑
d=1

ε2 logP

(
max
06t6T

|Xd(t)| < xdε

)
. (3.1)

Note that, for any d = 2, . . . , n

max
06t6T

|Xd(t)| 6
∫ T

0

∫ t2

0

· · ·
∫ td−2

0

max
06t6T

|X2(t)|dtd−1 · · · dt2 =
T d−2

(d− 2)!
max
06t6T

|X2(t)|,

and hence

P

(
max
06t6T

|X2(s)| < (d− 2)!

T d−2
xdε

)
6 P

(
max
06t6T

|Xd(s)| < xdε

)
, (3.2)

and by [8, Theorem 1.1] we have that, for any d = 2, . . . , n

0 6 lim sup
ε→0

−ε2 logP

(
max
06t6T

|Xd(t)| < xdε

)
6 lim
ε→0
−ε2 logP

(
max
06t6T

|X2(t)| < (d− 2)!

T d−2
xdε

)
= lim
ε→0
−ε2 logP

(
max
06t6T

∣∣∣∣∫ t

0

bsds

∣∣∣∣ < (d− 2)!

T d−2
xdε

)
= 0. (3.3)

Thus, by (3.1) and (3.2)

−ε2 logP (X∗T < ε) 6 −ε2 logP (b∗T < x1ε)−
n∑
d=2

ε2 logP

(
max
06t6T

|X2(t)| < (d− 2)!

T d−2
xdε

)
,

and by (3.3) and (2.1) it follows that

lim sup
ε→0

−ε2 logP (X∗T < ε) 6
λ
(1)
1

x21
T.

The result follows by letting x1 go to one.
Let us now prove (2.6). By (2.2) and Brownian time inversion one has that

lim inf
t→0

√
log | log t|

t
max
06s6t

|bs| =
√
λ1 a.s. (3.4)

Note that

|bs|2 6 |Xs|2 = |bs|2 +
n∑
d=2

|Xd(s)|2

6 |bs|2 + max
06u6s

|bu|2
n∑
d=2

s2d−2

(d− 1)!2
,

and hence

log | log t|
t

max
06s6t

|bs|2 6
log | log t|

t
max
06s6t

|Xs|2

6
log | log t|

t
max
06s6t

|bs|2
(

1 +
n∑
d=2

t2d−2

(d− 1)!2
,

)
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By (3.4) it follows that, for any d = 2, . . . , n

lim
t→0

t2d−2
log | log t|

t
max
06s6t

|bs|2 = 0 a.s.

and thus

lim inf
t→0

log | log t|
t

max
06s6t

|Xs|2 = lim inf
t→0

log | log t|
t

max
06s6t

|bs|2 = λ1 a.s.

which completes the proof of (2.6). Let us now prove (2.7). Set

φ(t) :=
log log t

t
.

By (2.4) we have that, for any d = 1, . . . , n− 1

lim inf
t→∞

φ(t)
2n−1

2 max
06s6t

|Xd(s)| = lim inf
t→∞

φ(t)n−dφ(t)
2d−1

2 max
06s6t

|Xd(s)| = 0 a.s. (3.5)

since φ(t)→ 0 as t→∞. Note that

|Xn(s)|2 6 |Xs|2 =
n−1∑
d=1

|Xd(s)|2 + |Xn(s)|2,

and hence

φ(t)2n−1 max
06s6t

|Xn(s)|2 6 φ(t)2n−1 max
06s6t

|Xs|2

6
n−1∑
d=1

φ(t)2n−1 max
06s6t

|Xd(s)|2 + φ(t)2n−1 max
06s6t

|Xn(s)|2.

Thus, by (2.4) and (3.5) it follows that

lim inf
t→∞

φ(t)2n−1 max
06s6t

|Xs|2 = lim inf
t→∞

φ(t)2n−1 max
06s6t

|Xn(s)|2 = γ2n a.s.

and (2.7) is proven.
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