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Backward Reachability for Polynomial Systems on
A Finite Horizon

He Yin, Murat Arcak, Fellow, IEEE, Andrew Packard, Fellow, IEEE and Peter Seiler

Abstract—A method is presented to obtain an inner-
approximation of the backward reachable set (BRS) of a given
target tube, along with an admissible controller that maintains
trajectories inside this tube. The proposed optimization algo-
rithms are formulated as nonlinear optimization problems, which
are decoupled into tractable subproblems and solved by an
iterative algorithm using the polynomial S-procedure and sum-of-
squares techniques. This framework is also extended to uncertain
nonlinear systems with L2 disturbances and L∞ parametric
uncertainties. The effectiveness of the method is demonstrated
on several nonlinear robotics and aircraft systems with control
saturation.

Index Terms—Reachable Sets Estimation, Nonlinear Systems,
Constrained Control, Uncertain Systems.

I. INTRODUCTION

The backward reachable set (BRS) is the set of all initial
conditions whose successors can be maintained safely inside
a given time-varying state constraint set (“target tube”) using
an admissible controller while satisfying control constraints.
The BRS and the accompanying controller are of great im-
portance for safety-critical systems. In this paper, we address
the computation of an inner-approximation to the BRS and
construction of an explicit feedback control action (as a state-
feedback) on a finite-time horizon. We focus on problems with
finite-time horizons, since in many practical settings, systems
only undergo finite-time trajectories, such as robotic systems
and space launch / re-entry vehicles.

A Lyapunov-based method for the finite-horizon BRS com-
putation is pursued in [?]: given a target set and an open-
loop state and input trajectory that leads to this target set, a
controller is designed to maximize the size of an invariant
funnel around the trajectory. The funnel idea is also used in
[?] to solve a forward reachability problem. Unlike [?] and
[?], our computational approach doesn’t depend on the pre-
planned state and input trajectories, and the proposed iterative
algorithm guarantees that the inner-approximation to the BRS
certified by one iteration contains the inner-approximation
certified by the previous iteration. In addition to the parametric
uncertainty considered in [?] and [?], our results also account
for external disturbances that are L2 signals.
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A related computation is considered in [?] and [?], where
the BRS is outer-approximated by taking the complement
of the initial set from which no trajectory is able to reach
the target set for any admissible inputs. This yields an
infinite-dimensional linear program, and a sequence of finite-
dimensional convex problems, along with results that prove
convergence (from outside) to the true BRS, as more com-
putational resources are employed. Reference [?] proves that
no suitable control action exists for initial conditions outside
the BRS outer-approximation. In contrast, [?] modifies the
formulation and produces explicit control laws which will
be suitable for some of the points within the BRS outer-
approximation. In addition, the obtained control laws will only
approximately satisfy any given control constraints.

The main contributions of the current paper are: (1) to
explicitly synthesize a control law and an associated BRS
inner-approximation, (2) to accommodate various sources of
uncertainty simultaneously, including L2 disturbances and L∞
parametric uncertainties, (3) to present an iterative algorithm
based on semidefinite programming (SDP), with the guarantee
that the certified inner-approximation to the BRS grows with
each iteration. The results in this paper are complementary
to those in [?], [?], because we provide inner-approximations
in which every point is guaranteed to lie in the BRS, as
well as an explicit controller. By also avoiding time or
spatial discretizations that are used by the Hamilton-Jacobi
methods [?], and Viability Theory [?], [?], [?], we provide a
formal guarantee that the trajectories starting inside the inner-
approximation remain inside the target tube. However, it is
also important to note that the methods in [?], [?], [?], [?] can
handle a more general class of systems beyond polynomial
systems considered in this paper.

To enable these contributions, the paper introduces a class
of dissipation inequalities with associated “reachability stor-
age functions”, whose sub-level sets characterize the inner-
approximations to the BRS. The polynomial S-procedure [?]
and SOS for polynomial non-negativity are used, expressing
the problem as a nonconvex optimization. The decision vari-
ables consist of a reachability storage function, a polynomial
control law, and various S-procedure polynomial certificates.
A tractable algorithm results, with further conservativeness, by
decoupling the original formulation into an iterative, two-way
search between reachability storage functions and control laws,
which are convex and quasiconvex problems, respectively. The
use of dissipation inequalities also allows us to accommodate
various forms of disturbances and model uncertainty.

Dissipation inequalities have also been applied to the related
problem of region of attraction (ROA) estimation which,
however, is an infinite-time horizon problem. Associated with
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an equilibrium point, the ROA is the largest invariant set such
that all trajectories starting inside converge to the equilibrium
as t→∞. The literature on ROA estimation includes methods
to search for a Lyapunov certificate for both stability and
invariance [?], [?], [?], [?], [?] and to synthesize a control
law to expand the inner-approximation of the ROA [?].

The conference version [?] of this paper decomposes the
control synthesis process into two steps: constructing storage
functions first, and then computing control laws using the
obtained storage functions through quadratic programs. The
current paper presents a single-step design and accommodates
control saturation, which is not addressed in [?]. In addition,
[?] considers only a terminal target set, whereas this paper
addresses a target tube. In a separate publication [?], we have
studied forward reachable sets without control design.

II. NOTATION

Rm×n and Sn×n denote the set of m-by-n real matrices
and n-by-n real, symmetric matrices. Rm is the set of m× 1
vectors whose elements are in R. C1 is the set of differentiable
functions with continuous derivative. Euclidean norm of a
real-valued vector x is ‖x‖E :=

√
x>x. Lm2 is the space

of Rm-valued measureable functions f : [0,∞) → Rm,
with ‖f‖22 :=

∫∞
0
f(t)T f(t)dt < ∞. Define ‖r‖22,T :=∫ T

0
rT (t)r(t)dt. Associated with Lm2 is the extended space

Lm2e, consisting of functions whose truncation fT (t) := f(t)
for t ≤ T ; fT (t) := 0 for t > T , is in Lm2 for all T > 0.
For ξ ∈ Rn, R[ξ] represents the set of polynomials in ξ
with real coefficients, and Rm[ξ] and Rm×p[ξ] to denote all
vector and matrix valued polynomial functions. The subset
Σ[ξ] :=

{
π =

∑M
i=1 π

2
i : M ≥ 1, πi ∈ R[ξ]

}
of R[ξ] is the

set of sum-of-squares (SOS) polynomials. For η ∈ R, and
continuous r : Rn → R, Ωrη := {x ∈ Rn : r(x) ≤ η}.
For η ∈ R, and continuous r : R × Rn → R, define
Ωrt,η := {x ∈ Rn : r(t, x) ≤ η}, a t-dependent set.

In several places, a relationship between an algebraic con-
dition on some real variables and input/output/state properties
of a dynamical system is claimed. We use the same symbol
for a particular real variable in the algebraic statement as well
as the corresponding signal in the dynamical system.

III. REACHABILITY STORAGE FUNCTIONS AND CONTROL
SYNTHESIS

Consider a time-varying, nonlinear system with affine de-
pendence on the control input u:

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), (1)

with x(t) ∈ Rn, u(t) ∈ Rm, and f : R × Rn → Rn, g :
R× Rn → Rn×m continuous in t and locally Lipschitz in x.

The function r(t, x) is specified by the analyst, defining
a target tube, Ωrt,0. The target tube embodies time-varying
state constraints, which are used to exclude unsafe regions,
shape the solutions x(·) to (1) and specify the desired set of
states. The BRS is defined as a set of states: {x(t0) ∈ Rn :
∃u(·), s.t. x(t) ∈ Ωrt,0 ∀t ∈ [t0, T ]}.

In this paper, we consider an explicit time-varying, state-
feedback control. Let k : R×Rn → Rm define a memoryless,
time-varying state feedback control by u(t) = k(t, x(t)).

An inner-approximation to the BRS is characterized by the
level sets of “reachability storage functions” V satisfying the
conditions in the following proposition.

Proposition 1. Given system (1), initial time t0, terminal time
T ≥ t0, a function r and associated target tube Ωrt,0, and
γ ∈ R, if there exists a C1 function V : R × Rn → R and
a control law k : R × Rn → Rm that is continuous in t and
locally Lipschitz in x, such that

∂V (t, x)

∂t
+
∂V (t, x)

∂x
(f(t, x) + g(t, x)k(t, x)) ≤ 0,

∀(t, x) ∈ [t0, T ]× Rn, and (A.1)

ΩVt,γ ⊆ Ωrt,0, for all t ∈ [t0, T ], (A.2)

then under the control law k, any trajectory of (1) with initial
condition x(t0) ∈ ΩVt0,γ , satisfies φ(t; t0, x(t0), k) ∈ Ωrt,0, for
all t ∈ [t0, T ], i.e. all the trajectories remain inside the target
tube. Such a V is called a reachability storage function.

Remark 1. If the same constant is added to V and γ, the
conditions (A.1) and (A.2) are unchanged. Hence γ can be
fixed to any specific value. However, γ is retained here as it
is exploited by Algorithm 1 introduced later in the paper.

The set ΩVt0,γ is an inner-approximation of the BRS for
the given target tube and the initial time, associated with the
control law k. Proposition 1 follows from a simple dissipation
argument. Integrating constraint (A.1) from t0 to t yields
V (t, x(t)) ≤ V (t0, x(t0)). Thus it follows from x(t0) ∈ ΩVt0,γ
that V (t, x(t)) ≤ γ. Assumption (A.2) then implies that x(t)
stays in the target tube for all t ∈ [t0, T ].

In some cases, the target tube might be defined only at the
terminal time, i.e., the only constraint is x(T ) ∈ ΩrT0 , for all
x(t0) ∈ ΩVt0,γ , where rT : Rn → R. The set ΩrT0 is called the
target set. In this paper, we will only focus on the case with
the target tube, and the reader is referred to [?] for a detailed
comparison between the target tube and set.

A. Local Synthesis

Constraint (A.1) is conservative in that it holds throughout
the state space, but the conclusion of Proposition 1 only applies
to a subset, namely ΩVt,γ . By restricting where (A.1) must hold,
we obtain a less conservative local condition.

Theorem 1. Given system (1), initial time t0, terminal time
T ≥ t0, a function r and associated target tube Ωrt,0, and
γ ∈ R, if there exists a C1 function V : R × Rn → R, and
a control law k : R × Rn → Rm that is continuous in t
and locally Lipschitz in x, such that for all t ∈ [t0, T ], the
following two constraints hold,

ΩVt,γ ⊆
{
x ∈ Rn :

∂V (t, x)

∂t
+
∂V (t, x)

∂x
(f(t, x)

+ g(t, x)k(t, x)) ≤ 0

}
, (B.1)

ΩVt,γ ⊆ Ωrt,0, (B.2)
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then under the control law k, any trajectory with initial con-
dition x(t0) ∈ ΩVt0,γ , satisfies x(t) ∈ Ωrt,0 for all t ∈ [t0, T ].

Again, ΩVt0,γ is an inner-approximation of the BRS for the
given target tube and the initial time, associated with the
control law k. This theorem is a special case of Theorem 3
stated later, and hence the proof of Theorem 1 is omitted.

B. Modifications for Control Saturation

In practice, the magnitude of control inputs to any system
cannot be arbitrarily large, so we introduce constraints on the
magnitude of control u. Specifically, assume the set of control
constraints is given as a time- and state-varying polytope:

U(t, x) := {u ∈ Rm : A(t, x)u ≤ b(t, x)},

where A(t, x) ∈ Rnp×m[t, x] and b(t, x) ∈ Rnp [t, x] are
given matrix and vector valued polynomial functions, np is the
number of constraints on u, and the symbol “≤” represents
componentwise inequality. To take control saturation into
account as in [?], we impose additional constraints for V and
k: for all t ∈ [t0, T ],

ΩVt,γ ⊆ {x ∈ Rn : A(t, x)k(t, x) ≤ b(t, x)}. (C.1)

This ensures while x(t) lies in the funnel ΩVt,γ , the control
input u derived from the control law k remains within U(t, x).

Combining the constraints (B.1), (B.2) and (C.1) yields a
synthesis optimization that accounts for actuator limits. Since a
less conservative inner-approximation is preferable, we choose
the volume of ΩVt0,γ as the objective (to be maximized) of the
optimization, where γ is either fixed or a decision variable.

High-level optimization problem 1. (hi-opt1)

sup
V,k

volume(ΩVt0,γ)

s.t. ΩVt,γ ⊆
{
x ∈ Rn :

∂V (t, x)

∂t
+
∂V (t, x)

∂x
(f(t, x)+

g(t, x)k(t, x)) ≤ 0

}
, ∀ t ∈ [t0, T ], (D.1)

ΩVt,γ ⊆ Ωrt,0, ∀ t ∈ [t0, T ], (D.2)

ΩVt,γ ⊆ {x : A(t, x)k(t, x) ≤ b(t, x)}, ∀t ∈ [t0, T ]. (D.3)

C. Reformulating as a Polynomial Optimization

As written, hi-opt1 involves many set containment con-
straints with a storage function and a control law as decision
variables. The most common way of certifying set contain-
ments is the S-procedure, along with a method to check
non-negativity. To check non-negativity, SOS relaxation is
widely used when the functions are restricted to polynomials.
Therefore, for practical computation, we restrict the system
model, control law and storage function to be polynomials, i.e.,
f ∈ Rn[t, x], g ∈ Rn×m[t, x], k ∈ Rm[t, x] and V ∈ R[t, x].
Note that it is sometimes possible to represent nonlinear
system equations with polynomials using combinations of
change-of-variables, Taylor’s theorem and least squares re-
gression. The error on the polynomial approximation can be
handled by Theorem 3 and is illustrated in the example V-C.

Since the formulation involves finite horizon problems on
[t0, T ], the function h(t) := (t− t0)(T − t) is important in the
S-procedure as it is nonnegative on this interval. With these
ideas, we reformulate constraints (D.1) to (D.3) resulting in
an optimization problem with bilinear SOS constraints and a
non-convex objective function. The vector inequality in (D.3)
represents many scalar inequalities. Denote row i of A by Ai
and element i of b as bi.

Optimization problem 1. (sosopt1) Fix ε > 0.

sup
V,k,s

volume(ΩVt0,γ)

s.t. s2, s3, (s4 − ε), s7 ∈ Σ[t, x], k ∈ Rm[t, x],

si,5, si,6 ∈ Σ[t, x], ∀i = 1, ..., np, V ∈ R[t, x], (E.1)

−
(
∂V

∂t
+
∂V

∂x
· (f + gk)

)
− s2h

+ s3 · (V − γ) ∈ Σ[t, x], (E.2)
− s4r + V − γ − s7h ∈ Σ[t, x], (E.3)
bi −Aik + si,5 · (V − γ)

−si,6h ∈ Σ[t, x], ∀i = 1, ..., np, (E.4)

where the positive number ε ensures that s4(t, x) is uniformly
bounded away from 0. However the choice of ε does affect
the optimization, with smaller values of ε, theoretically less
restrictive. Due to numerical issues, the value must be chosen
with care. If ε is too small, numerical issues might arise, but
large values cause conservativeness. Therefore, trial and error
in the selection of ε may be necessary. Note that constraints
(E.2)–(E.4) are sufficient conditions for constraints (D.1)–
(D.3), respectively. For example, (E.2) implies (D.1) because,
when h(t) ≥ 0 (i.e. t ∈ [t0, T ]) and V (t, x) ≤ γ (i.e.
x ∈ ΩVt,γ), for the polynomial in (E.2) to be non-negative, the

term −
(
∂V (t,x)
∂t + ∂V (t,x)

∂x · (f(t, x) + g(t, x)k(t, x))
)

must
be non-negative.

In the constraints (E.2) and (E.4), there are three bilinear
pairs involving decision variables

(
k, ∂V∂x

)
, (s3, V ), (si,5, V ),

rendering these constraints non-convex.

Remark 2. Notice that (C.1) / (E.4) can be convexified by
introducing a local region X ⊂ Rn to condition (C.1), where
X = {x ∈ Rn : pX(x) ≤ 0} and pX ∈ R[x] is given by the
analyst. Instead of enforcing (C.1) directly, we can enforce the
following conditions:

ΩVt,γ ⊆ X, ∀t ∈ [t0, T ], (2)

X ⊆ {x : A(x)k(t, x) ≤ b(t, x)}, ∀t ∈ [t0, T ]. (3)

Notice that combing (2) and (3) together recovers the condi-
tion (C.1). It’s straightforward to show that by applying the
generalized S-procedure to (2) and (3), convex SOS constraints
can be derived. However, the choice of local region X affects
the optimization: if X is too small, (2) might lead to a
conservative inner-approximation ΩVt,γ; and if X is too large,
(3) might be infeasible. Therefore, choosing X could be
difficult, and we will use (C.1) / (E.4) in the rest of the paper.

To tackle the non-convex optimization problem, we decom-
pose it into two subproblem, iteratively searching between the
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reachability storage function V and multipliers / control laws
s, k. In Algorithm 1, ε is still a fixed small positive number,
but γ becomes a scalar decision variable.

Algorithm 1 Iterative method

Input: function V 0 such that constraints (E.2–4) are feasible
by proper choice of s, k, γ.

Output: (k, γ, V ) such that with the volume of ΩVt0,γ having
been enlarged.

1: for j = 1 : Niter do
2: γ-step: decision variables (s, k, γ).

Maximize γ subject to (E.1–4) using V = V j−1.
This yields (sj3, s

j
i,5, k

j) and optimal reward γj .
3: V -step: decision variables (s1, s2, s4, si,6, s7, V );

Maximize the feasibility (analytic center described
below) subject to (E.1–4) as well as s1 ∈ Σ[x],

and− (V (t0, x)− γj)+
s1 · (V j−1(t0, x)− γj) ∈ Σ[x], (E.6)

using (γ = γj , s3 = sj3, si,5 = sji,5, k = kj). This
yields V j .

4: end for

Remark 3. In the examples of Section V, the target region is a
neighborhood around an equilibrium point, and a linear state-
feedback for the linearization about the equilibrium point was
used to compute the initial iterate, V 0, [?] [?].

Remark 4. The global optima in the γ-step can be computed
by bisecting γ. Since only (s3, γ) and (si,5, γ) enter bilinearly,
and γ is the objective function, the γ-step is a generalized SOS
problem, which is proven in [?] to be quasiconvex.

Remark 5. After the γ-step, many of the constraints are
active. The subsequent V -step is formulated to return the
decision variables at the analytic center of the feasible set [?]
[?], pushing the newly computed storage function away from
the constraints thus enabling further progress on the next γ
step.

Remark 6. (E.6) enforces ΩV
j−1

t0,γj
⊆ ΩV

j

t0,γj
, which ensures

that the BRS inner-approximation computed by the j’th V -
step at least contains the inner-approximation obtained by the
j’th γ-step.

Theorem 2. The BRS inner-approximation from the (j+1)’th
γ-step contains the inner-approximation from the j’th V -step:
ΩV

j

t0,γj
⊆ ΩV

j

t0,γj+1 .

Proof. The obtained decision variables (sj2, s
j
4, s

j
i,6, s

j
7, V

j)
from the j’th V -step along with the fixed values (from the
j’th γ-step) (γj , sj3, s

j
i,5, k

j), are feasible for (E.2 - 4), and
thus are feasible for the (j + 1)’th γ-step. Since γj+1 is the
optimal reward of the (j+1)’th γ-step, it gives γj+1 ≥ γj .

From Remark 6 and Theorem 2 we can conclude that
quality of the BRS inner-approximation will improve with
each iteration.

Remark 7. Coordinate-wise algorithms do not in general
converge to the global optima. Thus although the subproblems
in the γ-step and V -step at each iteration are solved exactly,
the iterative algorithm does not necessarily yield the global
optimal solution for the optimization sosopt1.

IV. INCORPORATING SYSTEM UNCERTAINTIES

Two different sources of uncertainty are addressed. Uncer-
tainties with L2 bounds, denoted as w, are used to model
external disturbances. Time-varying uncertainties with L∞
bounds, denoted as δ, are used to model uncertain parameters
in the system. Thus the dynamical system is

ẋ(t) = f(t, x(t), w(t), δ(t)) + g(t, x(t), w(t), δ(t))u(t), (4)

with w(t) ∈ Rnw , δ(t) ∈ Rnδ , and polynomial vector field
f ∈ Rn[t, x, w, δ], g ∈ Rn×m[t, x, w, δ].

The assumptions on δ and w are as follows. The parametric
uncertainties δ(t) belong to the set ∆δ̄ := {δ ∈ Rnδ :
‖δ‖E ≤ δ̄}. A non-decreasing polynomial function q satis-
fying q(t0) = 0, q(T ) = 1 describes how fast the energy
of w can be released. Specifically, disturbances w satisfy∫ t
t0
w(τ)Tw(τ)dτ ≤ R2q(t), ∀t ∈ [t0, T ]. The quantities δ̄,

R and q(·) are assumed to be given.

Theorem 3. Given system (4), initial time t0, terminal time
T ≥ t0, a function r and associated target tube Ωrt,0, bounds δ̄,
R and function q(·). If there exists a C1 function V : R×Rn →
R, and a control law k : R× Rn × Rnw × Rnδ → Rm, such
that for all (t, w, δ) ∈ [t0, T ]× Rnw ×∆δ ,

ΩVt,γ+R2q(t) ⊆
{
x ∈ Rn :

∂V (t, x)

∂t
+
∂V (t, x)

∂x
(f(t, x, w, δ)+

g(t, x, w, δ)k(t, x, w, δ)) ≤ wTw
}

(F.1)

and for all t ∈ [t0, T ],

ΩVt,γ+R2q(t) ⊆ Ωrt,0, (F.2)

then for all x(t0) ∈ ΩVt0,γ , x(t) ∈ Ωrt,0, for all t ∈ [t0, T ],
under the control law k.

Proof. By assumption x(t0) ∈ ΩVt0,γ , then we have
V (t0, x(t0)) ≤ γ. Integrating the dissipation inequality in
(F.1) gives V (t, x(t)) ≤ V (t0, x(t0)) +

∫ t
t0
w(τ)Tw(τ)dτ ≤

γ+
∫ t
t0
w(τ)Tw(τ)dτ ≤ γ+R2q(t), ∀t ∈ [t0, T ], and it follows

from (F.2) that x(t) ∈ Ωrt,0, ∀t ∈ [t0, T ].

Remark 8. In Theorem 3, the control law is allowed to depend
on t, x, w, δ. Restricting the dependence of k is straightfor-
ward, as the theorem remains true if k depends on a subset
of the variables t, x, w, δ.

In (F.1), the term wTw is called a “supply rate”. The
storage function along with the accompanying supply rate
form a dissipation inequality [?]. Compared with the standard
Lyapunov condition, the dissipation inequality is able to char-
acterize a broader class of properties of the systems based on
different choices of supply rates, e.g., 0 in (A.1) for nominal
reachability analysis, and w>w in (F.1) for L2 reachability
analysis.
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If q is not known beforehand, meaning w only satisfies∫ T
t0
w(τ)Tw(τ)dτ ≤ R2, the constraints (F.1) and (F.2) need

to be modified: for all (t, w, δ) ∈ [t0, T ]× Rnw ×∆δ ,

ΩVt,γ+R2 ⊆
{
x ∈ Rn :

∂V (t, x)

∂t
+
∂V (t, x)

∂x
(f(t, x, w, δ)+

g(t, x, w, δ)k(t, x, w, δ)) ≤ wTw
}

and for all t ∈ [t0, T ], ΩVt,γ+R2 ⊆ Ωrt,0.
Control saturation is again addressed by adding appropriate

constraints. This culminates in a state-feedback synthesis
BRS optimization that accounts for actuator limits, external
disturbances, and parametric uncertainties,

High-level optimization problem 2. (hi-opt2)

sup
V,k

volume(ΩVt0,γ)

s.t. (F.1) and (F.2) hold, and

ΩVt,γ+R2q(t) ⊆ {x ∈ Rn : Ai(t, x)k(t, x, w, δ) ≤ bi(t, x)} ,
∀ (t, w, δ) ∈ [t0, T ]× Rnw ×∆δ, ∀i = 1, ..., np. (F.3)

If, in addition to the L2 bound, w satisfies an L∞ constraint:
w(t) ∈ ∆w := {w ∈ Rnw : ‖w(t)‖E ≤ w̄}, then constraints
(F.1) (F.3) are only restricted to hold for all (t, w, δ) ∈ [t0, T ]×
∆w ×∆δ .

Applying SOS relaxation and the S-procedure to hi-opt2,
yields the following optimization problem. Again, ε is a fixed
small positive number.

Optimization problem 2. (sosopt2)

sup
V,k,s

volume(ΩVt0,γ)

s.t. sl ∈ Σ[t, x, w, δ], ∀l = 2, 3, 8, 9, (s4 − ε), s7 ∈ Σ[t, x],

si,j ∈ Σ[t, x, w, δ], ∀i = 1, ..., np, ∀j = 5, 6, 10, 11,

k ∈ Rm[t, x, w, δ], V ∈ R[t, x], (H.1)

−
(
∂V

∂t
+
∂V

∂x
· (f + gk)− wTw

)
+ s3 · (V − γ −R2q)

− s2h+ s8 · (wTw − w2)

+ s9 · (δT δ − δ
2
) ∈ Σ[t, x, w, δ], (H.2)

− s4r + V − γ −R2q − s7h ∈ Σ[t, x], (H.3)

bi −Aik + si,11 · (wTw − w2)+si,5 · (V (t, x)− γ −R2q)

−si,6h+ si,10 · (δT δ − δ
2
)

∈ Σ[t, x, w, δ], ∀i = 1, ..., np. (H.4)

By slightly modifying Algorithm 1, an iterative algorithm
for sosopt2 is developed.

Remark 9. As mentioned in Remark 8, the dependence of
k can be more restrictive and the multipliers simplify. For
example, with k(t, x), si,10 and si,11 can be eliminated and
si,5 and si,6 only need to depend on t and x. Example V-B
illustrates this flexibility.

Remark 10. Compared with the proposed method, the
Hamilton-Jacobi (HJ) methods are applicable to a broader
class of systems beyond polynomial systems, and generally

give less conservative BRS approximations. However, this
comes with heavy computational requirements resulting from
gridding. In contrast, the proposed method avoids gridding,
which is computationally favorable, and is able to consider
L2 disturbances.

V. EXAMPLES

A workstation with a 2.7 [GHz] Intel Core i5 64 bit
processor and 8[GB] of RAM was used for performing all
computations in the following examples. The SOS optimiza-
tion problem is formulated and translated into SDP using
the sum-of-square module in SOSOPT [?] on MATLAB, and
solved by the SDP solver MOSEK [?]. Table I shows the
degree of various polynomials and the computation time.

TABLE I: Computation times for each example

Examples /
sections

# of
States

Degree
of f, g

Degree
of V

Degree
of s, k

Computing
Time [sec]

V-A 4 3 4 4 1.3× 104

V-B: without
w

4 3 4 4 1.1× 104

V-B: with w,
k(t, x)

4 3 4 4 2.1× 104

V-B: with w,
k(t, x, w)

4 3 4 4 4.8× 104

V-C 3 3 6 2 7.2× 103

V-D 6 3 2 2 1.9× 103

V-D 6 3 4 2 4.4× 103

A. Pendubot Example

Consider the following polynomial dynamics for a pendubot
ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

f2(x1, x2, x3, x4)
x4

f4(x1, x2, x3, x4)

+


0

g2(x3)
0

g4(x3)

u,
with f2 = −10.656x3

1 + 11.531x2
1x3 + 7.885x1x

2
3+

0.797x2
2x3 + 0.841x2x3x4 + 21.049x3

3+

0.420x3x
2
4 + 66.523x1 − 24.511x3,

f4 = 10.996x3
1 − 48.915x2

1x3 − 6.404x1x
2
3−

2.396x2
2x3 − 1.594x2x3x4 − 51.909x3

3−
0.797x3x

2
4 − 68.642x1 + 103.978x3,

g2 = −10.096x2
3 + 44.252,

g4 = 37.802x2
3 − 83.912,

which is obtained as a least-squares approximation of the full
equations for x1 × x3 ∈ [−1, 1]× [−1, 1].

Here x1 and x3 represent θ1 (rad) and θ2 (rad), which are
angular positions of the first link and the second link (relative
to the first link), respectively, and x2 and x4 are θ̇1 (rad/s) and
θ̇2 (rad/s), which are corresponding angular velocities. Input u
(Nm) is the torque applied at the joint of first link and ground,
but there is no torque applied at the joint of two links.

We take the time horizon [0, 4 sec], rT (x) = xT

diag(1/0.12, 1/0.352, 1/0.12, 1/0.352)x− 1, ε = 1× 10−4,
and impose a bound on the control input u ∈ [−1, 1]. Slices
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of sets shown on the left side of Figure 1 are plotted with θ̇1

and θ̇2 fixed at 0. Slices of sets shown on the right side of
Figure 1 are plotted with θ1 and θ2 fixed at 0.
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Fig. 1: Inner-approximated BRS for the pendubot example

A simulation result with the initial condition [−0.35 rad;
2.6 rad/s; 0.35 rad; −4 rad/s], under the designed polynomial
control law is shown in Figure 2.

0 1 2 3 4
-0.5

0

0.5

0 1 2 3 4
-5

0

5

0 1 2 3 4
-0.5

0

0.5

Fig. 2: Pendubot simulation results

B. NASA’s Generic Transport Model (GTM) around straight
and level flight condition with L2 Disturbance

The GTM is a remote-controlled 5.5% scale commercial
aircraft [?]. From [?], its longitudinal dynamical model is

ẋ1 =
1

m
(−D −mg sin(x4 − x2) + Tx cos(x2)

+ Tz sin(x2)),

ẋ2 =
1

mx1
(−L+mg cos(x4 − x2)

− Tx sin(x2) + Tz cos(x2) + x3),

ẋ3 =
M + Tm
Iyy

,

ẋ4 =x3,

(5)

where x1 to x4 represent air speed (m/s), angle of attack
(rad), pitch rate (rad/s) and pitch angle (rad), respectively. The
control inputs are elevator deflection uelev (rad) and engine
throttle uth (percent). The drag force D (N), lift force L
(N), and aerodynamic pitching moment M (N m) are given
by D = q̄SCD(x2, uelev, q̂), L = q̄SCL(x2, uelev, q̂), and
M = q̄Sc̄Cm(x2, uelev, q̂),where q̄ := 1

2ρx
2
1 is the dynamic

pressure (N/m2), q̂ := (c̄/2x1)x3 is the normalized pitch rate
(unitless), S and c̄ are the surface area and mean aerodynamic
chord (both in m). CD, CL, and Cm are aerodynamic coeffi-
cients computed from look-up tables provided by NASA [?].

A 4-state, 2-input, degree-7 polynomial model is obtained
in [?] by replacing all nonpolynomial terms in (5) with their
polynomial approximations. The following straight and level
trim-condition is computed for this model: x1,t = 45 m/s,
x2,t = 0.04924 rad, x3,t = 0 rad/s, x4,t = 0.04924 rad,
with uelev,t = 0.04892 rad, and uth,t = 14.33%. A 4-
state, degree-3, single-input polynomial longitudinal model is
extracted from the 4-state, 2-input, degree-7 polynomial model
by holding uth at its trim value, and retaining terms up to
degree-3. This degree-3 polynomial model is used for the
following synthesis.

The disturbance w is the perturbation to the angle of attack
caused by a change in wind direction, i.e. the force generated
on the aircraft is due to wind coming at an angle (x2 + w).
Denote the nominal GTM system as F (x, u) := f(x)+g(x)u;
then the disturbed system is given as

ẋ = F (x, u) +
dF (x, u)

dx2
w

= f(x) +
df(x)

dx2
w + (g(x) +

dg(x)

dx2
w)u. (6)

The disturbance w is assumed to have both L2 and L∞
bounds: R := 0.1 rad,

∫ t
0
wT (τ)w(τ)dτ ≤ R2q(t) :=

R2t2/T 2, for all t ∈ [0, 3 sec] and ‖w(t)‖2 ≤ w := 0.141
rad. Set the time horizon [0, 3 sec], ε = 1 × 10−4, the
control constraint uelev ∈ [−10◦, 10◦], and rT (x) =
(x−xeq)T diag(1/42, 1/(π/30)2, 1/(π/15)2, 1/(π/30)2)(x−
xeq) − 1, where the equilibrium point xeq :=
[x1,t, x2,t, x3,t, x4,t]

T .
In this section, we inner-approximate the BRS for three

cases: without disturbance w and k is a function of t, x; with
disturbance w and k is allowed to be a function of t, x, w; with
disturbance w but k is a function of only t, x. Curves shown
on the left side of Figure 3 are slices of sets with x1 = x1,t

and x4 = x4,t; curves shown on the right side are slices of sets
with x2 = x2,t and x3 = x3,t. Notice that the volume of inner-
approximations of BRS for the two cases with disturbance are
smaller than without disturbance. Moreover, for the two cases
with disturbance, the volume of inner-approximations for the
case using k(t, x) is smaller than the case using k(t, x, w).

The simulation results of the polynomial model of GTM
with the initial condition [47 m/s; 20 deg; 70 deg/s; 20 deg]
and a disturbance signal w(t) =

√
2tR
T η(t), using both k(t, x)

and k(t, x, w) are shown in Figure 4, where the value of η(t)
is updated by the number drawn from the uniform distribution
on the interval (−1, 1) at 50 Hz, and holds at the updated value
until the next update. As we can see in the figure, the trajectory



7

-40 -20 0 20 40

-250

-200

-150

-100

-50

0

50

100

150

200

35 40 45 50 55

-20

-10

0

10

20

30

Fig. 3: Inner-approximated BRS for GTM

for pitch rate x3 with k(t, x, w) reaches trim value faster than
the one with k(t, x), and the former is much smoother.
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Fig. 4: Simulations of GTM with disturbances w

C. Pursuer-evader Game

Consider the reach-avoid example from [?]. Assume there
are two players, the evader and the pursuer. Fix the evader at
the origin and facing along the positive x1 axis, so that the
pursuer’s relative location and heading are described byẋ1

ẋ2

ẋ3

 =

−ve + vp cos(x3) + uex2

vp sin(x3)− uex1

up − ue

 , (7)

where x1, x2, x3 represent relative x, y positions and heading
angle; ue and up are angular velocity inputs from the evader
and pursuer; ve and vp are velocities of the evader and pursuer.

Set the time horizon [0, 2.6 sec], and rT (x) = xTx − 1.
Velocities of two players are constant: ve = vp = 1, control
input is up(t) ∈ [−1, 1]. The goal for the pursuer is to
find a robust control law for up and an inner-approximated
BRS, so that no matter how the evader chooses its control

input at each time instance, all the trajectories for system (7)
from the inner-approximated BRS will always be driven to
the target set ΩrT0 . This reachability problem is posed as a
dynamic game in [?], whereas in this paper, the control input
ue from the evader is regarded as the uncertain parameter
with a given L∞ bound: ue(t) ∈ [−0.5, 0.5]. In this example,
cos(x3) is approximated by (−0.4298x2

3 + 1), and sin(x3)
is approximated by (−0.1511x3

3 + x3), which are obtained
by least square regression for x3 ∈ [−π2 ,

π
2 ]. Polynomial

dynamics of (7) can be obtained by replacing cos(x3) by
(−0.4298x2

3 + 1 + δcos), where accounting for the error
between cos(x3) and its polynomial approximation yields
δcos(t) ∈ [−0.05, 0.05] for x3 ∈ [−π2 ,

π
2 ]. The error between

sin(x3) and its polynomial approximation is very small and it
is neglected. Setting δcos(t) = 0, neglects the cos(x3) error as
well.

The results are computed for the two cases: δcos(t) ∈
[−0.05, 0.05] or δcos(t) = 0. In Figure 5, computed inner-
approximations are shown with solid red and translucent
brown, respectively. The computed storage function of the
former case is used as the initial iterate V 0 for the latter.
The target set is shown with the transparent black cylinder.
We can see that when δcos(t) ∈ [−0.05, 0.05], the BRS inner-
approximation is smaller than when δcos(t) = 0, but robust
against the error resulting from polynomial modelling.

(a) 3D view (b) Top view

Fig. 5: Inner-approximated BRS for the pursuer-evader game

D. Quadrotor

Consider the following quadrotor dynamics from [?]

ẋ1 = x3, ẋ2 = x4, ẋ3 = u1K sin(x5), ẋ4 = u1K cos(x5)− gn
ẋ5 = x6, ẋ6 = −d0x5 − d1x6 + n0u2,

where x = [x1, ..., x6] are the states, representing horizontal
position (m), vertical position (m), horizontal velocity (m/s),
vertical velocity (m/s), roll (rad), and roll velocity (rad/s),
respectively. u1 and u2 are total thrust and desired roll angle.
Control saturation limits are u1(t) ∈ [−1.5, 1.5] + gn/K, and
u2(t) ∈ [−π/12, π/12]. gn = 9.8, K = 0.89/1.4, d0 = 70,
d1 = 17, and n0 = 55 are taken from [?].

We take the time horizon [0, 2], and the target tube Ωrt,0 =
{x : |x1| ≤ 1.7, |x2| ≤ 0.85, |x3| ≤ 0.8, |x4| ≤ 1, |x5| ≤
π/12, |x6| ≤ π/2}. sin(x5) is approximated by (−0.166x3

5 +
x5) and cos(x5) is approximated by (−0.498x2

5 + 1), using
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least squares regression for x5 ∈ [−π/12, π/12]. The validity
of this bound is guaranteed by the target tube Ωrt,0.

In Fig. 6, the projections of BRS inner-approximations
obtained using degree-2 and degree-4 storage functions are
shown with orange and maroon curves, and the projections
of the target tube Ωrt,0 are shown with blue rectangles. As
we can see from Fig. 6 and Table I, as the degree of the
polynomial decision variable grows, the conservativeness of
the approximation is reduced at the cost of longer computation
time.

Fig. 6: BRS inner-approximations for the quadrotor

VI. CONCLUSIONS

We proposed a method for synthesizing controllers for
nonlinear systems with polynomial vector fields. The synthesis
process yields a state-feedback control law, and a reachability
storage function that characterizes an inner-approximation to
the BRS for a given target tube. An iterative algorithm to
construct them is derived based on SOS programming and
the S-procedure. The synthesis framework is also extended
to uncertain systems with L∞ parametric uncertainties and
L2 disturbances. This method is applied to several practical
robotics and aircraft models. Currently, the computational
complexity of our method limits it to systems of modest size,
with fewer than ten state variables.
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