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Abstract — This smart city traffic management approach 
seeks to use edge-based video-stream processing (using 
multicore and GPU processors) at intersections and in 
public vehicles (city buses, fire trucks, ambulances, school 
buses) to convert video data into space-time trajectories of 
individual vehicles and pedestrians that are transmitted to a 
cloud-based system. Key information is then synthesized in
the cloud from them to create a real-time city-wide traffic 
palette. Real-time or offline processing both at the edge and 
the cloud will then be leveraged to optimize intersection 
operations, manage network traffic, identify near-collisions 
between various units of traffic, provide street parking
information, and a host of other applications. Additional 
information such as weather and environment will also be 
leveraged. 

The use of edge-based real-time machine learning (ML) 
techniques and videostream processing has several 
significant advantages. (1) Because there is no need to store
copious amounts of video (few minutes typically suffice for 
edge-based processing), it automatically addresses concerns 
of public agencies who do not want person-identifiable 
information to be stored for reasons of citizen privacy and 
legality. (2) The processing of the video stream at the edge 
will allow for the use of low bandwidth communication using 
wireline and wireless networks to a central system such as a 
cloud, resulting in a compressed and holistic picture of the 
entire city. (3) The real-time nature of processing enables a 
wide variety of novel transportation applications at the 
intersection, street, and system levels that were not possible 
hitherto, significantly impacting safety and mobility.

Keywords—video processing, sensor data, machine learning, big 
data analytics, intelligent transportation, smart city

1. INTRODUCTION

Mitigating traffic congestion and improving safety are the
important cornerstones of transportation for smart cities.
Despite significant advances in vehicle technology, traffic
engineering practices, and analytics based on crash data, the
number of traffic crashes and fatalities are still too many. An 
INRIX study1 found that in 2017, traffic congestion resulted 
in nearly $305 billion in congestion costs and caused 
Americans to lose 97 hours per person in congestion. This 

1 https://inrix.com/scorecard/

costs the U.S. $87 billion annually in lost time (with the 
American Transportation Research Institute estimating the 
freight sector loss due to congestion at $75 billion annually).
Many drivers are frustrated due to long (but potentially 
preventable) delays at intersections. Traffic signal control 
timing does not change in real-time based on crashes,
incidents, or changes in traffic patterns and behavior. 
Addressing these challenges requires a thorough 
understanding of traffic patterns not only at intersections but 
on streets and in the overall network. Unfortunately, existing 
monitoring systems and decision making for this purpose 
have several limitations:

Current sensors have limited capability: Vehicle loop 
detectors that have traditionally been deployed at 
intersections to detect the passage of vehicles are error-
prone; have high deployment and maintenance costs; 
can only measure the absence or presence of vehicles 
passing above them; and are not always useful for 
observing the movements of pedestrians and scooters. 
When the sensors are not accurate or timely an adaptive 
strategy will not be effective. Video detection has great 
potential to improve accuracy and timeliness in the 
detection of vehicles, pedestrians, bicyclists, etc.
Current software systems for traffic monitoring are 
fragmented and not suitable for real-time decision 
making: Transportation professionals are presented 
with a plethora of fragmented data in various systems. 
Existing intersection control systems do not provide 
reports on a real-time basis (based on the vendor), and 
these are given at coarse levels of granularity (for 
example, traffic movement counts by the hour) limiting 
their use and ability to make real-time changes to adapt 
to dynamically changing conditions. Current 
approaches are not readily scalable because of 
constraints of cost, bandwidth, and lack of integration.

Our approach uses edge-based video-stream processing 
(using multicore and GPU processors) at intersections and 
in public vehicles (city buses, fire trucks, ambulances, 
school buses) to convert video data into space-time 
trajectories of individual vehicles and pedestrians that are
transmitted to acloud-based system. Key information is then 
synthesized in the cloud from them to create a real-time 
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city-wide traffic palette. Real-time or offline processing
both at the edge and the cloud can then be leveraged to
optimize intersection operations, manage network traffic, 
identify near-misses between various units of traffic, 
provide street parking information, and a host of other 
applications. Additional information such as weather and 
environment will also be leveraged in the future. The use of
edge-based real-time machine learning (ML) techniques and
video-stream processing has several significant advantages:

Because there is no need to store copious amounts of 
video (few minutes typically suffice for edge-based
processing), it automatically addresses concerns of
public agencies and civil libertarians who do not want 
person-identifiable information to be stored for reasons 
of citizen privacy and legality.
The processing of the video-stream at the edge allows
for the use of low bandwidth communication using 
wireline and wireless networks to a central system such 
as a cloud, resulting in a compressed and holistic picture 
of the entire city. This can then be used for efficient
processing.
The real-time nature of processing enables a wide 
variety of novel transportation applications at the 
intersection, street, and system levels that were not 
possible hitherto, significantly impacting the safety and 
mobility of our community.
The use of cloud computing for processing aggregated 
data from multiple video and other sensors will provide 
information unification and the necessary on-demand 
computing horsepower for the large-scale simulations 
for system level optimizations and analytics. It will also 
allow for leveraging offline processing of historical data 
to be used in conjunction with real-time information. 
We broadly describe our approach for improvements of 

community safety and mobility at three levels: smart
intersections, smart streets, and smart systems (Sections 2,
3, and 4). We also describe the interaction of these 
technologies with connected and autonomous vehicles 
(Section 5). These assume that there exist video-based 
systems that can observe traffic at intersections or from 
publicly owned vehicles. The data collected from the above 
sources afford real-time measurements and decisions which 
will then be used as part of an iterative approach to observe
traffic and pedestrian mobility, allowing for the introduction
of new design concepts (such as leading pedestrian
intervals), new technologies (like reaction to autonomous 
and emergency vehicles), and impacts of environmental
improvements (lighting, landscaping, and geometric design 
changes) at intersections. 

We have made considerable progress in implementing 
our vision of developing a smart infrastructure. The current 
status of the project is described in Section 6. In the long 
run, this work will lead to major improvements in the 
current state of practice: the underlying technology, the 
associated data, and the resulting policies and procedures 
are interlocked through a cross-disciplinary approach 
utilizing advances in computer science (video analytics, 
machine learning, sensor fusion) and traffic engineering.

We believe that our approach can have a tangible impact on 
the USDOT goal of the Vision Zero plan to minimize, and 
eventually eliminate, motor vehicle-related crashes and 
accidents. The ability to detect and understand unsafe 
driving and walking conditions (measured as "near misses" 
rather than "crashes") and react to them in real time would 
be critical in further moving the needle towards the goal of
Vision Zero.

2. SMART INTERSECTIONS

Using standard and fisheye cameras mounted at intersections 
(and integrating weight sensors placed beneath streets), we
are leveraging the state of the art in computer vision and 
machine learning to perform vehicle tracking (localization, 
tracking, turn estimation) and pedestrian monitoring at 
intersections. Traffic surveillance of dynamic objects, 
particularly vehicles on the road, has been an active research
topic in past decades in the fields of computer vision and
intelligent transportation systems. In the interests of real-time 
feedback, security, and citizen anonymity, we have elected to 
mainly focus on real-time (and near real-time) video 
processing at intersections.

Our goal at this juncture is to leverage the output of video 
processing and tracking approaches into efficient real-time 
(and near real-time) representations. Subsequently, these
compressed representations drive applications such as the
identification of near misses, summary of pedestrian
movements, and the extraction of vehicle trajectories at
intersections. Since video information is clocked and 
integrated with weight sensors, we anticipate real-time 
feedback to signal controllers resulting ultimately in
improvements to intersection level signal planning (offsets,
phase switches, etc.).

The uplink of compressed information to the cloud is a side
benefit resulting in much lower communication costs. We 
expect this work to have a significant impact on 
understanding traffic behavior at an intersection that will lead 
to the following:

Improved Pedestrian and Bicyclist Safety by examining 
the conflict points of the vehicle and pedestrian 
trajectories and anomalous behavior, based on time of 
day and day of the week. The availability of temporal 
profiles of “exposure data” (i.e., the volumes of 
pedestrians and bicyclists) from video-based systems is 
critical for performing comparative assessments of 
ped/bike safety at different locations.
More Accurate Demand Profiles which can lead to more 
effective signal timing and a better understanding of the 
relationships between existing (loop detector) and new 
technologies (video).
Better Incident and Bottleneck Management using real-
time information and messaging of incidents and other 
events to pedestrians and vehicles.

3. SMART STREETS

We shift perspective to include onboard video information 
(on city buses, emergency vehicles, and police cars). Once 
again, we plan to leverage best-of-breed computer vision 
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algorithms to perform tracking of vehicles, assessment of near
collisions, jaywalking, tailgating – essentially the entire 
gamut of live traffic-centered activities. Since the city buses 
(for example) are moving, tracking will have to be performed 
taking camera motion into account; the same applies for 
integration and cloud communication. Egomotion issues, for
example, are not a problem since accurate GPS information
can be used to determine camera coordinates extrinsically. 
Multiple cameras on the buses allow for better integration 
and more accurate estimation of vehicular tracks. Bluetooth 
communication from the bus to roadside sensors can also be 
integrated into the system if available.

Such data can also provide insights into how passengers 
approach or leave the transit buses at stops. All these can be 
used to understand pedestrian safety both during day and 
night times. In contrast, tracking vehicles in terms of 
trajectories and state of brake lights and indicator lights ahead 
of the bus can help understand lane-changing maneuvers 
undertaken before implementing a turn. The space-time
trajectories of vehicles along adjacent lanes can be used to
infer gap-acceptance behavior, which in turn leads to lane 
changes. Again, differences can be examined across different 
weather conditions. Additionally, the video collected can be 
used to determine free parking spots along the bus routes that 
can be communicated in real-time to the cloud and then to 
citizens. Furthermore, the integration of motion tracking, 
traffic pattern identification, etc. from video (and other
sensors) using city buses etc. is fundamentally novel to the 
traffic engineering field. While summarization information 
from the segments will still be sent to the cloud, the edge-
based processing will directly result in changes to signal
parameters with these effects first tested in simulation 
platforms such as SUMO or VISSIM.

Inclusion of real-time (and near real-time) video 
processing conducted on city buses (and other authorized
vehicles) has the following expected outcomes:

Better Pedestrian Safety by detection of pedestrian 
movements at intersections and mid-blocks
Better Resource Management by understanding usage 
of street parking and signage
Better Lane and Street Sign Design by tracking 
indicator lights, lane-changing maneuvers undertaken 
in front of the bus.

4. SMART NETWORK 

We envisage a comprehensive effort at the network level 
aimed at nothing less than a complete characterization and
activity recognition of important traffic patterns, the
clustering of vehicles and pedestrians, responses to 
emergency vehicles, adjustments made during school 
closings, etc. We will use all summarized information 
(traffic and pedestrian activity patterns, dominant arterials, 
corridors, and sub-networks) sent to the cloud to perform 
network level traffic signal planning using pre-timed signal 
optimization and dynamic reinforcement learning while 
undertaking comprehensive policy testing in traffic
simulation software such as SUMO and VISSIM.

Machine learning on historical data: Once all relevant
traffic data have been sent to the cloud, we can begin analysis 
of historical data to perform a space-time decomposition of 
the network. Essentially, we seek to utilize the video and other
sensor summarization information to carve up the network
spatially into different arterials, corridors, and sub-networks 
and for relevant time periods. While the simplest approach 
we envisage is space-time clustering, this may be insufficient 
to extract long arterials. A more novel machine learning (ML)
approach is to cluster segments (represented as graph edges) 
while enforcing graph connectivity and temporal
compactness (e.g., a long section of Newberry road in
Gainesville from 4-6 PM weekdays -- a typical example of a 
high-volume corridor at peak rush hour). From an ML 
perspective, this is an unsupervised learning problem in a 
spatiotemporal graph which we seek to decompose into 
relevant fragments while ensuring spatial connectivity (artery 
or corridor) and temporal compactness (a reasonable block of 
time). Once this step has been accomplished, we propose to
first perform pre-timed signal optimization and subsequently 
global optimization for real-time and unforeseen events.

The decomposition of the network into important 
fragments (arterials etc.) has a huge payoff in larger 
networks: the decomposition facilitates network-level 
optimization of signal timing. Overall the sensing data from 
multiple intersections will enable

Better Incident Detection for alleviating traffic backups 
and secondary crashes 
Better Signal Retiming for corridors by time of day and 
day of the week to reflect the changes in network 
demand 
Better System-wide Network Utilization using a global 
view of the entire network and potential disruptions.

5. CONNECTED AND AUTONOMOUS VEHICLES 

Connected and automated vehicles (CAVs) are expected to 
organically enter the traffic stream over the next decade. 
These vehicles have the potential to reduce traffic accidents 
and improve the efficiency of transportation systems. We 
expect a symbiotic relationship in which the information 
exchange between the infrastructure and the vehicle should 
lead to mutual benefits.  We are deploying and testing 
connected vehicle technologies as part of our infrastructure 
work (more details are provided in Section 6A). By 
collecting, transmitting, and analyzing data, we expect to

Improve safety by disseminating relevant information 
to vehicles, buses, pedestrians, and other units of traffic 
within the Trapezium (Figure 1)
Enhance our understanding of CAV behavior and their 
interaction with conventional vehicles
Develop better signal timing optimization algorithms 
which use advanced detection based on connectivity
Enhance previously developed trajectory optimization
algorithms for CAVs, which can significantly improve 
the efficiency of the highway network
Develop improved tools to take advantage of CAV-
related technologies and understand the reasons that 
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may affect market penetration. 
The goal of the project is to improve travel time reliability, 
safety, throughput, and traveler information.

6. CURRENT STATUS

Below, we provide a high-level overview of our work in the 
various aspects of smart traffic infrastructure. 

A. I-Street and Trapezium Testbed
The University of Florida Transportation Institute (UFTI)2,
with support from FDOT and the City of Gainesville (CoG),
is developing a smart testbed on the UF campus and 
adjoining city streets. The testbed, called I-STREET, was
established to deploy and evaluate numerous advanced 
technologies for conventional, connected, and autonomous 
vehicles. This includes the use of smart devices and sensors 
to develop novel applications. The overall testbed includes 
heavy pedestrian flow, extensive bicycle facilities, scooters,
and mopeds on campus and a variety of highway facilities 
ranging from four-lane arterials to two-lane low-speed 
roadways. Gainesville is home to one of the most heavily 
used transit systems in Florida (RTS – http://go-rts.com), 
which also serves the UF campus. 

Additionally, the Gainesville Trapezium is deploying and
testing connected vehicle technologies and applications along 
four roads forming a trapezium surrounding the University of 
Florida main campus, as shown in Figure 4. The goal of the 
project is to improve travel time reliability, safety, 
throughput, and traveler information. Approximately 27
roadside units have been installed in this project. The 
roadways and intersections along and within this Trapezium 
and bus routes serving this area will constitute the 
fundamental real-world testbed for this study. 

Most of the signalized intersections of interest to this 
study have live CCTV RTSP feeds streamed at 30 frames per 
second HD quality (720p or 1080p), pan, tilt, and zoom
capabilities, and video detection for stop bar, presence, and 
traffic counting. On select intersections, multimodal video 
detection for pedestrians, bicycles, and vehicles (using Iteris 
Vantage Live, Smart Cycle, and PedTrax) and fisheye video 
detection with motion tracking and vehicle classification 
capabilities are already being installed or are planned for 
installation. ATC controllers can provide signal-timing 
history at decisecond resolution (upgrades to the latter are 
past the planning stages). Thus, a variety of video feeds and 
signal timings are available that will be used for ratification 
of the methods. The video cameras are addressable via a local 
network at every intersection, and the proposed research calls
for processing these video feeds before they leave this
network. Eight- or twelve-port copper Ethernet (fast and 
gigabit) connectivity capable of VLAN segmentation is
available at each intersection, with a single-mode fiber 
backhaul to the Traffic Management Center. These will 
facilitate the transfer of data from the intersections to the 

2 https://www.transportation.institute.ufl.edu/research-
2/istreet-about-us/

cloud. About 5-10 intersections will be chosen to pilot test 
the smart-intersection efforts. Edge processors will be added 
to the video cameras present at these intersections (with the 
CoG and UF jointly designing and testing them to ensure 
effective real-time processing).

Intelligent transportation systems require the use of 
interactions between road users and infrastructure. Dedicated 
short-range communications (DSRC) using radio, Wi-Fi, or 
cellular technologies can enable such interactions at 
signalized interactions. By using DSRC effectively, the 
infrastructure systems can provide information to the users 
about the interactions as well as using the road users as probes 
to create a vignette of local and network level traffic patterns 
and usages.

B. Computing and Software Architecture
The overall approach seeks to use edge-based video-stream
processing (using multicore and GPU processors) at 
intersections and in public vehicles to convert video data into 
space-time trajectories of individual vehicles and pedestrians 
that are transmitted and synthesized on a cloud-based system. 
Improving image processing techniques for traffic 
surveillance is an ongoing area of research in the computer 
vision and intelligent transportation systems (ITS) 
communities. For these reasons, edge computing is centered 
around the concept of adding a layer of compute resources 
between the "IoT" devices and servers on the "cloud". The 
goal of the intermediate layer is to improve performance (by 

Figure 1:  Trapezium project: This project is
deploying and testing connected vehicle technologies 
and applications along four roads forming a trapezium 
surrounding the University of Florida main campus. 
All intersections will have roadside units to interact 
with CAVs. Additionally, video cameras will be 
installed at a large subset of these intersections.
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reducing network latency) and reduce the volume of data
being transported (in an open and interoperable way). The
value of this approach is also in enabling seamless 
interoperability between the heterogeneous datasets and 
providing the computing power necessary for bulk data 
processing and providing real-time applications that only 
need data collected locally. 

Edge Processing: Below, we describe key computing and 
software challenges that we are addressing for edge video 
processing:

Video Characteristics: At 20-30 frames-per-second, 
high-definition video from a single camera can generate 
over 2 gigabytes per hour. We are using GPU processing 
for real-time usage. Some of the main challenges faced 
by traffic video are the sensitivity to variations in 
lighting and weather and the occlusion of vehicles.
Deep Neural Network Software: Deep neural networks 
(DNNs) are currently widely used (Abadi et al., 2016) 
for many artificial intelligence (AI) applications, by 
gathering knowledge from experience with a hierarchy 
of concepts. We have developed DNN approaches for 
vehicle detection and tracking.
GPU Processing: Most image processing and deep 
learning frameworks can effectively leverage Nvidia's 
cuDNN and other libraries for rapid execution. This
acceleration is transparent to the user of the framework 
library. Similar processing capabilities are also 
available on Amazon and Google cloud platforms.

Cloud Computing: Cloud computing platforms are available 
from a variety of vendors such as Google, Amazon, IBM, 
and Microsoft. We are using AWS from Amazon because of 
our experience and the fact that it provides a relatively more
mature platform for IoT applications (Amazon IoT) as 
compared to other vendors (though most of the approach 
described in this proposal is largely independent of this 
choice). Devices can connect to, and communicate with,
applications running on the cloud over many different 
protocols. Device-specific SDKs are available for different 
languages. It offers support for reliable bidirectional 
messaging using the concept of device shadows to enable 
communication when the device network connectivity is not 
reliable. The cloud services that we are exploiting include
(1) declarative, SQL-like rules engine to perform basic
transformations of IoT data then reroute it to endpoints such 
as a storage container (S3 bucket), (2) support for triggers in 
the AWS event-based programming platform called 
Lambda, (3) redirect data streams into the Kinesis streams 
service to support real-time analytics, and (4) an archival 
storage service (Glacier).

C. Smart Intersections
The raw video that is an input to our software is captured 
using fisheye cameras installed at traffic intersections.
Compared to an ordinary video camera, a fisheye camera can 
capture the whole intersection in a wide panoramic and non-
rectilinear image using its wide-angle fisheye lens. The 

camera transmits video to an edge-based GPU processor 
where image processing techniques convert the video to time-
stamped 2D location coordinates of objects (vehicles,
pedestrians, bicyclists). 

Our video processing approach generates frame-by-frame 
detection and tracking of all the moving objects in an 
intersection. It also uses a temporal superpixel (supervoxel) 
method (Huang et al., 2018) to extract an accurate mask for 
object representations. These can be converted into 
trajectories that represent the spatial and temporal movement 
of traffic. A trajectory is a path traversed by a moving object 
that is represented as successive spatial coordinates and 
corresponding timestamps. Details of the video processing 
and analysis are provided in detail in Huang et al. (2019).

Using the output of the video processing, we have 
developed tools to process, filter, analyze, and display 
trajectories of vehicles and pedestrians passing through a 
traffic intersection. A trajectory of a moving object is its path 
represented by timestamped location coordinates of the 
object. For a typical, moderately busy intersection we 
studied, the volume of traffic is enormous, with over 10,000 
trajectories being generated on a weekday. The number of 
trajectories quickly extrapolates to over a million trajectories 
per year for the intersection. For privacy protection, the 
information about the moving object is automatically 
anonymized by saving only the (relative) location coordinates 
of objects and, in the cases of vehicles, their size and color to 
our database.

Trajectories at intersections are dictated by the ongoing 
signaling status at an intersection. With the availability of 
advanced controllers that can record signal changes and 
detector events at a very high resolution (10 Hz), it is possible 
to generate a signal phase and timing log for the intersection 
for a given period. 

The trajectories generated by video processing are 
uploaded in a MySQL database on the cloud. SPaT 
information is extracted from high-resolution controller logs 
and stored in a separate database as well. 

The real-time trajectories, along with the current 
signaling state of the intersection, provide us valuable 
insights into any observed abnormal behaviors such as high 
propensities of signal light violations and risky maneuvers. If
the intersection is large, two fisheye cameras may be installed 
to capture the complete intersection.

The trajectories are then clustered to derive normal and 
anomalous behavior. We compute the distance between two 
trajectories using a variation of FastDTW (Salvador and 
Chan, 2007) and a variation of the KMeans algorithm for 
clustering. The results of the clustering are then used by a 
visualization framework to display by phase, vehicle type, 
and time of day.  An example is shown in Figure 2.

D. Smart network
Traffic signals are controlled by sophisticated controller 
devices that collect a variety of data at every intersection.
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Figure 3: A dashboard highlighting the temporal recurrence of signal with similar 
behavior during the day. Specifically, the early morning/late night behavior can be
contrasted with the daytime behavior.

Figure 2:  Observed trajectories for different phases.
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Automated Traffic Signal Performance Measures (ATSPM),
now being deployed in many traffic controllers, logs high-
resolution (10Hz) data that opens a broad range of data 
analysis possibilities. We are using this data for a variety of 
applications.

We use demand-based split failures and arrivals on red as 
a Measure of Effectiveness (MOE) of an intersection. This 
can then be used for ranking or classifying signals. These 
measures can be used for determining level of traffic demand 
(based on split failures) and level of utilization of green time 
(based on the ratio of arrivals on red to arrivals on green). 

We then apply clustering techniques to group together 
signals with similar MOes. Clustering is carried out in both 
space and time. Details are in Mahajan et. al. (2019). Figure 
3 shows the dashboards of results on a single day. The 
intersections with similar performance are clustered together 
using the same color.

Connected and Autonomous Vehicles (CAV)
We have developed and deployed an intelligent controller for 
signalized intersections (Figure 4) at the FDOT 
Transportation Engineering Research Laboratory (TERL). 
The main components of the controller are an optimization 
algorithm for joint vehicle trajectory and signal control, a 
multi-sensor fusion system for obtaining real-time
information from the surrounding traffic, and a signal 
controller for adapting the traffic signals based on the 
optimization results. The optimization algorithm considers 
both CAVs and conventional vehicles and produces signal 
timings that are field-implementable. Based on the real-time 

information from the sensor fusion component, it optimizes 
trajectories for connected and autonomous vehicles; the 
trajectories are transmitted to the vehicles with Dedicated 
Short-Range Communication (DSRC). The recommended

trajectory is an ordered list of points and speeds that an 
autonomous vehicle can use to traverse the intersection,
minimizing the system travel time. For connected vehicles,
the message consists of speed recommendations for drivers.

Our simulation results (following work in Rosero, 2017,
and Na, 2015) show that significant improvements can be 
achieved. For the tests at the isolated traffic intersection at 
TERL, we designed and implemented a multi-sensor fusion 
system based on DSRC and Doppler radar. We obtained the 
latitude, longitude, and speed information from vehicles
equipped with DSRC. Using the radar, we were also able to 
get this information for conventional vehicles. These 
measurements were processed separately and converted into 
real-time tracks with a bank of Kalman filters and 
subsequently fused to produce accurate estimates of the state
of each vehicle within range of the intersection. Our system
(following Chavez-Garcia, 2016) was able to correctly 
classify all vehicles as automated, connected, or conventional 
during our tests, as well as estimate their position and speed 
with a high degree of confidence. We ran experiments with a
vehicle equipped with a Cohda Wireless Mk5 on-board unit
and a high precision GPS sensor to generate ground-truth 
data. We compared the tracking performance of different 
approaches configured with various vehicle kinematics 
models. Recently, we have started to experiment with vision-
based multi-target tracking for traffic surveillance, with aims 
of developing a complete multi-sensor fusion system that 
combines video, radar, and DSRC. More details are in Li et. 
Al. (2014) and Emami et al. (2018).

E. Security Issues
We are using state of the art security mechanisms at the edge 
and the cloud. AWS provides cloud security (physical, 

Figure 4: Overview of the signal control optimization algorithm with CAVs in the traffic stream.
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filtering, and hypervisor security) while our systems are
responsible for access control, encryption, etc.

7. CONCLUSIONS

Our work leverages the confluence of economical video 
sensors, significantly low-cost computing hardware, and 
cloud computing with open source analytics solutions to 
enable novel transportation applications. Hence, it will result 
in profound improvements in traffic management, smart city 
planning, and safety. The methods proposed will have a 
direct impact on video analysis for transportation problems 
and related disciplines and open avenues for research. 

We will focus on emerging proactive measures for 
assessing and enhancing transportation safety and mobility. 
Regarding safety, unlike conventional methods which rely on 
crashes and, as such, represent a reactive approach to 
addressing safety problems, the use of space-time trajectories 
of vehicles and pedestrians to identify near-misses could help 
identify problems before actual crashes occur. While there 
has been significant recent interest in developing such 
trajectories, our ability to obtain and analyze continuous-time 
data at the network level will provide insights on how conflict 
points and patterns can change through the network. They can 
also determine changes over time even at the same 
intersection. This will allow us to identify dynamic safety 
improvement response strategies which were not possible 
using crash-based analytics. 

The availability of continuous-time turning movements 
by vehicle type (including pedestrians) will also allow us to 
develop dynamic traffic operation strategies (signal timing 
plans) which can maximize system throughput while 
maintaining minimum desired performance levels at critical 
intersections. Finally, data on human-driven vehicle 
trajectories can provide baseline information to optimize 
trajectories of CAVs in the future.

This study goes well beyond visioning and algorithm 
developments into prototype development, deployment, and 
testing on a large-scale real-world system. The methods are 
sensitive to practical issues such as data quality and 
availability, technology constraints and interoperability, and 
institutional protocols. The effort also demonstrates the kinds 
of relationships that need to be developed among 
academicians, private sector vendors, and local and state 
agencies to ensure successful development and deployment 
of smart-city solutions.
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