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Abstract— We present an algorithm for data-driven reacha-
bility analysis that estimates finite-horizon forward reachable
sets for general nonlinear systems using level sets of a certain
class of polynomials known as Christoffel functions. The level
sets of Christoffel functions are known empirically to provide
good approximations to the support of probability distributions:
the algorithm uses this property for reachability analysis by
solving a probabilistic relaxation of the reachable set compu-
tation problem. We also provide a guarantee that the output
of the algorithm is an accurate reachable set approximation
in a probabilistic sense, provided that a certain sample size
is attained. We also investigate three numerical examples to
demonstrate the algorithm’s capabilities, such as providing non-
convex reachable set approximations and detecting holes in the
reachable set.

I. INTRODUCTION

A popular and effective way to guarantee the safety of a
system in the face of uncertainty is reachability analysis, a
set-based method that characterizes all possible evolutions of
the system by computing reachable sets. Many algorithms
in reachability analysis use detailed system information to
compute a sound approximation to the reachable set, that is
an approximation guaranteed to completely contain (or be
contained in) the reachable set. However, in many important
applications, such as complex cyber-physical systems that
are only accessible through simulations or experiments,
this detailed system information is not available, so these
algorithms cannot be applied.

Applications such as these motivate data-driven reachabil-
ity analysis, which studies algorithms to estimate reachable
sets using the type of data that can be obtained from
experiments and simulations. These algorithms have the
advantage of being able to estimate the reachable sets of
any system whose behavior can be simulated or measured
experimentally, without requiring any additional mathemat-
ical information about the system. The main disadvantage
of data-driven reachability algorithms is that generally they
cannot provide the same type of soundness guarantees as
traditional reachability analysis algorithms; however, they
can still guarantee accuracy of the estimates in a probabilistic
sense with high confidence.

Data-driven reachability is a rapidly growing area of
research within reachability analysis. Many recent develop-
ments focus either on providing probabilistic guarantees of
correctness for data-driven methods that estimate the reach-
able set directly from data, for instance using results from
statistical learning theory [1] or scenario optimization [2],
[3], [4], [5], [6], [7]. Others incorporate data-driven elements

into more traditional reachability approaches, for instance
estimating entities such as discrepancy functions [8] or dif-
ferential inclusions [9]. Finally, other developments include
incorporating data-driven reachability into verification tools
for cyber-physical systems [8], [10].

This paper investigates a data-driven reachability algo-
rithm that directly estimates the reachable set from data
using the sublevel sets of an empirical inverse Christoffel
function, and provides a probabilistic guarantee of accuracy
for the method using statistical learning-theoretic methods.
Christoffel functions are a class of polynomials defined
with respect to measures on Rn: a single measure defines
a family of Christoffel function polynomials. When the
measure in question is defined by a probability distribution
on Rn the level sets of Christoffel functions are known
empirically to provide tight approximations to the support.
This support-approximating quality has motivated the use of
Christoffel functions in several statistical applications, such
as density estimation [11], [12] and outlier detection [13].
Additionally, the level sets have been shown, using the plug-
in approach [14], to converge exactly to the support of the
distribution (in the sense of Hausdorff measure) when the
degree of the polynomial approaches infinity, and when the
true probability distribution is available [12]. When the true
probability distribution is not known, as is typically the case
in data analysis, the Christoffel function can be empirically
estimated using a point cloud of independent and identically
distributed (iid) samples from the distribution: this empirical
Christoffel function still provides accurate estimates for the
support, and some convergence results in this case are also
known [15].

The contribution of this paper is twofold. First, we provide
an algorithm which uses the level sets of a Christoffel
function to estimate a reachable set using a point cloud of
iid samples from the reachable set, which can be obtained
through simulations by a Monte Carlo sampling scheme.
Second, we provide a guarantee of the probabilistic accuracy
of the reachable set estimate produced by the algorithm:
provided that a certain (finite) sample size is attained, the
level set provided by the algorithm is guaranteed to achieve
a user-specified level of probabilistic accuracy with high
confidence. Unlike the convergence results of [12], [15], this
result holds for finite sample sizes and finite degrees.

Notation

Given vectors a, b ∈ Rn, a multidimensional interval
(“interval” for brevity) is the set [a, b] = {x ∈ Rn|a ≤ x ≤
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b}, where ≤ is the standard partial order Rn. Given a vector
x, a subscript xi denotes the ith element of x. Given an
ordered multiset of vectors (a collection of points in Rn for
instance), a superscript x(i) denotes the ith member of the
multiset. For x ∈ Rn, the vector zk(x) ∈ R(n+k

n ) denotes
the vector of monomials of degree ≤ k, including degree
zero, evaluated at x: for instance, if n = 2 and k = 2,
then zk(x) = [1 x1 x2 x1x2 x21 x22]>. The space of
polynomials of degree ≤ d in n variables is denoted R[x]nd :
note that elements of zd, treated as polynomials, form a basis
for R[x]nd .

II. PRELIMINARIES

A. Probabilistic Reachability Analysis

Consider a dynamical system with a state transition func-
tion Φ(t1; t0, x0, d) that maps an initial state x(t0) = x0 ∈
Rn at time t0 to a unique final state at time t1, under a
disturbance d : [t0, t1]→ Rw. For instance, when the system
state dynamics ẋ(t) = f(t, x(t), d(t)) are known and have
unique solutions on the interval [t0, t1], then Φ(t1; t0, x0, d)
is just x(t1), where x is the solution of the state dynamics
with initial condition x(t0) = x0. In addition to represent-
ing exogenous disturbances, the disturbance signal d may
account for deviations of an input from a nominal control
law.

For the problem of forward reachability analysis, we are
also given an initial set X0 ⊂ Rn, a set D of allowed
disturbances and a time range [t0, t1]. The forward reachable
set is then defined as the set of all states to which the system
can transition in the time range [t0, t1] with initial states in
X0 and disturbances in D, that is the set

R[t0,t1] = {Φ(t1; t0, x0, d) : x0 ∈ X0, d ∈ D}.

To tackle the problem of estimating the forward reachable
set by statistical means, we add probabilistic structure to
the reachability problem that corresponds to taking random
independent samples from the reachable set. Specifically, we
take random variables X0 and D that take values on X0

and D respectively. These random variables then induce a
random variable Φ(t1; t0, X0, D) over the forward reachable
set, whose probability measure we denote as µ.

Remark 1: The random variables X0 and D may have
a physical significance, if the initial states, inputs, or dis-
turbances are known to behave randomly in the problem at
hand. However, they do not need to: they may be considered
as instrumental distributions whose purpose is to provide a
consistent rule for selecting initial states and disturbances at
random.

The measure µ(A) of a set A ∈ Rn has an intuitive
interpretation: if we take samples x0 and d of the random
variables X0 and D, then the vector Φ(t1; t0, x0, d) lies in
A with probability µ(A). Additionally, the smallest set of
measure 1 is the reachable set. This interpretation motivates
µ(A) as a measure of probabilistic accuracy: if a set A ⊆ Rn
has a greater measure µ(A) than a set B ⊆ Rn, then A is a
more accurate approximation of the reachable set than B, in

the sense that it “misses” less of the probability mass than B
does. In the probabilistic version of the forward reachability
problem, our goal is to find reachable set approximations
R̂[t0,t1] such that µ(R̂[t0,t1]) is close to 1. Formally, we look
to solve the following problem.

Problem 1: Given the state transition function
Φ(t1; t0, x0, u), time range [t0, t1], initial set X0, and
disturbance set D, the random variables X0 and D, and an
accuracy level ε ∈ (0, 1), compute a set R̂[t0,t1] such that
µ(R̂[t0,t1]) ≥ 1− ε.

Selecting a set with high measure under µ is not sufficient
to ensure a reasonable estimate, since the trivial solution
R̂[t0,t1] = Rn satisfies µ(R̂[t0,t1]) = 1. To avoid this problem
we require some regularization, such as requiring that R̂[t0,t1]

be compact and penalizing estimates with high volume.

B. Christoffel Functions

Given a finite measure µ on Rn and a positive integer k,
the Christoffel function of order k is defined as the ratio

κ(x) =
1

zk(x)>M−1zk(x)
,

where M is the matrix of moments

M =

∫
Rn

zk(x)zk(x)>dµ(x)

and zk(x) is the vector of monomials of degree ≤ k. We
assume throughout that M is positive definite, ensuring that
M−1 exists. The Christoffel function has several important
application in approximation theory, where its asymptotic
properties are used to prove the regularity and consistency of
Fourier series of orthogonal polynomials. For our purposes,
it is more convenient to use the inverse Christoffel function

κ(x)
−1

= zk(x)>M−1zk(x),

which is a polynomial of degree 2k. In Problem 1, and
more generally in the problem of estimating a probability
distribution from samples, µ is a probability measure which
we do not a priori know. In this case, we instead use an
empirical estimate of µ constructed from a collection of
independently and identically distributed (iid) samples x(i),
i = 1, . . . , N samples from µ, namely

µ̂ =
1

N

N∑
i=1

δx(i) ,

where δx is the Dirac measure satisfying
∫
f(y)dδx(y) =

f(x). The measure µ̂ itself defines a Christoffel function,
whose inverse

C(x) = κ̂−1(x) = zk(x)>M̂−1zk(x)

= zk(x)>

(
1

N

N∑
i=1

zk(x(i))zk(x(i))>

)−1
zk(x),

is called the empirical inverse Christoffel function. The
matrix M̂ is positive definite (and hence M̂−1 exists) if
N ≥

(
n+k
n

)
and the x(i) do not all belong to the zero set of

a single degree k polynomial.
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III. CHRISTOFFEL FUNCTION LEVEL SETS AS
REACHABLE SET APPROXIMATIONS

The ability of level sets of Christoffel functions to estimate
the support of probability distributions motivates Algorithm 1
as a data-driven strategy for solving Problem 1. Specifically,
Algorithm 1 computes an empirical inverse Christoffel func-
tion C(x) and a level parameter α ∈ R, and returns the
sublevel set {x ∈ Rn : C(x) ≤ α} as a proposed solution to
Problem 1.

Algorithm 1: Data-driven reachable set estimation
by a sublevel set of an empirical inverse Christoffel
function.

Input: Transition function Φ of a system with state
dimension n; random variables X0 and D
defined on X0 and D respectively; time range
[t0, t1]; probabilistic guarantee parameters ε
and δ; Christoffel function order k.

Output: Set R̂[t0,t1] representing an ε-accurate
reachable set estimate with confidence 1− δ.

Set number of samples

N =

⌈
5

ε

(
log

4

δ
+

(
n+ 2k

n

)
log

40

ε

)⌉
.

forall i ∈ {1, . . . , N} do
Take iid samples x(i)0 and d(i) from X0 and D
respectively;

evaluate x(i)f = Φ(t1; t0, x
(i)
0 , d(i)).

end
Compute the matrix M̂−1 and level parameter α,
where

M̂ =
1

N

N∑
i=1

zk(x
(i)
f )zk(x

(i)
f )>,

α = max
i=1,...,N

zk(x
(i)
f )>M̂−1zk(x

(i)
f ).

Record the set

R̂[t0,t1] = {x ∈ Rn : zk(x)>M̂−1zk(x) ≤ α}

as the reachable set estimate.

Since Algorithm 1 is a randomized algorithm, it is possible
that a particular run will produce an invalid solution to Prob-
lem 1. However, Theorem 1 guarantees that the probability
that this occurs is no greater than δ, a parameter that the user
can specify in advance.

Theorem 1: Let C denote the empirical inverse Christoffel
function for a point cloud x(1), . . . , x(N) of iid samples from
µ, i.e.

C(x) = zk(x)>

(
1

N

N∑
i=1

zk(x(i))zk(x(i))>

)−1
zk(x),

and let α = maxi C(x(i)). Let µN denote the joint proba-
bility measure corresponding to N iid samples from µ. If

N ≥ 5

ε

(
log

4

δ
+

(
n+ 2k

n

)
log

40

ε

)
, (1)

then

µN
(
{(x(1), . . . , x(N)) :

µ ({x ∈ Rn : C(x) ≤ α}) ≥ 1− ε}
)
≥ 1− δ.

This means that, with probability ≥ 1−δ, the α-sublevel set
of C(x) contains at least 1− ε of the probability mass of µ.
The probability 1 − δ is the confidence that the solution
is valid. For instance, suppose we set δ = 10−9: then
Theorem 1 gives us the confidence that there is less than
a one in a billion chance that Algorithm 1 will fail to solve
Problem 1.

The proof of this result is based on the following two
results from statistical learning theory.

Lemma 1 ([16], Theorem 7.2): Let V be a vector space
of functions g : Rn → R with dimension m. Then the class
of sets

Pos(V ) = { {x|g(x) ≥ 0}, g ∈ V }

has Vapnik–Chervonenkis (VC) dimension m.
Lemma 2 ([17], Corollary 4): Let C be a class of sets

with VC dimension m. For a set c ∈ C, let ˆ̀(c) =
1
N

∑N
i=1 1{x(i) /∈ c} be the empirical error from a sample

of M iid samples from µ, and let `(c) = Eµ[1{X /∈ c}] =
1− µ(c) be the generalization error. If

N ≥ 5

ε

(
log

4

δ
+m log

40

ε

)
,

and if ˆ̀(c) = 0, that is if all of the points
x(i), i = 1, . . . , n are contained in the concept c, then
µN
(
{x(1), . . . , x(N) : `(c) ≤ ε}

)
≥ 1− δ.

Theorem 1 follows from Lemmas 1 and 2 because the set c =
{x ∈ Rn|C(x) ≤ α} belongs to the class C = Pos(R[x]nd )
and satisfies ˆ̀(c) = 0, and because the dimension of R[x]nd
is
(
n+2k
n

)
.

In addition to providing a high-confidence solution to
Problem 1, Algorithm 1 also achieves the regularization
goals mentioned at the end of Section II-A. In particular,
the estimate R̂[t0,t1] produced by Algorithm 1 is compact,
since it is a sublevel set of the sum-of-squares polynomial
z(x)>M̂−1z(x). Furthermore, the level parameter α can
equivalently be defined as the solution to the optimization
problem

arg min
α>0

α

subject to zk(x(i))>M−1zk(x(i)) ≤ α, i = 1, . . . , N.

In this problem, α acts as a penalty term for the volume of
the sublevel set, since the volume increases monotonically
with increasing α.

Remark 2: In some reachability problems, we are only in-
terested in computing a reachable set for a subset of the state
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variables. For example, suppose the state is (x1, . . . , xn) ∈
Rn, and we wish to verify a safety specification involving
only the states x1, . . . , xm, where m < n: a reachable set for
the states x1, . . . , xm would suffice for this problem. In cases
like this, Algorithm 1 can be modified to use only the first
m elements of the samples x(i)f . The output of the algorithm
is then an empirical inverse Christoffel function with domain
Rm whose sublevel set R̂[t0,t1] estimates the reachable set
for the reduced set of states. In the sequel, we refer to this
application of Algorithm 1 as the reduced-state variant of
Algorithm 1.

IV. EXAMPLES

This section demonstrates Algorithm 1’s ability to make
accurate estimates of forward reachable sets with three nu-
merical examples. We demonstrate how the parallel nature of
the algorithm can be leveraged to improve computation times
by running all experiments on two computing platforms: (i) a
laptop with 4 2.6 GHz cores; and (ii) an instance of the AWS
EC2 computing platform c5.24xlarge, a virtual machine
with 96 3.6 GHz cores.

A. Chaotic Nonlinear Oscillator

The first example is a reachable set estimation problem
for the nonlinear, time-varying system with dynamics

ẋ = y

ẏ = −αy + x− x3 + γ cos(ωt),
(2)

with states x, y ∈ R and parameters α, γ, ω ∈ R. This system
is known as the Duffing oscillator, a nonlinear oscillator
which exhibits chaotic behavior for certain values of α, γ,
and ω, for instance

α = 0.05, γ = 0.4, ω = 1.3.

The initial is the interval such that x(0) ∈ [0.95, 1.05],
y(0) ∈ [−0.05, 0.05], and we take X0 to be the uniform ran-
dom variable over this interval. The time range is [t0, t1] =
[0, 100].

We use Algorithm 1 to compute a reachable set for (2)
using an order k = 10 empirical inverse Christoffel function
with accuracy and confidence parameters ε = 0.05, δ =
10−9. With these parameters, (1) states that N = 156, 626
samples are required to ensure that Theorem 1 holds for
the reachable set estimate. Total computation times for this
example were 39 minutes on the laptop, and 41 seconds on
c5.24xlarge.

Figure 1 shows the reachable set estimate for the Duffing
oscillator system with the problem data given above, and
the point cloud of 156, 626 samples used to compute the
empirical inverse Christoffel function and the level parameter
α. The reachable set estimate is neither convex nor simply
connected, closely following the boundaries of the cloud of
points and excluding an empty region within the cloud of
points.

To experimentally verify that the assertion of Proposition 1
holds for the reachable set estimate, we compute an a
posteriori estimate of the accuracy of the empirical inverse

Christoffel function sublevel set. To do this, we first compute
a new set of sample points of size Nap. Denoting by Nout
the number of new samples that lie outside of the reachable
set estimate, we can compute the empirical accuracy of
a reachable set approximation as 1 − Nout/NAP . We use
NAP = 46,052 sample points to make the a posteriori
estimate. This sample size ensures that a one-sided Chernoff
bound holds, which guarantees that empirical accuracy is
within 1% of the true with 99.99% confidence. The a
posteriori empirical accuracy computed with this sample
is 1 − (2 × 10−5), ensuring that the true accuracy of the
reachable set estimate is at least 0.99−2×10−5 with 99.99%
confidence. This is well in excess of the 0.95 accuracy
guaranteed by Theorem 1.

B. Planar Quadrotor Model

The next example is a reachable set estimation problem for
horizontal position and altitude in a nonlinear model of the
planar dynamics of a quadrotor used as an example in [18],
[19]. The dynamics for this model are

ẍ = u1K sin(θ)

ḧ = −g + u1K cos(θ)

θ̈ = −d0θ − d1θ̇ + n0u2,

where x and h denote the quadrotor’s horizontal position
and altitude in meters, respectively, and θ denotes its angular
displacement (so that the quadrotor is level with the ground
at θ = 0) in radians. The system has 6 states, which we
take to be x, h, θ, and their first derivatives. The two system
inputs u1 and u2 (treated as disturbances for this example)
represent the motor thrust and the desired angle, respectively.
The parameter values used (following [19]) are g = 9.81,
K = 0.89/1.4, d0 = 70, d1 = 17, and n0 = 55. The set of
initial states is the interval such that

x(0) ∈ [−1.7, 1.7], ẋ(0) ∈ [−0.8, 0.8],

h(0) ∈ [0.3, 2.0], ḣ(0) ∈ [−1.0, 1.0],

θ(0) ∈ [−π/12, π/12], θ̇(0) ∈ [−π/2, π/2],

the set of inputs is the set of constant functions u1(t) = u1,
u2(t) = u2 ∀t ∈ [t0, t1], whose values lie in the interval

u1 ∈ [−1.5 + g/K, 1.5 + g/K], u2 ∈ [−π/4, π/4],

and we take X0 and D to be the uniform random variables
defined over these intervals. The time range is [t0, t1] =
[0, 5]. We take probabilistic parameters ε = 0.05, δ = 10−9.
Since the goal of this example is to estimate a reachable set
for the horizontal position and altitude only, we are interested
in a reachable set for a subset of the state variables, namely
x and h. As mentioned in Remark 2, Algorithm 1 can be
used to estimate a reachable set for x and h in two ways:
we can either compute a Christoffel function estimate for
the reachable set and take the “shadow projection” of the
estimate onto x and h, or we could compute a Christoffel
function estimate for x and h directly using the reduced-
state variant of Algorithm 1 with the (x, h) components
of the reachable set data. To compare the relative accuracy
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Fig. 1. Left: reachable set estimate for the Duffing oscillator system (blue contour), the cloud of 156,626 samples used to compute the empirical inverse
Christoffel function (grey points), and the initial set (black box). Right: enlarged version of the region in the left plot enclosed by the red box, showing
the region excluded from the reachable set.

and computational expense of these methods, we compute a
reachable set estimate for (x, h) using both methods.

Fig. 2. Reachable set estimates for the horizontal position and altitude
of the planar quadrotor model, computed by projecting the output of
Algorithm 1 onto (x, h) (blue) and using the modification of Algorithm 1
mentioned in Remark 2, where the algorithm is run using only the (x, h)
components of the data (orange).

Figure 2 shows the reachable set estimates computed using
both methods using order k = 4 inverse empirical Christoffel
functions. Both reachable estimates turn out to be similar,
though the estimate using the modification of Remark 2 is
slightly tighter and significantly less computationally expen-
sive. Running Algorithm 1 with the full state dimension
n = 6 and order k = 4 with the ε and δ above requires
N = 2,009,600 samples: using the reduced-state variant
brings the effective state dimension to n = 2, and the sample
size to N = 32,292. The computation times in the full-
state case were 77 minutes on the laptop and 2 minutes
on c5.24xlarge; in the reduced-state case, computation
times were 78 seconds on the laptop and 2 seconds on
c5.24xlarge. This shows that Algorithm 1’s ability to
work on subsets of the state space can speed up computations
in cases where only a subset of state variables are of interest.

C. Monotone Traffic Model

The final example is a special case of a continuous-
time road traffic analysis problem used as a reachability
benchmark in [20], [21], [22]. This problem investigates
the density of traffic on a single lane over a time range
over four periods of duration T using a discretization of
the cell transmission model that divides the road into n
equal segments. The spatially discretized model is an n-
dimensional dynamical system with states x1, . . . , xn, where
xi represents the density of traffic in the ith segment.
Traffic enters segment through x1 and flows through each
successive segment before leaving through segment n. The
state dynamics are

ẋ1 =
1

T
(d−min(c, vx1, w(x− x2)))

ẋi =
1

T

(
min(c, vxi−1, w(x− xi))

−min(c, vxi, w(x− xi+1))
)
, (i = 2, . . . , n− 1)

ẋn =
1

T
(min(c, vxn−1, w(x− xn)/β)−min(c, vxn))) ,

(3)

where v represents the free-flow speed of traffic, c the max-
imum flow between neighboring segments, x̄ the maximum
occupancy of a segment, and w the congestion wave speed.
The input u represents the influx of traffic into the first
node. For the reachable set estimation problem, we use a
model with n = 6 states, and take T = 30, v = 0.5,
w = 1/6, and x̄ = 320. The initial set is the interval such that
xi(0) ∈ [100, 200], i = 1, . . . , n, the set of disturbances is
the set of constant disturbances with values in the range range
d ∈ [40/T, 60/T ], and X0 and D are the uniform random
variables over these sets. The time range is [t0, t1] = [0, 4T ].

The system dynamics (3) are monotone, or order-
preserving, meaning that if two initial conditions x(1)(0),
x(2)(0) and disturbances d(1), d(2) satisfy x(1)(0) ≤ x(2)(0)
(where ≤ is the standard partial order) and d(1)(t) ≤
d(2)(t), t ∈ [0, T ], then x(1)(T ) ≤ x(2)(T ). This mono-
tonicity allows for a convenient interval over-approximation
of the reachable set. If x, x are the lower and upper bounds
of the interval of initial states, and d, d are the lower and
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upper bounds on the values admitted by the disturbance
signal, then [Φ(t1; t0, x, d),Φ(t1; t0, x, d)] is the smallest
interval that contains the entire reachable set. While this
over-approximation is easy to compute, and the best possible
over-approximation by an interval, it is in general a conser-
vative over-approximation because reachable set may only
occupy a small volume of the interval. Since the empirical
Inverse Christoffel function method can accurately detect
the geometry of the reachable set, we use this method to
compare the shape of the reachable set to the best interval
over-approximation. In particular, we use the reduced-state
variant of Algorithm 1 to compute a reachable set for the
traffic densities x5 and x6 at the end of the road, using an
order k = 10 empirical inverse Christoffel function with
accuracy and confidence parameters ε = 0.05, δ = 10−9.
Computation times for this example were 10 minutes on the
laptop and 2 minutes on c5.24xlarge.

Fig. 3. Reachable set estimate for the monotone traffic model with an
order 10 empirical inverse Christoffel function (blue), compared to the tight
interval over-approximation (red). The reachable set estimate was computed
with Algorithm 1 using samples projected onto states x5 and x6.

Figure 3 compares the reachable set estimate computed
with Algorithm 1 to the projection of the tight interval over-
approximation computed using the monotonicity property of
the traffic system. The figure indicates that the tight inter-
val over-approximation of the reachable set is a somewhat
conservative over-approximation, since the reachable set has
approximately the shape of a parallelotope whose sides are
not axis-aligned.

V. CONCLUSION

Algorithm 1 demonstrates that Christoffel functions, in
addition to being useful in data analysis, can also be used as
tools to provide principled, data-driven solutions to control-
theoretic problems. While Theorem 1 assures that the pro-
posed algorithm is a sound approach to solving reachability
problems with data, and the examples of Section IV demon-
strate that the algorithm can provide accurate reachable set
approximations, we believe it represents only the first step in
applying Christoffel functions to data-driven reachability. For
instance, the a posteriori analysis of Section IV-A suggests
the sample bound of Theorem 1 is conservative, and could

be significantly improved by applying some of the special
properties of Christoffel functions.

In addition, this paper did not explore how kernel methods
can be used alongside Christoffel functions. Although we
have defined the Christoffel function using the standard
monomial basis vector zk(x), the Christoffel function is
in fact invariant to changes in polynomial coordinates. For
instance, zk(x) could be replaced with the feature vector
φk(x) of the polynomial kernel (1 + x>x)k, that is the
monomial vector φk(x) such that φ(x)>φ(x) = (1+x>x)k.
By an application of the kernel trick, this approach can
be extended to kernels with infinite-dimensional feature
spaces, as in [13]. However, the statistical learning-theoretic
proof in this paper covers only the finite-dimensional case:
providing finite-sample statistical guarantees for the infinite-
dimensional case is a topic for future research.
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