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Abstract: 

Purpose: Blood pressure, cardiac output, and ventricular volumes correlate to various subject 

features such as age, body size, and exercise intensity. The purpose of this study is to quantify this 

correlation through regression modeling. Methods: We conducted a systematic review to compile 

reference data of healthy subjects for several cardiovascular parameters and subject features. 

Regression algorithms used these aggregate data to formulate predictive models for the outputs - 

systolic and diastolic blood pressure, ventricular volumes, cardiac output, and heart rate - against 

the features - age, height, weight, and exercise intensity. A simulation-based procedure generated 

data of virtual subjects to test whether these regression models built using aggregate data can 

perform well for subject-level predictions and to provide an estimate for the expected error. The 

blood pressure and heart rate models were also validated using real-world subject-level data. 

Results: The direction of trends between model outputs and the input subject features in our study 

agree with those in current literature. Conclusion: Although other studies observe exponential 

predictor-output relations, the linear regression algorithms performed the best for the data in this 

study. The use of subject-level data and more predictors may provide regression models with 

higher fidelity. Significance: Models developed in this study can be useful to clinicians for 

personalized patient assessment and to researchers for tuning computational models. 

Keywords: 

Systematic Review, Regression Modeling, Simulation Studies, Blood Pressure, Cardiac Output, 

Ventricular volume 

Abbreviations: 
BSA – Body Surface Area (m2) 

BMI – Body Mass Index (kg/m2) 

MET – Metabolic Equivalent (exercise intensity) 

SD – Standard Deviation 

EDV – End-Diastolic Volume (ml) 

ESV – End-Systolic Volume (ml) 

RMSE – Root-Mean-Squared Error 

NRMSE – Normalized Root-Mean-Squared Error (normalized to mean value) 

Data-O – the original aggregate data compiled from the systematic review process 

Sample-Oaggr – a single aggregate data point from Data-O 

Model-O – the regression models built using Data-O 

Data-S – the simulated aggregate data generated using the simulation studies 

procedure 

Model-S – the regression models built using Data-S 

FRIEND – Fitness Registry and the Importance of Exercise National Database 

Model-F – the regression models built using subject-level data from FRIEND 

  



Systematic Review and Regression Modeling of the Effects of Age, Body Size, 

and Exercise on Cardiovascular Parameters in Healthy Adults  

Introduction: 
Subject features such as age, body size, and exercise intensity correlate with blood pressure 

[1–4], blood flowrate [5–7], ventricular volumes [8–11], and other hemodynamic parameters [12–

14]. These are some of the most important and fundamental cardiovascular parameters which 

provide important clinical information regarding the cross-sectional health status and longitudinal 

health trajectory of a subject [15–19]. 

Clinicians have developed consensual pathologic thresholds for many of these 

cardiovascular parameters. However, despite the potential utility, a more personalized approach of 

evaluating gradations of these parameters within the normal and abnormal ranges is not widely 

used [20]. While a threshold approach is easier to study with clinical trials, a more granular 

understanding of patient-specific parameters could encourage better personalized medicine. 

Multivariable regression models provide specific numerical values of the cardiovascular 

parameters given subject features. They also provide the ability to assess the strength of predictors 

used which makes the models physically interpretable and provides clinicians the ability to easily 

integrate them into the current standard of care. By utilizing an array of reference data, these 

models can provide a specific benchmark regarding normal values for cardiovascular parameters, 

thereby improving diagnostic resolution in the clinical setting. 

Computational modeling often uses patient-specific measurements as well as literature-

reported values for model construction [21–25]. Previous studies have combined literature data 

such as cardiac chamber volumes [22] and blood flow rates and pressures [23–25] with patient-

specific data to generate models. Values in the literature given for healthy subjects are generally 

in the form of percentiles or ranges [26–28] and not specific numerical values. Predictions from 

the multivariable regression equations can provide useful targets for model tuning. For parameters 

where patient-specific data is not available, the predictions from such regression models can 

impute the missing information for patient-specific tuning. 

Previous studies have reported the reference ranges of cardiovascular parameters for 

healthy adults [26,27], with some also reporting the correlation coefficients which only describe 

the trends between the cardiovascular parameter versus the predictors [1,5,7,29–37]. However, 

studies in current literature generally did not report explicit multivariable regression models. The 

majority of the articles which report regression equations for healthy adults were single variable 

linear regression models. These models used subject-level data and provided models for stroke 

volume (SV) [10,38,39], cardiac output [6,10,38,39], heart rate [38,39], and left ventricular end-

diastolic and end-systolic volumes (EDV and ESV) [10,27]; however, age [6,10,27], height [6,38], 

weight [6,38,39], and body surface area (BSA) [6,10,38] used as predictors in these prior studies 

were applied separately for the cardiovascular parameters. 

While the use of multiple predictors for regression modeling of these cardiovascular 

parameters is not common, a few publications have utilized this method. One multiple regression 

model built on subject-level data for left ventricular EDV [40] provided the linear coefficients 

against age, height, weight, and sex. In another study, an indirect form of multiple regression [1] 

provided the change in systolic and diastolic pressure against weight and body mass index (BMI) 

after adjusting for age, height, education, waist circumference, etc. As for non-linear models, a 5-

knot-restricted cubic splines regression [3] used subject-level systolic and diastolic pressure data 



to build models against height. For right ventricular volumes (i.e., EDV, ESV, and stroke volume) 

[34], an exponential multi-variable relation used age and BSA as the predictors. 

In this study, a systematic review compiled the current literature reporting measurements 

of ventricular volumes, blood pressure, and cardiac output under resting and exercise conditions 

in relatively healthy subjects. Next, we used various linear and non-linear regression algorithms 

on this data to build predictive models for these cardiovascular parameters. Sex [41] and race [42] 

also affect the cardiovascular parameters; however, not enough data was available to include them 

in the current analysis. Other predictors such as percent body fat [43], pulmonary artery systolic 

pressure [44], ventricular mass [45], pericardial fat volume [32], and respiratory mechanical 

properties [46] are only obtained through advanced measurement not readily available and thus 

were not included in regression modeling. By including only age, body size, and exercise intensity 

as predictors, it is not possible to predict the exact value of the cardiovascular parameters of 

interest, however, due to the correlation of the predictors with the parameters, the formulated 

regression models can provide a realistic estimate of those parameter values. 

Since our systematic review pooled together data from the studies selected, the data we 

used for regression modeling corresponds to a larger population than any single study referenced 

in this review. Most of these studies (Table 1) either directly collected subject data or referred to 

subject data compiled from institutional collaborations for data collection [32,47–49]; whereas in 

this study, the models generally used aggregate data. A simulation-based statistical method was 

used to evaluate the performance of the regression algorithms built on aggregate data for subject-

level predictions. For a few of the cardiovascular parameters, we obtained subject data [50–52] in 

order to perform a direct comparison between regression models built on aggregate data versus 

those built on subject data.  

In summary, the models from this study provide numerical reference values of key 

cardiovascular parameters for a subject characterized by the values of the predictors. We also 

report the trends of the cardiovascular parameters versus predictors. The models contain a 

combination of age, body size, and exercise intensity as predictors and estimate reference 

cardiovascular parameters for a subject or cohort of interest providing a more personalized 

approach to patient diagnosis. 

Methods: 
We collected data for regression modeling by conducting a comprehensive literature search 

for databases reporting cardiovascular parameter data for healthy subjects (as described in the 

Literature Search section). The search for subject-level databases provided data for systolic 

pressure, diastolic pressure, and heart rate only; while aggregate data for all the cardiovascular 

parameters of interest were available. We built regression models for all of the parameters using 

the aggregate data (Regression Modeling section). In order to assess the performance of these 

regression algorithms for providing subject-level predictions, we generated subject-level data 

(Simulation Studies section) based on the aggregate data statistics and repeated the regression 

procedure on the simulated data to obtain reference results for comparison (Model Comparison 

section). Finally, we used the real-world subject-level data (available only for systolic pressure, 

diastolic pressure, and heart rate) to validate our modeling procedure and to obtain additional 

regression models built directly from subject-level data. 

Literature Search: 

This study selected data for each cardiovascular parameter in accordance with the PRISMA 

[53] guidelines by using the advanced search in the PubMed database. Table 1, Table 2, and Fig. 



1. summarize the search process, search strings used, the number of articles selected, and the 

quantity of data compiled. 

During the literature screening process, only articles that reported data about relatively 

healthy adults were included. Studies focusing on subjects with one or more major health 

conditions (e.g., pulmonary hypertension, valve regurgitation, etc.) likely to have a significant 

effect on the cardiovascular parameters of interest were considered only if they also reported data 

on healthy control subjects as comparators. The articles included used a variety of imaging 

modalities for measurements. The purpose of the articles included was either to investigate which 

variables in the study affect the cardiovascular parameter of interest, to compare controls to 

subjects with a health condition, or to investigate the effect of interventions on the cardiovascular 

parameter of interest. 

Articles were excluded if the age of the participants was not reported. For every article, we 

excluded the data for subjects less than 16 years of age. The predictors – height, weight, body 

surface area (BSA), and body mass index (BMI) – are all indicators of body size and correlate to 

each other; thus any two of these predictors are enough to calculate the other predictors from the 

BSA formula by Mosteller [90] and the formula for BMI (weight(kg) / height(meters)^2). Articles 

that did not provide enough information to calculate the body size variables were excluded. For 

every article, we excluded data for subjects with mean BMI greater than 85th percentile (36 

kg/m^2) [91], as well as data for blood pressure and cardiac output if it was not possible to 

determine the corresponding exercise intensities. As the articles with data on ventricular volumes 

along with exercise were limited in number [87,88], we did not include metabolic equivalents 

(MET) as a predictor for ventricular volumes. We considered journal articles published before 31 

December 2018 and restricted the language of the articles to English. 

We used the guidelines provided in the revised Cochrane risk-of-bias tool for randomized 

controlled trials [92] to identify the risk of bias for individual studies with respect to performance, 

detection, attrition, reporting, and any other type of biases, and classified the studies as having a 

low risk, high risk, or unclear concerns of bias (Table 1). The articles with high risk were not used 

for regression modeling. 

The data in the form of sample size, the mean and standard deviation (SD) of the predictors 

and the cardiovascular parameter were manually extracted from the selected articles. This entire 

dataset is referred to as Data-O in this paper. Each article reported one or more aggregate data 

points (Sample-Oaggr). 



TABLE 1 

TOTAL AVAILABLE DATA COMPILED FROM THE SYSTEMATIC REVIEW 

Sr 

No 

Author 

(Year)[ref#] 

Cardiovascular Parameter Risk of 

Bias 
Search String 

SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR 

1 Wang et al. 

(2018)[4] 
✓ ✓ 

     

✓ 
Low Aortic Pressure (MeSH) 

+ Exercise (Keywords) 

2 Schultz et al. 

(2013)[54] 
✓ ✓ 

     

✓ 
Low Aortic Pressure (MeSH) 

+ Exercise (Keywords) 

3 Hulkkonen et 

al. 

(2014)[47] 
✓ ✓ 

      
Low Aortic Pressure (MeSH) 

+ Exercise (Keywords) 

4 Robinson et 

al. 

(1988)[55] 
✓ ✓ 

     

✓ 

Low Aortic Pressure (MeSH) 

+ Exercise (Keywords) 

5 Shim et al. 

(2011)[56] 
✓ ✓ 

    

✓ ✓ 
Low Aortic Pressure (MeSH) 

+ Exercise (Keywords) 

6 Chia et al. 

(2015)[57] ✓ ✓ 

     

✓ 

Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 

7 D’Alto et al. 

(2017)[13]  ✓ ✓ 

     

✓ 

Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 

8 Ashrafpoor 

et al. 

(2015)[58] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 

9 Nio et al. 

(2017)[59] 

  

✓ ✓ 

    Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 

10 Bernard et al. 

(2016)[60] 

  

✓ ✓ 

    Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 



Sr 

No 

Author 

(Year)[ref#] 

Cardiovascular Parameter Risk of 

Bias 
Search String 

SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR 

11 D’Andrea et 

al. 

(2017)[61] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 

12 Menting et 

al. 

(2016)[62] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 

13 Yeon et al. 

(2015)[63] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

14 Bhambhani 

et al. 

(2018)[31] 

  

✓ ✓ 

    
Unclear Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

15 Nikitin et al. 

(2006)[64] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

16 Maffessanti 

et al. 

(2013)[34] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

17 Kuznetsova 

et al. 

(2016)[9] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

18 Benda et al. 

(2016)[65] 

  

✓ ✓ 

    
Unclear Ventricle Volume 

(MeSH) + Exercise 

(Keywords) 

19 Rao et al. 

(2015)[66] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Exercise 

(Keywords) 

20 Rojek et al. 

(2015)[8] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Exercise 

(Keywords) 



Sr 

No 

Author 

(Year)[ref#] 

Cardiovascular Parameter Risk of 

Bias 
Search String 

SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR 

21 Schmidt et 

al. 

(2015)[44] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + Exercise 

(Keywords) 

22 Lane et al. 

(2014)[67] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

23 Park et al. 

(2003)[68] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

24 Celentano et 

al. 

(2003)[41] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

25 Maceira et al. 

(2006)[27] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

26 Scalia et al. 

(2010)[69] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

27 Maggioni et 

al. 

(2012)[70] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

28 Lee et al. 

(2016)[71] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 



Sr 

No 

Author 

(Year)[ref#] 

Cardiovascular Parameter Risk of 

Bias 
Search String 

SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR 

29 Yang et al. 

(2017)[72] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

30 Hollingworth 

et al. 

(2012)[73] 

  

✓ ✓ 

    Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

31 Fujimoto et 

al. 

(2012)[74] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

32 Lin et al. 

(2014)[75] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

33 Vormbrock 

et al. 

(2014)[29] 

  

✓ ✓ 

    
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

34 Aquaro et al. 

(2017)[76] 

  

✓ ✓ ✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + Aging 

(Keywords) 

35 Lei et al. 

(2017)[77] 

  

✓ ✓ ✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

36 Stojanovska 

et al. 

(2014)[78] 

  

✓ ✓ ✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 



Sr 

No 

Author 

(Year)[ref#] 

Cardiovascular Parameter Risk of 

Bias 
Search String 

SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR 

37 Le Ven et al. 

(2016)[79] 

  

✓ ✓ ✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

38 Prakken et al. 

(2010)[80] 

  

✓ ✓ ✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + Body Size 

(Keywords) 

39 Wilson et al. 

(2011)[81] 

  

✓ ✓ ✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

40 Bohm et al. 

(2016)[82] 

  

✓ ✓ ✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

41 Maceira et al. 

(2006)[26] 

    

✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

42 Foppa et al. 

(2016)[49] 

    

✓ ✓ 

  
Low Ventricle Volume 

(MeSH) + [Aging + 

Body Size + Exercise] 

(Keywords) 

43 Staunton et 

al. 

(2015)[83] 

      

✓  
Low Cardiac Output (MeSH) 

+ Age (Keywords) 

44 Xing et al. 

(2017)[5] 

      

✓ 

 
Low Cardiac Output (MeSH) 

+ Age (Keywords) 

45 McGuire et 

al. 

(2001)[84] 

      

✓ ✓ 

Low Cardiac Output (MeSH) 

+ [Aging + Body Size + 

Exercise] (Keywords) 



Sr 

No 

Author 

(Year)[ref#] 

Cardiovascular Parameter Risk of 

Bias 
Search String 

SysBP DiasBP LVEDV LVESV RVEDV RVESV CO HR 

46 Ogawa et al. 

(1992)[85] 

      

✓ 

 
Low Cardiac Output (MeSH) 

+ [Aging + Body Size + 

Exercise] (Keywords) 

47 Vella et al. 

(2012)[86] 

      

✓ ✓ 

Low Cardiac Output (MeSH) 

+ [Aging + Body Size + 

Exercise] (Keywords) 

48 Esfandiari et 

al. 

(2014)[87] 

      

✓ 

 
Low Ventricle Volume 

(MeSH) + Exercise 

(Keywords) 

49 Roberts et al. 

(2018)[88] 

  

✓ ✓ 

  

✓ 

 
Low Ventricle Volumes 

MeSH + Together 

50 Barrett-

O’Keefe et 

al. 

(2015)[89]  

      

✓ 

Low Aortic Pressure (MeSH) 

+ Exercise (Keywords) 

 

SysBP: systolic blood pressure, DiasBP: diastolic blood pressure, LVEDV: left ventricular end-diastolic volume, LVESV: left ventricular end-

systolic volume, RVEDV: right ventricular end-diastolic volume, RVESV: right ventricular end-systolic volume, CO: cardiac output, HR: heart rate, 

MeSH: Medical Subheadings. 
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TABLE 2 

TOTAL AVAILABLE DATA COMPILED FROM THE SYSTEMATIC REVIEW 

 
No. of 

Articles 

No. of 

Sample-Oaggr 

Total 

sample 

size 

Systolic Pressure 7 43 2195 

Diastolic Pressure 7 43 2195 

Heart Rate 9 38 1178 

Left Ventricular EDV 34 98 6811 

Left Ventricular ESV 34 98 6811 

Right Ventricular EDV 10 38 2523 

Right Ventricular ESV 10 38 2523 

Cardiac Output 8 36 703 

EDV: End-Diastolic Volume; ESV: End-Systolic Volume 

 

`  

Figure 1. Flow diagram of the literature search and selection process 

 

Regression Model Building: 

R, version 3.6.1 [93], was used to conduct the data analysis. For building regression models 

using the original aggregate literature data (Model-O), the Linear, Partial Least Squares, Elastic-

Net, Multivariate Adaptive Regression Splines, and Support Vector Machines multivariable 
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regression models were used as per the recommendations from Kuhn et al. [94] Since the predictors 

which represent body size (height, weight, BSA, and BMI) are correlated, if the articles did not 

report all of the body size predictors, we impute the missing values using the Mosteller formula 

[90] and BMI formula as applicable. Since correlated variables should not be used together while 

building regression models [95], the models used specific combinations of body-size predictors 

(height and weight, BSA and BMI, or height, weight, BSA, or BMI only) for the regression models. 

We chose the best combination among the body size predictors by comparing the Root Mean 

Squared Error (RMSE) of the regression results. 

For building Model-O, we centered and scaled the predictor values, used the sample size 

for weighing each data point, and tuned the hyperparameters associated with each of the regression 

algorithms by using five-fold cross-validation repeated three times. The Model-O cross-validation 

RMSE (RMSEMod-O-CV) provided an estimate of the error for predicting aggregate data using 

models built on aggregate data (Fig. 2). 

 

Figure 2. Descriptions of the RMSEs reported and their method of calculation with respect to the 

regression model and the testing data. The shaded entries are cross-validation RMSEs and the 

others are validation RMSEs for regression models built on aggregate data against subject data. 

 

Simulation Studies: 

Overview: 

As this study compiled data from a systematic review, we did not have access to subject-

level data. In order to evaluate the impact of the ecological fallacy [96], we performed simulation 

studies to determine whether inferences on individuals can be made from the aggregate group data 

in our regression analyses. The simulation studies procedure aimed to generate (simulate) multiple 

instances of subject-level data (30 instances) from the aggregate data and then check the 

performance of Model-O against the simulated subject-level data. In other words, simulation 

studies (Fig. 3) estimated the validity of using regression models built on aggregate data for 

subject-level predictions. 

We generated the subject-level data for model training and validation based on the mean 

and SD of Data-O. The training dataset that consisted of these simulated subjects was randomly 

aggregated into groups so that each group had the same structure as Sample-Oaggr, and regression 

models (Model-S) were trained using this simulated aggregate data. This procedure imitated how 
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Model-O was built from Data-O which contains aggregate data from the literature. This random 

grouping was repeated 20 times for each simulated dataset. The simulated validation dataset was 

left as subject-level data points which we used to evaluate the performance of Model-S for making 

subject-level predictions. Thus, the RMSEs (RMSEindiv-valid) of this simulated validation set against 

Models-S represented the error associated with predicting subject-level data using regression 

models built on aggregate data (Fig. 2); whereas RMSEMod-O-CV represented the error associated 

with predicting aggregate data using regression models built on aggregate data (Fig. 2). 

 

 

Figure. 3. Procedure for simulation studies with 20 iterations for the different ways of data 

aggregation and 30 iterations for the different ways of data generation. The left column 

describes the simulation of the aggregate training set (Data-S) and the right column describes 

the simulation of the subject-level testing sets. Details of generating the predictor and output 

values are provided in the ‘Simulated Predictor Values’ and ‘Simulated Cardiovascular 

Parameter Values’ sections. VirtSubjecttrain-in and VirtSubjecttrain-out: the simulated set of 

predictors and cardiovascular parameter values describing virtual subjects in Data-S (these 

subjects are used to train Model-S), VirtSubjectvalid-in and VirtSubjectvalid-out: the simulated set of 

predictors and cardiovascular parameter values describing virtual subjects in the validation 

group (these subjects are used to validate Model-S for subject-level predictions), PLS: Partial 

Least Squares, MARS: Multivariate Adaptive Regression Splines, SVM: Support Vector 

Machines. 
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Simulated Predictor Values: 

In order to generate the training set for building Model-S, we assumed the predictors follow 

a multivariate normal distribution, where the means and SD of the predictors were as reported in 

Data-O. We approximated the correlation coefficients between the predictors from Data-O, set the 

coefficients of age vs. body size parameters to 0 to represent no growth for adults, and set the 

coefficient of MET versus all other parameters to 0 to indicate that during exercise, the control 

variable MET, was not dependent on any other predictors. 

In order to ensure that enough virtual subjects were generated which adequately 

represented every Sample-Oaggr, we simulated an initial dataset with the sample size equal to the 

square of the original sample size and applied a range constraint that removed subjects from this 

initial dataset with characteristics that did not represent the literature data. The range constraints 

were chosen such that they included the subjects with feature values approximately in the mean ± 

2SD (95% confidence) interval for all Sample-Oaggr. This corresponds to subjects with age from 

16 - 80 years, height from 150 - 200 cm, weight from 50 - 120 kg, BSA from 1.2 - 2.6 m2, BMI 

from 18 - 35 kg/m2, and MET from 0.9 - 20. From this constrained dataset, a subset of size equal 

to the sample size of the Sample-Oaggr was randomly selected for further analysis. This was done 

for every Sample-Oaggr and therefore, the total number of subjects represented in this simulated 

training dataset was equal to that in Data-O. This dataset (VirtSubjecttrain-in in Fig. 3) represented 

a possible set of the predictor values which described all the subjects in Data-O. 

We simulated the validation dataset (for the purpose of evaluating Model-S) using a similar 

procedure. To generate at most five realistic datapoints for each Sample-Oaggr, the same range 

constraint filtered an initial dataset size of 25, and five datapoints were randomly selected from 

this filtered dataset. If the sample size of Sample-Oaggr was less than five, then we added only one 

datapoint to the validation set to avoid generating pseudoreplicates [97]. This simulated dataset 

(VirtSubjectvalid-in in Fig. 3) represented a possible set of predictor values that described a subset 

of subjects from Data-O. 

Simulated Cardiovascular Parameter Values:  

The values of the simulated cardiovascular parameters for each subject in the simulated 

training and validation datasets were generated in three steps. We first fed the simulated predictor 

values into Model-O to generate the initial value of the cardiovascular parameter (Step 1). For a 

regression model, the residual is the difference in the predicted and observed values. To ensure 

that the simulated parameter values account for the error in Model-O predictions, the Sample-Oaggr 

versus Model-O residual was added to the value obtained in step 1 (Step 2). Finally, we randomly 

added a normally distributed error, with mean equals to 0 and SD equals to the SD of the 

cardiovascular parameter as reported in Data-O, to each cardiovascular parameter value associated 

with the Sample-Oaggr to account for the noise in Data-O (Step 3). 

Regression Modeling of the Simulated Data: 

The purpose of the simulated training dataset was to train the Model-S regressions and the 

simulated validation dataset was used to evaluate the performance of Model-S for subject-level 

predictions. To capture the numerous possibilities of the subject-level data distributions, we 

repeated the procedure of creating the simulated training and validation datasets six times using 

each of the five Models-O (Linear, Partial Least Squares, Elastic-Net, Multivariate Adaptive 

Regression Splines, and Support Vector Machines), resulting in the creation of a total of 30 sets 

of simulated data (Fig. 3). 

The set of virtual subjects in the simulated training dataset was shuffled and then divided 

into groups with the size of each group equal to the sample size of each Sample-Oaggr in Data-O. 
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We calculated the mean values of predictors and the corresponding cardiovascular parameters for 

each group and therefore, aggregated the simulated subject-level training dataset to form Data-S. 

For every simulated training dataset generated, we repeated this grouping 20 times to capture the 

multiple grouping possibilities from the subject-level data (Data Grouping cell in Fig. 3). 

In summary, 30 different simulated subject-level datasets grouped in 20 random ways 

generated 600 possibilities of Data-S. Each of the five regression algorithms was used to fit each 

of the 600 Data-S sets to create a total of 3000 Models-S (Regression Models cell in Fig. 3). 

Model Comparison: 

RMSEindiv-valid is the RMSE of the Models-S predictions on the simulated validation 

dataset. (Fig. 2). Therefore, for every regression algorithm, we obtained 600 RMSEindiv-valid values 

representing the goodness of fit of the predicted cardiovascular parameters (simulated) from 

subject features (simulated). The means of these 600 RMSEindiv-valid values provided an estimate 

of the error in subject-level predictions for each regression algorithm [98]. 

We compared the magnitude of the correlation of each predictor by using a dimensionless 

value of the regression coefficients. The regression coefficients describe the change of the 

cardiovascular parameter value per unit increment of each predictor (i.e. age by one year, height 

by one cm, etc.). Since comparing these coefficient values directly would not provide meaningful 

results, we multiplied the regression coefficients by the SD of the predictor values in Data-O and 

then normalized them with respect to the SD of the cardiovascular parameter to obtain a non-

dimensional percentage value according to previous work on the standardization of coefficients 

[99]. We classified the correlation as weak if this value was <30% and strong if it was >60%. 

Validation against real-world subject-level data: 

Simulation studies used generated data as subject-level data was not accessible for all 

cardiovascular parameters. For real-world validation, data from cardiopulmonary exercise tests 

from the Fitness Registry and the Importance of Exercise National Database (FRIEND) [50–52] 

was used. The data included the systolic pressure, diastolic pressure, and heart rate at rest and at 

peak exercise. Information on whether the subject was hypertensive, diabetic, etc. was also 

provided. After excluding the hypertensive and diabetic subjects, this study used 1831 healthy 

subjects from FRIEND for analysis. 

In contrast to RMSEindiv-valid, which was obtained using simulated data, the RMSE of 

Model-O predictions against FRIEND data (RMSEMod-O-FRIEND) represented the error of the 

aggregate regression model for subject-level predictions using real-world data (Fig. 2). Thus, we 

can assess whether real-world data produced similar outcomes as compared to simulated data to 

validate the simulation studies procedure. This helped provide confidence to the simulation study 

procedure which we used to appraise the models where no real subject data was available for 

validation. Since FRIEND did not include ventricular volume and cardiac output data, we were 

able to evaluate only some of the models using this method. Further, we used the same five 

regression algorithms to build models for systolic pressure, diastolic pressure, and heart rate based 

on the real-world FRIEND data (Model-F) for comparison against the models built on aggregate 

data (Model-O). 

We calculated the left and right ventricular EDV and ESV for the FRIEND subjects using 

Model-O for left and right ventricular volumes. The difference between the EDV and ESV gave 

the stroke volumes of the left and right sides for each subject. The stroke volume for the left and 

right side of the heart should be equal [100]. We used this difference in the left and right stroke 

volume to check the performance of the ventricular volume models because no subject-level 

databases were available to validate these models. 
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Results: 
Systolic and Diastolic Pressure: 

The Elastic-Net model, with age, height, weight, and MET as predictors, gave the lowest 

RMSEsindiv-valid and was the model chosen for further analysis for systolic and diastolic pressure. 

The difference between NRMSEMod-O-CV and NRMSEindiv-valid was less than 1% for systolic 

pressure and 2.1% for diastolic pressure(Table 3). The Model-O coefficients (Table 4) showed 

that systolic and diastolic pressures correlated positively but weakly to age, height, and weight, 

and positively and strongly to MET. 

The NRMSEindiv-valid was 0.9% and 2.5% higher than NRMSEMod-O-FRIEND (Table 5) for 

systolic and diastolic pressures, respectively. For Model-F, the coefficients for age, weight, and 

METs (Table 4) were similar to those from Model-O. However, for height, Models-F provided a 

weak and negative correlation to both blood pressures. 

The Elastic-Net algorithm gave the best results for fitting subject-level data (lowest 

NRMSEindiv-valid). We also noted that NRMSEFRIEND-CV (Table 5) was lower than NRMSEMod-O-

FRIEND. The Data-O vs. predicted plot for Elastic-Net Models-F (Fig. 4) showed that the models 

tend to under-predict higher values of systolic and diastolic pressures (which mostly correspond 

to higher MET levels). 

 

Figure 4. The actual (Data-O) vs. predicted cardiovascular parameter value using the regression 

models with the lowest NRMSEs. The 45° line (red) corresponds to where the predicted and 

actual values are equal. Note that the left ventricle predictions here are performed based on the 

right ventricle models plus a bias offset as discussed in the “Recommended Regression Models” 

section of the manuscript. SysBP: systolic blood pressure, DiasBP: diastolic blood pressure, 

LVEDV: left ventricular end-diastolic volume, LVESV: left ventricular end-systolic volume, 

RVEDV: right ventricular end-diastolic volume, RVESV: right ventricular end-systolic volume, 

CO: cardiac output, HR: heart rate. 

 

Ventricular Volumes: 

For all the ventricular volume models, the Linear models with age, height, and weight as 

predictors provided the lowest NRMSEsindiv-valid and were the models chosen for further analysis. 
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The difference in NRMSEMod-O-CV and NRMSEindiv-valid was 9.3%, 20.5%, 7.96%, and 11.7% for 

Left Ventricular EDV, ESV, and Right Ventricular EDV, and ESV, respectively (Table 3). The 

Linear Model-O coefficients (Table 4) showed that all ventricular volumes correlated negatively 

to age, positively to weight, and positively to height. 

Even though the amount of data for left and right ventricular volumes that we obtained 

through the literature search were quite different (Table 2), there was no skewness (due to the 

much smaller data size) in the right ventricular predictor data as the histograms for all the 

predictors were similar for both the ventricles. 

The means of the stroke volumes in Data-O for the left and right sides were 70.1 ml and 

87.4 ml, respectively. The means of the predictions of stroke volumes from the 1831 subjects from 

FRIEND were 78.2ml and 94.5ml for the left and right side, respectively, and the RMSE of the 

difference between the left and right stroke volumes for the same subjects from FRIEND was 17.7 

ml. We also note that the mean of the resting ejection fraction in Data-O for the right ventricle was 

62%, which is higher compared to some previously reported values of resting ejection fraction 

[101–103]. 

Heart Rate: 

The heart rate model used the combination of age, height, weight, and METs as predictors. 

The Linear model provided the lowest NRMSEindiv-valid and was the model chosen for further 

analysis. The difference in the NRMSEMod-O-CV and NRMSEindiv-valid was about 5% (Table 3). The 

Model-O coefficients (Table 4) showed that heart rate correlated negatively but weakly to age, 

positively and weakly to height and weight, and positively and strongly to METs. 

The NRMSEMod-O-FRIEND was 8.4% higher than NRMSEindiv-valid (Table 5). For Model-F, 

the coefficients for weight and METs (Table 4) were similar to those from Model-O but the 

coefficients for age and height showed an opposite trend with respect to Model-O. Also, the 

intercept value for the Model-F was significantly different as compared to Model-O. We observed 

reasonable agreements between model predictions and Data-O for Linear Model-F (Fig. 4). 

Cardiac Output: 

The Linear model with age, weight, and MET as predictors yielded the minimum 

NRMSEindiv-valid and was the model chosen for further analysis for cardiac output. The difference 

in the NRMSEMod-O-CV and NRMSEindiv-valid was less than 2% (Table 3). The Model-O coefficients 

(Table 4) showed that cardiac output correlates negatively and weakly to age, positively and 

weakly to weight, and positively and strongly to METs. Fig. 4 showed that for higher values 

(which mostly correspond to higher MET levels), the Linear Model-O tended to under-predict 

cardiac output. 
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TABLE 3 

NRMSEINDIV-VALID AND NRMSEMOD-O-CV COMPARISON 

 

 NRMSE values (%) 

Linear PLS E-Net MARS SVM 

Systolic Pressure 
17.24 12.35 15.17 13.50 11.57 

16.07 17.50 15.83 18.99 22.01 

Diastolic Pressure 
14.71 14.17 14.41 16.04 13.96 

16.68 17.57 16.48 18.97 17.66 

Heart Rate 
11.56 11.04 11.40 12.45 11.17 

16.45 18.91 16.80 19.08 38.04 

Left Ventricular 

EDV 

22.96 20.61 22.71 22.41 22.62 

32.30 32.42 32.34 40.00 37.86 

Left Ventricular 

ESV 

23.44 22.10 23.59 23.24 24.07 

43.96 44.38 44.08 52.01 53.35 

Right Ventricular 

EDV 

12.24 9.88 11.01 13.29 14.01 

20.20 20.36 20.40 43.56 58.71 

Right Ventricular 

ESV 

19.71 17.92 18.35 20.04 21.57 

31.41 31.71 31.85 51.79 66.78 

Cardiac Output 
52.69 50.90 55.50 59.68 53.84 

54.33 55.79 55.63 64.75 82.42 

    NRMSEMod-O-CV 

    NRMSEindiv-valid 

 

EDV: end-diastolic volume; ESV: end-systolic volume, PLS: Partial Least Squares, E-

Net: Elastic-Net; MARS: Multivariate Adaptive Regression Splines, SVM: Support Vector 

Machines. 
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TABLE 4 

REGRESSION COEFFICIENTS 

 

 
 Coefficients Expected Error 

(95% 

probability) Intercept Age (yrs.) Height (cm.) 
Weight 

(kg.) 
MET 

Systolic 

Pressure 

Model-O 25.45 0.09 0.4 0.24 5.57 ±48.2 mmHg 

Model-F* 94.89 0.72 -0.28 0.46 6.01 ±40.3 mmHg 

Diastolic 

Pressure 

Model-O 29.23 0.18 0.15 0.18 1.02 ±26.8 mmHg 

Model-F* 63.13 0.14 -0.04 0.16 0.53 ±19.9 mmHg 

Heart Rate 
Model-O -32.25 -0.36 0.62 0.13 9.27 ±36.9 bpm 

Model-F* 204.2 0.11 -1.07 0.49 11.73 ±43.6 bpm 

LVEDV Model-O -134.73 -0.42 1.04 1.25 NA ±70.8 ml 

LVESV Model-O -91.21 -0.21 0.68 0.36 NA ±34.8 ml 

RVEDV Model-O* -269.62 -1.03 2.44 0.63 NA ±56.0 ml 

RVESV Model-O* -179.77 -0.47 1.5 0.01 NA ±32.3 ml 

Cardiac Output Model-O* 0.71 -0.06 NA 0.08 0.95 ±9.4 l/min 

 

*(and bolded) recommended regression models, LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-

systolic volume, RVEDV: right ventricular end-diastolic volume; RVESV: right ventricular end-systolic volume. 
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TABLE 5 

NRMSE COMPARISON FOR ASSESSMENT OF SIMULATION STUDIES 

 

 
Regression 

Algorithms 

NRMSEindiv-

valid (%) 

NRMSEMod-O-

FRIEND (%) 

NRMSEFRIEND-

CV (%) 

Systolic Pressure Elastic-Net 15.83 14.92 13.23 

Diastolic Pressure Elastic-Net 16.48 13.90 12.27 

Heart Rate Linear 16.45 25.85 19.45 

 

Discussion: 
Systolic and Diastolic Pressures: 

The Elastic-Net Model-O gave the best results for systolic and diastolic pressures for 

subject-level predictions. The similar error magnitudes from the comparison against simulated 

(NRMSEindiv-valid) and real-world subject data (NRMSEMod-O-FRIEND) (Table 5) showed that the 

simulation procedure was effective, validating the simulation studies procedure for systolic and 

diastolic pressure models. Even though this showed that Model-O was not affected by the 

ecological fallacy, the fact that RMSEFRIEND-CV was lower than RMSEindiv-valid indicated that 

Model-F, which was directly built on subject data, still outperformed Model-O. 

Our findings regarding correlations between predictors and blood pressure compared to 

those from previous studies were as follows. Positive correlations for blood pressures versus age 

[1,2,46,63,104] agreed with the results of our study. A negative correlation [3] and a positive 

correlation [104] with height agreed with Model-F and Model-O, respectively. Chen et al. [1] also 

reported a weak positive correlation with weight which was consistent with our results. Finally, a 

previously identified linear increase in blood pressures to MET [105–107] agreed with both 

Model-O and Model-F results. 

Previous literature reported a weak positive or zero correlation with respect to BMI 

[1,35,108]. For constant height, BMI increases with increasing weight. Thus, because of the 

positive correlation with weight in Model-O, we observed an increase in systolic and diastolic 

pressures with increasing BMI. However, for constant weight, BMI decreases with increasing 

height which yielded a decrease in systolic and diastolic pressures due to their positive correlation 

with height. Therefore, with respect to BMI, Model-O provided no clear association, whereas 

Model-F on the other hand, having a negative correlation with height, resulted in a positive 

correlation with BMI agreeing with previous studies [1,35,108]. 

Ventricular Volumes: 

The Linear Model-O provided the best subject-level predictions for the ventricular 

volumes. Similar to the results of this study, previous studies observed a negative correlation with 

age [10,11,31,40,63,79,80,109] and a positive correlation with respect to height and weight [40]. 

Model-O coefficients were comparable to the age-BSA-sex model correlation coefficients in 

reference [34]. As compared to the Left Ventricular EDV Model-O, the coefficients for the age-

height-weight-sex linear models in reference [40] yielded a stronger positive correlation for height 

and weight and a comparable negative correlation to age. The RMSE was 18.7ml in reference [40] 

for subject data as compared to 35.4ml for the Left Ventricular EDV Model-O which used 

simulated subject data. Non-linear relationships of ventricular volumes against body size [31,40] 
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have also been reported. The best performing models in this study were linear and thus did not 

capture non-linear behaviors, potentially explaining the high RMSEMod-O-CV and RMSEindiv-valid 

values.  

Comparing to data from previous literature [26,27], Model-O predictions of ventricular 

volumes for the subjects in FRIEND resulted in some discrepancies in terms of stroke volumes. 

The predictions of the left ventricular stroke volumes for FRIEND subjects were biased towards 

lower values while the right ventricular volume predictions agreed with the observed ranges for 

healthy subjects in references [26,27]. Even though the predictor values and other physical 

descriptions of the subjects were all very similar among the 10 common articles selected for 

ventricular volume analyses, three articles [78–80] reported 10 - 30 ml lower left ventricular 

volumes (EDV, ESV, and stroke volumes) than the others. There was no skewness in the predictor 

data in these three studies which this bias can be attributed to. These three articles [78–80] seemed 

to be the only source for the left ventricular volumes bias. In conclusion, the predictions of the 

right ventricular volume models were more reliable as compared to the left ventricular volume 

models. 

Heart Rate: 

The Linear Model-F yielded the best results for heart rate for subject-level predictions. 

Model-O predictions compared using simulated (RMSEindiv-valid) and real-world subject data 

(RMSEMod-O-FRIEND) showed that the simulation studies procedure underestimated the error in 

subject-level prediction. However, for the Linear Model-F, the RMSEFRIEND-CV was lower than 

RMSEindiv-valid
 which suggested that the subject data from FRIEND yielded the best model. 

Model-F’s linear, positive correlation to MET was consistent with previous literature [110], 

implying that peak HR corresponds to peak MET. The decreasing trend of peak MET with age 

identified in previous literature [111] interacting with the weakly increasing trend of heart rate 

with age in Model-F yielded a decreasing trend of peak heart rate with age, also consistent with a 

previous report [112]. Indeed, Model-F’s intercept of 204 bpm (Table 4) was comparable to the 

intercept of the peak heart rate equation reported by Tanaka et al. [112] (208 – 0.7 Age), providing 

confidence for the ability of Model-F to predict peak heart rate. 

Cardiac Output: 

NRMSEMod-O-CV and NRMSEindiv-valid were around 50% which was much higher as 

compared to the models for other cardiovascular parameters. However, the difference between the 

NRMSEindiv-valid and the NRMSEMod-O-CV was less than 2% (Table 3) which suggested that the 

effect of data aggregation on building the regression model was small. For subject-level 

predictions, the Linear regression model provided a 95% confidence interval of ±9.4 l/min. The 

range of cardiac output for healthy adults is 4 to 8 l/min [113] which was smaller than Model-O’s 

confidence interval.  

In a review paper [114], Vella et al. concluded that the stroke volume plateaus at 60% of 

the maximum exercise intensity for healthy untrained adults. We calculated cardiac output by 

assuming this trend for stroke volume, using predictions from the right ventricular Model-O 

(Table 4), and using the heart rate Model-F in the equation CO = HR x SV. The values for cardiac 

output obtained using this method were very similar to the values predicted by the cardiac output 

Model-O. The differences in the predicted cardiac output values were high (20-30%) for MET 

values lower than 3. However, for higher METs, i.e. 3 - 12 MET, the errors in the predictions were 

less than 10%. This provided support that the Linear cardiac output Model-O may be effective for 

predictions for higher values of MET. 

Recommended Regression Models: 
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Table 4 summarizes the recommended model details and the prediction errors for these 

cardiovascular parameters. For systolic and diastolic pressures, the Elastic-Net Model-F provided 

the smallest prediction error and is the recommended model from this study. While the Linear 

regression algorithm performed the best for all ventricular volumes, due to the discrepancy of the 

left ventricular volume predictions as discussed above, we recommend that the left ventricular 

volumes at rest be predicted by subtracting the average bias (17.7ml) from the Linear right 

ventricular Models-O. For heart rate, the Linear Model-F provided the lowest prediction error and 

is the recommended model from this study. We recommend using the Linear Model-O for cardiac 

output predictions. To obtain the stroke volume during exercise, we recommend using the Linear 

cardiac output Model-O and the Linear heart rate Model-F together.  

Limitations: 

The predictors used did not capture all the covariates mentioned in literature as many 

factors beyond age, body size, and exercise influence cardiovascular parameters. For example, for 

aortic blood pressure, resting heart rate [115], posture [116], type of exercise [117], exercise 

training [118,119], race [42], diet [120], smoking [121], and menopausal status [122] have all been 

shown to be contributory. Likewise, for ventricular volumes, sex [41], fitness level [123,124], 

exercise intervention [125], altitude [126], and pulmonary artery systolic pressure [44] may be 

important influential factors. More data and a provision to include categorical variables in the 

regression algorithms are necessary to add sex, race, and some of the aforementioned factors as 

predictors. While including more predictors in the analysis may reduce the prediction error (Table 

4), data was not abundantly available for such analysis.  

To improve the regression approach, there is evidence that allometric scaling [30,127] for 

body size variables, especially for cardiac output, heart rate, and ventricular volumes can be more 

effective. However, allometrically indexed predictors cannot be used on aggregate data since the 

index of the mean of the subject data is not the same as the mean of the indexed subject data. 

Due to the non-linear trends reported for these cardiovascular parameters, we expected the 

Multivariate Adaptive Regression Splines and Support Vector Machines models to perform better 

than the linear algorithms. However, the non-linear regression algorithms used for fitting the data 

showed signs of overfitting and performed very poorly when comparing the RMSEindiv-valid with 

the linear models. More complicated models such as neural networks or random forest are likely 

to produce similar results, but more analysis is necessary before making any definitive conclusions 

about these nonlinear models. 

The data extracted from the systematic review (Table 1) were not specifically reported for 

the purpose of regression modeling. The systolic and diastolic pressures Models-F yielded lower 

RMSEs than the corresponding Models-O. For heart rate, while Model-F had a higher RMSE 

compared to Model-O, it exhibited better agreement with literature trends. These findings suggest 

that using subject-level data for regression modeling tends to give better results than the aggregate 

data models (Models-O). With access to more subject-level data, it may be possible to build 

regression models with higher fidelity. 

Conclusion 
This work systematically reviewed prior studies that measured ventricular volumes, blood 

pressures, and cardiac output during resting and exercise conditions. It aims to provide a valuable 

resource by delineating regression equations for these cardiovascular parameters with respect to 

age, body size, and exercise intensity, providing both reference values and overall trends. 

In this study regression models were formulated using aggregate data, therefore, to evaluate 

the impact of the ecological fallacy, we used a simulation-based procedure to estimate the subject-
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level prediction error for the regression models. If the RMSEMod-O-CV and the RMSEindiv-valid were 

comparable, then it suggested that the models built on aggregate data provided a good subject-

level prediction. 

The current clinical setting compares the cardiovascular parameters to ranges of values that 

are common for all healthy adults. This study aims to encourage a more personalized approach to 

obtain reference parameter values by specifying the subject's age, body size, and exercise intensity 

as inputs. Furthermore, the models developed in this study can be useful to researchers for 

initializing and tuning computational models. 
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