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Abstract—A method is presented to analyze the stability of
feedback systems with neural network controllers. Two stability
theorems are given to prove asymptotic stability and to compute
an ellipsoidal inner-approximation to the region of attraction
(ROA). The first theorem addresses linear time-invariant sys-
tems, and merges Lyapunov theory with local (sector) quadratic
constraints to bound the nonlinear activation functions in the
neural network. The second theorem allows the system to include
perturbations such as unmodeled dynamics, slope-restricted non-
linearities, and time delay, using integral quadratic constraint
(IQCs) to capture their input/output behavior. This in turn
allows for off-by-one IQCs to refine the description of activation
functions by capturing their slope restrictions. Both results rely
on semidefinite programming to approximate the ROA. The
method is illustrated on systems with neural networks trained to
stabilize a nonlinear inverted pendulum as well as vehicle lateral
dynamics with actuator uncertainty.

I. INTRODUCTION

The paradigm of stabilizing dynamical systems with Neural
Network (NN) controllers [1] has been revived following re-
cent development in deep NN, e.g. policy gradient [2]-[5] and
behavioral cloning [6]. However, feedback systems with NN
controllers suffer from lack of stability and safety certificates
due to the complexity of the NN structure. Specifically, NNs
have various types of nonlinear activation functions, poten-
tially numerous layers, and a large number of hidden neurons,
making it difficult to apply classical analysis methods, e.g.
Lyapunov theory [7]. Monte-Carlo simulations can be used
to investigate stability but lack formal guarantees, which are
important in safety-critical applications.

Several works propose using quadratic constraints (QCs)
to bound the nonlinear activation functions. This approach
is used to outer-bound the outputs of a (static) NN given a
set of inputs in [8] and upper-bound the Lipschitz constant
of NNs in [9], [10]. The work [11] uses this idea for finite-
time reachability analysis of a system with a NN controller.
The work [12] performs stability analysis by constructing
QCs from the bounds of partial gradients of NN controllers.
Reference [13] assesses global asymptotic stability of dynamic
neural network models using QCs and Lyapunov theory.

This paper presents two main stability results for a feedback
system with a NN controller. Theorem 1 provides a condition
to prove stability and to inner-approximate the region of
attraction (ROA) for a linear time-invariant (LTI) plant. It
uses Lyapunov theory, and local (sector) QCs to bound the
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nonlinear activation functions in the NN. Theorem 2 allows the
plant to include perturbations such as unmodeled dynamics,
slope-restricted nonlinearities, and time delay, characterizing
them with integral quadratic constraints (IQCs) [14], [15]. This
in turn allows for the use of off-by-one IQCs [16] to capture
the slope restrictions of activation functions. Both results rely
on semidefinite programming to approximate the ROA.

The specific contributions of this paper are three-fold. First,
our nominal analysis with LTI plants and NN controllers uses
offset local sector QCs that are centered around the equilibrium
inputs to the NN activation functions and allow for analyzing
stability around a non-zero equilibrium point. Second, our
analysis of uncertain plants and NN controllers provides
robustness guarantees for the feedback system. The uncertain
plant is modeled as an interconnection of the nominal plant
and perturbations that are described by IQCs. The use of IQCs
also allows for plants that are not necessarily LTI. Third, the
proposed framework allows for local (dynamic) off-by-one
IQC:s to further sharpen the description of activation functions
by capturing their slope restrictions. This differs from [8]-[12],
which derive only static QCs for activation functions.

Local (static) sector IQCs have been used in the stability
analysis of linear systems with actuator saturation [17], [18],
and unbounded nonlinearities [19]. The description of these
nonlinearties are refined by incorporating soft (dynamic) IQCs
in the stability analysis framework for linear systems [20],
and polynomial systems [21]. Compared with these works,
this work is specialized to NN-controlled systems: it exploits
the specific properties of NNs and uses the Interval Bound
Propagation method [22] to derive non-conservative static and
dynamic local IQCs to describe NN controllers; and it also
allows for the analysis of NN-controlled nonlinear systems by
accommodating perturbations.

The paper is organized as follows. Section II presents the
problem formulation and the nominal stability analysis when
the plant is LTI. Section III addresses uncertain systems using
IQCs. Section IV provides numerical examples, including a
nonlinear inverted pendulum and an uncertain vehicle model.

Notation: S™ denotes the set of n-by-n symmetric matrices.
S% and S, denote the sets of n-by-n symmetric, positive
semidefinite and positive definite matrices, respectively. RL,
is the set of rational functions with real coefficients and no
poles on the unit circle. RH,, C R, contains functions
that are analytic in the closed exterior of the unit disk in the
complex plane. 5 is the set of sequences = : N — R"= with
[lly == /> peo x(k) T2 (k) < co. When applied to vectors,
the orders >, < are applied elementwise. For P € S} |, z, €
R™, define the ellipsoid

E(Pz,) ={z eR": (x—x,) Plx —z.) <1}. (1)



II. NOMINAL STABILITY ANALYSIS
A. Problem Formulation

Consider the feedback system consisting of a plant G and
state-feedback controller 7w as shown in Figure 1. As a first
step, we assume the plant G is a linear, time-invariant (LTI)
system defined by the following discrete-time model:

z(k+1) = Ag x(k) + Bg u(k), 2)

where x(k) € R™C is the state, u(k) € R™ is the input, Ag €
R"¢*n¢ and Bg € R"¢*™u  The controller 7 : R"¢ — R"u
is an {-layer, feed-forward neural network (NN) defined as:

w’(k) = 2(k), (3a)
w'(k)=¢" (W' '(k)+b" ), i=1,....¢, (3b)
u(k) = W twt (k) + b1, (3¢)

where w' € R™ are the outputs (activations) from the ‘"

layer and ng = ng. The operations for each layer are defined
by a weight matrix W* € R™ X"i-1_ bias vector b* € R™, and
activation function ¢¢ : R — R™. The activation function
¢° is applied element-wise, i.e.

$'(v) == [p(v1), -, o(vn)] |, @)

where ¢ : R — R is the (scalar) activation function selected
for the NN. Common choices for the scalar activation function
include ¢(v) := tanh(v), sigmoid ¢(v) := {7i=, ReLU
o(v) = max(0,v), and leaky ReLU ¢(v) := max(av,v)
with a € (0,1). We assume the activation ¢ is identical in all
layers; this can be relaxed with minor changes to the notation.

Fig. 1: Feedback system with plant G and NN =«

The state vector x, is an equilibrium point of the feedback
system with input wu, if the following conditions hold:

(5a)
(5b)

Ty = AG T x +BG U,
Uy = T(Ty).
Let x(k;xo) denote the solution to the feedback system at
time & from initial condition z(0) = z(. Our goal is to
analyze asymptotic stability of the equilibrium point and to

find the largest estimate of the region of attraction, defined
below, using an ellipsoidal inner approximation.

Definition 1. The region of attraction (ROA) of the feedback
system with plant G and NN 7 is defined as

R :={zo € R"¢ : lim x(k;z0) = 74} ©)
k—o0

B. NN Representation: Isolation of Nonlinearities

It is useful to isolate the nonlinear activation functions from
the linear operations of the NN as done in [8], [13]. Define v*
as the input to the activation function ¢*:

vi(k) = Wi (k) + b, i =1,... L (7

The nonlinear operation of the i*" layer (3b) is thus expressed
as w'(k) = ¢'(v'(k)). Gather the inputs and outputs of all
activation functions:

vt wl

€ R" and wy =

vt w’

Vg = e R", (8)

where ng :=nq 4 --- 4+ ny, and define the combined nonlin-
earity ¢ : R™ — R"¢ by stacking the activation functions:

¢! (vh)
P(vg) = : : ©))
¢'(v")
Thus wg (k) = ¢(ve(k)), where the scalar activation function

 is applied element-wise to each entry of vy. Finally, the NN
control policy 7 defined in (3) can be rewritten as:

z(k)
U(k) = w., a
[%(RJ =N ¢1(k) (100
wy (k) = ¢p(ve(k)). (10b)

The matrix N depends on the weights and biases as follows,
where the vertical and horizontal bars partition N compatibly
with the inputs (z,wg, 1) and outputs (u,vg):

r 0 ‘ 0 0 W£+1 ‘ b[—i—l
wirl o - 0 0 b
Ne=| O [P -0 0 | (11a)
. 0 | 0 wt o0 bt
-Nqu‘ N’LLU) NLL
=1 N N: . (11b)
L VT rw v

This decomposition of the NN, depicted in Figure 2, isolates
the activation functions in preparation for the stability analysis.

x(k) ——) — u(k)

N

11—

we (k) vg (k)

¢

Fig. 2: NN representation to isolate the nonlinearities ¢.

Suppose (., u.) satisfies (5). Then x, can be propagated

through the NN to obtain equilibrium values v%, w? for the
inputs/outputs of each activation function (i = 1,...,0),
yielding (vg,wg) = (vi,ws). Thus (2., Uy, vy, w,) is an
equilibrium point of (2) and (3) if:
Ty = AG Ts + Ba Ux, (12a)
Ty
{“] =N |w. |, (12b)
Vs
1
wy = d(Vs). (12¢)



C. Quadratic Constraints: Scalar Activation Functions

The stability analysis relies on quadratic constraints (QCs)
to bound the activation function. A typical constraint is the
sector bound as defined next.

Definition 2. Let o < 8 be given. The function ¢ : R — R
lies in the (global) sector o, 3] if:

(p(v) —av) - (Br—p(v)) 20 Vv €R. (13)

The interpretation of the sector [«, 8] is that ¢ lies between
lines passing through the origin with slope « and 8. Many
activation functions are bounded in the sector [0, 1], e.g. tanh
and ReLU. Figure 3 illustrates ¢(v) = tanh(v) (blue solid)
and the global sector defined by [0, 1] (red solid lines).

tanh(v)
A

(7, tanh(v))

— Global Sector
----- Local Sector

Fig. 3: Sector constraints on tanh

The global sector constraint is often too coarse for stability
analysis, and a local sector constraint provides tighter bounds.

Definition 3. Let o, 5, v, v E Rwitha < S and v <0 < 1.
The function ¢ : R — R satisfies the local sector |a, (] if

(p(v) —av)-(Brv—p@) 20 Wwe . (14

As an example, ¢(v) := tanh(v) restricted to the interval
[-7, 7] satisfies the local sector bound [o, 5] with o =
tanh(7)/7 > 0 and S := 1. As shown in Figure 3 (green
dashed lines), the local sector provides a tighter bound than the
global sector. These bounds are valid for a symmetric interval
around the origin with ¥ = —»; non-symmetric intervals
(v # —v) can be handled similarly.

The local and global sector constraints above were de-
fined to be centered at the point (v,¢(v)) = (0,0). The
stability analysis will require offset sectors centered around
an arbitrary point (v, ¢(v,)) on the function. For example,
©(v) = tanh(v) satisfies the global sector bound (red solid)
around the point (v, tanh(v,)) with [«, 8] = [0, 1], as shown
in Figure 4. It satisfies a tighter local sector bound (green
dashed) when the input is restricted to v € [v, 7]. An explicit
expression for this local sector is 5 = 1 and

o = min (tanh(u) —tanh(v,) tanh(v,) — tanh(u)) .

— ’
V — Vx Ve — UV

The local sector upper bound S can be tightened further. This
leads to the following definition of an offset local sector.

Definition 4. Let o, 5, v, U, v € R be given with o < 8 and
v < v, < v. The function ¢ : R — R satisfies the offset local

sector [, 8] around the point (v, p(vy)) if:
(Ap(v) —alAv) - (BAv — Ap(v)) >0 Yv € [v, 7] (15)

where Ap(v) == p(v) — p(vs) and Av := v — v,.

— Global Sector
----- Local Sector

Fig. 4: Offset local sector constraint on tanh

D. Quadratic Constraints: Combined Activation Functions

Offset local sector constraints can also be defined for the
combined nonlinearity ¢, given by (9). Let v,v,v, € R"¢
be given with v < v, < v. Assume that the activation input
vy € R™ lies, element-wise, in the interval [v, v] and the i*"
input/output pair is wg ; = ¢(vg,;). Further assume the scalar
activation function satisfies the local sector [c;, ;] around the
point v, ; with the input restricted to vy ; € [v;, ;] for i =
1,...,n4. The local sector bounds can be computed for ¢ on
the given interval either analytically (as above for tanh) or
numerically. These local sectors can be stacked into vectors
ag, By € R that provide QCs satisfied by the combined
nonlinearity ¢.

Lemma 1. Let oy, B¢, v, U, v5 € R™ be given with ag < By,
v < v, <7, and w, = ¢(v,). Assume ¢ satisfies the offset
local sector [ay, By] around the point (v.,w.) element-wise
for all vy € [v,0]. If A € R™ with X\ > 0 then:

.
Vg — VUx Vg — Uy
{ ¢ } m;M¢(A)qf¢{ ¢ }>0

Wy — W Wy — Wx | —

Vg € [v,7], wy = ¢(vg),

_ | diag(By) —In
where WU, = {diag(aqb) In: (16)
v | 0, diag(\)
o(A) = {diag((b)\) Ony } ’ an

Proof. For any vy € R™ and wy = ¢(vy):

[% ~ s } M, [% o ]

w¢, — Wk w¢ — Wk
¢

i=1

where Aw; 1= ¢(vg,:) — (V) and Av; 1= vy — vy, If
vy € [v, 7] then each term in the sum is non-negative by the
offset local sector constraints and A > 0. O

In order to apply the local sector and slope bounds in
the stability analysis, we must first compute the bounds
v,7 € R™ on the activation input vg. The process to compute
the bounds is briefly discussed here with more details provided
in [22]. Let v! be the equilibrium value at the first NN layer.
Select v!, o' € R™ with v! < v! < ', The assumed bounds

on v! can be used to compute an interval [w!,w!] for the



output w! = ¢'(v!)" which can then be used to compute
bounds [v2, 52] on the input v? to the next activation function.
The intervals computed for w! and v? will contain their
equilibrium value w! and v2. This process can be propagated
through all layers of the NN to obtain the bounds v,v € R™¢
for the activation function input vg. The remainder of the paper
will assume the local sector bounds have been computed as
briefly summarized in the following property.

Property 1. Let v, € R™® be an equilibrium value of the
activation input and v: € R™ be the corresponding value at
the first layer. Let v', o' € R™ with v} € [v!, '] and their
corresponding activation input bounds v,v be given. There
exist oy, By € R™ such that ¢ satisfies the offset local sector
around the point (v,, $(vy)) for all vy € [v, V).

E. Lyapunov Condition

This section uses a Lyapunov function and the offset local
sector to compute an inner approximation for the ROA of the
feedback system of G and 7. To simplify notation, the interval
bound on v'! is assumed to be symmetrical about v}, i.e. v! =
20l —v! so that ' —v! = vl —v!. This can be relaxed to handle
non-symmetrical intervals with minor notational changes.

Theorem 1. Consider the feedback system of plant G in (2)
and NN 7 in (3) with equilibrium point (X, U, Vi, W) satis-
fring (12). Let v* € R™, v! := 20! — v, and ay, By € R
be given vectors satisfying Property 1 for the NN. Denote the
it" row of the first weight W' by W} and define matrices

I 0 N, N,
R = ng nGg Xneg , and R = v vw .
v {N Nuw ] ¢ [ownc IHJ
If there exists a matrix P € S"%, and vector X\ € R™ with
A > 0 such that
ALPA; - P ALPB
T G G G G
Ry [ BLPAq BEPBG} Ry

+ R,V My(\)WyR, <0, (20)
=1 _ .1 ) 2 _1
|:(vi Wiv%k,z) M]g:| >0, 1:=1,---,nq, (21

then: (i) the feedback system consisting of G and 7 is locally
stable around x., and (ii) the set E(P,x.), defined by (1), is
an inner-approximation to the ROA.

Proof. By Schur complements, (21) is equivalent to:

1p-—1 1T =1 1 \2
WiP— Wi < (v —v,,)5, i=1,--- ,ni. (22

TFor example, if ¢(v) = tanh(v) then the input bound v € [—7, 7]
implies the output bound ¢(v) € [— tanh(¥), tanh(¥)].

#The next activation input is v2 := W2w! + b2. The largest value of the
ith entry of this vector is obtained by solving the following optimization:

(18)
where y T is the it" row of W?2. Define ¢ := %(u’)1 + w') and r :=
10,51

5(w! —w'). The optimization can be rewritten as:

o2 = (ch—i-bf) + ,,.Iré%XQ.yTé (19)

This has the explicit solution 72 = y " ¢+ b? + Z;gl |y;7r;]. Similarly, the
minimal value is v = yTc+ b? — Zyi1 [yl

It follows from Lemma 1 in [23] that:

E(P,x,) C{rx e R :v' — vl <W(z —z,) <" —vl}.

Finally, use v! — v} = Wl(x — ) to rewrite this as:
E(P,x,) C{z: vt <ot <o)

To summarize, feasibility of (21) verifies that if z(k) €
E(P,x.) then v'(k) € [v!, v'] and hence the offset local sector
conditions are valid.

Next, since the LMI in (20) is strict, there exists € >
0 such that left / right multiplication of the LMI by
[(w(k) —x.)"  (wy(k) —w,)"] and its transpose yields

[*:|T AgpAg—P AgPBG (E(k) — Ty
BgPAG BgPBG u(k) — Uy

+ [*}T@;Md,@)% Bzgg :3‘*

| < ~elsti) - ..
where the entries denoted by x can be inferred from symmetry.

Define the Lyapunov function V(z) := (z — z.) " P(z — x.)
and use (2) and (12) to show:

Viath 1) = V() + [ ] 0000, |

< —ella(k) — .2

’U¢(k) — Ux :|
we (k) — wy
(23)

Assume z(k) € E(P, z,) for some k > 0, i.e., V(xz(k)) < 1.
As noted above, (k) € E(P, x,) implies the offset local sector
[as, Bp] around v,. Then, by Lemma 1, the final term on the
left side of (23) is > 0, and thus from (23) we have V (z(k +
1)) <1, ie., z(k+1) € E(P,x.). By induction, we have
that £(P, z,) is forward invariant, i.e., z(0) € £(P,z,) =
x(k) € E(P,x.) Yk > 0. As a result, if (0) € E(P,x.), then
the final term on the left side of (23) is > 0 for all £ > 0,
and V(z(k+1)) — V(x(k)) < —e¢|lz(k) — 2.]|* for all k > 0.
It follows from a Lyapunov argument, e.g. Theorem 4.1 in
[7], that x, is an asymptotically stable equilibrium point and
E(P,x,) is an inner approximation of the ROA. O

Remark 1. Note that T' should be chosen with care as

it affects the size of ROA inner-approximations directly: de-
creasing (0* — v!) gives rise to sharper local sector bounds,
which is beneficial on ROA estimation, but also restricts the
region where ROA inner-approximations lie in; increasing
(@' — v}) leads to a larger region that contains ROA inner-
approximations, but also provides looser local sector bounds.
A possible way of choosing ' is to parameterize (v* —v!) as
Tl —wl = 6, x 1, x1 With 6, € Ry, grid the interval [0, 6,]
where 0, lies in, inner-approximate the ROA on the grid, and
choose 0, that leads to the largest inner-approximation.

Remark 2. In the paper, the NN controller is assumed to
be state-feedback. For the output-feedback case, ie., u =
m(Cx), where C € R™*"G  the stability analysis can be

performed similarly, using a new N, defined as N,, =
wlc
O(ng+...4np)xng |°

85, is the largest value such that (20) and (21) stay feasible.



ITI. ROBUST STABILITY ANALYSIS

A. Problem Formulation

Consider the uncertain feedback system in Figure 5, con-
sisting of an uncertain plant F,(G,A) and a NN controller
7 as defined by (3). The uncertain plant F,(G,A) is an
interconnection of a nominal plant G and a perturbation A.
The nominal plant G is defined by the following equations:

x(k+1) = Ag z(k) + Ba1 q(k) + Baz u(k),
p(k) = Cg z(k) + Da1 q(k) + Dg2 u(k),

(24a)
(24b)

where z(k) € R™¢ is the state, u(k) € R™ is the control
input, p(k) € R™ and g(k) € R™ are the input and output
of A, AG c RNGX’”C," By € RnG XN Bes € Rnanu’
Cg € Rm*"¢ Dy € R™*" and Dgy € R™*™, The
perturbation is a bounded, causal operator A : (57 — (5. The
nominal plant G and perturbation A form the interconnection
F.(G, A) through the constraint

(25)

q(k) A p(k)
G
T (G B) L

Fig. 5: Feedback system with uncertain plant F,(G,A) and
NN controller 7

Assumption 1. In this section, we assume (i) the equilibrium
POINT (T, U, Vs, Wa, Dy G ) Of the feedback system is at the
origin, and (ii) 0 = A(0) for all A € S. Note that A is
modeled as an operator mapping inputs to outputs. If A has
an internal state then there is an implicit assumption that it
has zero initial condition.

Let x(k;zo, A) denote the solution to the feedback system
of F,(G,A) and m with A € S at time k from the initial
condition x(0) = Y. Define the robust ROA associated with
T, as follows.

Definition 5. The robust ROA of the feedback system with the
uncertain plant F,(G,A) and NN 7 is defined as:
R :={xg e R"S : klim x(k;zo,A) =z, VA € S}. (26)
e de el

The objective is to prove the uncertain feedback system is
asymptotically stable and, if so, to find the largest estimate of
the robust ROA using an ellipsoidal inner approximation.

9 An input/output model is used for the perturbation A so that its internal
state and initial condition is not explicitly considered.

B. Integral Quadratic Constraints

The perturbation can represent various types of uncertainty
[14], [15], including saturation, time delay, unmodeled dy-
namics, and slope-restricted nonlinearities. The input-output
relationship of A is characterized with an integral quadratic
constraint (IQC), which consists of a ‘virtual’ filter ¥ o applied
to the input p and output ¢ of A and a constraint on the output
r of Wa. The filter ¥ is an LTI system of the form:

¢(k + 1) = Ay ¢(/€) + By p(k) + Buyo q(/ﬂ) (27a)
¥(0) =0 (27¢)

where (k) € R™ is the state, r(k) € R™ is the output, and
Ay is a Schur matrix. The state matrices have compatible di-
mensions. The dynamics of ¥ 5o can be compactly denoted by
Ay | By1 Bus
Cy | Dy1 Do
the equilibrium state 1, € R™ of (27) is also zero.
The Lyapunov analysis in the next subsection makes use of
time-domain IQCs as defined next:

Definition 6. Ler Ux € RH™ "% gqnd Ma € S™ be
given. A bounded, causal operator A : " — (5° satisfies
the time domain IQC defined by (Va, Ma) if the following
inequality holds for all p € (57, ¢ = A(p) and for all N > 0
N
> r(k)T Mar(k) > 0.
k=0

The notation A € IQC(¥a, M) indicates that A satisfies
the IQC defined by YA and Ma. Therefore, the precise
relation (25), for analysis, is replaced by the constraint (28)
on r. The QC proposed in Lemma 1 is a special instance of a
time-domain IQCs. Specifically, Lemma 1 defines a QC that
holds at each time step k£ and hence the inequality also holds
summing over any finite horizons. This is referred to as the
offset local sector IQC.

The time-domain IQCs, as defined here, hold on any finite
horizon N > 0. These are typically called “hard 1QCs”
[14]. IQCs can also be defined in the frequency domain
and equivalently expressed as time-domain constraints over
an infinite horizon (N = o). These are called soft IQCs.
Although this paper focuses on the use of hard IQCs, it is
possible to also incorporate soft IQCs [20], [21], [24], [25].
C. Lyapunov Condition

Let ¢ := [},] € R™ define the extended state vector, ng =
ng + ny, whose dynamics are

]. By (p«,¢«) = 0 from Assumption 1,

(28)

C(k+1)=A((K) + B Big] (29a)
r(k) = C C(k) + D [ng (29b)
u(k) = m(x(k)) (29¢)
where the state-space matrices are
A:{ Ac 0} B:{ Be Bgo }
By1Cq Ay’ By1Dg1 + Bya  BwiDgo

C=[DwiCe Cu], D= [Dy1Dg1+ Dys Dy1Dg2] .



Let ¢, := [4.] = 0 define the equilibrium point of the
extended system (29). Since IQCs implicitly constrain the
input p of the extended system (29), the response of the
extended system subject to IQCs “covers” the behaviors of
the original uncertain feedback system. The following theorem
provides a method for inner-approximating the robust ROA by
performing analysis on the extended system subject to IQCs.

Theorem 2. Consider the feedback system of an uncertain
plant F,,(G,A) in (24)—(25), and the NN 7 in (3) with
zero equilibrium point (s, U, Vs, Wy, Dx, Gx ). Assume A €
IQC(\I/A,MA) with Ua and Ma given. Let o' € R™,
v! = —o!, and ag, By € R™ be given vectors satisfying
Property 1 for the NN, and define matrices

Li 0 0
RV = 0 0 Inq 5 Nug = [Nu:monuxnw}?
Nuc Nuw 0
Nye N, 0
R¢, = [ 64 I::} 0:| ) Nv( = [vi70n¢xnw]a
W= [WE O1xn,], Wi is the i row of W

If there exists a matrix P € Sii and vector X € R™¢ with
A > 0 such that

+[ATPA-P ATPB Tt
Ry { B PpA pTps|ftviisYs My(N) ¥Ry
+R,[C D" MalC D]Ry <0, (30a)
v1)2 W} .
{%})T PZ} 20, i=1,--,n, (30b)

then: (i) the feedback system comprising F,(G,A) and 7 is
locally stable around x, for any A € IQC(V A, MA), and (ii)
the intersection of E(P,(.) with the hyperplane i» = 0, ie.
E(Py, ) where P, € R"6*"C s the upper left block of P,
is an inner-approximation to the robust ROA.

Proof. As in the proof of Theorem 1, feasibility of (30b)
implies that if ((k) € £(P, (.) then v!(k) € [v}, '] and hence
the offset local sectors conditions are valid. Since the LMI in
(30a) is strict, there exists € > 0 such that 1eft/r11_ght mult1pl1ca-
tion of the LMI by [(C(k)—C.) ", (wg(k)—w.) ", (¢(k)—q.) ]
and its transpose yields:

T AT T G(k) = G«
*] [A PA-P A PB} [ qggiq* }

BTPA BT PB

T ()~ ¢.

+ x| [ D] Ma[C D]| q(k)—q-
u(k) —

+[+) s [ 70 | < o - e,

Define the Lyapunov function V(¢) := (¢ — () " P(¢ — ),

and use (29) to show:
V(¢(k+1)) = V(C(R) + (k)" Mar(k)

L] wansws | 220 70 | < —elot - e

Sum this inequality from k = 0 to any finite time N > 0. The
third and fourth term on the left side will be > 0 by the local
sector conditions and the IQC. This yields:

N

=S elck) - ¢

k=0

VIEIN +1)) = V(¢(0) <

Thus if ¢(0) € E(P, () then ((k) € E(P,¢,) for all k > 0.
Moreover, this inequality implies that ((N) — (. as N — oo.
The initial condition for the virtual filter is ¢(0) = 0 so that
¢(0) € E(P,¢s) is equivalent to z(0) € E(P,,x.). Hence
E(P,,x,) is an inner approximation for the ROA. O

For a particular perturbation A there is typically a class of
valid time-domain IQCs defined by a fixed filter ¥'A and a
matrix M drawn from a constraint set M a. Therefore when
formulating an optimization problem, along with P and A, we
can treat Ma € Ma as an additional decision variable to
reduce conservatism. In this paper, the set M A is restricted to
one that is described by LMIs [15]. Using trace(P, ) as the cost
function to minimize along with the LMIs developed before,
we have the following optimization to compute the “largest”
ROA inner-approximation:

min trace(P,) s.t. (30a) — (30b) hold, (31)

PES} A>0,MAEMA
which is convex in (P, A, Ma). The strict inequality in (30a)
can be enforced by either replacing < 0 with < —el with
€ = 1x 1075, or solving (31) with a non-strict inequality < 0,
and checking if the constraint is active afterwards.
D. IQCs for Combined Activation Functions ¢

Now that we have the general framework that merges
Lyapunov theory with IQCs, we will revisit the problem
of describing the activation functions ¢ using more general
tools. Recall that offset local sector QCs have been used in
Sections II and III to bound activation functions ¢. However,
these local sectors fail to incorporate slope bounds of ¢. In this
subsection, in addition to local sectors, we will use off-by-one
IQCs [16] to capture the slope information of ¢ to achieve
less conservative ROA inner-approximations.

Besides the local sector bound g, 84, the bounds v,7 on
activation input vy can also be used to compute the local slope
bounds [mg,Lg] of ¢, with my, Ly € R™. For example,
¢i(vg,;) = tanh(vg ;) restricted to the interval [v;,7;] for

i =1,...,n4 satisfies the local slope bound [mg ;, Le ;] with
B dtanh(v;) dtanh(v;) L
Mg = min ( =g =0, —go |v;=v, ), and Ly ; =

L. If wy = @(ve) with vg(k) € [v, 7], then ¢ also satisfies the
hard IQC defined by (W, Mog), where

On, | —diag(Ly) 1.

ne

Vo := | I, | diag(Lg) —In, |,
On¢, _dlag(m¢) ITL¢,
Op diag(n) .
s ne >
Mot (n) := [dlag( )0, | for all n € R™® with n > 0.

This is the so-called “off-by-one” IQC [16], which is a special
instance of the Zames-Falb IQC [26], [27]. It provides con-
straints that relate the activation at different time instances, e.g.
between ¢;(vy ;(k)) and ¢;(vy ;(k+1)) forany ¢ = 1,...,ng.



The analysis on the feedback system of F,(G,A) and =
can be instead performed on the extended system made up
by G, WA and W4 with additional constraints that A €
IQC(¥ A, Ma), and ¢ satsifies the offset local sector and ¢ €
IQC (W, Mogr). However, since W, introduces a number of
ng states to the extended system, the size of the corresponding
Lyapunov matrix P will increase from S't%""* to 87" ",
which leads to longer computation time. The effectiveness of
the off-by-one IQC is demonstrated in Section IV-B.

IV. EXAMPLES

In the following examples, the optimization (31) is solved
using MOSEK with CVX. |

A. Inverted pendulum

Consider the nonlinear inverted pendulum example with
mass m = 0.15 kg, length [ = 0.5 m, and friction coefficient
1 = 0.5 Nms/rad. The dynamics are:

mglsin(0(t)) — pb(t) + sat(u(t))
mil?

(t) = . (32)
where 6 is the angular position (rad) and u is the control
input (Nm). The plant state is x = [9,9]. The saturation
function is defined as sat(u) = sgn(u)min(|ul, Umax), with
Umax = 0.7 Nm. The controller 7 is obtained through a
reinforcement learning process using policy gradient [3]-[5].
During training, the agent decision making process is charac-
terized by a probability: u(k) ~ Pr(u(k) = u | (k) = x) for
all u € R and x € R? where the probability is a Gaussian
distribution with mean m(x(k)), and standard deviation o.
After training, the policy mean 7 is used as the deterministic
controller u(k) = w(x(k)). The controller 7 is parameterized
by a 2-layer, feedforward NN with n; = ng = 32 and tanh as
the activation function for both layers. The biases in the NN
are set to zero during training to ensure that the equilibrium
point is x, = 0 and u, = 0. The dynamics used for training are
the discretized version of (32) with sampling time dt = 0.02 s.
We rearrange (32) into the form:

f(t) = —mglq(t) + mgl@(;l)p— p6(t) + sat(u(t))

a(t) = A(B(1)) = 0(1) — sin(0(1)).

The static nonlinearity A() = 6 — sin(6) is slope-restricted,
and sector bounded. If we assume that (k) € [0,0] with

, (33a)
(33b)

0 = —0 = 0.73, then the nonlinearity is slope-restricted in
[0,0.2548], and sector bounded in [0, 0.087]. We also assume
that v! € [v!,9!] with o' = —wv! = 4, x 132%1 using

0, = 0.1. Both assumptions are verified using the ROA inner-
approximation. Two types of IQCs are used to characterize
the nonlinearity A(-): an off-by-one IQC to capture the slope
information, and a local sector IQC to express the local sector
bound. Only the local sector IQC is used to characterize the
activation functions ¢. The saturation function is static and
can also be described using a local sector bound. Let @ be the
largest possible control command from 7 induced from the

I'The code is available at https://github.com/heyinUCB/Stability-Analysis-
using-Quadratic-Constraints-for-Systems-with-Neural-Network-Controllers.

assumption that v! € [v!,¥']. Then the saturation function

satisfies the local sector [a, 3], where o := *2x and 3 := 1.
Figure 6 shows the boundaries for the sets {z : v! < v! <
o'} and {z : § < 6 < 0} with orange and brown lines, the
ROA inner-approximation with a blue ellipsoid, and the phase
portrait of the closed-loop system, with green and red curves
representing trajectories inside and outside the ROA.

A\
01510\ &

2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

Fig. 6: A ROA inner-approximation of the inverted pendulum

B. Vehicle lateral control

Consider the vehicle lateral dynamics from [28]:

¢ 0 1 0 0
" O Caf+car _Caf+car acaf*bcar
€ — mU m mU €
éo 0 0 1 eo
éo 0 Cas=tCar _aCas—tCar a?Cop+b2Car | | ¢y
L I,U I, .U
-0 0
_Cay aCat=bCar _ 2
o O I c (34)
_ aCay a?Coy+b%Car
L I, I.

where e is the perpendicular distance to the lane edge (m),
and ey is the angle between the tangent to the straight section
of the road and the projection of the vehicle’s longitudinal
axis (rad). Let 2 = [e, ¢, e, ép] " denote the plant state. The
control u is the steering angle of the front wheel (rad), the
disturbance c is the road curvature (1/m), and the parameters
are: longitudinal velocity U = 28 m/s, front cornering
stiffness Coy = —1.232 X 105 N/rad, rear cornering stiffness
Cear = —1.042x10° N/rad, mass m = 1.67 x 10® kg, moment
of inertia I, = 2.1 x 103 kg/ m2, distances from vehicle center
of gravity to front axle ¢ = 0.99 m and rear axle b = 1.7 m.

Again, the controller 7 is obtained using policy gradient,
and is parameterized by a 2-layer, feedforward NN, with n; =
ng = 32 and tanh as the activation function for both layers.
The training process uses a discretized version of (34) with
sampling time dt = 0.02 s and draws the curvature c(k) at
each time step from an interval [—1,/200, 1/200]. The control
command derived from wu(k) = w(z(k)) enters the vehicle
dynamics through a saturation function sat(-) with um,x =
/6. Let ugy := sat(n(z)) define the saturated control signal.

The analysis is performed for a constant curvature ¢ = 0,
resulting in a zero equilibrium state x, = 0. In the analysis
problem, on top of saturation, we also add a norm-bounded
LTI uncertainty Aprp € RHo with |Apr||,, < 0.1 to the
control input. This is used to assess the robustness of the NN


https://github.com/heyinUCB/Stability-Analysis-using-Quadratic-Constraints-for-Systems-with-Neural-Network-Controllers
https://github.com/heyinUCB/Stability-Analysis-using-Quadratic-Constraints-for-Systems-with-Neural-Network-Controllers

controller against actuator uncertainty. As shown in Figure 7,
the actual input to the vehicle dynamics is

upert(k) = usat(k) + Q(k)a and Q() = ALTI(usat('))~

k
a( )ALTI—
+
+
G upert(k) = Iusat(k)
z(k) sat(-)
I
u(k)

Fig. 7: Uncertain vehicle system with actuator uncertainty

It is assumed that v! € [v!, 9], where o' = —v! =

0y X 13251 with 6, = 0.6. To show effectiveness of the off-
by-one IQC, two experiments were carried out: one with only
local sector IQC to describe ¢, and one with both local sector
and off-by-one IQCs. The achieved trace(P,) for the two ex-
periments are 4.4 and 2.9, respectively. Moreover, the achieved
det (P, 1) (proportional to the volume) for the experiments are
3.2x 105, and 1.1 x 109, respectively. Therefore, with the help
of off-by-one IQC to sharpen the description of ¢, the second
experiment achieves a larger ROA inner-approximation. It is
also important to note that thanks to the off-by-one 1QC, the
SDP is able to tolerate looser local sector bounds. The largest
value of 4, such that the SDP is feasible is 0.67 for the first
experiment, and 1.4 for the second experiment.

Figure 8 shows slices of the ROA inner-approximation
from the second experiment on the e—é and ey—ég spaces.
Specifically, these are intersections of £(P,,x.) with the
hyperplanes (eg,€p) = (€g«,€0+) and (e,é) = (ex,és),
respectively, where z, = [e., €., €gs,¢04] . The slices are
shown with blue ellipsoids. The boundary of the polytopic
set {z : v} < o' < ¥'} is shown with the orange lines. The
brown crosses represent the zero equilibrium state x,.

10 10
5 5
w0 3 0
5 5
-10 -10 : ‘
-50 0 50 0.5 0 05
e €

Fig. 8: ROA inner-approximation on the e—¢ and eg—ég spaces
using both local sector and off-by-one IQCs with §,, = 0.6.
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