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Abstract:

Purpose: Blood pressure, cardiac output, and ventricular volumes correlate to various subject
features such as age, body size, and exercise intensity. The purpose of this study is to quantify this
correlation through regression modeling. Methods: We conducted a systematic review to compile
reference data of healthy subjects for several cardiovascular parameters and subject features.
Regression algorithms used these aggregate data to formulate predictive models for the outputs -
systolic and diastolic blood pressure, ventricular volumes, cardiac output, and heart rate - against
the features - age, height, weight, and exercise intensity. A simulation-based procedure generated
data of virtual subjects to test whether these regression models built using aggregate data can
perform well for subject-level predictions and to provide an estimate for the expected error. The
blood pressure and heart rate models were also validated using real-world subject-level data.
Results: The direction of trends between model outputs and the input subject features in our study
agree with those in current literature. Conclusion: Although other studies observe exponential
predictor-output relations, the linear regression algorithms performed the best for the data in this
study. The use of subject-level data and more predictors may provide regression models with
higher fidelity. Significance: Models developed in this study can be useful to clinicians for
personalized patient assessment and to researchers for tuning computational models.

Keywords:
Systematic Review, Regression Modeling, Simulation Studies, Blood Pressure, Cardiac Output,
Ventricular volume

Abbreviations:
BSA —  Body Surface Area (m?)
BMI —  Body Mass Index (kg/m?)
MET — Metabolic Equivalent (exercise intensity)
SD — Standard Deviation
EDV — End-Diastolic Volume (ml)
ESV —  End-Systolic Volume (ml)
RMSE — Root-Mean-Squared Error
NRMSE — Normalized Root-Mean-Squared Error (normalized to mean value)
Data-O — the original aggregate data compiled from the systematic review process
Sample-Oager — asingle aggregate data point from Data-O
Model-O — the regression models built using Data-O
Data-S — the simulated aggregate data generated using the simulation studies
procedure
Model-S — the regression models built using Data-S
FRIEND — Fitness Registry and the Importance of Exercise National Database

Model-F — the regression models built using subject-level data from FRIEND



Systematic Review and Regression Modeling of the Effects of Age, Body Size,
and Exercise on Cardiovascular Parameters in Healthy Adults

Introduction:

Subject features such as age, body size, and exercise intensity correlate with blood pressure
[1-4], blood flowrate [5—7], ventricular volumes [8—11], and other hemodynamic parameters [ 12—
14]. These are some of the most important and fundamental cardiovascular parameters which
provide important clinical information regarding the cross-sectional health status and longitudinal
health trajectory of a subject [15-19].

Clinicians have developed consensual pathologic thresholds for many of these
cardiovascular parameters. However, despite the potential utility, a more personalized approach of
evaluating gradations of these parameters within the normal and abnormal ranges is not widely
used [20]. While a threshold approach is easier to study with clinical trials, a more granular
understanding of patient-specific parameters could encourage better personalized medicine.

Multivariable regression models provide specific numerical values of the cardiovascular
parameters given subject features. They also provide the ability to assess the strength of predictors
used which makes the models physically interpretable and provides clinicians the ability to easily
integrate them into the current standard of care. By utilizing an array of reference data, these
models can provide a specific benchmark regarding normal values for cardiovascular parameters,
thereby improving diagnostic resolution in the clinical setting.

Computational modeling often uses patient-specific measurements as well as literature-
reported values for model construction [21-25]. Previous studies have combined literature data
such as cardiac chamber volumes [22] and blood flow rates and pressures [23-25] with patient-
specific data to generate models. Values in the literature given for healthy subjects are generally
in the form of percentiles or ranges [26—28] and not specific numerical values. Predictions from
the multivariable regression equations can provide useful targets for model tuning. For parameters
where patient-specific data is not available, the predictions from such regression models can
impute the missing information for patient-specific tuning.

Previous studies have reported the reference ranges of cardiovascular parameters for
healthy adults [26,27], with some also reporting the correlation coefficients which only describe
the trends between the cardiovascular parameter versus the predictors [1,5,7,29-37]. However,
studies in current literature generally did not report explicit multivariable regression models. The
majority of the articles which report regression equations for healthy adults were single variable
linear regression models. These models used subject-level data and provided models for stroke
volume (SV) [10,38,39], cardiac output [6,10,38,39], heart rate [38,39], and left ventricular end-
diastolic and end-systolic volumes (EDV and ESV) [10,27]; however, age [6,10,27], height [6,38],
weight [6,38,39], and body surface area (BSA) [6,10,38] used as predictors in these prior studies
were applied separately for the cardiovascular parameters.

While the use of multiple predictors for regression modeling of these cardiovascular
parameters is not common, a few publications have utilized this method. One multiple regression
model built on subject-level data for left ventricular EDV [40] provided the linear coefficients
against age, height, weight, and sex. In another study, an indirect form of multiple regression [1]
provided the change in systolic and diastolic pressure against weight and body mass index (BMI)
after adjusting for age, height, education, waist circumference, etc. As for non-linear models, a 5-
knot-restricted cubic splines regression [3] used subject-level systolic and diastolic pressure data



to build models against height. For right ventricular volumes (i.e., EDV, ESV, and stroke volume)
[34], an exponential multi-variable relation used age and BSA as the predictors.

In this study, a systematic review compiled the current literature reporting measurements
of ventricular volumes, blood pressure, and cardiac output under resting and exercise conditions
in relatively healthy subjects. Next, we used various linear and non-linear regression algorithms
on this data to build predictive models for these cardiovascular parameters. Sex [41] and race [42]
also affect the cardiovascular parameters; however, not enough data was available to include them
in the current analysis. Other predictors such as percent body fat [43], pulmonary artery systolic
pressure [44], ventricular mass [45], pericardial fat volume [32], and respiratory mechanical
properties [46] are only obtained through advanced measurement not readily available and thus
were not included in regression modeling. By including only age, body size, and exercise intensity
as predictors, it is not possible to predict the exact value of the cardiovascular parameters of
interest, however, due to the correlation of the predictors with the parameters, the formulated
regression models can provide a realistic estimate of those parameter values.

Since our systematic review pooled together data from the studies selected, the data we
used for regression modeling corresponds to a larger population than any single study referenced
in this review. Most of these studies (Table 1) either directly collected subject data or referred to
subject data compiled from institutional collaborations for data collection [32,47—49]; whereas in
this study, the models generally used aggregate data. A simulation-based statistical method was
used to evaluate the performance of the regression algorithms built on aggregate data for subject-
level predictions. For a few of the cardiovascular parameters, we obtained subject data [50-52] in
order to perform a direct comparison between regression models built on aggregate data versus
those built on subject data.

In summary, the models from this study provide numerical reference values of key
cardiovascular parameters for a subject characterized by the values of the predictors. We also
report the trends of the cardiovascular parameters versus predictors. The models contain a
combination of age, body size, and exercise intensity as predictors and estimate reference
cardiovascular parameters for a subject or cohort of interest providing a more personalized
approach to patient diagnosis.

Methods:

We collected data for regression modeling by conducting a comprehensive literature search
for databases reporting cardiovascular parameter data for healthy subjects (as described in the
Literature Search section). The search for subject-level databases provided data for systolic
pressure, diastolic pressure, and heart rate only; while aggregate data for all the cardiovascular
parameters of interest were available. We built regression models for all of the parameters using
the aggregate data (Regression Modeling section). In order to assess the performance of these
regression algorithms for providing subject-level predictions, we generated subject-level data
(Simulation Studies section) based on the aggregate data statistics and repeated the regression
procedure on the simulated data to obtain reference results for comparison (Model Comparison
section). Finally, we used the real-world subject-level data (available only for systolic pressure,
diastolic pressure, and heart rate) to validate our modeling procedure and to obtain additional
regression models built directly from subject-level data.

Literature Search:

This study selected data for each cardiovascular parameter in accordance with the PRISMA

[53] guidelines by using the advanced search in the PubMed database. Table 1, Table 2, and Fig.



1. summarize the search process, search strings used, the number of articles selected, and the
quantity of data compiled.

During the literature screening process, only articles that reported data about relatively
healthy adults were included. Studies focusing on subjects with one or more major health
conditions (e.g., pulmonary hypertension, valve regurgitation, etc.) likely to have a significant
effect on the cardiovascular parameters of interest were considered only if they also reported data
on healthy control subjects as comparators. The articles included used a variety of imaging
modalities for measurements. The purpose of the articles included was either to investigate which
variables in the study affect the cardiovascular parameter of interest, to compare controls to
subjects with a health condition, or to investigate the effect of interventions on the cardiovascular
parameter of interest.

Articles were excluded if the age of the participants was not reported. For every article, we
excluded the data for subjects less than 16 years of age. The predictors — height, weight, body
surface area (BSA), and body mass index (BMI) — are all indicators of body size and correlate to
each other; thus any two of these predictors are enough to calculate the other predictors from the
BSA formula by Mosteller [90] and the formula for BMI (weight(kg) / height(meters)"2). Articles
that did not provide enough information to calculate the body size variables were excluded. For
every article, we excluded data for subjects with mean BMI greater than 85th percentile (36
kg/m”2) [91], as well as data for blood pressure and cardiac output if it was not possible to
determine the corresponding exercise intensities. As the articles with data on ventricular volumes
along with exercise were limited in number [87,88], we did not include metabolic equivalents
(MET) as a predictor for ventricular volumes. We considered journal articles published before 31
December 2018 and restricted the language of the articles to English.

We used the guidelines provided in the revised Cochrane risk-of-bias tool for randomized
controlled trials [92] to identify the risk of bias for individual studies with respect to performance,
detection, attrition, reporting, and any other type of biases, and classified the studies as having a
low risk, high risk, or unclear concerns of bias (Table 1). The articles with high risk were not used
for regression modeling.

The data in the form of sample size, the mean and standard deviation (SD) of the predictors
and the cardiovascular parameter were manually extracted from the selected articles. This entire
dataset is referred to as Data-O in this paper. Each article reported one or more aggregate data
points (Sample-Oaggr).



TABLE 1

TOTAL AVAILABLE DATA COMPILED FROM THE SYSTEMATIC REVIEW

Sr Author Cardiovascular Parameter Risk of Search Strin
No (Year)[ref#] SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR Bias 5

1 Wangetal. v v Y Low  Aortic Pressure (MeSH)
(2018)[4] + Exercise (Keywords)

2 Schultz et al. Y v Y Low  Aortic Pressure (MeSH)
(2013)[54] + Exercise (Keywords)

3 Hulkkonen et Low  Aortic Pressure (MeSH)
al. v v + Exercise (Keywords)
(2014)[47]

4 Robinson et Low  Aortic Pressure (MeSH)
al. v v v + Exercise (Keywords)
(1988)[55]

5 Shim et al. Y Y J Low  Aortic Pressure (MeSH)
(2011)[56] + Exercise (Keywords)

6 Chiaetal. Low  Ventricle Volume
(2015)[57] v v v (MeSH) + Aging

(Keywords)

7 D’Alto et al. Low  Ventricle Volume

(2017)[13] v v v (MeSH) + Aging
(Keywords)

8 Ashrafpoor Low  Ventricle Volume
et al. v v (MeSH) + Aging
(2015)[58] (Keywords)

9 Nioetal Low  Ventricle Volume
(2017)[59] v v (MeSH) + Aging

(Keywords)

10 Bernard et al. Low  Ventricle Volume

(2016)[60] v v (MeSH) + Aging

(Keywords)



Sr Author Cardiovascular Parameter Risk of Search String
No (Year)[ref#] SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR Bias
11 D’Andrea et Low  Ventricle Volume
al. v v (MeSH) + Aging
(2017)[61] (Keywords)
12 Menting et Low  Ventricle Volume
al. v v (MeSH) + Aging
(2016)[62] (Keywords)
13 Yeon et al. Low  Ventricle Volume
(2015)[63] v v (MeSH) + Body Size
(Keywords)
14 Bhambhani Unclear Ventricle Volume
et al. v v (MeSH) + Body Size
(2018)[31] (Keywords)
15 Nikitin et al. Low  Ventricle Volume
(2006)[64] v v (MeSH) + Body Size
(Keywords)
16 Maffessanti Low  Ventricle Volume
et al. v v (MeSH) + Body Size
(2013)[34] (Keywords)
17 Kuznetsova Low  Ventricle Volume
et al. v v (MeSH) + Body Size
(2016)[9] (Keywords)
18 Benda et al. Unclear Ventricle Volume
(2016)[65] v v (MeSH) + Exercise
(Keywords)
19 Raoetal. Low  Ventricle Volume
(2015)[66] v v (MeSH) + Exercise
(Keywords)
20 Rojek et al. Low  Ventricle Volume
(2015)[8] v v (MeSH) + Exercise

(Keywords)



Sr Author Cardiovascular Parameter Risk of Search String
No (Year)[ref#] SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR Bias
21 Schmidt et Low  Ventricle Volume
al. v v (MeSH) + Exercise
(2015)[44] (Keywords)
22 Lane et al. Low  Ventricle Volume
(2014)[67] Y Y (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)
23 Park et al. Low  Ventricle Volume
(2003)[68] Y Y (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)
24 Celentano et Low  Ventricle Volume
al. Y Y (MeSH) + [Aging +
(2003)[41] Body Size + Exercise]
(Keywords)
25 Maceira et al. Low  Ventricle Volume
(2006)[27] v v (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)
26 Scalia et al. Low  Ventricle Volume
(2010)[69] Y Y (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)
27 Maggioni et Low  Ventricle Volume
al. Y Y (MeSH) + [Aging +
(2012)[70] Body Size + Exercise]
(Keywords)
28 Leeetal. Low  Ventricle Volume
(2016)[71] v v (MeSH) + [Aging +

Body Size + Exercise]
(Keywords)



Sr Author Cardiovascular Parameter Risk of
No (Year)[ref#] SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR Bias

Search String

29 Yangetal. Low  Ventricle Volume
(2017)[72] (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)
30 Hollingworth Low  Ventricle Volume
et al. (MeSH) + [Aging +
(2012)[73] Body Size + Exercise]
(Keywords)
31 Fujimoto et Low  Ventricle Volume
al. (MeSH) + [Aging +
(2012)[74] Body Size + Exercise]
(Keywords)
32 Linetal. Low  Ventricle Volume
(2014)[75] (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)
33 Vormbrock Low  Ventricle Volume
et al. (MeSH) + [Aging +
(2014)[29] Body Size + Exercise]
(Keywords)
34 Aquaro et al. Low  Ventricle Volume
(2017)[76] (MeSH) + Aging
(Keywords)
35 Leietal. Low  Ventricle Volume
(2017)[77] (MeSH) + Body Size
(Keywords)
36 Stojanovska Low  Ventricle Volume
et al. (MeSH) + Body Size
(2014)[78] (Keywords)



Sr Author Cardiovascular Parameter Risk of Search String

No (Year)[ref#] SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR Bias

37 Le Venetal. Low  Ventricle Volume
(2016)[79] v v v v (MeSH) + Body Size

(Keywords)

38 Prakken et al. Low  Ventricle Volume

(2010)[80] v v v v (MeSH) + Body Size
(Keywords)

39 Wilson et al. Low  Ventricle Volume

(201 1)[81] (MeSH) + [Aging +
v v v v Body Size + Exercise]
(Keywords)

40 Bohm et al. Low  Ventricle Volume

(2016)[82] (MeSH) + [Aging +
v v v v Body Size + Exercise]
(Keywords)

41 Maceira et al. Low  Ventricle Volume

(2006)[26] Y Y (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)

42 Foppa et al. Low  Ventricle Volume

(2016)[49] Y v (MeSH) + [Aging +
Body Size + Exercise]
(Keywords)

43 Staunton et Low  Cardiac Output (MeSH)
al. v + Age (Keywords)
(2015)[83]

44 Xingetal. v Low  Cardiac Output (MeSH)
(2017)[5] + Age (Keywords)

45 McGuire et Low  Cardiac Output (MeSH)
al. v Vv + [Aging + Body Size +

(2001)[84]

Exercise] (Keywords)



Sr Author Cardiovascular Parameter Risk of
No (Year)[ref#] SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR Bias

Search String

46 Ogawa et al. Low  Cardiac Output (MeSH)
(1992)[85] v + [Aging + Body Size +
Exercise] (Keywords)
47 Vellaetal. Low  Cardiac Output (MeSH)
(2012)[86] v v + [Aging + Body Size +
Exercise] (Keywords)
48 Esfandiari et Low  Ventricle Volume
al. v (MeSH) + Exercise
(2014)[87] (Keywords)
49 Roberts et al. Y Y v Low  Ventricle Volumes
(2018)[88] MeSH + Together
50 Barrett- Low  Aortic Pressure (MeSH)
O’Keefe et v + Exercise (Keywords)
al.
(2015)[89]

SysBP: systolic blood pressure, DiasBP: diastolic blood pressure, LVEDV: left ventricular end-diastolic volume, LVESV: left ventricular end-
systolic volume, RVEDV: right ventricular end-diastolic volume, RVESV: right ventricular end-systolic volume, CO: cardiac output, HR: heart rate,
MeSH: Medical Subheadings.



TABLE 2
TOTAL AVAILABLE DATA COMPILED FROM THE SYSTEMATIC REVIEW

No. of No. of Total
Articles Sample-Oaggr sar.nple
size
Systolic Pressure 7 43 2195
Diastolic Pressure 7 43 2195
Heart Rate 9 38 1178
Left Ventricular EDV 34 98 6811
Left Ventricular ESV 34 98 6811
Right Ventricular EDV 10 38 2523
Right Ventricular ESV 10 38 2523
Cardiac Output 8 36 703

EDV: End-Diastolic Volume; ESV: End-Systolic Volume

Records identified from PubMed:
Blood Pressure = 140060
k Ventricle Volumes = 13018

Cardiac Output = 92518

| Title and abstract screening

' .
Records included: _E - Records excluded:
Blood Pressure = 59 52 Blood Pressure = 40
Ventricle Volumes =71 _5 % Ventricle Volumes = 29
Cardiac Output = 38 é = Cardiac Output = 30
=

Articles from each of the
searches contained data for
the other outputs as well.
e.g. BP search contained
data about CO as well.

A 4

Records excluded:
Blood Pressure = 14
Ventricle Volumes =5
Cardiac Output =1

Full text assessed:
Blood Pressure = 19
Ventricle Volumes = 42
Cardiac Qutput =8

Relevant Data
missing

h 4 A 4

Studies shared between . - M
o Final total studies included:
parameters (details in Table 1):
Blood Pressure =9
Blood Pressure = 4

Ventricle Volumes = 0 Ventricle Volumes = 37

Cardiac Output =1 Cardiac Output =8

J

Figure 1. Flow diagram of the literature search and selection process

Regression Model Building:

R, version 3.6.1 [93], was used to conduct the data analysis. For building regression models
using the original aggregate literature data (Model-O), the Linear, Partial Least Squares, Elastic-
Net, Multivariate Adaptive Regression Splines, and Support Vector Machines multivariable

13



regression models were used as per the recommendations from Kuhn et al. [94] Since the predictors
which represent body size (height, weight, BSA, and BMI) are correlated, if the articles did not
report all of the body size predictors, we impute the missing values using the Mosteller formula
[90] and BMI formula as applicable. Since correlated variables should not be used together while
building regression models [95], the models used specific combinations of body-size predictors
(height and weight, BSA and BMI, or height, weight, BSA, or BMI only) for the regression models.
We chose the best combination among the body size predictors by comparing the Root Mean
Squared Error (RMSE) of the regression results.

For building Model-O, we centered and scaled the predictor values, used the sample size
for weighing each data point, and tuned the hyperparameters associated with each of the regression
algorithms by using five-fold cross-validation repeated three times. The Model-O cross-validation
RMSE (RMSEwmod-0-cv) provided an estimate of the error for predicting aggregate data using
models built on aggregate data (Fig. 2).

3
157 §
O
0o
£
7
@
FRIEND | RMSE i 4.0-rriEND RMSE tqienp-cv
VirtPatient, ;4 RMSE;, giv-valid
Data-O RMSE04.0-cv

Model-0O Model-S Model-F Regression Model

Figure 2. Descriptions of the RMSEs reported and their method of calculation with respect to the
regression model and the testing data. The shaded entries are cross-validation RMSEs and the
others are validation RMSEs for regression models built on aggregate data against subject data.

Simulation Studies:
Overview:

As this study compiled data from a systematic review, we did not have access to subject-
level data. In order to evaluate the impact of the ecological fallacy [96], we performed simulation
studies to determine whether inferences on individuals can be made from the aggregate group data
in our regression analyses. The simulation studies procedure aimed to generate (simulate) multiple
instances of subject-level data (30 instances) from the aggregate data and then check the
performance of Model-O against the simulated subject-level data. In other words, simulation
studies (Fig. 3) estimated the validity of using regression models built on aggregate data for
subject-level predictions.

We generated the subject-level data for model training and validation based on the mean
and SD of Data-O. The training dataset that consisted of these simulated subjects was randomly
aggregated into groups so that each group had the same structure as Sample-Oaggr, and regression
models (Model-S) were trained using this simulated aggregate data. This procedure imitated how

14



Model-O was built from Data-O which contains aggregate data from the literature. This random
grouping was repeated 20 times for each simulated dataset. The simulated validation dataset was
left as subject-level data points which we used to evaluate the performance of Model-S for making
subject-level predictions. Thus, the RMSEs (RMSEindgiv-vaiid) of this simulated validation set against
Models-S represented the error associated with predicting subject-level data using regression
models built on aggregate data (Fig. 2); whereas RMSEwmod-0-cv represented the error associated
with predicting aggregate data using regression models built on aggregate data (Fig. 2).

Literature Data

/ (Data-0) \

” VirtSubject, ;... VirtSubject,, ., :
Re) :
Jl-_ul I
5 | Regression Models N !
= (Model-0) |
o 1
1
X v A 4 :
: VirtSUbjeCttrain—out VirtSUbje(:tvalid—out :
I |
1 1
I L |
: 5 Data Grouping |
G (Data-S) |
1 Q 1
1 ot 1
1 o I
: ™~ \ 4 !
1
: Regression Models \
! (Model-S) :
1 1
: * Linear { |
1
! . PLS :
' * Elastic Net RMSE;,, gy valic !
! * MARS l
: . SVM :
| |
1 1
1 1
1 1

Figure. 3. Procedure for simulation studies with 20 iterations for the different ways of data
aggregation and 30 iterations for the different ways of data generation. The left column
describes the simulation of the aggregate training set (Data-S) and the right column describes
the simulation of the subject-level testing sets. Details of generating the predictor and output
values are provided in the ‘Simulated Predictor Values’ and ‘Simulated Cardiovascular
Parameter Values’ sections. VirtSubjectiain-in and VirtSubjectiain-ou: the simulated set of
predictors and cardiovascular parameter values describing virtual subjects in Data-S (these
subjects are used to train Model-S), VirtSubjectyaid-in and VirtSubjectyaiid-out: the simulated set of
predictors and cardiovascular parameter values describing virtual subjects in the validation
group (these subjects are used to validate Model-S for subject-level predictions), PLS: Partial
Least Squares, MARS: Multivariate Adaptive Regression Splines, SVM: Support Vector
Machines.

15



Simulated Predictor Values:

In order to generate the training set for building Model-S, we assumed the predictors follow
a multivariate normal distribution, where the means and SD of the predictors were as reported in
Data-O. We approximated the correlation coefficients between the predictors from Data-O, set the
coefficients of age vs. body size parameters to 0 to represent no growth for adults, and set the
coefficient of MET versus all other parameters to 0 to indicate that during exercise, the control
variable MET, was not dependent on any other predictors.

In order to ensure that enough virtual subjects were generated which adequately
represented every Sample-Oaggr, Wwe simulated an initial dataset with the sample size equal to the
square of the original sample size and applied a range constraint that removed subjects from this
initial dataset with characteristics that did not represent the literature data. The range constraints
were chosen such that they included the subjects with feature values approximately in the mean +
2SD (95% confidence) interval for all Sample-Oaggr. This corresponds to subjects with age from
16 - 80 years, height from 150 - 200 cm, weight from 50 - 120 kg, BSA from 1.2 - 2.6 m?, BMI
from 18 - 35 kg/m?, and MET from 0.9 - 20. From this constrained dataset, a subset of size equal
to the sample size of the Sample-O,ger was randomly selected for further analysis. This was done
for every Sample-Oager and therefore, the total number of subjects represented in this simulated
training dataset was equal to that in Data-O. This dataset (VirtSubjectiain-in in Fig. 3) represented
a possible set of the predictor values which described all the subjects in Data-O.

We simulated the validation dataset (for the purpose of evaluating Model-S) using a similar
procedure. To generate at most five realistic datapoints for each Sample-Oaggr, the same range
constraint filtered an initial dataset size of 25, and five datapoints were randomly selected from
this filtered dataset. If the sample size of Sample-Oaggr Was less than five, then we added only one
datapoint to the validation set to avoid generating pseudoreplicates [97]. This simulated dataset
(VirtSubjectvaid-in in Fig. 3) represented a possible set of predictor values that described a subset
of subjects from Data-O.

Simulated Cardiovascular Parameter Values:

The values of the simulated cardiovascular parameters for each subject in the simulated
training and validation datasets were generated in three steps. We first fed the simulated predictor
values into Model-O to generate the initial value of the cardiovascular parameter (Step 1). For a
regression model, the residual is the difference in the predicted and observed values. To ensure
that the simulated parameter values account for the error in Model-O predictions, the Sample-Oaggr
versus Model-O residual was added to the value obtained in step 1 (Step 2). Finally, we randomly
added a normally distributed error, with mean equals to 0 and SD equals to the SD of the
cardiovascular parameter as reported in Data-O, to each cardiovascular parameter value associated
with the Sample-Oaggr to account for the noise in Data-O (Step 3).

Regression Modeling of the Simulated Data:

The purpose of the simulated training dataset was to train the Model-S regressions and the
simulated validation dataset was used to evaluate the performance of Model-S for subject-level
predictions. To capture the numerous possibilities of the subject-level data distributions, we
repeated the procedure of creating the simulated training and validation datasets six times using
each of the five Models-O (Linear, Partial Least Squares, Elastic-Net, Multivariate Adaptive
Regression Splines, and Support Vector Machines), resulting in the creation of a total of 30 sets
of simulated data (Fig. 3).

The set of virtual subjects in the simulated training dataset was shuffled and then divided
into groups with the size of each group equal to the sample size of each Sample-Oaggr in Data-O.

16



We calculated the mean values of predictors and the corresponding cardiovascular parameters for
each group and therefore, aggregated the simulated subject-level training dataset to form Data-S.
For every simulated training dataset generated, we repeated this grouping 20 times to capture the
multiple grouping possibilities from the subject-level data (Data Grouping cell in Fig. 3).

In summary, 30 different simulated subject-level datasets grouped in 20 random ways
generated 600 possibilities of Data-S. Each of the five regression algorithms was used to fit each
of the 600 Data-S sets to create a total of 3000 Models-S (Regression Models cell in Fig. 3).
Model Comparison:

RMSEindiv-valia 18 the RMSE of the Models-S predictions on the simulated validation
dataset. (Fig. 2). Therefore, for every regression algorithm, we obtained 600 RMSEingiv-vaiia values
representing the goodness of fit of the predicted cardiovascular parameters (simulated) from
subject features (simulated). The means of these 600 RMSEingiv-vaiia values provided an estimate
of the error in subject-level predictions for each regression algorithm [98].

We compared the magnitude of the correlation of each predictor by using a dimensionless
value of the regression coefficients. The regression coefficients describe the change of the
cardiovascular parameter value per unit increment of each predictor (i.e. age by one year, height
by one cm, etc.). Since comparing these coefficient values directly would not provide meaningful
results, we multiplied the regression coefficients by the SD of the predictor values in Data-O and
then normalized them with respect to the SD of the cardiovascular parameter to obtain a non-
dimensional percentage value according to previous work on the standardization of coefficients
[99]. We classified the correlation as weak if this value was <30% and strong if it was >60%.
Validation against real-world subject-level data:

Simulation studies used generated data as subject-level data was not accessible for all
cardiovascular parameters. For real-world validation, data from cardiopulmonary exercise tests
from the Fitness Registry and the Importance of Exercise National Database (FRIEND) [50-52]
was used. The data included the systolic pressure, diastolic pressure, and heart rate at rest and at
peak exercise. Information on whether the subject was hypertensive, diabetic, etc. was also
provided. After excluding the hypertensive and diabetic subjects, this study used 1831 healthy
subjects from FRIEND for analysis.

In contrast to RMSEindiv-valid, Wwhich was obtained using simulated data, the RMSE of
Model-O predictions against FRIEND data (RMSEwmod-0-FrIEND) represented the error of the
aggregate regression model for subject-level predictions using real-world data (Fig. 2). Thus, we
can assess whether real-world data produced similar outcomes as compared to simulated data to
validate the simulation studies procedure. This helped provide confidence to the simulation study
procedure which we used to appraise the models where no real subject data was available for
validation. Since FRIEND did not include ventricular volume and cardiac output data, we were
able to evaluate only some of the models using this method. Further, we used the same five
regression algorithms to build models for systolic pressure, diastolic pressure, and heart rate based
on the real-world FRIEND data (Model-F) for comparison against the models built on aggregate
data (Model-O).

We calculated the left and right ventricular EDV and ESV for the FRIEND subjects using
Model-O for left and right ventricular volumes. The difference between the EDV and ESV gave
the stroke volumes of the left and right sides for each subject. The stroke volume for the left and
right side of the heart should be equal [100]. We used this difference in the left and right stroke
volume to check the performance of the ventricular volume models because no subject-level
databases were available to validate these models.
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Results:
Systolic and Diastolic Pressure:

The Elastic-Net model, with age, height, weight, and MET as predictors, gave the lowest
RMSESindiv-vaia and was the model chosen for further analysis for systolic and diastolic pressure.
The difference between NRMSEwmod-0-cv and NRMSEingiv-valia Was less than 1% for systolic
pressure and 2.1% for diastolic pressure(Table 3). The Model-O coefficients (Table 4) showed
that systolic and diastolic pressures correlated positively but weakly to age, height, and weight,
and positively and strongly to MET.

The NRMSEindiv-valid Was 0.9% and 2.5% higher than NRMSEwmod-0-rrienp (Table 5) for
systolic and diastolic pressures, respectively. For Model-F, the coefficients for age, weight, and
METs (Table 4) were similar to those from Model-O. However, for height, Models-F provided a
weak and negative correlation to both blood pressures.

The Elastic-Net algorithm gave the best results for fitting subject-level data (lowest
NRMSEiugiv-vaiia). We also noted that NRMSErrienp-cv (Table 5) was lower than NRMSEmod-o-
rriEND. The Data-O vs. predicted plot for Elastic-Net Models-F (Fig. 4) showed that the models
tend to under-predict higher values of systolic and diastolic pressures (which mostly correspond
to higher MET levels).

Data-O

80 120 160 200 60 70 80 90 10 20 50 100 150 200
LVEDV LVESV RVEDV RVESV

200-
O 150
©

& 100-

50-

50 100 150 200 0 25 50 75 100 150 200 30 80 90
Predicted Predicted Predicted Predicted

Figure 4. The actual (Data-O) vs. predicted cardiovascular parameter value using the regression
models with the lowest NRMSEs. The 45° line (red) corresponds to where the predicted and
actual values are equal. Note that the left ventricle predictions here are performed based on the
right ventricle models plus a bias offset as discussed in the “Recommended Regression Models”
section of the manuscript. SysBP: systolic blood pressure, DiasBP: diastolic blood pressure,
LVEDV: left ventricular end-diastolic volume, LVESV: left ventricular end-systolic volume,
RVEDV: right ventricular end-diastolic volume, RVESV: right ventricular end-systolic volume,
CO: cardiac output, HR: heart rate.

Ventricular Volumes:

For all the ventricular volume models, the Linear models with age, height, and weight as
predictors provided the lowest NRMSESindiv-valid and were the models chosen for further analysis.
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The difference in NRMSEwod-0-cv and NRMSEindiv-valia was 9.3%, 20.5%, 7.96%, and 11.7% for
Left Ventricular EDV, ESV, and Right Ventricular EDV, and ESV, respectively (Table 3). The
Linear Model-O coefficients (Table 4) showed that all ventricular volumes correlated negatively
to age, positively to weight, and positively to height.

Even though the amount of data for left and right ventricular volumes that we obtained
through the literature search were quite different (Table 2), there was no skewness (due to the
much smaller data size) in the right ventricular predictor data as the histograms for all the
predictors were similar for both the ventricles.

The means of the stroke volumes in Data-O for the left and right sides were 70.1 ml and
87.4 ml, respectively. The means of the predictions of stroke volumes from the 1831 subjects from
FRIEND were 78.2ml and 94.5ml for the left and right side, respectively, and the RMSE of the
difference between the left and right stroke volumes for the same subjects from FRIEND was 17.7
ml. We also note that the mean of the resting ejection fraction in Data-O for the right ventricle was
62%, which is higher compared to some previously reported values of resting ejection fraction
[101-103].

Heart Rate:

The heart rate model used the combination of age, height, weight, and METs as predictors.
The Linear model provided the lowest NRMSEingiv-vaia and was the model chosen for further
analysis. The difference in the NRMSEmod-0-cv and NRMSEindiv-valia Was about 5% (Table 3). The
Model-O coefficients (Table 4) showed that heart rate correlated negatively but weakly to age,
positively and weakly to height and weight, and positively and strongly to METs.

The NRMSEwmod-o-rriEND Was 8.4% higher than NRMSEingiv-vaiia (Table 5). For Model-F,
the coefficients for weight and METs (Table 4) were similar to those from Model-O but the
coefficients for age and height showed an opposite trend with respect to Model-O. Also, the
intercept value for the Model-F was significantly different as compared to Model-O. We observed
reasonable agreements between model predictions and Data-O for Linear Model-F (Fig. 4).
Cardiac Output:

The Linear model with age, weight, and MET as predictors yielded the minimum
NRMSEingiv-valia and was the model chosen for further analysis for cardiac output. The difference
in the NRMSEmod-0-cv and NRMSEindiv-valid was less than 2% (Table 3). The Model-O coefficients
(Table 4) showed that cardiac output correlates negatively and weakly to age, positively and
weakly to weight, and positively and strongly to METs. Fig. 4 showed that for higher values
(which mostly correspond to higher MET levels), the Linear Model-O tended to under-predict
cardiac output.
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TABLE 3

NRMSEnp1v-vaLip AND NRMSEmop-o-cv COMPARISON

NRMSE values (%)

Linear PLS E-Net MARS SVM

Systolic Pressure 1724 1235 1517 1350 1157

1607 1750 15.83 1899  22.01

Diastolic Pressare 1471 1417 1441 1604 1396

1668 1757 1648 1897  17.66

1156 11.04 1140 1245 11.17

Heart Rate 16.45 1891 1680 19.08  38.04

Left Ventricular  22.96  20.61 2271 2241  22.62

EDV 3230 3242 3234 4000 37.86

Left Ventricular 2344 2210 2359 2324 2407

ESV 43.96 4438 4408 5201 5335

Right Ventricular | 1224 9.88 1101 1329 14.01

EDV 2020 2036 2040 4356 5871

Right Ventricular | 1971 17.92 1835 20.04  21.57

ESV 3141 3171 3185 5179  66.78

_ 5269 5090 5550 59.68  53.84
Cardiac Output

5433 5579 5563 6475 82.42

NRMSEwmod-o-cv

NRMSEindiv-valid

EDV: end-diastolic volume; ESV: end-systolic volume, PLS: Partial Least Squares, E-

Net: Elastic-Net; MARS: Multivariate Adaptive Regression Splines, SVM: Support Vector

Machines.
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TABLE 4
REGRESSION COEFFICIENTS

Coefficients Expected Error
. (1)
Intercept  Age (yrs.) Height (cm.) “(]li:gg;l t MET pr o(b?:b/i(;ity)
Systolic Model-O 25.45 0.09 0.4 0.24 557 +48.2 mmHg
Pressure Model-F* 94.89 0.72 -0.28 0.46 6.01 +40.3 mmHg
Diastolic Model-O 29.23 0.18 0.15 0.18 1.02  £26.8 mmHg
Pressure Model-F* 63.13 0.14 -0.04 0.16 0.53 £19.9 mmHg
Heart Rate Model-O -32.25 -0.36 0.62 0.13 927 436.9 bpm
Model-F* 204.2 0.11 -1.07 0.49 11.73 +43.6 bpm
LVEDV Model-O -134.73 -0.42 1.04 1.25 NA +£70.8 ml
LVESV Model-O -91.21 -0.21 0.68 0.36 NA £348 ml
RVEDV Model-O* -269.62 -1.03 2.44 0.63 NA £56.0 ml
RVESV Model-O* -179.77 -0.47 1.5 0.01 NA £323 ml
Cardiac Output Model-O* 0.71 -0.06 NA 0.08 0.95 9.4 1/min

*(and bolded) recommended regression models, LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-
systolic volume, RVEDV: right ventricular end-diastolic volume; RVESV: right ventricular end-systolic volume.
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TABLE 5
NRMSE COMPARISON FOR ASSESSMENT OF SIMULATION STUDIES

Regression  NRMSEindiv- NRMSEwmod-o- NRMSEFrieND-

Algorithms valid (%0) FRIEND (%) cv (%)
Systolic Pressure  Elastic-Net 15.83 14.92 13.23
Diastolic Pressure Elastic-Net 16.48 13.90 12.27
Heart Rate Linear 16.45 25.85 19.45

Discussion:
Systolic and Diastolic Pressures:

The Elastic-Net Model-O gave the best results for systolic and diastolic pressures for
subject-level predictions. The similar error magnitudes from the comparison against simulated
(NRMSEjindiv-vatid) and real-world subject data (NRMSEwmod-o-rriEnD) (Table 5) showed that the
simulation procedure was effective, validating the simulation studies procedure for systolic and
diastolic pressure models. Even though this showed that Model-O was not affected by the
ecological fallacy, the fact that RMSEfrrienp-cv was lower than RMSEindiv-valia indicated that
Model-F, which was directly built on subject data, still outperformed Model-O.

Our findings regarding correlations between predictors and blood pressure compared to
those from previous studies were as follows. Positive correlations for blood pressures versus age
[1,2,46,63,104] agreed with the results of our study. A negative correlation [3] and a positive
correlation [104] with height agreed with Model-F and Model-O, respectively. Chen et al. [1] also
reported a weak positive correlation with weight which was consistent with our results. Finally, a
previously identified linear increase in blood pressures to MET [105-107] agreed with both
Model-O and Model-F results.

Previous literature reported a weak positive or zero correlation with respect to BMI
[1,35,108]. For constant height, BMI increases with increasing weight. Thus, because of the
positive correlation with weight in Model-O, we observed an increase in systolic and diastolic
pressures with increasing BMI. However, for constant weight, BMI decreases with increasing
height which yielded a decrease in systolic and diastolic pressures due to their positive correlation
with height. Therefore, with respect to BMI, Model-O provided no clear association, whereas
Model-F on the other hand, having a negative correlation with height, resulted in a positive
correlation with BMI agreeing with previous studies [1,35,108].

Ventricular Volumes:

The Linear Model-O provided the best subject-level predictions for the ventricular
volumes. Similar to the results of this study, previous studies observed a negative correlation with
age [10,11,31,40,63,79,80,109] and a positive correlation with respect to height and weight [40].
Model-O coefficients were comparable to the age-BSA-sex model correlation coefficients in
reference [34]. As compared to the Left Ventricular EDV Model-O, the coefficients for the age-
height-weight-sex linear models in reference [40] yielded a stronger positive correlation for height
and weight and a comparable negative correlation to age. The RMSE was 18.7ml in reference [40]
for subject data as compared to 35.4ml for the Left Ventricular EDV Model-O which used
simulated subject data. Non-linear relationships of ventricular volumes against body size [31,40]
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have also been reported. The best performing models in this study were linear and thus did not
capture non-linear behaviors, potentially explaining the high RMSEwmod-0-cv and RMSEindiv-vatid
values.

Comparing to data from previous literature [26,27], Model-O predictions of ventricular
volumes for the subjects in FRIEND resulted in some discrepancies in terms of stroke volumes.
The predictions of the left ventricular stroke volumes for FRIEND subjects were biased towards
lower values while the right ventricular volume predictions agreed with the observed ranges for
healthy subjects in references [26,27]. Even though the predictor values and other physical
descriptions of the subjects were all very similar among the 10 common articles selected for
ventricular volume analyses, three articles [78—80] reported 10 - 30 ml lower left ventricular
volumes (EDV, ESV, and stroke volumes) than the others. There was no skewness in the predictor
data in these three studies which this bias can be attributed to. These three articles [78—80] seemed
to be the only source for the left ventricular volumes bias. In conclusion, the predictions of the
right ventricular volume models were more reliable as compared to the left ventricular volume
models.

Heart Rate:

The Linear Model-F yielded the best results for heart rate for subject-level predictions.
Model-O predictions compared using simulated (RMSEindiv-vaiid) and real-world subject data
(RMSEwod-o-FriEnD) showed that the simulation studies procedure underestimated the error in
subject-level prediction. However, for the Linear Model-F, the RMSEgriEnD-cv Was lower than
RMSE:indiv-valida Which suggested that the subject data from FRIEND yielded the best model.

Model-F’s linear, positive correlation to MET was consistent with previous literature [110],
implying that peak HR corresponds to peak MET. The decreasing trend of peak MET with age
identified in previous literature [111] interacting with the weakly increasing trend of heart rate
with age in Model-F yielded a decreasing trend of peak heart rate with age, also consistent with a
previous report [112]. Indeed, Model-F’s intercept of 204 bpm (Table 4) was comparable to the
intercept of the peak heart rate equation reported by Tanaka et al. [112] (208 — 0.7 Age), providing
confidence for the ability of Model-F to predict peak heart rate.

Cardiac Output:

NRMSEwmod-0-cv and NRMSEindivvaiia were around 50% which was much higher as
compared to the models for other cardiovascular parameters. However, the difference between the
NRMSEindiv-valid and the NRMSEwmod-0-cv was less than 2% (Table 3) which suggested that the
effect of data aggregation on building the regression model was small. For subject-level
predictions, the Linear regression model provided a 95% confidence interval of +£9.4 1/min. The
range of cardiac output for healthy adults is 4 to 8 I/min [113] which was smaller than Model-O’s
confidence interval.

In a review paper [114], Vella et al. concluded that the stroke volume plateaus at 60% of
the maximum exercise intensity for healthy untrained adults. We calculated cardiac output by
assuming this trend for stroke volume, using predictions from the right ventricular Model-O
(Table 4), and using the heart rate Model-F in the equation CO = HR x SV. The values for cardiac
output obtained using this method were very similar to the values predicted by the cardiac output
Model-O. The differences in the predicted cardiac output values were high (20-30%) for MET
values lower than 3. However, for higher METs, i.e. 3 - 12 MET, the errors in the predictions were
less than 10%. This provided support that the Linear cardiac output Model-O may be effective for
predictions for higher values of MET.

Recommended Regression Models:
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Table 4 summarizes the recommended model details and the prediction errors for these
cardiovascular parameters. For systolic and diastolic pressures, the Elastic-Net Model-F provided
the smallest prediction error and is the recommended model from this study. While the Linear
regression algorithm performed the best for all ventricular volumes, due to the discrepancy of the
left ventricular volume predictions as discussed above, we recommend that the left ventricular
volumes at rest be predicted by subtracting the average bias (17.7ml) from the Linear right
ventricular Models-O. For heart rate, the Linear Model-F provided the lowest prediction error and
is the recommended model from this study. We recommend using the Linear Model-O for cardiac
output predictions. To obtain the stroke volume during exercise, we recommend using the Linear
cardiac output Model-O and the Linear heart rate Model-F together.

Limitations:

The predictors used did not capture all the covariates mentioned in literature as many
factors beyond age, body size, and exercise influence cardiovascular parameters. For example, for
aortic blood pressure, resting heart rate [115], posture [116], type of exercise [117], exercise
training [118,119], race [42], diet [120], smoking [121], and menopausal status [122] have all been
shown to be contributory. Likewise, for ventricular volumes, sex [41], fitness level [123,124],
exercise intervention [125], altitude [126], and pulmonary artery systolic pressure [44] may be
important influential factors. More data and a provision to include categorical variables in the
regression algorithms are necessary to add sex, race, and some of the aforementioned factors as
predictors. While including more predictors in the analysis may reduce the prediction error (Table
4), data was not abundantly available for such analysis.

To improve the regression approach, there is evidence that allometric scaling [30,127] for
body size variables, especially for cardiac output, heart rate, and ventricular volumes can be more
effective. However, allometrically indexed predictors cannot be used on aggregate data since the
index of the mean of the subject data is not the same as the mean of the indexed subject data.

Due to the non-linear trends reported for these cardiovascular parameters, we expected the
Multivariate Adaptive Regression Splines and Support Vector Machines models to perform better
than the linear algorithms. However, the non-linear regression algorithms used for fitting the data
showed signs of overfitting and performed very poorly when comparing the RMSEindiv-vaia With
the linear models. More complicated models such as neural networks or random forest are likely
to produce similar results, but more analysis is necessary before making any definitive conclusions
about these nonlinear models.

The data extracted from the systematic review (Table 1) were not specifically reported for
the purpose of regression modeling. The systolic and diastolic pressures Models-F yielded lower
RMSEs than the corresponding Models-O. For heart rate, while Model-F had a higher RMSE
compared to Model-O, it exhibited better agreement with literature trends. These findings suggest
that using subject-level data for regression modeling tends to give better results than the aggregate
data models (Models-O). With access to more subject-level data, it may be possible to build
regression models with higher fidelity.

Conclusion

This work systematically reviewed prior studies that measured ventricular volumes, blood
pressures, and cardiac output during resting and exercise conditions. It aims to provide a valuable
resource by delineating regression equations for these cardiovascular parameters with respect to
age, body size, and exercise intensity, providing both reference values and overall trends.

In this study regression models were formulated using aggregate data, therefore, to evaluate
the impact of the ecological fallacy, we used a simulation-based procedure to estimate the subject-
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level prediction error for the regression models. If the RMSEwod-0-cv and the RMSEindiv-valia Were
comparable, then it suggested that the models built on aggregate data provided a good subject-
level prediction.

The current clinical setting compares the cardiovascular parameters to ranges of values that

are common for all healthy adults. This study aims to encourage a more personalized approach to
obtain reference parameter values by specifying the subject's age, body size, and exercise intensity
as inputs. Furthermore, the models developed in this study can be useful to researchers for
initializing and tuning computational models.
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