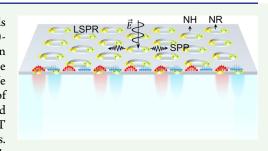


www.acsanm.org Article

Coupling between Surface Plasmon Modes of Single-Layer Complex Silver Nanohole Arrays and Enhancing Index Sensing

3 Yanfeng Wang, Shen Ao, Fei Yang, Zhengjun Zhang,* and Yiping Zhao*

Cite This: https://doi.org/10.1021/acsanm.2c01962


ACCESS

Metrics & More

s Supporting Information

4 ABSTRACT: By independently tuning the structure parameters of the nanorods 5 in nanohole arrays (NRinNH), the localized surface plasmon resonance (LSPR)-6 induced extraordinary optical transmission (EOT) mode and the surface plasmon 7 polariton (SPP)-induced EOT modes can be coupled to introduce a mode 8 splitting phenomenon in a simple one-layer plasmonic nanostructure. We 9 demonstrate that the coupling and energy exchange of the two different types of 10 EOT modes of the NRinNH structure can simultaneously improve the near-field 11 electromagnetic enhancement and spectral resolution of the LSPR-induced EOT 12 peak, while they reduce the spectral resolution of the SPP-induced EOT modes. 13 The hybrid modes of the NRinNH structure can be tuned to the NIR wavelength

14 region by the length of the NR, of which the large resonance wavelength is highly preferred for improving the refractive index 15 sensitivity (RIS) of the plasmonic sensor. In addition, using the difference in the polarization transmission spectra of NRinNH 16 structures, the figure of merit (FOM) of the sensor performance can be significantly improved. The effect of coupling on different 17 EOT modes in plasmonic sensing is systematically studied. A high RIS of 1200.6 nm/RIU and a high FOM of 279.2 RIU $^{-1}$ are 18 achieved. This provides guidance for the design of LSPR sensors based on complex NH structures with high FOM.

19 KEYWORDS: one-layer plasmonic nanostructure, nanorod in nanohole, extraordinary optical transmission, coupled oscillator model, 20 plasmonic sensor, figure of merit

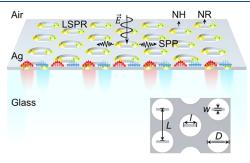
1. INTRODUCTION

21 Localized surface plasmon resonances (LSPRs) confine light 22 on the nanometer scale and can strongly promote the light-23 matter interactions. The most significant properties of LSPRs 24 are their local electromagnetic field enhancement effect and 25 fast damping mechanism (wide spectral width). The local-26 field enhancement prompts LSPR-enhanced nonlinear optical 27 processes, Purcell enhancement, photoharvesting, etc. How-28 ever, the fast damping of LSPRs leads to a large spectral width 29 and short dephasing time of the coherent resonance, which can 30 potentially limit some LSPR-based applications. For example, 31 plasmonic sensors, based on the response of LSPR to the 32 changes in the surrounding dielectric environment, require 33 high refractive index sensitivity (RIS) and high spectral 34 resolution.² The RIS of a wavelength interrogated sensor is 35 defined in terms of the change in peak position ($\Delta\lambda$) per "refractive index (n) unit" (RIU), RIS = $\Delta \lambda / \Delta n$. The spectral 37 resolution is mainly determined by the linewidth and the 38 intensity of the spectral peak, typically represented by the full 39 width at half-maximum (FWHM). A sharp and intense sensing 40 peak facilitates the ease of the recognition of a peak shift and 41 increases the analysis accuracy, which can be characterized by a 42 parameter called the figure of merit (FOM), FOM = RIS/ 43 FWHM. For LSPRs, the wide spectral width limits the 44 improvement of the FOM of plasmonic sensors. The

applications for LSPR-based fluorescence enhancement also 45 favor longer dephasing times, i.e., sharper spectral width.

Manipulating the spectral width of LSPR is highly desirable. 47 One way to decrease the spectral width is the excitation of 48 subradiant modes attributed to the reduction of the radiation 49 loss.³ However, these modes are typically dark, that is, they 50 cannot easily be excited by incident light.⁴ The interaction 51 between the localized plasmons associated with the nano- 52 particles and light diffracted by the array (diffractively coupled 53 LSPR) can significantly improve the quality of LSPR. 4,5 54 However, the right combination of nanoparticle size and shape, 55 together with an appropriate array period, is required for the 56 light scattered by each nanoparticle into the plane of the array 57 to be in phase with the plasmon resonance induced in its 58 neighbor. In addition, a homogeneous refractive index 59 environment is necessary to observe this diffractively coupled 60 LSPR at normal incidence for arrays of relatively thin 61 nanostructures, 4,6 which will limit its application in real 62 sensing. These pathways toward manipulating the spectral 63

Received: May 5, 2022 Accepted: May 31, 2022


64 width rely on a substantial increase in the complexity of the 65 design and arrangement of the plasmonic nanostructures. 66 Alternatively, the coupling between different plasmon modes 67 and/or other resonance modes can result in new hybrid 68 modes, the spectral width of which can also be manipulated 69 due to exchanging mutual information between the uncoupled 70 modes. Yang et al. experimentally manipulated the spectral 71 width of coupled plasmon modes under strong coupling 72 between LSPRs and propagating surface plasmon polaritons 73 (SPPs) utilizing a metal-insulator-metal (MIM) (Au thin 74 film/Al₂O₃ spacer/Au nanodisk array) structure. Chanda et al. 75 reported methods to enhance and modify the plasmonic 76 resonances in cavity-coupled quasi-three-dimensional (3D) 77 plasmonic crystals by coupling them strongly to optical modes 78 of Fabry-Perot-type cavities. However, most of the plasmonic 79 nanostructures used in the study of mode coupling require 80 multilayers, in which different layers support different 81 resonance modes. 8-11 In general, a top layer with a periodic 82 metallic nanostructure array supporting the LSPR and/or SPP 83 is necessary. For other layers, different materials and structures 84 can be used, depending on the mode selection, i.e., a 85 semiconductor layer for the waveguide modes¹² and a thick 86 dielectric spacer with a metallic thin reflector for cavity 87 modes. 7,11 The complex multilayer nanostructures will cause a 88 substantial increase in the difficulty and cost of fabrication. It is 89 very challenging to develop a simple and single-layered 90 plasmonic nanostructure but also has high field enhancement 91 and high spectral resolution.

Periodic subwavelength nanoholes (NH) combined with 93 other metallic nanostructures can realize both the LSPR and 94 SPP modes simultaneously through a simple one-layer 95 plasmonic nanostructure. ^{13,14} In addition, the two different 96 modes can be tuned separately by adjusting the structural 97 parameters and the coupling of the two different modes can be 98 simply and directly observed through the transmission 99 spectrum. The SPPs on the NH array can result in multiple 100 optical resonance peaks, which display a higher transmission 101 intensity compared to the incident light when normalized to 102 the perforated area ratio, i.e., the extraordinary optical 103 transmission (EOT). 15,16 These SPP-induced EOT peaks 104 possess a narrow and asymmetric spectral shape, red shift 105 linearly with the periodicity of the perforated NH structures, 106 and show a strong response to changes in the refractive index 107 (RI) of the material around the two sides of the film. While, for 108 the compound NH structures, in particular, the nanorod in 109 nanohole (NRinNH) structures, a new EOT peak caused by 110 the coupling of LSPR of NR and NH appears and red shifts 111 exponentially with the NR length. 13,14 The NRinNH structures 112 have been systematically studied theoretically 13,14 and 113 experimentally have been realized via multistep nanosphere 114 lithography (NSL). 17,18 Since the SPP-induced EOT peaks red 115 shift linearly with the periodicity of the compound structure 116 while the LSPR-induced EOT peak depends on the size of NR 117 and NH, the LSPR- and SPP-induced EOT peaks can be tuned 118 independently by varying different structural parameters. Thus, 119 it is possible to introduce coupling of the two different types of 120 EOT modes by varying different structural parameters, such as 121 the NR length and the width, the location of NR, the hole 122 diameter, and the periodicity of the structure. The obvious 123 EOT peaks in the transmission spectrum can facilitate the 124 observation of the coupling phenomenon. The coupling of two 125 different EOT modes could potentially achieve a narrow 126 spectral peak with a high RIS and an appropriate resonance wavelength. In addition, the polarization-dependent spectra 127 caused by structural anisotropy, parallel and vertical to the long 128 axis of the NR, can help to improve the FOM of index 129 refractive sensing by tracking the zero-crossing points (ZCPs) 130 of the difference between the two polarized spectra.²

In this work, a simple one-layer NRinNH plasmonic 132 nanostructure with hybrid modes of the LSPR and SPP is 133 designed. We demonstrate that by varying the periodicity of 134 the NH array and the length of NR, the coupling and energy 135 exchange of SPP and LSPR modes of the NRinNH structure 136 can simultaneously improve the near-field electromagnetic 137 enhancement and spectral resolution of the LSPR-induced 138 EOT peak, though the spectral resolution of the SPP-induced 139 EOT mode is declined. In addition, the coupling region can be 140 tuned to the NIR wavelength region by the length of the NR, 141 thus the EOT peaks of hybrid modes can be realized in the 142 NIR region or even larger wavelength. The large resonance 143 wavelength is beneficial for high-sensitivity plasmonic sensors 144 because there is a definite relationship between RIS and the 145 resonance wavelength λ_0 , i.e., as $\stackrel{1}{\lambda_0}$ increases, the RIS 146 increases. The effect of coupling on different EOT modes 147 in plasmonic sensing is systematically studied, and the 148 improvement and deterioration of the sensing performance 149 of LSPR- and SPP-induced EOT modes, respectively, are 150 demonstrated. The difference in the polarized transmission 151 spectra of NRinNH structures is used to further improve the 152 FOM of the sensor performance. As an example of the sensing 153 application, a high RIS of 1200.6 nm RIU⁻¹ and a high FOM 154 of 279.2 RIU⁻¹ are demonstrated for index refractive sensing. 155

2. RESULTS AND DISCUSSION

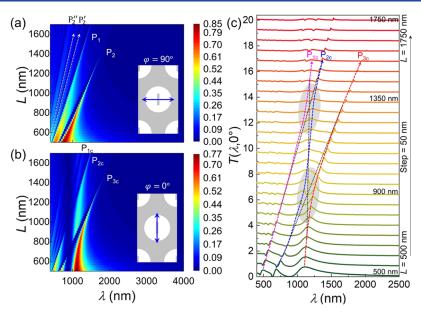

2.1. Coupling Phenomenon in the Transmission $_{156}$ Spectra. The NRinNH structure is a hexagonal array with a $_{157}$ period of L_t as shown in Figure 1. The NR is in the center of $_{158}$ fi

Figure 1. Schematic diagram for the nanostructure and the hybrid mode. The LSPR mode is located mainly at the ends of the NRs. The SPP-Bloch wave is confined mainly at the Ag—air or Ag—glass interface. The schematic shows only the hybrid mode at the Ag—air interface. The colored arrows are a simple representation of the E_z component of the local electric field.

the NH. The layer thickness (h), hole diameter (D), NR length 159 (l), and width (w) were fixed at 50, 340, 200, and 30 nm, 160 respectively, unless otherwise specified. A commercial finite- 161 difference-time-domain (FDTD) software system (Ansys 162 Lumerical 2021 R1 Finite Difference IDE) was used to 163 calculate the transmission spectra $T(\lambda, \varphi)$ and localized E_z -field 164 distributions of the NRinNH structures. The polarization angle 165 φ is the angle between the polarization direction of the 166 incident light and the long axis of NRs. Detailed FDTD 167 calculation conditions can be referred to in Section S1 of the 168 Supporting information (SI).

186

Figure 2. (a) $T(\lambda, 90^\circ)$ spectra of the NRinNH structures with different Ls. The inset figure shows the polarization direction of the incident light $(\varphi = 90^\circ)$. (b) $T(\lambda, 0^\circ)$ spectra of the NRinNH structures with different Ls. The inset figure shows the polarization direction of the incident light $(\varphi = 0^\circ)$. (c) Typical $T(\lambda, 0^\circ)$ spectra of the NRinNH structures with different Ls. The dotted lines correspond to the uncoupled SPP- and LSPR-induced EOT modes. The dashed arrows represent the coupled modes.

The calculated $T(\lambda, \varphi)$ of NRinNH with different Ls (0.5– 171 1.7 µm) and fixed nanostructure size is presented in Figure 172 2a,b for $\varphi = 90$ and 0° , respectively. When $\varphi = 90^{\circ}$, the 173 longitudinal LSPR mode of NR is not excited and $T(\lambda, 90^{\circ})$ is 174 very similar to that of the corresponding NH array (Figure S1) 175 with the same lattice arrangement and dimensions. As L 176 increases, the two main EOT peaks (P1 and P2) red shift linearly, and their resonance wavelengths λ_{P_1} and λ_{P_2} versus L almost overlay with that of the corresponding NH array (Figure S1). This demonstrates that the two main peaks in $180 T(\lambda, 90^{\circ})$ of the NRinNH structures have the same physical 181 origins as those of the corresponding NH array. In principle, 182 the EOT resonance peaks for a pure hexagonal NH array 183 should occur at wavelengths corresponding to the grating 184 matching condition required for the excitation of SPPs on the 185 metal/dielectric interfaces^{20,21}

$$\lambda_{\text{SPP}}(i,j) = \frac{\sqrt{3}L}{2\sqrt{i^2 + ij + j^2}} \sqrt{\frac{\varepsilon_{\text{Ag}}\varepsilon_{\text{d}}}{\varepsilon_{\text{Ag}} + \varepsilon_{\text{d}}}}$$
(1)

187 where (i, j) are the grating orders of the peaks, ε_{Ag} is the 188 relative permittivity of Ag (real component), and ε_{d} is the 189 relative permittivity of the dielectric material in contact with 190 the upper (air) and lower (glass) NH interfaces. In practice, a 191 transmission minimum, instead of a transmission maximum, is 192 routinely observed at this particular resonance wavelength. 22 This counterintuitive observation is associated with the fact 194 that the grating matching condition defined above is for SPP's 195 propagation on a perfectly uniform and continuous Ag layer. 196 Enhanced light transmission requires the coupling of SPPs to 197 the LSPs at the rims of the NHs. 22-24 However, both the 198 transmission minima before P_1 , P_2 , and the peaks P_1 and P_2 red 199 shift linearly with P_2 when the size of NR and NH are fixed. P_1 200 and P_2 represent the EOT peaks induced by the P_2 101 modes at the Ag-air and Ag-glass interfaces, respectively. P_2 202 and P_2 marked in Figure 2a represent the EOT peaks induced

by the higher-order SPP modes at the Ag-glass interface ((1, 203 1) and (0, 2), respectively).

When $\varphi = 0^{\circ}$, the longitudinal LSPR mode of NR is excited 205 and a peak P3 due to the local electromagnetic coupling of NH 206 and NR emerges. 14 Based on the systematic study in refs 13, 207 14, the resonance wavelength of P₃ depends only on the length 208 of NR and the size of NH as well as their relative positions. As 209 proof, the $T(\lambda, 0^{\circ})$ of NRinNH of longer NR (330 nm) and 210 different Ls is shown in Figure S2. The resonance wavelength 211 $\lambda_{\rm P_3}$ of P₃ at around 2.4 $\mu{\rm m}$ remains unchanged when L ₂₁₂ increases from 500 to 1400 nm. Since both λ_{P_1} and λ_{P_2} increase $_{213}$ linearly with L, while λ_{P_3} is a constant for a fixed l and D, it is $_{214}$ expected that at a particular L_c value, $\lambda_{P_2} = \lambda_{P_3}$ or $\lambda_{P_1} = \lambda_{P_3}$. 215 Based on Figure 2b, for l = 200 nm and D = 340 nm, L_c is 216 expected to be around 900 and 1350 nm, respectively. 217 Therefore, it is expected that in the vicinity of L_c , both the 218 SPP-induced and the LSPR-induced EOT resonances overlap, 219 and the local field generated at the SPP-induced EOT modes 220 shall couple with the local field generated at the LSPR-induced 221 EOT mode. The evanescent electromagnetic field of the SPP- 222 induced EOT modes (P₁ or P₂) exhibits interaction with the 223 LSPR-induced EOT mode of the compound nanostructures 224 (P₃) and results in spectral doublets that display avoided 225 crossings, as shown in the progression of the spectra with 226 increasing L in Figure 2b. 12 To show the avoided crossings 227 clearly, Figure 2c plots some typical $T(\lambda, 0^{\circ})$ spectra of the 228 NRinNH structures with fixed structural parameters but 229 different Ls; the gray shaded areas show the coupling regions. 230 The dotted lines in Figure 2c correspond to the uncoupled 231 SPP- and LSPR-induced EOT modes. The dashed arrows 232 represent the coupled modes. We use P_{1c}, P_{2c}, and P_{3c} to 233 represent the EOT peaks for the NRinNH structures with the 234 coupling phenomenon, as shown in Figure 2b and 2c. The pink 235 dashed arrow in Figure 2c represents the EOT mode P_{1c}, the 236 blue dashed arrow represents the EOT mode P₂₀, and the red 237 dashed arrow represents the EOT mode Pac. Two clear 238

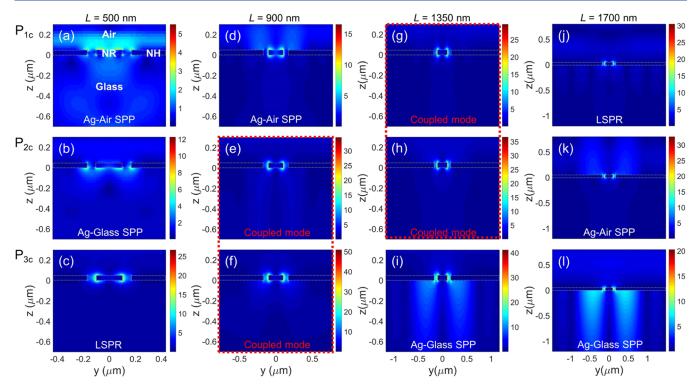


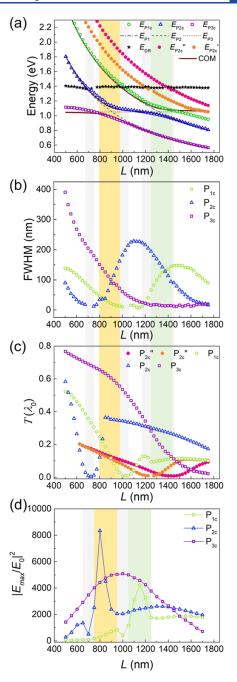
Figure 3. Normalized electric field $|E/E_0|$ distributions at $\lambda_{P_{1c}}$, $\lambda_{P_{2c}}$, and $\lambda_{P_{3c}}$ for NRinNH structures with (a-c) L=500 nm, (d-f) L=750 nm, (g-i) L=1350 nm, and (j-l) L=1700 nm, respectively.

239 anticrossings (at $L \sim 900$ and ~ 1350 nm) of the dashed arrows 240 in the transmission spectra can be seen. The spectra feature 241 changes a lot in the coupling region when compared to the 242 spectra of smaller L in the uncoupled region. A clear 243 asymmetric Fano line shape of the coupled EOT modes can 244 be observed due to the interaction of a narrow line-shape 245 resonance (SPP-induced EOT mode) with a broad resonance 246 (LSPR-induced EOT mode). The LSPR mode usually 247 possesses a wider spectral width because of the larger 248 dissipation when compared to the SPP mode. The 249 anticrossings are also confirmed by the electric field spectra 250 in the near-field, as shown in Figures S3 and S4. The $T(\lambda, 0^{\circ})$ of NRinNH of fixed L (1350 nm) and different ls (from 50 to 252 330 nm) is also calculated and shown in Figure S5. When l <253 120 nm, no coupling is observed, while, when *l* is in a 125–330 254 nm length region, anticrossings similar to those in Figure 2b 255 can be observed.

2.2. Energy Exchange in the Process of Mode 257 **Coupling.** To understand the energy exchange between the 258 LSPR plasmon- and SPP-Bloch wave character of the 259 polaritons at the coupling region, we use FDTD to calculate the normalized electric field intensity $|E/E_0|$ maps at $\lambda_{P_{1c'}},\,\lambda_{P_{2c'}}$ $_{261}$ and $\lambda_{P_{3c}}$ to find out the mode distributions. E_0 is the electric 262 field amplitude of the incident wave at the corresponding 263 wavelength. At a small period (L = 500 nm), three separated 264 peaks appear on the transmission spectrum, as shown in Figure 265 2c. Peaks P_{1c} and P_{2c} have a narrow spectral width, and the 266 electric field is confined mainly on the surfaces of the Ag film 267 (the Ag-air interface in Figure 3a and the Ag-glass interface 268 in Figure 3b). The peak P_{3c} has a broad spectral width, and the 269 electric field is located mainly at the two ends of the NR, with a 270 greater field enhancement, as shown in Figure 3c. Therefore, 271 we recognize that the P_{1c} and P_{2c} represent the SPP-induced

EOT mode at the two interfaces and P_{3c} is the LSPR mode at 272 this L value.

When L is changed to 900 nm, three main peaks can still be 274 identified in the transmission spectrum, as shown in Figure 2c. 275 The P_{1c} peak remains sharp, while P_{2c} and P_{3c} peaks become 276 similar, and similar electric field distributions can be acquired 277 at $\lambda_{P_{2c}}$ and $\lambda_{P_{3c'}}$ as shown in Figure 3e,f. The coexistence of $_{278}$ LSPR and diffracted propagating waves is visible: the LSPR 279 occurs at the ends of the NR and the diffracted field is 280 apparently near the unperforated region at the Ag/glass 281 interface. In this case, the SPP-induced EOT mode P_{2c} can be 282 coupled to the LSPR-induced EOT mode P_{3c}; thus, the energy 283 is exchanged reversibly between the two coupled modes. The 284 energy exchange demonstrates that the coupling between the 285 LSPR mode and the SPP mode modifies the field distribution 286 resulting from the normal-mode splitting with the small 287 detuning. Then, when L is changed to 1350 nm, the P_{3c} peaks 288 become very sharp and the electric field is confined mainly to 289 the Ag-glass interface. Therefore, we recognize that after the 290 coupling and energy exchange of P_{2c} and P_{3c} , the P_{3c} now 291 represents the SPP-induced EOT mode at the Ag-glass 292 interface. The peak shape of P_{1c} and P_{2c} becomes similar at this 293 L value, as shown in Figure 2c, and similar electric field 294 distributions can be revealed at P_{1c} and P_{2c}, as shown in Figure 295 3g,h. The coexistence of LSPR and diffracted propagating 296 waves is visible: the LSPR occurs at the ends of the NR and 297 diffracted field is near the unperforated region at the Ag/air 298 interface. In this case, the SPP-induced EOT mode is coupled 299 to the LSPR mode and the energy is exchanged reversibly 300 between the two coupled modes.


When L is changed to 1700 nm, the strongly confined 302 electric field at the Ag-glass interface shown in Figure 31 303 indicates that P_{3c} still represents the SPP-induced EOT mode 304 at the Ag-glass interface, similar to when L=1350 nm, as 305

306 shown in Figure 3i. The peak P_{2c} becomes very sharp (Figure 307 2c) and the electric field is confined mainly to the Ag—air 308 interface, as shown in Figure 3k. The electric field of P_{1c} is 309 located mainly at the two ends of the NR, as shown in Figure 310 3j. Therefore, after the energy exchange in the coupling region 311 of P_{1c} and P_{2c} the P_{2c} now represents the SPP-induced EOT 312 mode at the Ag—air interface and P_{1c} represents the LSPR-313 induced EOT mode.

2.3. Coupled Oscillator Model (COM), Spectral Shape
315 Change, and Enhanced Local Electric Fields. The physical
316 origin of the coupling can be captured by a model of coupled
317 three harmonic oscillators, which leads to the following
318 phenomenological (non-Hermitian) Hamiltonian^{1,12,25}

$$H = \begin{pmatrix} E_{\mathrm{P}_3} - \mathrm{i}\hbar\Gamma_{\mathrm{P}_3} & V_2 & V_1 \\ V_2 & E_{\mathrm{P}_2} - \mathrm{i}\hbar\Gamma_{\mathrm{P}_2} \\ V_1 & E_{\mathrm{P}_1} - \mathrm{i}\hbar\Gamma_{\mathrm{P}_1} \end{pmatrix}$$

where E_{P_1} , E_{P_2} , and E_{P_3} are the resonance photon energies of 320 the uncoupled peaks P1, P2, and P3 (corresponding to three $_{321}$ oscillators, respectively). E_{P_1} and E_{P_2} change inversely with L, while E_{P_3} is a constant, as shown in Figure 4a. Γ_{P_1} , Γ_{P_2} , and Γ_{P_3} 323 are the corresponding damping frequencies of P1, P2, and P3, 324 respectively. The constants V_1 and V_2 are the coupling 325 potential describing the coupling strength between the 326 oscillators P_1 and P_3 , P_2 , and P_3 , respectively. The V_1 and V_2 327 dictate the energy splitting observed at the resonance (when $E_{P_1} = E_{P_3}$ or $E_{P_2} = E_{P_3}$). The eigenvalues of the Hamiltonian 329 represent the new eigenenergies of the coupled system, i.e., the 330 final resulted peaks shown in Figure 2b,c. Based on the 331 extracted P_{1c} , P_{2c} , and P_{3c} location as a function of L, the fitted 332 coupling potentials are obtained as V_1 = 40.8 meV and V_2 = 333 59.2 meV. The eigenenergies resulting from this Hamiltonian 334 with the fitted coupling constants V_1 and V_2 are given by the 335 solid curves shown in Figure 4a, which satisfactorily reproduce 336 the calculation data extracted from the $T(\lambda, 0^{\circ})$ spectra shown 337 in Figure 2b (details are shown in Section S6 in SI). The slight ₃₃₈ mismatch between COM and $E_{P_{1c}}$ at $L \sim 1600-1800$ nm is due 339 to the influence of the coupling between higher-order SPP-340 induced EOT modes $(P_2'$ and $P_2'')$ with P_3 . From the 341 transmission spectrum shown in Figure 2a, the dissipation $_{342}$ frequencies of P $_2$ and P $_1$ are estimated: $\hbar\Gamma_{\rm P_2}\approx$ 50.2 meV at L = $_{343}$ 900 nm and $\hbar\Gamma_{\rm P_2}\approx$ 46.0 meV at L = 1350 nm. For the 344 uncoupled LSPR mode, the dissipation frequency can be 345 estimated from the transmission spectrum of NRinNH 346 structures with a longer NR (l = 330 nm), as shown in Figure $_{347}$ S2. $\hbar\Gamma_{\rm P_3}\approx 50.0$ and 38.7 meV at L=900 and 1350 nm, 348 respectively. The results verify that the interaction of P2 and P3 349 is in the strong coupling regime because the interaction 350 potential (59.2 meV) is larger than the average dissipation $_{351} \left(\sqrt{(\hbar \Gamma_{P_2})^2 / 2 + (\hbar \Gamma_{P_3})^2 / 2} \right) = 50.1 \text{ meV}$. The energies of the 352 uncoupled SPP-induced EOT modes are denoted by the 353 dashed-dot curve and dashed curve, and the unperturbed 354 LSPR-induced EOT mode is denoted by the horizontal dotted 355 line, as shown in Figure 4a. At where the dashed curves and 356 dotted line intersect (marked by yellow (P_2 and P_3 at around L $_{357} = 900 \text{ nm}$) and green (P₁ and P₃ at around L = 1350 nm) 358 stripes), the positions of transmission peaks present obvious 359 anticrossings (P_{2c} and P_{3c} , P_{1c} and P_{2c}). The splitting energies

Figure 4. (a) Energy dispersion relationships of the three branches P_{1c} P_{2c} and P_{3c} plotted against L. The horizontal dotted line represents the energy of the uncoupled LSPR-induced EOT mode P_3 and the dashed-dot and dashed curves represent the energies of the uncoupled SPP-induced EOT modes P_1 and P_2 , respectively. The solid lines correspond to the real part of the eigenenergies of the coupled modes calculated by the coupled oscillator model (COM) with a splitting energy of 160.0 meV at $E_{P_2} = E_{P_3}$ ($L \sim 900$ nm) and 107.3 meV at $E_{P_1} = E_{P_3}$ ($L \sim 1350$ nm). (b) Plots of the FWHM of the peaks, (c) transmittance at λ_0 , and (d) volume maximum local electric field enhancement $|E_{\rm max}/E_0|^2$ of the gap between the NR and the NH for λ_0 of NRinNH structures with different Ls.

are calculated as 160.0 meV at $E_{\rm P_2}=E_{\rm P_3}$ ($L\sim900$ nm) and $_{360}$ 107.3 meV at $E_{\rm P_1}=E_{\rm P_3}$ ($L\sim1350$ nm). In this case of small $_{361}$ detuning, the SPP-induced EOT modes can be coupled to the $_{362}$ LSPR-induced EOT mode and the energy is exchanged $_{363}$

 $_{364}$ reversibly between the two coupled modes. Away from the $_{365}$ coupling regimes, the transmission peak positions approach $_{366}$ that of the uncoupled resonances. The energy of the $_{367}$ unperturbed LSPR-induced EOT mode is calculated to be $_{368}$ $_{1050.5}$ meV ($\lambda_{P_3}=1180\,$ nm). This model predicts the $_{369}$ formation of three polariton states (P_{1c} , P_{2c} , and P_{3c}) at the $_{370}$ coupling region, which are superpositions of SPP- and LSPR- $_{371}$ induced EOT states. These states have properties that differ $_{372}$ from those of the uncoupled subsystems, including their $_{373}$ spectral line widths.

According to the COM, incident light energy can be 375 reversibly exchanged between the plasmon- and SPP-Bloch 376 wave character of the polaritons, which results in narrower 377 spectra width for the plasmon-like excitations. To study the 378 influence of the energy exchange between the LSPR- and SPP-379 induced EOT modes on spectra features, we extracted the 380 FWHM and transmittance of the peaks for different Ls. The 381 volume maximum local electric field enhancement $|E_{\text{max}}/E_0|^2$ of 382 the gap between NR and NH at the resonance wavelength of 383 the peaks $(P_{1c} \sim P_{3c})$ is also calculated. Figure 4b plots the 384 FWHM of the peaks of different Ls. In general, the spectra 385 width of the LSPR-induced EOT peaks decreases when 386 coupling with the SPP-induced EOT peaks, while the spectra 387 width of the SPP-induced EOT peaks increases at the coupling 388 region. Specifically, at the coupling region of P_{2c} and P_{3c} (the 389 yellow color stripe at $L \sim 900$ nm), the FWHM of P_{3c} (LSPR-390 induced EOT peak) decreases with the increase in L, while the 391 FWHM of P_{2c} (SPP-induced EOT peak) increases with L. 392 After the energy exchange in the coupling region of P_{2c} and P_{3c} 393 ($L > \sim 900$ nm), P_{3c} represents the SPP-induced EOT mode at 394 the Ag-glass interface and P_{2c} represents the LSPR mode. At 395 the coupling region of P_{1c} and P_{2c} (the green color stripe at L $_{396} \sim 1350$ nm), the FWHM of P_{2c} (LSPR-induced EOT peak) 397 decreases with the increase in L, while the FWHM of P_{1c} (SPP-398 induced EOT peak) increases with L. After the energy 399 exchange in the coupling region of P_{1c} and P_{2c} (L > 1350 400 nm), P_{2c} represents the SPP-induced EOT mode at the Ag-air 401 interface and P_{1c} represents the LSPR mode. Thus, the energy 402 exchange between the LSPR- and SPP-induced EOT modes 403 results in a narrower FWHM for the LSPR excitations, which is 404 beneficial for high-performance sensing applications. To 405 further confirm that the FWHM of the LSPR-induced EOT 406 mode is narrowed at the coupling region, the plasmon phase 407 relaxation dynamics is simulated with a time monitor, and the 408 near-field electrical spectra of different Ls are shown in Figure 409 S6. The fitted dephasing times of the coupled modes, 32.9 and 410 18.9 fs of P_{3c} and P_{2c} at L_c = 900 nm or 18.0 and 28.7 fs of P_{2c} 411 and P_{1c} at L_c around 1300 nm, are longer than the dephasing 412 times of the pure LSPR modes, 12.4 fs of P_3 for L_c < 900 nm 413 and 11.6 fs of P_2 for $L_c > 900$ nm or 11.6 fs of P_2 for $L_c < 1300$ 414 nm and 16.2 fs of P_1 for $L_c > 1300$ nm, which also proves that 415 the coupling of the LSPR-induced EOT mode with the SPP-416 induced EOT modes can reduce the spectra width of the LSPR 417 mode. Details can be found in Section S7 of the SI.

Figure 4c plots $T(\lambda_0)$ of the resonant peaks of different Ls. 419 Overall, the transmittance of different peaks decreases with the 420 increases in L due to the decrease in the perforation area ratio. 421 However, a minimum transmittance of the peaks appears 422 around the excitation wavelength of the longitudinal LSPR 423 mode of NR. The black stars in Figure 4a show the resonance 424 wavelength at around 890 nm of the longitudinal LSPR mode 425 of NR (D_R) . The strong resonant light absorption possibly

causes the transmittance of all of the peaks at $\lambda_0 \approx \lambda_{D_R}$ to be $_{426}$ very low (near zero), as indicated in Figure 4c (marked by a 427 gray color stripe). With L continuing to increase, $\lambda_0 > \lambda_{D_R}$, the $_{428}$ transmittance of the peaks recovers to a certain value and 429 continues to decrease with the increase in L. Coupling seems 430 to have little impact on the peak transmittance, as indicated by 431 the yellow and green color stripes.

The volume maximum local electric field enhancement | 433 $E_{\rm max}/E_0|^2$ and the average local electric field enhancement | 434 $E_{\rm mean}/E_0|^2$ of the gap between NR and NH at λ_0 are calculated 435 and shown in Figures 4d and S7 in the SI. $|E_{\text{mean}}/E_0|^2$ and | 436 $E_{\rm max}/E_0$ of the gap between NR and NH at $\lambda_{\rm P_{1c}}$ and $\lambda_{\rm P_{2c}}$ show 437 a similar trend versus L: with the increase in L, both $\lambda_{P_{1c}}$ and $_{438}$ $\lambda_{P_{2c}}$ red shift and become closer to the resonance wavelength of 439 $D_{\rm R}$ (gray stripe), the field enhancement decreases. A further 440 increase in L causes both $\lambda_{P_{1c}}$ and $\lambda_{P_{2c}}$ to red shift and be closer 441 to the resonance wavelength of the uncoupled LSPR-induced 442 EOT mode λ_{P_3} . The coupling between P_{2c} with P_{3c} (yellow 443 stripe) and P_{1c} with P_{2c} (green stripe) causes the field 444 enhancement to continuously increase. At a certain L value 445 (~800 and 1175 nm), the field enhancement reaches the 446 maximum, and a further increase in L causes the field 447 enhancement to decrease due to the decoupling of P_{2c} with 448 P_{3c} (or the decoupling of P_{1c} with P_{2c}). Both $|E_{mean}/E_0|^2$ and | 449 $E_{\text{max}}/E_0|^2$ at $\lambda_{P_{3c}}$ increase with L and show a maximum field $_{450}$ enhancement at the coupling region but decrease with L when 451 P_{3c} decouples with the LSPR-induced EOT modes. It can be 452 seen that the L values of the coupled region displayed by the 453 near-field enhancement in Figure 4d are smaller than the L 454 values of the coupled region indicated by the far-field 455 transmission spectra (Figure 4a-c). This is because there 456 exists an energy shift between near-field and far-field peak 457 intensities in localized plasmon systems. Upon optical 458 excitation, the maximum near-field enhancement occurs at 459 lower energies than the maximum of the corresponding far- 460 field spectrum. ²⁶ Thus, λ_0 extracted from the far-field spectra is 461 smaller than the wavelength λ_0^N of the maximum near-field 462 enhancements and the near-field enhancement calculated at λ_0 463 should be smaller than that of λ_0^N . However, the trend of near- 464 field enhancement for the periodicity is accurate and the 465 coupling produces a significant enhancement effect on the local 466

Thus, the energy exchange between the LSPR- and SPP- 468 induced EOT modes can give rise to a higher near-field 469 enhancement than the single SPP-induced EOT mode or the 470 LSPR-induced EOT mode and a narrower spectral width than 471 those of the single LSPR-induced EOT mode, but a wider 472 spectral width than those of the single SPP-induced EOT 473 mode. For sensing applications, the high near-field enhance- 474 ment and the sharp spectral feature are highly preferred. The 475 high local electric field enhancement can help improve the 476 sensitivity of the spectral features due to the changes in the 477 refractive index. A sharp peak with small FWHM facilitates the 478 ease of the recognition of a peak shift and increases the analysis 479 accuracy. In particular, the polarization-dependent spectra, 480 $T(\lambda, 90^{\circ})$ and $T(\lambda, 0^{\circ})$, caused by structural anisotropy in the 481 NRinNH can help to improve the FOM of index refractive 482 sensing by tracking the ZCPs of the difference between these 483 two spectra. In addition, the coupling occurs in the NIR 484 region and can be tuned to an even larger wavelength region. 485

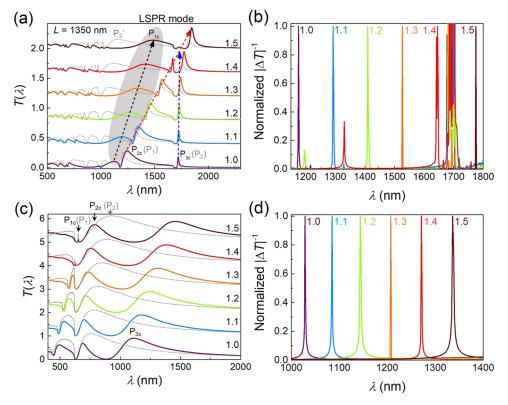


Figure 5. (a) $T(\lambda, 0^{\circ})$ (solid curves) and $T(\lambda, 90^{\circ})$ (dotted curves) spectra of the NRinNH structures with L=1350 nm for different background indexes n. The black text is the number of peaks in $T(\lambda, 0^{\circ})$ and the gray text is the number of peaks in $T(\lambda, 90^{\circ})$. (b) Normalized $|\Delta T|^{-1}$ spectra of the intersection λ_{ZCP1} of the two most sensitive peaks (P_{2c} of $T(\lambda, 0^{\circ})$ and P_{1} of $T(\lambda, 90^{\circ})$). (c) $T(\lambda, 0^{\circ})$ (solid curves) and $T(\lambda, 90^{\circ})$ (dotted curves) spectra of the NRinNH structures with L=500 nm for different background indexes n. The black text is the number of peaks in $T(\lambda, 0^{\circ})$ and the gray text is the number of peaks in $T(\lambda, 90^{\circ})$. (d) Normalized $|\Delta T|^{-1}$ spectra of the intersection of P_{3c} of $T(\lambda, 0^{\circ})$ and P_{2} of $T(\lambda, 90^{\circ})$.

 486 The large resonance wavelength can also help to improve the 487 RIS because of the positive relationship between RIS and the 488 resonance wavelength $\lambda_0.^{19}$ Thus, as a demonstration of the 489 improved sensing capability, the sensing performance of the 490 NRinNH structures with coupled modes is calculated.

2.4. Refractive Index Sensitivity. Since the sensing only 492 occurs at the Ag-air interface, we compare the shift of peaks 493 induced by plasmon modes at this interface. The sensing 494 performance of the NRinNH structures at the coupling region 495 (L = 1350 nm) has been estimated by calculating the 496 transmission spectra of the NRinNH structures submerging 497 in different background indexes of refractions n, varying from 498 1.0 to 1.5. Figure 5a shows the evolution of $T(\lambda, 0^{\circ})$ (solid 499 curves) and $T(\lambda, 90^{\circ})$ (dashed curves) of the NRinNH so structure with n = 1.0-1.5. The variation of n causes all of the 501 resonance peaks to red shift linearly and the λ_0 -n slope 502 represents the RIS. For $T(\lambda, 0^{\circ})$, the hybrid EOT peaks P_{1c} 503 and P_{2c} of the SPP-induced EOT mode and the LSPR-induced 504 EOT mode at the Ag-air interface red shift quickly with the 505 increase in n since both modes generate higher near-field 506 enhancement among all of the resonances, as shown in Figure 507 5a. Though the field enhancement at $\lambda_{P_{3c}}$ is at a similar value or even higher than that at $\lambda_{P_{1c}}$ and $\lambda_{P_{2c}}$, as shown in Figure 4d, the 509 EOT peaks P_{3c} almost remain unmoved because the index of 510 the glass remains unchanged. While for $T(\lambda, 90^{\circ})$, as discussed 511 in Figure 2a, when the polarization is perpendicular to the long 512 axis of the NR, the LSPR-induced EOT mode is not excited. 513 The EOT peak P1 induced by the resonance at the Ag-air 514 interface shows the largest red shift. Comparing $T(\lambda, 0^{\circ})$ with 515 $T(\lambda, 90^{\circ})$, all of the SPP-induced EOT peaks at the shorter

wavelength side of the LSPR-induced EOT peak are 516 suppressed and become narrow and opaque, while the SPP- 517 induced EOT peaks at the longer wavelength side of the LSPR 518 mode are enhanced and widened. Thus, $T(\lambda, 90^{\circ})$ and $T(\lambda, 519)$ 0°) overlap at specific wavelengths, and the ZCPs of the 520 spectra $\Delta T = T(\lambda, 0^{\circ}) - T(\lambda, 90^{\circ})$ could be tracked for 521 sensing. It should be noted that the normalization of the 522 spectra according to $\frac{T-T_{\min}}{T_{\max}-T_{\min}}$ (where T_{\min} and T_{\max} are the 523 minimum and maximum values in the spectrum $T(\lambda)$ is 524 necessary to obtain a better linear response and greater stability 525 for the sensor, and the null point is more precisely visualized 526 by plotting the quantity $|\Delta T|^{-1}$. The normalized $|\Delta T|^{-1}$ 527 spectrum (Figure 5b) shows extremely sharp peaks, with 528 peak locations at the intersection $\lambda_{\rm ZCP1}$ of the two most 529 sensitive peaks (P_{2c} of $T(\lambda, 0^{\circ})$ and P_1 of $T(\lambda, 90^{\circ})$). The 530 normalized $|\Delta T|^{-1}$ spectrum of the intersection $\lambda_{\rm ZCP2}$ of P_{1c} of $_{531}$ $T(\lambda, 0^{\circ})$ and P'_2 of $T(\lambda, 90^{\circ})$ is shown in Figure S8. The 532 FWHM values of the $|\Delta T|^{-1}$ spectrum are defined not only by 533 the slope of the ΔT spectrum at $\lambda_{\rm ZCP}$ but also by the 534 measurement resolution $\Delta \lambda$. In our FDTD calculation, the 535 wavelength step used is 1.8 nm, and the normalized $|\Delta T|^{-1}$ 536 spectrum has an FWHM of around 4.6 and 4.3 nm at λ_{ZCP2} 537 and $\lambda_{\rm ZCP1}$, respectively. Clearly, the change of the sharp peaks 538 of the normalized $|\Delta T|^{-1}$ results in a much higher FOM 539 compared to those directly using λ_0 of $T(\lambda, 0^\circ)$ and $T(\lambda, 90^\circ)$. 540 The RISs of $\lambda_{\rm ZCP2}$ and $\lambda_{\rm ZCP1}$ are 622 and 1200.6 nm RIU⁻¹, 541 which result in high FOMs of 135.2 and 279.2 RIU⁻¹, 542 respectively. The sensing performance of the hybrid SPP mode 543 (λ_{ZCP2}) in this structure is higher than the hybrid LSPR mode 544

Table 1. RIS, FWHM, and FOM of the Peaks of $|\Delta T|^{-1}$ for the NRinNH Structure of L = 1350 nm, the NR Array of L = 1350 nm, and the NRinNH Structure of L = 500 nm

structure	$\lambda_{\rm ZCP}$ (nm) at $n=1$		RIS (nm RIU ⁻¹)	FWHM ^a (nm)	FOM (RIU ⁻¹)
NRinNH ($L = 1350 \text{ nm}$)	$\lambda_{ m ZCP1}$	1176	1200.6	4.3	279.2
	$\lambda_{ m ZCP2}$	1086	622.0	4.6	135.2
NR (L = 1350 nm)			518.0	4.0	129.5
NRinNH ($L = 500 \text{ nm}$)	1028.54		617.4	3.2	192.9
^a The value is an average for the spectra calculated in different background indexes.					

545 (λ_{ZCP2}) due to the large sensing area of the NH for the SPP 546 mode. Improving the sensing area of the LSPR mode by 547 increasing the number of the NR as the structure in ref 18

548 could further improve the sensitivity of the LSPR mode and

549 get an LSPR sensor with high RIS and high FOM.

To better demonstrate the effect of coupling on different 551 EOT modes in plasmonic sensing of the NRinNH structure, 552 the sensing performance of the NR array of l = 200 nm and L =553 1350 nm and the NH array of L = 1350 nm with the 554 noncoupled LSPR and SPP modes is calculated (Figures S8 sss and S9). Due to the inverse energy change between P_{1c} and 556 P_{2c}, the hybrid EOT peak P_{1c} of the NRinNH possesses a 557 higher near-field enhancement, thus showing a higher 558 sensitivity when compared with the LSPR mode of the NR 559 of the same L and l. The RIS of the LSPR-induced EOT mode 560 P_{1c} shown in Figure 5a is 722.6 nm RIU⁻¹, while the RIS of the 561 LSPR mode for the NR array (λ_{NR} in Figure S9a) is only 452.1 562 nm RIU⁻¹. The $|\Delta T|^{-1}$ spectrum of the NR array of L = 1350563 nm is shown in Figure S9b. The RIS of 518 nm RIU⁻¹ and the 564 FOM of 129.5 \widetilde{RIU}^{-1} is obtained for the $|\Delta T|^{-1}$ spectrum of 565 the NR array, lower than that of $\lambda_{\rm ZCP2}$ of the $|\Delta T|^{-1}$ spectrum 566 of the NRinNH structure (622 nm RIU⁻¹ and 135.2 RIU⁻¹). 567 For the NH array, the structure does not have anisotropic 568 property, and there is no difference between the spectra of 569 different polarization angles. λ_0 of the transmission spectrum of 570 the NH array is directly used to characterize the sensing 571 performance. P₁ of the SPP mode at the Ag-air interface 572 shows the largest red shift among all of the EOT peaks of the 573 spectrum of the NH array (Figure S10). The highest RIS and 574 FOM are 1204.4 nm RIU⁻¹ and 30 RIU⁻¹, respectively. The 575 RIS and FOM of the hybrid SPP mode P_{2c} of the NRinNH 576 structure in Figure 5a (1180.3 nm RIU^{-1} and 14.6 RIU^{-1}) are 577 a little smaller than those of the NH array (1204.4 nm RIU⁻¹ 578 and 30 RIU⁻¹) due to the increased FWHM of the hybrid 579 mode when compared to the uncoupled SPP mode of the NH 580 array. However, using the difference spectrum, the FOM can 581 be increased from 30 RIU⁻¹ of the NH array to 279.2 RIU⁻¹ of 582 the NRinNH structure. The sensing performance of the 583 NRinNH structure at the noncoupled region (L = 500 nm) is 584 also calculated and shown in Figure 5c,d. The intersection of 585 P_{3c} of $T(\lambda, 0^{\circ})$ and P_2 of $T(\lambda, 90^{\circ})$ possesses an RIS of 617.4 586 nm RIU⁻¹ and an FOM of 192.9 RIU⁻¹, as shown in Table 1. 587 Clearly, the NRinNH structures of L = 1350 nm at the coupled 588 region can obtain a high RIS and FOM simultaneously when 589 used for plasmonic sensors.

3. CONCLUSIONS

590 In a summary, the separate regulation of LSPR- and SPP-591 induced EOT peaks can be achieved in a simple one-layer 592 NRinNH plasmonic nanostructure. The coupling and energy 593 exchange of SPP- and LSPR-induced EOT modes of the 594 NRinNH structure can improve the spectral resolution and 595 near-field enhancement of the LSPR-induced EOT mode, thus

can improve the RIS of the LSPR-induced EOT peak for 596 sensing applications. The RIS and FOM of the hybrid SPP 597 mode of the NRinNH structure are not improved when 598 compared to those of the NH array due to the increased 599 FWHM when coupled with the LSPR mode. However, the 600 hybrid modes of the NRinNH structure can be tuned to the 601 target NIR wavelength region by the length of the NR and the 602 periodicity of the nanostructure array, which is highly preferred 603 for improving the RIS of the plasmonic sensor. In addition, 604 using the polarization-dependent spectra caused by structural 605 anisotropy, the FOM of the hybrid mode can be highly 606 improved. A high RIS of 1200.6 nm RIU⁻¹ and a high FOM of 607 279.2 RIU⁻¹ are demonstrated for index refractive sensing 608 applications. Meanwhile, as only the top exposed layer plays a 609 role in the sensing process, the single-layer nanostructure 610 design avoids the material waste of the multilayer nanostruc- 611 ture. The position 13 and number 18,27 of the nanorods of this 612 NRinNH structure can be optimized according to the 613 application scenarios and the fabrication process. As long as 614 there is a horizontal component of the nanorods along the 615 same direction, the separate regulation of LSPR- and SPP- 616 induced EOT modes can be achieved by varying the NR length 617 or the periodicity, respectively. The nanorods can also be 618 replaced by other nanostructures capable of supporting LSPR, 619 such as nanoparticles and nanodisks, while the nanoholes can 620 be round or oval. It has also been shown that the preparation 621 of large-scale complex hole structures, i.e., hole rod, ^{17,18} hole 622 disk, 28,29 hole particle, 30 and hole grating, 31 can be achieved 623 through simple processes by combing NSL and glancing angle 624 deposition. The possible NRinNH structures by NSL are 625 shown in Figure S11 in the SI.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 629 https://pubs.acs.org/doi/10.1021/acsanm.2c01962.

FDTD calculation conditions, transmission spectra of 631 the pure NH arrays, transmission spectra of the 632 NRinNH array with the longer rod length, electric 633 field spectrum in the near-field showing the coupling 634 phenomenon, coupling phenomenon tuned by the 635 length of NR, coupled oscillator model explanation, 636 fitted dephasing time, local-field enhancement, refractive 637 index sensitivity, and possible NRinNH structures that 638 can be fabricated by NSL (PDF)

AUTHOR INFORMATION

Corresponding Authors

Zhengjun Zhang – Key Laboratory of Advanced Materials (MOE) and School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China;

627

628

640

641

642

643

```
orcid.org/0000-0001-8727-6373; Email: zjzhang@
645
        tsinghua.edu.cn
646
      Yiping Zhao - Department of Physics and Astronomy,
647
        University of Georgia, Athens, Georgia 30602, United States;
648
        orcid.org/0000-0002-3710-4159; Email: zhaoy@
649
        uga.edu
650
```

651 Authors

652

```
Yanfeng Wang - Key Laboratory of Advanced Materials
        (MOE) and School of Materials Science and Engineering,
653
        Tsinghua University, Beijing 100084, P. R. China;
654
        Department of Physics and Astronomy, University of Georgia,
655
        Athens, Georgia 30602, United States; oorcid.org/0000-
656
        0001-7698-6230
657
```

658 **Shen Ao** – Key Laboratory of Advanced Materials (MOE) and School of Materials Science and Engineering, Tsinghua 659 University, Beijing 100084, P. R. China; o orcid.org/0000-660 0003-4365-8729 661

Fei Yang – Key Laboratory of Advanced Materials (MOE) 662 and School of Materials Science and Engineering, Tsinghua 663 University, Beijing 100084, P. R. China

665 Complete contact information is available at: 666 https://pubs.acs.org/10.1021/acsanm.2c01962

667 Author Contributions

668 This manuscript was written through contributions of all 669 authors. All authors have given approval to the final version of 670 the manuscript.

671 Notes

672 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

674 Y.W., S.A., and Z.Z. were supported by the Basic Science 675 Centre Project of NSFC under Grant No. 51788104. Y.Z. was 676 supported by the National Science Foundation under Grant 677 No. ECCS-1808271.

ABBREVIATIONS 678

NH, nanohole 679

NR, nanorod 680

NRinNH, nanorod in nanohole 681

LSPR, localized surface plasmon resonance 682

SPP, surface plasmon polaritons 683

EOT, extraordinary optical transmission 684

NIR, near-infrared 685

RIS, refractive index sensitivity 686

RIU, refractive index (n) unit 687

688 FDTD, finite-difference time-domain

FOM, figure of merit 689

FWHM, full width at half-maximum 690

MIM, metal-insulator-metal 691

NSL, nanosphere lithography 692

COM, coupled oscillator model 693

REFERENCES 694

- (1) Yang, J.; Sun, Q.; Ueno, K.; Shi, X.; Oshikiri, T.; Misawa, H.; 696 Gong, Q. Manipulation of the dephasing time by strong coupling 697 between localized and propagating surface plasmon modes. Nat. 698 Commun. 2018, 9, No. 4858.
- (2) Ai, B.; Basnet, P.; Larson, S.; Ingram, W.; Zhao, Y. Plasmonic 700 sensor with high figure of merit based on differential polarization 701 spectra of elliptical nanohole array. Nanoscale 2017, 9, 14710-14721.

- (3) Habteyes, T. G.; Dhuey, S.; Cabrini, S.; Schuck, P. J.; Leone, S. 702 R. Theta-shaped plasmonic nanostructures: Bringing "dark" multipole 703 plasmon resonances into action via conductive coupling. Nano Lett. 704 2011, 11, 1819-1825.
- (4) Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N. 706 Plasmonic surface lattice resonances: A review of properties and 707 spplications. Chem. Rev. 2018, 118, 5912-5951.
- (5) Vecchi, G.; Giannini, V.; Gomez Rivas, J. Shaping the fluorescent 709 emission by lattice resonances in plasmonic crystals of nanoantennas. 710 Phys. Rev. Lett. 2009, 102, No. 146807.
- (6) Auguié, B.; Bendaña, X. M.; Barnes, W. L.; García de Abajo, F. J. 712 Diffractive arrays of gold nanoparticles near an interface: Critical role 713 of the substrate. Phys. Rev. B 2010, 82, No. 155447.
- (7) Chanda, D.; Shigeta, K.; Truong, T.; Lui, E.; Mihi, A.; 715 Schulmerich, M.; Braun, P. V.; Bhargava, R.; Rogers, J. A. Coupling of 716 plasmonic and optical cavity modes in quasi-three-dimensional 717 plasmonic crystals. Nat. Commun. 2011, 2, No. 479.
- (8) Xiang, C.-P.; Jin, Y.Localized Surface Plasmon Resonance 719 Modulated Double F-P Resonance Cavities to Improve the Absorption 720 of Perovskite Solar Cells; Recent Developments on Information and 721 Communication Technology (ICT) Engineering, 2019; pp 9–12.
- (9) Vázquez-Guardado, A.; Safaei, A.; Modak, S.; Franklin, D.; 723 Chanda, D. Hybrid coupling mechanism in a system supporting high 724 order diffraction, plasmonic, and cavity resonances. Phys. Rev. Lett. 725 2014, 113, No. 263902.
- (10) Wen, L.; Sun, F.; Chen, Q. Cascading metallic gratings for 727 broadband absorption enhancement in ultrathin plasmonic solar cells. 728 Appl. Phys. Lett. 2014, 104, No. 151106.
- (11) Yang, Z.-J.; Hu, D.-J.; Gao, F.-H.; Hou, Y.-D. Enhanced chiral 730 response from the Fabry-Perot cavity coupled meta-surfaces. Chin. 731 Phys. B 2016, 25, No. 084201.
- (12) Zeng, P.; Cadusch, J.; Chakraborty, D.; Smith, T. A.; Roberts, 733 A.; Sader, J. E.; Davis, T. J.; Gomez, D. E. Photoinduced electron 734 transfer in the strong coupling regime: Waveguide-plasmon polar- 735 itons. Nano Lett. 2016, 16, 2651-2656.
- (13) Wang, Y.; Zhang, Z.; Zhao, Y. The effect of nanorod position 737 on the plasmonic properties of the complex nanorod in nanohole 738 arrays. J. Phys. D: Appl. Phys. 2021, 54, No. 155201.
- (14) Wang, Y.; Luong, H.; Zhang, Z.; Zhao, Y. Coupling between 740 plasmonic nanohole array and nanorod array: The emerging of a new 741 extraordinary optical transmission mode and epsilon-near-zero 742 property. J. Phys. D 2020, 53, No. 275202.
- (15) Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. 744 A. Extraordinary optical transmission through sub-wavelength hole 745 arrays. Nature 1998, 391, 667-669. 746
- (16) García de Abajo, F. J. Colloquium: Light scattering by particle 747 and hole arrays. Rev. Mod. Phys. 2007, 79, 1267-1290.
- (17) Wang, Y.; Chong, H. B.; Zhang, Z.; Zhao, Y. Large-area 749 fabrication of complex nanohole arrays with highly tunable plasmonic 750 properties. ACS Appl. Mater. Interfaces 2020, 12, 37435-37443. 751
- (18) Larson, S.; Luong, H.; Song, C.; Zhao, Y. Dipole radiation- 752 induced extraordinary optical transmission for silver nanorod-covered 753 silver nanohole arrays. J. Phys. Chem. C 2019, 123, 5634-5641.
- (19) Skehan, C.; Ai, B.; Larson, S. R.; Stone, K. M.; Dennis, W. M.; 755 Zhao, Y. Plasmonic and SERS performances of compound nanohole 756 arrays fabricated by shadow sphere lithography. Nanotechnology 2018, 757 29, No. 095301.
- (20) Huang, W.-X.; Wang, Q.-J.; Yin, X.-G.; Huang, C.-P.; Huang, 759 H.; Wang, Y.-M.; Zhu, Y.-Y. Optical resonances in a composite 760 asymmetric plasmonic nanostructure. J. Appl. Phys. 2011, 109, 761 No. 114310.
- (21) Li, Y. Plasmonic Optics: Theory and Applications. In Tutorial 763 Texts in Optical Engineering; SPIE Press: Bellingham, Washington 764 98227-0010 USA, 2017; Vol. TT 110, pp 99-129.
- (22) Zhu, X.; Cao, N.; Thibeault, B. J.; Pinsky, B.; Yanik, A. A. 766 Mechanisms of Fano-resonant biosensing: Mechanical loading of 767 plasmonic oscillators. Opt. Commun. 2020, 469, No. 125780.

ı

- 769 (23) Lalanne, P.; Rodier, J. C.; Hugonin, J. P. Surface plasmons of 770 metallic surfaces perforated by nanohole arrays. *J. Opt. A: Pure Appl.* 771 Opt. 2005, 7, 422–426.
- 772 (24) Lin, L.; Roberts, A. Light transmission through nanostructured 773 metallic films: coupling between surface waves and localized 774 resonances. *Opt. Express* **2011**, *19*, 2626–2633.
- 775 (25) Liu, H.; Sun, X.; Yao, F.; Pei, Y.; Yuan, H.; Zhao, H. 776 Controllable coupling of localized and propagating surface plasmons 777 to tamm plasmons. *Plasmonics* **2012**, *7*, 749–754.
- 778 (26) Zuloaga, J.; Nordlander, P. On the energy shift between near-779 field and far-field peak intensities in localized plasmon systems. *Nano* 780 *Lett.* **2011**, *11*, 1280–1283.
- 781 (27) Song, C.; Jiang, X.; Yang, Y.; Zhang, J.; Larson, S.; Zhao, Y.; 782 Wang, L. High-sensitive assay of nucleic acid using tetrahedral DNA 783 probes and DNA concatamers with a surface-enhanced Raman 784 scattering/surface plasmon eesonance dual-mode biosensor based on 785 a silver nanorod-covered silver nanohole array. ACS Appl. Mater. 786 Interfaces 2020, 12, 31242–31254.
- 787 (28) Ho, C.-C.; Zhao, K.; Lee, T.-Y. Quasi-3D gold nanoring cavity 788 arrays with high-density hot-spots for SERS applications via 789 nanosphere lithography. *Nanoscale* **2014**, *6*, 8606–8611.
- 790 (29) Yoo, D.; Mohr, D. A.; Vidal-Codina, F.; John-Herpin, A.; Jo, 791 M.; Kim, S.; Matson, J.; Caldwell, J. D.; Jeon, H.; Nguyen, N. C.; 792 Martin-Moreno, L.; Peraire, J.; Altug, H.; Oh, S. H. High-contrast 793 infrared absorption spectroscopy via mass-produced coaxial zero-794 mode resonators with sub-10 nm gaps. *Nano Lett.* **2018**, *18*, 1930—795 1936.
- 796 (30) Weiler, M.; Quint, S. B.; Klenk, S.; Pacholski, C. Bottom-up 797 fabrication of nanohole arrays loaded with gold nanoparticles: 798 extraordinary plasmonic sensors. *Chem. Commun.* **2014**, *50*, 15419–799 22.
- 800 (31) Wang, Y.; Choi, I.; Zhang, K.; Yang, Y.; Ao, S.; Xue, X.; Fu, W.; 801 Zhang, Z.; Zhao, Y. Highly conductive nanograting—nanohole 802 structures with tunable and dual-band spectral transparency. ACS 803 Appl. Electron. Mater. 2021, 3, 3489—3500.