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Abstract — This smart city traffic management approach
seeks to use edge-based video-stream processing (using
multicore and GPU processors) at intersections and in
public vehicles (city buses, fire trucks, ambulances, school
buses) to convert video data into space-time trajectories of
individual vehicles and pedestrians that are transmitted to a
cloud-based system. Key information is then synthesized in
the cloud from them to create a real-time city-wide traffic
palette. Real-time or offline processing both at the edge and
the cloud will then be leveraged to optimize intersection
operations, manage network traffic, identify near-collisions
between various units of traffic, provide street parking
information, and a host of other applications. Additional
information such as weather and environment will also be
leveraged.

The use of edge-based real-time machine learning (ML)
techniques and videostream processing has several
significant advantages. (1) Because there is no need to store
copious amounts of video (few minutes typically suffice for
edge-based processing), it automatically addresses concerns
of public agencies who do not want person-identifiable
information to be stored for reasons of citizen privacy and
legality. (2) The processing of the video stream at the edge
will allow for the use of low bandwidth communication using
wireline and wireless networks to a central system such as a
cloud, resulting in a compressed and holistic picture of the
entire city. (3) The real-time nature of processing enables a
wide variety of novel transportation applications at the
intersection, street, and system levels that were not possible
hitherto, significantly impacting safety and mobility.

Keywords—video processing, sensor data, machine learning, big
data analytics, intelligent transportation, smart city

1. INTRODUCTION

Mitigating traffic congestion and improving safety are the
important cornerstones of transportation for smart cities.
Despite significant advances in vehicle technology, traffic
engineering practices, and analytics based on crash data, the
number of traffic crashes and fatalities are still too many. An
INRIX study' found that in 2017, traffic congestion resulted
in nearly $305 billion in congestion costs and caused
Americans to lose 97 hours per person in congestion. This
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costs the U.S. $87 billion annually in lost time (with the
American Transportation Research Institute estimating the
freight sector loss due to congestion at $75 billion annually).
Many drivers are frustrated due to long (but potentially
preventable) delays at intersections. Traffic signal control
timing does not change in real-time based on crashes,
incidents, or changes in traffic patterns and behavior.
Addressing these challenges requires a thorough
understanding of traffic patterns not only at intersections but
on streets and in the overall network. Unfortunately, existing
monitoring systems and decision making for this purpose
have several limitations:

e Current sensors have limited capability: Vehicle loop
detectors that have traditionally been deployed at
intersections to detect the passage of vehicles are error-
prone; have high deployment and maintenance costs;
can only measure the absence or presence of vehicles
passing above them; and are not always useful for
observing the movements of pedestrians and scooters.
When the sensors are not accurate or timely an adaptive
strategy will not be effective. Video detection has great
potential to improve accuracy and timeliness in the
detection of vehicles, pedestrians, bicyclists, etc.

e Current software systems for traffic monitoring are
fragmented and not suitable for real-time decision
making: Transportation professionals are presented
with a plethora of fragmented data in various systems.
Existing intersection control systems do not provide
reports on a real-time basis (based on the vendor), and
these are given at coarse levels of granularity (for
example, traffic movement counts by the hour) limiting
their use and ability to make real-time changes to adapt
to dynamically changing conditions. Current
approaches are not readily scalable because of
constraints of cost, bandwidth, and lack of integration.

Our approach uses edge-based video-stream processing
(using multicore and GPU processors) at intersections and
in public vehicles (city buses, fire trucks, ambulances,
school buses) to convert video data into space-time
trajectories of individual vehicles and pedestrians that are
transmitted to a cloud-based system. Key information is then
synthesized in the cloud from them to create a real-time
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city-wide traffic palette. Real-time or offline processing
both at the edge and the cloud can then be leveraged to
optimize intersection operations, manage network traffic,
identify near-misses between various units of traffic,
provide street parking information, and a host of other
applications. Additional information such as weather and
environment will also be leveraged in the future. The use of
edge-based real-time machine learning (ML) techniques and
video-stream processing has several significant advantages:

Because there is no need to store copious amounts of
video (few minutes typically suffice for edge-based
processing), it automatically addresses concerns of
public agencies and civil libertarians who do not want
person-identifiable information to be stored for reasons
of citizen privacy and legality.

The processing of the video-stream at the edge allows
for the use of low bandwidth communication using
wireline and wireless networks to a central system such
as a cloud, resulting in a compressed and holistic picture
of the entire city. This can then be used for efficient
processing.

The real-time nature of processing enables a wide
variety of novel transportation applications at the
intersection, street, and system levels that were not
possible hitherto, significantly impacting the safety and
mobility of our community.

The use of cloud computing for processing aggregated
data from multiple video and other sensors will provide
information unification and the necessary on-demand
computing horsepower for the large-scale simulations
for system level optimizations and analytics. It will also
allow for leveraging offline processing of historical data
to be used in conjunction with real-time information.

We broadly describe our approach for improvements of
community safety and mobility at three levels: smart
intersections, smart streets, and smart systems (Sections 2,
3, and 4). We also describe the interaction of these
technologies with connected and autonomous vehicles
(Section 5). These assume that there exist video-based
systems that can observe traffic at intersections or from
publicly owned vehicles. The data collected from the above
sources afford real-time measurements and decisions which
will then be used as part of an iterative approach to observe
traffic and pedestrian mobility, allowing for the introduction
of new design concepts (such as leading pedestrian
intervals), new technologies (like reaction to autonomous
and emergency vehicles), and impacts of environmental
improvements (lighting, landscaping, and geometric design
changes) at intersections.

We have made considerable progress in implementing
our vision of developing a smart infrastructure. The current
status of the project is described in Section 6. In the long
run, this work will lead to major improvements in the
current state of practice: the underlying technology, the
associated data, and the resulting policies and procedures
are interlocked through a cross-disciplinary approach
utilizing advances in computer science (video analytics,
machine learning, sensor fusion) and traffic engineering.

We believe that our approach can have a tangible impact on
the USDOT goal of the Vision Zero plan to minimize, and
eventually eliminate, motor vehicle-related crashes and
accidents. The ability to detect and understand unsafe
driving and walking conditions (measured as "near misses"
rather than "crashes") and react to them in real time would
be critical in further moving the needle towards the goal of
Vision Zero.

2. SMART INTERSECTIONS

Using standard and fisheye cameras mounted at intersections
(and integrating weight sensors placed beneath streets), we
are leveraging the state of the art in computer vision and
machine learning to perform vehicle tracking (localization,
tracking, turn estimation) and pedestrian monitoring at
intersections. Traffic surveillance of dynamic objects,
particularly vehicles on the road, has been an active research
topic in past decades in the fields of computer vision and
intelligent transportation systems. In the interests of real-time
feedback, security, and citizen anonymity, we have elected to
mainly focus on real-time (and near real-time) video
processing at intersections.

Our goal at this juncture is to leverage the output of video
processing and tracking approaches into efficient real-time
(and near real-time) representations. Subsequently, these
compressed representations drive applications such as the
identification of near misses, summary of pedestrian
movements, and the extraction of vehicle trajectories at
intersections. Since video information is clocked and
integrated with weight sensors, we anticipate real-time
feedback to signal controllers resulting ultimately in
improvements to intersection level signal planning (offsets,
phase switches, etc.).

The uplink of compressed information to the cloud is a side
benefit resulting in much lower communication costs. We
expect this work to have a significant impact on
understanding traffic behavior at an intersection that will lead
to the following:

e Improved Pedestrian and Bicyclist Safety by examining
the conflict points of the vehicle and pedestrian
trajectories and anomalous behavior, based on time of
day and day of the week. The availability of temporal
profiles of “exposure data” (i.e., the volumes of
pedestrians and bicyclists) from video-based systems is
critical for performing comparative assessments of
ped/bike safety at different locations.

e More Accurate Demand Profiles which can lead to more
effective signal timing and a better understanding of the
relationships between existing (loop detector) and new
technologies (video).

e Better Incident and Bottleneck Management using real-
time information and messaging of incidents and other
events to pedestrians and vehicles.

3. SMART STREETS

We shift perspective to include onboard video information
(on city buses, emergency vehicles, and police cars). Once
again, we plan to leverage best-of-breed computer vision
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algorithms to perform tracking of vehicles, assessment of near
collisions, jaywalking, tailgating — essentially the entire
gamut of live traffic-centered activities. Since the city buses
(for example) are moving, tracking will have to be performed
taking camera motion into account; the same applies for
integration and cloud communication. Egomotion issues, for
example, are not a problem since accurate GPS information
can be used to determine camera coordinates extrinsically.
Multiple cameras on the buses allow for better integration
and more accurate estimation of vehicular tracks. Bluetooth
communication from the bus to roadside sensors can also be
integrated into the system if available.

Such data can also provide insights into how passengers
approach or leave the transit buses at stops. All these can be
used to understand pedestrian safety both during day and
night times. In contrast, tracking vehicles in terms of
trajectories and state of brake lights and indicator lights ahead
of the bus can help understand lane-changing maneuvers
undertaken before implementing a turn. The space-time
trajectories of vehicles along adjacent lanes can be used to
infer gap-acceptance behavior, which in turn leads to lane
changes. Again, differences can be examined across different
weather conditions. Additionally, the video collected can be
used to determine free parking spots along the bus routes that
can be communicated in real-time to the cloud and then to
citizens. Furthermore, the integration of motion tracking,
traffic pattern identification, etc. from video (and other
sensors) using city buses etc. is fundamentally novel to the
traffic engineering field. While summarization information
from the segments will still be sent to the cloud, the edge-
based processing will directly result in changes to signal
parameters with these effects first tested in simulation
platforms such as SUMO or VISSIM.

Inclusion of real-time (and near real-time) video
processing conducted on city buses (and other authorized
vehicles) has the following expected outcomes:

e Better Pedestrian Safety by detection of pedestrian
movements at intersections and mid-blocks

e Better Resource Management by understanding usage
of street parking and signage

e Better Lane and Street Sign Design by tracking
indicator lights, lane-changing maneuvers undertaken
in front of the bus.

4. SMART NETWORK

We envisage a comprehensive effort at the network level
aimed at nothing less than a complete characterization and
activity recognition of important traffic patterns, the
clustering of vehicles and pedestrians, responses to
emergency vehicles, adjustments made during school
closings, etc. We will use all summarized information
(traffic and pedestrian activity patterns, dominant arterials,
corridors, and sub-networks) sent to the cloud to perform
network level traffic signal planning using pre-timed signal
optimization and dynamic reinforcement learning while
undertaking comprehensive policy testing in traffic
simulation software such as SUMO and VISSIM.

Machine learning on historical data: Once all relevant
traffic data have been sent to the cloud, we can begin analysis
of historical data to perform a space-time decomposition of
the network. Essentially, we seek to utilize the video and other
sensor summarization information to carve up the network
spatially into different arterials, corridors, and sub-networks
and for relevant time periods. While the simplest approach
we envisage is space-time clustering, this may be insufficient
to extract long arterials. A more novel machine learning (ML)
approach is to cluster segments (represented as graph edges)
while enforcing graph connectivity and temporal
compactness (e.g., a long section of Newberry road in
Gainesville from 4-6 PM weekdays -- a typical example of a
high-volume corridor at peak rush hour). From an ML
perspective, this is an unsupervised learning problem in a
spatiotemporal graph which we seek to decompose into
relevant fragments while ensuring spatial connectivity (artery
or corridor) and temporal compactness (a reasonable block of
time). Once this step has been accomplished, we propose to
first perform pre-timed signal optimization and subsequently
global optimization for real-time and unforeseen events.

The decomposition of the network into important
fragments (arterials etc.) has a huge payoff in larger
networks: the decomposition facilitates network-level
optimization of signal timing. Overall the sensing data from
multiple intersections will enable

e Better Incident Detection for alleviating traffic backups
and secondary crashes

e Better Signal Retiming for corridors by time of day and
day of the week to reflect the changes in network
demand

e Better System-wide Network Utilization using a global
view of the entire network and potential disruptions.

5. CONNECTED AND AUTONOMOUS VEHICLES

Connected and automated vehicles (CAVs) are expected to

organically enter the traffic stream over the next decade.

These vehicles have the potential to reduce traffic accidents

and improve the efficiency of transportation systems. We

expect a symbiotic relationship in which the information

exchange between the infrastructure and the vehicle should

lead to mutual benefits. We are deploying and testing

connected vehicle technologies as part of our infrastructure

work (more details are provided in Section 6A). By

collecting, transmitting, and analyzing data, we expect to

e Improve safety by disseminating relevant information
to vehicles, buses, pedestrians, and other units of traffic
within the Trapezium (Figure 1)

e Enhance our understanding of CAV behavior and their
interaction with conventional vehicles

e Develop better signal timing optimization algorithms
which use advanced detection based on connectivity

e Enhance previously developed trajectory optimization
algorithms for CAVs, which can significantly improve
the efficiency of the highway network

e Develop improved tools to take advantage of CAV-
related technologies and understand the reasons that
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may affect market penetration.

The goal of the project is to improve travel time reliability,
safety, throughput, and traveler information.

6. CURRENT STATUS

Below, we provide a high-level overview of our work in the
various aspects of smart traffic infrastructure.

A. I-Street and Trapezium Testbed

The University of Florida Transportation Institute (UFTT)?,
with support from FDOT and the City of Gainesville (CoG),
is developing a smart testbed on the UF campus and
adjoining city streets. The testbed, called I-STREET, was
established to deploy and evaluate numerous advanced
technologies for conventional, connected, and autonomous
vehicles. This includes the use of smart devices and sensors
to develop novel applications. The overall testbed includes
heavy pedestrian flow, extensive bicycle facilities, scooters,
and mopeds on campus and a variety of highway facilities
ranging from four-lane arterials to two-lane low-speed
roadways. Gainesville is home to one of the most heavily
used transit systems in Florida (RTS — http://go-rts.com),
which also serves the UF campus.

Additionally, the Gainesville Trapezium is deploying and
testing connected vehicle technologies and applications along
four roads forming a trapezium surrounding the University of
Florida main campus, as shown in Figure 4. The goal of the
project is to improve travel time reliability, safety,
throughput, and traveler information. Approximately 27
roadside units have been installed in this project. The
roadways and intersections along and within this Trapezium
and bus routes serving this area will constitute the
fundamental real-world testbed for this study.

Most of the signalized intersections of interest to this
study have live CCTV RTSP feeds streamed at 30 frames per
second HD quality (720p or 1080p), pan, tilt, and zoom
capabilities, and video detection for stop bar, presence, and
traffic counting. On select intersections, multimodal video
detection for pedestrians, bicycles, and vehicles (using Iteris
Vantage Live, Smart Cycle, and PedTrax) and fisheye video
detection with motion tracking and vehicle classification
capabilities are already being installed or are planned for
installation. ATC controllers can provide signal-timing
history at decisecond resolution (upgrades to the latter are
past the planning stages). Thus, a variety of video feeds and
signal timings are available that will be used for ratification
of the methods. The video cameras are addressable via a local
network at every intersection, and the proposed research calls
for processing these video feeds before they leave this
network. Eight- or twelve-port copper Ethernet (fast and
gigabit) connectivity capable of VLAN segmentation is
available at each intersection, with a single-mode fiber
backhaul to the Traffic Management Center. These will
facilitate the transfer of data from the intersections to the
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Figure 1: Trapezium project: This project is
deploying and testing connected vehicle technologies
and applications along four roads forming a trapezium
surrounding the University of Florida main campus.
All intersections will have roadside units to interact
with CAVs. Additionally, video cameras will be
installed at a large subset of these intersections.

cloud. About 5-10 intersections will be chosen to pilot test
the smart-intersection efforts. Edge processors will be added
to the video cameras present at these intersections (with the
CoG and UF jointly designing and testing them to ensure
effective real-time processing).

Intelligent transportation systems require the use of
interactions between road users and infrastructure. Dedicated
short-range communications (DSRC) using radio, Wi-Fi, or
cellular technologies can enable such interactions at
signalized interactions. By using DSRC effectively, the
infrastructure systems can provide information to the users
about the interactions as well as using the road users as probes
to create a vignette of local and network level traffic patterns
and usages.

B. Computing and Software Architecture

The overall approach seeks to use edge-based video-stream
processing (using multicore and GPU processors) at
intersections and in public vehicles to convert video data into
space-time trajectories of individual vehicles and pedestrians
that are transmitted and synthesized on a cloud-based system.
Improving image processing techniques for traffic
surveillance is an ongoing area of research in the computer
vision and intelligent transportation systems (ITS)
communities. For these reasons, edge computing is centered
around the concept of adding a layer of compute resources
between the "IoT" devices and servers on the "cloud". The
goal of the intermediate layer is to improve performance (by

2 https://www.transportation.institute.ufl.edu/research-
2/istreet-about-us/
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reducing network latency) and reduce the volume of data
being transported (in an open and interoperable way). The
value of this approach is also in enabling seamless
interoperability between the heterogeneous datasets and
providing the computing power necessary for bulk data
processing and providing real-time applications that only
need data collected locally.

Edge Processing: Below, we describe key computing and
software challenges that we are addressing for edge video
processing:

e Video Characteristics: At 20-30 frames-per-second,
high-definition video from a single camera can generate
over 2 gigabytes per hour. We are using GPU processing
for real-time usage. Some of the main challenges faced
by traffic video are the sensitivity to variations in
lighting and weather and the occlusion of vehicles.

e Deep Neural Network Software: Deep neural networks
(DNNG) are currently widely used (Abadi et al., 2016)
for many artificial intelligence (AI) applications, by
gathering knowledge from experience with a hierarchy
of concepts. We have developed DNN approaches for
vehicle detection and tracking.

e GPU Processing: Most image processing and deep
learning frameworks can effectively leverage Nvidia's
cuDNN and other libraries for rapid execution. This
acceleration is transparent to the user of the framework
library. Similar processing capabilities are also
available on Amazon and Google cloud platforms.

Cloud Computing: Cloud computing platforms are available
from a variety of vendors such as Google, Amazon, IBM,
and Microsoft. We are using AWS from Amazon because of
our experience and the fact that it provides a relatively more
mature platform for IoT applications (Amazon IoT) as
compared to other vendors (though most of the approach
described in this proposal is largely independent of this
choice). Devices can connect to, and communicate with,
applications running on the cloud over many different
protocols. Device-specific SDKs are available for different
languages. It offers support for reliable bidirectional
messaging using the concept of device shadows to enable
communication when the device network connectivity is not
reliable. The cloud services that we are exploiting include
(1) declarative, SQL-like rules engine to perform basic
transformations of IoT data then reroute it to endpoints such
as a storage container (S3 bucket), (2) support for triggers in
the AWS event-based programming platform called
Lambda, (3) redirect data streams into the Kinesis streams
service to support real-time analytics, and (4) an archival
storage service (Glacier).

C. Smart Intersections

The raw video that is an input to our software is captured
using fisheye cameras installed at traffic intersections.
Compared to an ordinary video camera, a fisheye camera can
capture the whole intersection in a wide panoramic and non-
rectilinear image using its wide-angle fisheye lens. The

camera transmits video to an edge-based GPU processor
where image processing techniques convert the video to time-
stamped 2D location coordinates of objects (vehicles,
pedestrians, bicyclists).

Our video processing approach generates frame-by-frame
detection and tracking of all the moving objects in an
intersection. It also uses a temporal superpixel (supervoxel)
method (Huang et al., 2018) to extract an accurate mask for
object representations. These can be converted into
trajectories that represent the spatial and temporal movement
of traffic. A trajectory is a path traversed by a moving object
that is represented as successive spatial coordinates and
corresponding timestamps. Details of the video processing
and analysis are provided in detail in Huang et al. (2019).

Using the output of the video processing, we have
developed tools to process, filter, analyze, and display
trajectories of vehicles and pedestrians passing through a
traffic intersection. A trajectory of a moving object is its path
represented by timestamped location coordinates of the
object. For a typical, moderately busy intersection we
studied, the volume of traffic is enormous, with over 10,000
trajectories being generated on a weekday. The number of
trajectories quickly extrapolates to over a million trajectories
per year for the intersection. For privacy protection, the
information about the moving object is automatically
anonymized by saving only the (relative) location coordinates
of objects and, in the cases of vehicles, their size and color to
our database.

Trajectories at intersections are dictated by the ongoing
signaling status at an intersection. With the availability of
advanced controllers that can record signal changes and
detector events at a very high resolution (10 Hz), it is possible
to generate a signal phase and timing log for the intersection
for a given period.

The trajectories generated by video processing are
uploaded in a MySQL database on the cloud. SPaT
information is extracted from high-resolution controller logs
and stored in a separate database as well.

The real-time trajectories, along with the current
signaling state of the intersection, provide us valuable
insights into any observed abnormal behaviors such as high
propensities of signal light violations and risky maneuvers. If
the intersection is large, two fisheye cameras may be installed
to capture the complete intersection.

The trajectories are then clustered to derive normal and
anomalous behavior. We compute the distance between two
trajectories using a variation of FastDTW (Salvador and
Chan, 2007) and a variation of the KMeans algorithm for
clustering. The results of the clustering are then used by a
visualization framework to display by phase, vehicle type,
and time of day. An example is shown in Figure 2.

D. Smart network

Traffic signals are controlled by sophisticated controller
devices that collect a variety of data at every intersection.
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Figure 2: Observed trajectories for different phases.
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Automated Traffic Signal Performance Measures (ATSPM),
now being deployed in many traffic controllers, logs high-
resolution (10Hz) data that opens a broad range of data
analysis possibilities. We are using this data for a variety of
applications.

We use demand-based split failures and arrivals on red as
a Measure of Effectiveness (MOE) of an intersection. This
can then be used for ranking or classifying signals. These
measures can be used for determining level of traffic demand
(based on split failures) and level of utilization of green time
(based on the ratio of arrivals on red to arrivals on green).

We then apply clustering techniques to group together
signals with similar MOes. Clustering is carried out in both
space and time. Details are in Mahajan et. al. (2019). Figure
3 shows the dashboards of results on a single day. The
intersections with similar performance are clustered together
using the same color.

Connected and Autonomous Vehicles (CAV)

We have developed and deployed an intelligent controller for
signalized intersections (Figure 4) at the FDOT
Transportation Engineering Research Laboratory (TERL).
The main components of the controller are an optimization
algorithm for joint vehicle trajectory and signal control, a
multi-sensor fusion system for obtaining real-time
information from the surrounding traffic, and a signal
controller for adapting the traffic signals based on the
optimization results. The optimization algorithm considers
both CAVs and conventional vehicles and produces signal
timings that are field-implementable. Based on the real-time

trajectory is an ordered list of points and speeds that an
autonomous vehicle can use to traverse the intersection,
minimizing the system travel time. For connected vehicles,
the message consists of speed recommendations for drivers.

Our simulation results (following work in Rosero, 2017,
and Na, 2015) show that significant improvements can be
achieved. For the tests at the isolated traffic intersection at
TERL, we designed and implemented a multi-sensor fusion
system based on DSRC and Doppler radar. We obtained the
latitude, longitude, and speed information from vehicles
equipped with DSRC. Using the radar, we were also able to
get this information for conventional vehicles. These
measurements were processed separately and converted into
real-time tracks with a bank of Kalman filters and
subsequently fused to produce accurate estimates of the state
of each vehicle within range of the intersection. Our system
(following Chavez-Garcia, 2016) was able to correctly
classify all vehicles as automated, connected, or conventional
during our tests, as well as estimate their position and speed
with a high degree of confidence. We ran experiments with a
vehicle equipped with a Cohda Wireless MkS on-board unit
and a high precision GPS sensor to generate ground-truth
data. We compared the tracking performance of different
approaches configured with various vehicle kinematics
models. Recently, we have started to experiment with vision-
based multi-target tracking for traffic surveillance, with aims
of developing a complete multi-sensor fusion system that
combines video, radar, and DSRC. More details are in Li et.
Al. (2014) and Emami et al. (2018).
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Figure 4: Overview of the signal control optimization algorithm with CAVs in the traffic stream.

information from the sensor fusion component, it optimizes
trajectories for connected and autonomous vehicles; the
trajectories are transmitted to the vehicles with Dedicated
Short-Range Communication (DSRC). The recommended

E. Security Issues

We are using state of the art security mechanisms at the edge
and the cloud. AWS provides cloud security (physical,
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filtering, and hypervisor security) while our systems are
responsible for access control, encryption, etc.

7. CONCLUSIONS

Our work leverages the confluence of economical video
sensors, significantly low-cost computing hardware, and
cloud computing with open source analytics solutions to
enable novel transportation applications. Hence, it will result
in profound improvements in traffic management, smart city
planning, and safety. The methods proposed will have a
direct impact on video analysis for transportation problems
and related disciplines and open avenues for research.

We will focus on emerging proactive measures for
assessing and enhancing transportation safety and mobility.
Regarding safety, unlike conventional methods which rely on
crashes and, as such, represent a reactive approach to
addressing safety problems, the use of space-time trajectories
of vehicles and pedestrians to identify near-misses could help
identify problems before actual crashes occur. While there
has been significant recent interest in developing such
trajectories, our ability to obtain and analyze continuous-time
data at the network level will provide insights on how conflict
points and patterns can change through the network. They can
also determine changes over time even at the same
intersection. This will allow us to identify dynamic safety
improvement response strategies which were not possible
using crash-based analytics.

The availability of continuous-time turning movements
by vehicle type (including pedestrians) will also allow us to
develop dynamic traffic operation strategies (signal timing
plans) which can maximize system throughput while
maintaining minimum desired performance levels at critical
intersections. Finally, data on human-driven vehicle
trajectories can provide baseline information to optimize
trajectories of CAVs in the future.

This study goes well beyond visioning and algorithm
developments into prototype development, deployment, and
testing on a large-scale real-world system. The methods are
sensitive to practical issues such as data quality and
availability, technology constraints and interoperability, and
institutional protocols. The effort also demonstrates the kinds
of relationships that need to be developed among
academicians, private sector vendors, and local and state
agencies to ensure successful development and deployment
of smart-city solutions.
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