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ABSTRACT

Multivariate time-series data are gaining popularity in various ur-
ban applications, such as emergency management, public health,
etc. Segmentation algorithms mostly focus on identifying discrete
events with changing phases in such data. For example, consider
a power outage scenario during a hurricane. Each time-series can
represent the number of power failures in a county for a time pe-
riod. Segments in such time-series are found in terms of different
phases, such as, when a hurricane starts, counties face severe dam-
age, and hurricane ends. Disaster management domain experts
typically want to identify the most affected counties (time-series of
interests) during these phases. These can be effective for retrospec-
tive analysis and decision-making for resource allocation to those
regions to lessen the damage. However, getting these actionable
counties directly (either by simple visualization or looking into the
segmentation algorithm) is typically hard. Hence we introduce and
formalize a novel problem RaTSS (Rationalization for time-series
segmentation) that aims to find such time-series (rationalizations),
which are actionable for the segmentation. We also propose an algo-
rithm Find-RaTSS to find them for any black-box segmentation. We
show Find-RaTSS outperforms non-trivial baselines on generalized
synthetic and real data, also provides actionable insights in multiple
urban domains, especially disasters and public health.
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1 INTRODUCTION
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Figure 1: Disaster example (a): 2017 Hurricane Irma times-
series (representing power failures of a county during the
hurricane). The first and last cut point are based on the hur-
ricane landfall (Sept. 10) and end time (Sept. 12). Cupoints c;
and c3 is around the time when hurricane is changing trajec-
tory. (b) shows a snippet and (c) a heatmap of top 10 most im-
portant counties found by our algorithm across cutpoint c;.
(d) shows a simple magnitude-based TOIs heatmap across c;.
Brighter colors indicate larger importance weights ((c),(d)).

Motivation: Multivariate time-series data, where each timestamp
has readings from the observations of multiple entities or sensors,
are prevalent in various urban scenarios, ranging from critical in-
frastructures, public health, and so on.

Urban domain experts such as emergency management and
health care authorities segment such data for identifying mean-
ingful events. For these events, they want to understand time-series
of interests (TOIs), i.e., the signals which are more susceptible across
each particular event. For example, in a hurricane disaster scenario,
a set of multivariate time-series can represent power failures across
a set of counties. A domain expert can identify the events which cor-
respond to different phases of the hurricanes (e.g., based on severity
of damage), by using multiple segmentation algorithms [7, 12, 21].
However, most time-series segmentation algorithms [11, 12, 21]
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are usually complex, and while they give high quality segmenta-
tions, they do not give ready actionable insights to identify the TOIs
across events.
Finding time-series of interests (TOIs): We next discuss how
TOIs gives actionable insights which are useful for domain experts
in context of urban analytics. For the hurricane power failure data
(mentioned above) domain experts (DEs) such as emergency man-
agement authorities seek solutions to reduce power outages in
different counties. If DEs get actionable insights, i.e., which time-
series/counties are the most important with respect to an event,
they can send personnel to fix damage and alert local authorities
to reduce further loss [6]. For example, consider Fig. 1 for the 2017
Hurricane Irma (where Fig. 1(a) shows the hurricane time-series
data with the segmentation, which roughly correspond to different
phases). Fig. 1(b) shows the failure time-series snippet of top 10
counties (i.e. time-series) across the second cutpoint (c2) found by
our algorithm. We see some of the counties have a very high change
of power failures (green box) which are obviously useful to guide
resource allocation as they denote widespread problems. At the
same time there are also some less obvious counties near Atlanta
too (brown box in Fig 1(b)). These counties have relatively lower
but a sudden change of failures compared to the other counties.
Further, see the geographic heatmap plot of our TOIs (based on their
importance weights as learnt by our algorithm) in Fig. 1(c). Clearly
these counties (denoted by blue circle) are not obvious: they are lo-
cated at the north-west corner, far away from where the hurricane
is present (the blue rectangle, where the rest of the important TOIs
are). However they are still important and useful for situational
awareness and resource allocation. Indeed, reports [2] suggest that
this is due to a separate tropical storm happening at this time. Note
that figuring out these counties by just visualizing the time-series
(Fig. 1(a)) across cy is hard (as they get buried). In fact, further if
we plot a heatmap of all the counties based on their rate of change
of magnitude across ¢y (Fig. 1(d)) we cannot recover these counties
located at the middle (as their magnitudes are relatively lower).
How can we then find such TOIs for events? One plausible way
to solve such problems might be to somehow interpret the internal
change of state of the segmentation algorithm across any cut-point.
For instance, one might use a recent segmentation algorithm Au-
toplait [21] to segment, which learns a HMM internally. Hence
one way to get the TOIs will be to see which time-series cause
the internal HMM to change across the cut-point. However it is
easy to see these will only point to time-series which help explain
model behavior, but not necessarily give actionable insights to the
DE (as explained above such actionable insights are based more
on the change in the time-series itself, and how similar/dissimilar
these changes are to others). Additionally, DEs may end up using
multiple segmentation algorithms (such as TICC [12] which uses
multilayer MRF in contrast to Autoplait) for different datasets based
on what constitute meaningful events for the data. Tracking the
model behavior for each of these segmentation algorithms will give
different TOIs. Further this may become too complex to the DE,
who will need additional technical help to understand the technical
intricacies of the segmentation algorithm to get any actionable
insights.
Our Contributions: Hence, in a collaboration between computer
scientists and experts at Oak Ridge National Laboratory, we aim to
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find a different way to get actionable insights for any segmentation
algorithm. Our contributions are:

e We introduce and formalize a novel problem Rationalization
for Time-series Segmentations (RaTSS) which aims to find
human-friendly and actionable TOIs (rationalizations) for
the urban experts across the associated events in terms of
constituent time-series.

e We propose an algorithm Find-RaTSS to automatically cap-
ture the TOIs in a way that is flexible and works for any
black-box segmentation that a DE may use.

o Finally, we evaluate performance of Find-RaTSS with base-
lines on both synthetic and real general and urban data. Also,
we showcase how rationalizations (TOIs) by Find-RaTSS are
actionable directive for the DEs in urban domains like disas-
ters and disease spread.

The rest of the paper is organized as follows. We first propose
and formalize our novel problem RaTSS. Next, we design an algo-
rithm to solve RaTSS and showcase performances of our algorithm
in the synthetic and real-life urban domain. Additionally, in the ex-
periments (Sec. 4) we show how our TOIs can help a variety of DEs,
including public health for understanding impact of interventions
in the COVID-19 pandemic. We then explore the related literature
on the closest works in urban analytics and time-series mining
and finally conclude with the avenues for future work. Additional
experiments are in the appendix [4].

2 PROBLEM FORMULATION

Notations. Suppose, we have a multivariate time-series data matrix
of m sequences X = {x1, X2, ...xm }, where each x, = xy,(#1), ...xy, (#;)
has t observations. We are given a set of cutpoints C = {c1,¢2,..., ¢k},
each 1 < ¢j < t. For the rest of the paper we use the term ratio-
nalizations and TOIs as interchangeable. An overview of all the
notations are in Table 1.

The main challenges for formulating such rationalization prob-
lem across a segmentation are: P1. We require a general framework
which works for any X and any segmentation C given by a black-
box segmentation algorithm B. For generalization, we do not know
anything about B. P2. We need to associate constituent time-series
across each cutpoint to actionable directives. Hence we propose
an intermediary weighting scheme to measure importance of each
time-series which can map them towards actionable directives.

PrOBLEM 2.1 (INFORMAL RATSS.). Given a multivariate time-
series X and a segmentation C for X. Find the rationalization weight
vector of size m X 1, r;j across each cutpoint c; in C, where each

U i pe. : : :
value riinrjisa scalar and represents the importance weight for
time-series x, across c;.

What is r}‘? One possible approach to measure importance is to
assign a numerical weight r}.‘ to the time-series x, in terms of its
change across a cutpoint c;. However, we do not know anything
about the segmentation algorithm B (P1), besides the way we should
measure change (e.g., using time-series features) may be different
for each cut-point. Hence feature-engineering to work for all B
correctly is not possible.

Hence we present another idea: since C is selected by B among all
possible segmentations, we may assume C by B is the best in some
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Table 1: Notations.

Symbol | Description
X € R™T | Data matrix consisting of m
time-series each having t timestamps
C Segmentation with a set of cutpoints
for X
B Any segmentation algorithm which outputs
a set of cutpoints on X.
Tj m X 1 rationalization weight vector
G(S,8) | A segment graph of S nodes (s;;) and

& edges (e; k) connected by weight w; jx
Sij A node (segment) of G consisting of the
sub-sequence of m time-series within

i — j timestamps

€ijk An edge of G representing edge weight
of the connected nodes

Sij & sjk
Wik A m X 1 weight vector for
ejjk> each cell is weight of x; in e;
K Total number of paths in G

F(sij) A function to returna m X f
matrix for each time-series in s;;
having f features

Pg The path in G which maps to C
Prest All possible paths in G

except the path 7

7B, frest | Cost of path Pg, Pregt
a Global latent weight vector
M, A2 Scalar hyper-parameters used for

rationalization Eq. 2

sense (as after all the algorithm B output C as the segmentation,
choosing it over all the other possible segmentations). It is natural to
assume that the rationalization weight vectors r; should be set in
a way that explains why C becomes better compared to all other
possible segmentations. Hence our main idea is to consider C as
the best compared to other possible segmentations, and choose rjs
to make it so.

Segment Graph. We want to efficiently represent all possible seg-
mentations (as they will be exponential in number to the length
of the sequence). Recently [7] proposed a ‘segment graph’ data
structure G to represent X and its segmentations efficiently. Hence
we leverage this data structure and convert our rationalization prob-
lem in terms of a graph optimization over G. The segment graph
G(S8, &) is a Directed Acyclic Weighted Graph (DAWG) consisting of
a set of nodes S and set & of edges. Next, we define its components.

Definition 2.1 (Node set of G). The node set S consists of all pos-
sible segments in X. That is, node s;; in node set S of G consists of
the subsequence of X of consecutive timestamps i to j. Additionally
S consists of s, and ¢4, two dummy nodes to represent the start
and end of the time-series.

Definition 2.2 (Edge set of G). An edge e; ;i in edge set & con-
nects two adjacent segments s;; and sji, where i < j < k and
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1<i<T-1,1<k <T.Eache; is mapped to a possible cutpoint
cj a timestamp t; in X.

The edge weight vector w; ;. for the corresponding e; i repre-
sents the ‘change’ of every x;, between the adjacent segments of
any cutpoint c;. Note that all segmentations of X (including the
segmentation C) naturally get mapped to paths in G. We further
define K (the total number of segmentations) as the total number
of possible paths from s, to t, paths in G.

Definition 2.3 (Segmentation C in G). The path Pg in G is the
path from s, to t4 s.t. each edge e; ;. € Pp is mapped to the corre-
sponding c; € C.

Definition 2.4 (Other possible segmentations). P is the set
of all other possible paths in G from s, to t; other than Pg. Every
path p, €Prest represents a possible segmentation of X.

Thus, in terms of G our idea can be stated as that Pg should be
the best path from s, to t; in G (compared to all paths in Pregt).
Further, r;j should be set in a way that helps make Pg the best path.
Clearly the weight vectors w; i (which represent how different
adjoining segments are across each edge) also should play a role in
quantifying the quality of each path.

Hence, we need a ‘quality’ metric Quality to compare the paths
which should depend on the rationalization weights, the paths
and the weights over the edges in the paths. Then our required
condition can be stated as: Quality(Pp, w; jx for each e; . € Pp, 1) >
Quality(py,w; i for each e;jx. € po, r), ¥py EPrest. It is not clear how
r which has been defined only over P can affect the quality of other
paths. One way to handle this issue is to create ‘rationalizations’
over all edges - which will lead to severe over-parameterization as
the number of edges in G is O(T3). Hence, we propose to instead
have a global latent weight vector & € R™ ! whose magnitude
captures the global latent importance of each time-series, and then
use « over the edges in Pp to get r; for each cutpoint ¢; € C. Our
condition can be re-written as follows:

Quality(Pg, &) > Quality(py, @), Vpy € Prest (1)
with r;j = someFunctionOf (a,w; j).
We now informally state our problem in terms of a graph-based
framework.

PrOBLEM 2.2 (INFORMAL GRAPH BASED RATSS.). Given, X,
C, and a segment graph G on X, so that its path Pg corresponds to
C. Find « to satisfy Eq. 1 and generate the rationalization weight
vector rj across each edge e; i in Pp.

Formalizing Problem 2.2. To formalize this problem, several ques-
tions arise: Q1. What is Quality? Due to P1, we cannot consider any
prior knowledge about the segmentation algorithm while designing
the quality metric. A possible approach is to assume Quality as cost
of the path. Hence, we simply consider the weighted length of the
path as its cost. Note that, the length of the path will intuitively
measure how different its adjacent segments are. Intuitively, seg-
mentation algorithms try to find cutpoints so that each segment
corresponds to a distinct phase in some sense, and hence adjacent
segments are expected to be very ‘different’ from one another. In
other words, in our framework, we want to learn o which makes
Ppg the longest weighted path in G from s, to 4.
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Definition 2.5 (Length of a path). The length , of a path p,, is
an m X 1 vector, each component represents the sum of all the edge
weights w;jx in p, for time-series x;,. Hence, 7, = Zei],k epo Wijk-

Hence we can now write the Quality function for any path p,
(i-e. the cost of py) as follows:

Quality(py, @) = Z aTw,-J-k= Z iauw?jk

€ijk €Po €ijk €Po u=1

Q2. How to generate r;j for each cj using a? As we discussed be-
fore (in Eq. 1), rj = someFunctionOf (¢, w; ). Wi represents the
change across an edge, while a gives us the global latent weight
for each time-series, Additionally, recall that r; is intuitively the
importance of each time-series over every cut-point c; € C. Hence
a simple way to get rj is rj = |@ © w;ji|, where © is the standard
element-wise vector dot product (and the modulus is because
can be negative). Q3. How to set w;;? Note that we still haven’t
precisely defined w; . As discussed before w; ;. just should reflect
some change in each time-series across the edge. Keeping in mind
P2, we just represent each node s;; as a m X f feature matrix where
F(sij) = [f}j, fZ’] each f* is a f X 1 feature vector of time-series
Xy in segment s;j. We can set w; i = ||F(sij) — F(sji)|1,2-

This is not feature-engineering. We choose only basic statistical
features f (mean, variance, minimum and maximum in this paper),
as we only need to capture basic changes across the segments -
not how the segmentation algorithm B regards as the change (a
feature ablation test in the appendix [4] shows all these features
are necessary and useful for any segmentation). This is different
than directly choosing features to set r, as now the rationalization
weights will need to best explain why the cut-point is present, not
how the time-series change.

Putting everything together. We next formalize our task as an
optimization problem. Note that Eq. 1 will result in one inequality
for each path in G, which are exponential in number (to T). Hence
directly using Eq. 1 is infeasible. Instead, we tackle a simplified
version, by just adding all the inequalities to get a consolidated
objective. Let &g be the length of path Pg. We also define et as
follows.

Definition 2.6 (Total length of Prest). Trrest is an m X 1 vector,
each component represents the length of all other paths in Pregt
other than Pg over each time-series. Hence, 7ryest = va EPryt TF0 =

Zp,, €Ppest Zeijk €po Wijk-
eijk¢Pp

We can also rewrite 7rpest as ZeijkES—PB PijkWijk where p;jx
is the number of paths in G passing through e; ;. Suppose, Az =
2 py€Prest TB— o = (K —1) g — Mrest, where K is the total number
of paths in G. Hence the set of inequalities in Eq. 1 will imply
maximizing a” Asr. Therefore, we formalize RaTSS as follows.

ProBLEM 2.3 (FORMAL GRAPH BASED RATSS.). Given, X, C,
a segment graph G on X, so that its path Pg corresponds to C, and a
Function F(.) to represent a node sjj on G inm X f feature matrix.
Find « that satisfy Quality(Pp, @) > Quality(py, @), Vpy € Prest
and generate rationalization rj, for each edge e;ji in Pg such that
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arg max al (Am) - M|||)x
@ (2)

subject to a # 0,||6¥||§ =1

rj =l ©wijil (3)

Details: We want « to assign a higher weight for the time-series
with high value in Ax (each a, represents a weight for time-series
xy). The term A1 ||||; is to encourage sparsity for simple explana-
tions. The constraint ||a||% = 1is to ensure that ays are bounded
and comparable. An overview of RaTSS is shown in Fig. 2
Remark 1: A silent assumption in RaTSS is that the segmentation
(events) is meaningful to the DE. For example, when the time-series
is constant, then rationalizations (TOIs) found by RaTSS may not be
meaningful. Indeed, arguably, it is not clear in this case if there are
any meaningful TOIs in the first place (intuitively, for homogeneous
data, cut points are not useful).

Remark 2: We define our rationalizations in terms of constituent
time-series only. As we discussed in Sec. 1 and show in our exper-
iments later, such a definition is already meaningful in an urban
analytics context (e.g., actionable counties in the hurricane exam-
ple). However, there can be situations where a group of time-series
can also be actionable. We plan to consider such extensions in future
work.

Edge-weights w;
Input F(.) :Feature matrix of a
X C segment

l Wijk = [[F(sij) - F(sje)l 12
Segment graph
G(S,8)

Optimization for a using
difference of path lengths Ar|

arg max, a’ (Aw) — Ay | o)y
subject toa # 0, || e [I3=1

Path-cost using wj;
75: Length of path by C l

K : Total #paths in G Rationalization rj using
Length of all paths in G except C: o, wij:
Tt = D D Wik
i 1 = o O Wi
enPs

Difference of path lengths:
Am = (K~ 1)mp — Mrest

Figure 2: Overview of RaTSS

3 OUR ALGORITHM

We aim to design an efficient approach for Problem 2.3 to identify
the TOIs for RaTSS. Our main steps are- (A) Computing Az and
(B) Optimizing r;. Next, we discuss in detail about these steps,
present an overall algorithm Find-RaTSS and its complexities and
implementation.
(A) Computing Asm. We construct the segment graph G(S, &) to
compute As from G. The computation is of three steps: (i) Com-
puting the length of Pg, i.e. 7w, which is trivial, (ii) Calculating the
total length of all the possible paths, except 7p in G, i.e., e, and
(iii) Calculating the total number of all possible paths in G, i.e., K.
Our main challenge is to efficiently compute (ii), and (iii) since the
number of paths in G is exponential. Next, we discuss these steps
(ii) and (iii).

For computing 7 rest, we design an efficient technique to calculate
the number of paths p; j; passing through an edge e; j; in constant
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time, by exploiting the properties of G. Next, we show how we find
pijk with the help of Lemma 3.1.

LEMMA 3.1 (NUMBER OF PATHS THROUGH AN EDGE €;j IS p; j)-
Given, i and k be the begin and end timestamp of the adjacent seg-
ments sij and sji of e;ji. For total timestamp T, the number of paths
through e;ji. is,

1 i=Lk=T
2(i-2) k=T
Pijk = o(T—k-1) i=1 4)

2(=+(T=k=1)  otherwise

Proor. Following is the proof for different i, j, and k.

e Case i = 1,k = T: Trivial. Since, there is only on segment
from 1 to T and only one path.

e Case i =1k < T: (By induction). Suppose, T = k + 1, then
the number of paths is ok+1=k=1 — 90 — 1 This is trivial,
because from s ;. there is only one possible edge s — sk (k+1)
and thus there is only one possible path.

Suppose, with T = k + g where q > k, the number of paths
is 2971, We need to show, with T = k + q + 1, the number of
paths become 29. Since q + 1 > g, all the paths that can be
possible to reach from s to s;(+4) can also be possible to
reach from s t0 §j(k+4+1) Using the edge sj(k1q) =Sj(k+q+1)-
That is, 297! paths possible from Sjk 10 Sj(k+q+1) using the
edge j(k+q) = 3j(k+qr1)-

Again, by the edge construction property of G, a path ends
when end timestamp of a node is T = k + ¢ + 1. If we remove
the timestamp k + ¢q and consider only k,k +1,...,k +q —
1,k + g + 1, then the number of possible paths become 297!
to reach k + g + 1 (by induction). Because, all edges that
used nodes ended with k + g now can use nodes ended with
k+q+1.

Thus, the total number of possible paths with and without
using the edge s;(k+q) — Sj(k+q+1) becomes 2971 4 2971 =
2971+1 = 29 (proved).

e Case i > 1,k = T: Following the above if we consider T = i
and the k = 1. The number of paths is 2T—k-1 = gi-1-1
2172,

e Case otherwise: Hence, if there are 2/~2 paths possible to
reach a node s;; and 2T —k-1 possible paths to reach times-
tamp T from a node s. The total number of paths possible
through the edge s;j — s or e;ji is p;jk = 2(i=2)+(T—k-1)

|

Next, using Lemma 3.1, we can further compute the following
corollary on the total number of paths K, intuitively, by setting
i=l,andk=2...T - 1.

COROLLARY 1 (TOTAL NUMBER OF POSSIBLE PATHS IN SEG-
MENT GRAPH G 1s K). Given total timestamp is T, and number of
paths through an edge e; j. is p; jx.- If we consider all the edges in edge-
set G as &, the total number of possible paths in G is-K =1+ZZ;21 Pijk =

i=1
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ProoF. According to the path property of G, every path starts
from i = 1 and ends at timestamp T. For i = 1,k = T there is only
one path possible (the whole segmentation). For 1 < j < T — 1, the
first node of all other paths in G has to start from some s; ;. Consider
J = k, using Lemma 3.1 we find pyxg. Thus, K =1 + Zzz_zl Pikk =
14272 _1=2T2 o

(B) Optimizing r;. To add the constraint to the objective of Eq. 2,
we use Lagrange multiplier A;. We solve Eq. 2 using gradient de-
scent learning, considering the gradient —Asm + A;sign(a) + 2.
To find hyper-parameters A1, A2 we use gridsearch technique and
principally choose a for which L2 norm (second term in Eq. 2) is
closer to 1. We calculate the importance weight r; for an edge e; jx
in g using Eq. 3. To select the most important time-series at every
ejjk> we sort rj in descending order and principally select the top k
time-series, when cumulative fraction of their total rationalization
weight >= 0.95.

Algorithm Find-RaTSS. We next give the pseudo-code for our
Algorithm 1.

Input: X: a set of time-series, C: a segmentation
Result: r; = {rl, .., r™}, rationalization weight of X for
every c¢jin C
Consider F: a function for characterizing time-series. Given
a segment, it returns a feature matrix m X f
1. Construct nodes in segment Graph G
2. Construct edges in G
3. foreach ¢;j; € E do
Calculate total number of paths p; i in ¢; ;. using
Lemma 3.1
Calculate edge weight w;jx = [|F(sij) — F(sji)|l1,2
Edge cost: n;élsct = PijkWijk
end
_ ijk
4. Trest = Zeijkea TCest
5. Compute 7y
6. K =212
7. Solve « using Eq. 2, hyper-parameters A1, A2
8. foreach cj € C do
| Compute r; using Eq. 3
end
Algorithm 1: Algorithm Find-RaTSS.

Implementation Details. For faster computation and handling
large data for Algorithm 1, we adopt several techniques, such as (i)
parallelization, (ii) floating point precision, and (iii) normalization.

(i) Parallelization: For efficient and fast computation of 7yegt,
we parallelize Algorithm 1. We divide the task of calculating
number of paths for edges among a set of processors n. Also
we use a shared memory from Python Multiprocessing library
to compute sTrest.

(i) Floating point precision: To efficiently store large value of p; jx
and K (for T > 900), we rearrange Eq. 2 as AT” =g — %
And we ignore 2 for a very small value.

(iif) Normalization of An: For efficient optimization and better o

convergence, we normalize on AT” by their max value and

rearrange as Az = I%—A’Z, M= maX(AT”).



CIKM ’21, November 1-5, 2021, Virtual Event, QLD, Australia

LEMMA 3.2 (TIME AND SPACE COMPLEXITY). The worst-case
time complexity of our algorithm is as follows:
e Case serial: O(T?>mf) + O(I) + O(Cmf), I= number of itera-
tions in the gradient descent phase.
o Case parallel: O(%Smf) + O(I) + O(Cmf), n = number of
processors.
The space complexity of Find-RaTSS is O(m + mn).

Proor. We discuss separate proof for time and space complexity.
Time complexity: (i) Case serial: The first term is to calculate 7yegt
for each e; ;.. Total ;1 in G is O(T3). The second term is to solve
a using Gradient Descent learning, and the third term is to solve
r; for every cutpoint c;.

(ii) Case Parallel: Parallelization can be applied in Find-RaTSS for
Trest computation, then the total time complexity will be distributed
among n processors and hence this is O(%%mf) However, time
complexity of gradient descent and r; computation is similar as in
serial cases.

Space complexity: (i) Case serial: The first term O(m) is to store
Trest and 7g. Since we need O(m) myest and O(m) ng for m time-
series. Hence O(m) + O(m) = O(2m) =~ O(m).

(ii) Case parallel: To store final computation of 7yest and 7p it
takes O(m). Whereas the second term O(mn) is to store temporary
Trrest computation for each processor among n processors, O(mn)
is the number of possible edges in a segment graph G. Hence tem-
porary space for n processor and final computation of 75 and 7 rest
is O(mn) + O(m) = O(m + mn). O

Find-RaTSS is clearly linear in the number of time-series m. Al-
though the serial version is also cubic in T, in practice we found that
we were able to run the parallel version easily for all our datasets
and it was quadratic in terms of T.

4 EXPERIMENTS

We implement RaTSS in Python and Matlab. All codes and datasets
used in the paper have been released for research purposes[5]. Our
experiments were conducted on a 4 Xeon E7-4850 CPU with 512 GB
of 1066Mhz main memory. We collect both general data and domain

Table 2: Datasets Used.

SI | Dataset Time Time Cut Black | GT
# stamps | series | points | box (B)
1) | Gaussian 350 8 3 [12] v
2) | Insect 5000 4 2 [11] v
3) | Chicken Dance | 322 4 7 [21] v
4) | Great Barbet 2200 2 2 [11] v
5) | Sudden Cardiac | 7000 2 3 [11] v
6) | Wikipedia 803 3000 3 [12]
7) | Hurricane 264/169 | 250/271 | 3/4 [23]
Harvey/Irma

8) | COVID-19 53 104 11 state

emer-

gency

date!
9) | Diptheria/TB | 52/41 | 90/60 | 4/4 [12]
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specific urban data, to quantitatively and qualitatively evaluate the
performance of Find-RaTSS. The detail description of the datasets
with ground-truth (GT) rationalizations are discussed here. An
overview of the datasets and the segmentation algorithm (B) used
on each dataset are shown in Table 2. We use B which gives the
most meaningful cutpoints (based on GT or historical events).
General datasets: We use a variety of datasets (both synthetic and
real) where we infer the ground-truth TOIs (Table 2 SI 1-6).

(1) Gaussian: We generate a synthetic data, where each time-
series is a univariate Gaussian. We select three cutpoints and
change the parameter of the Gaussian for specific 2 — 3 time-
series at those cutpoints. Ground-truth (GT) rationalizations
are the time-series whose Gaussian parameters change at a
cutpoint.
Insect [11]: EPG recording of insect vector feeding, where
each time-series represents an insect. Each cutpoint is an
event when feeding state of the insect changes and GT is the
insect whose feeding state changes at that event.
(3) ChickenDance [21]: Motion capture sequences of a set of
sensors (left-right hands/legs) in a chicken dance originally
collected by CMUZ. An event occurs, when is a change of
dance state, e.g., wings, tail feather, etc. GT are the set of
sensors which have high change of motion while changing
a dance state.
Great Barbet [11]: Voice recordings of same species Barbet
birds in MFCC format. Each recording is a mixture of two
different birds with approximately half-a-minute snippet of
their song. The cutpoints are set of events when snippet of
one bird ends and other starts. GT are the set of birds, whose
call ends or starts at an event.
Sudden Cardiac [11]: ECG channel reading of hearts of pa-
tients. Events occur when heart state changes, e.g., normal
heart to sudden heart failure or contraction. GT are the pa-
tient whose heart activity changes at an event.
(6) Wikipedia: Web traffic count of various Wikipedia articles
collected daily from the July 2015- October 2017 [1].

—
S
~

—
N
=

—
[5))
=

Domain specific urban datasets: Next, we describe our domain
specific datasets from urban analytics. Here as there is no ground
truth, we discuss the qualitative performance our algorithm.

(7) Hurricane Outage: Oak Ridge National Laboratory (ORNL)
has developed situational awareness tool EAGLE-I to collect
power outage distribution of all the customers from utility
websites every 15 minutes. We collect this power outage
distribution of different counties for Hurricanes Irma and
Harvey in the hurricane-affected areas used by [23]. Rational-
izations on such data can help DE with retrospective analysis
for emergency management planning.

(8) COVID-19 : COVID cases of different states are collected
daily from Jan-May by New York Times>

(9) Diptheria and TB: Diptheria and Tuberculosis (TB) cases col-
lected bi-weekly from the year 1900-2014 by Project Tycho®.
Time-series are different cities of US representing Diptheria

Zhttp://mocap.cs.cmu.edu
3https://github.com/nytimes/covid-19-data
*https://www.tycho.pitt.edu/
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(TB) cases over time period (years). We run Dynammo [19]
to replace the missing values of original data.
Baselines: We compare Find-RaTSS against plausible approaches.
Our intuition is to find out the effect, by considering each cutpoint
independent of the overall segmentation and without principally
considering any optimization. Following we describe each baseline
model.

(i) Feature-based: We calculate the change across every c; using
basic features, i.e., w;ji and select x;, which have high W?jk’

(if) Magnitute-based: We calculate rate of change of time-series
values across ¢; for a window (5% of the timestamp). Our
intuition is to pick the time-series easily figured out by visual-
ization.

(iii) Forecast error-based: For every time-series x;, we train an
LSTM forecast model based on the segment before c; and test
the model for the segment after c;. We select the time-series
whose forecasting error is high. Since high forecasting error
denotes high measure of unpredictability on the time-series
magnitude after the cutpoint. In other words change of time-
series is high across the cutpoint.

We do not compare against a baseline method of interpreting the
internal change of state of segmentation algorithm (as described in
Sec. 1) since our algorithm is general for a black-box segmentation,
whereas each dataset is a practitioner of a different segmentation
algorithm.

4.1 Quantitative evaluation

We compare Find-RaTSS with the baselines on the ground-truth
data. For rationalizations we select top k as the maximum number
of GT in the segmentation. Table 3 shows F1-measures of all the
baselines mentioned above. From the table, we observe that Find-
RaTSS consistently performs better than all the baselines (upto
41%).

Table 3: Fl-scores of Find-RaTSS and baselines on the
datasets with ground-truth

Dataset Find- | Feature | Magnitude | Forecast
RaTSS

Gaussian 1.0 0.27 0.42 0.17

Insect [11] 0.83 0.33 0.83 05

Chicken Dance [21] | 0.86 0.81 0.71 0.5

Great Barbet [11] 1.0 1.0 0.5 0.5

Sudden Cardiac [11] | 1.0 0.67 0.67 0

4.2 Case-Studies in domain-specific urban data

Next, we show TOIs by Find-RaTSS in hurricane power failures,
COVID-19 interventions, and epidemiology. Additionally to show
that our algorithm correctly captures rationalizations even for a
large number of time-series (3000), we provide results on Wikipedia
articles data.

Hurricane Harvey: We already explained how our rationaliza-
tions are actionable for cutpoint ¢z (See Fig. 1 in Sec. 1 for detail).
The segmentation of Harvey is given during hurricane landfall
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Figure 3: (a) 2017 Hurricane Harvey time-series. (b) A snip-
pet of our rationalizations r; for cutpoint c3 and (c) Heatmap
plot of r; for c3. Find-RaTSS finds non-obvious rationaliza-
tions separate from Hurricane trajectory (see detail in the
text).

(around Aug. 26), change of hurricane trajectory((around Aug. 28),
and end time of hurricane (around Aug. 30). Fig. 3(b) shows our
rationalizations for cutpoint c3. Note that, this is the cutpoint when
hurricane is ending. Along with the decrease of the power failures
of other counties, Find-RaTSS correctly highlights sudden increase
of power failures of Orange, Jefferson, Hardin (Fig. 3(c) South-east
corner). However, the main reason of this increase is due to rising
water of Neches river due to which city lose service from major
pump stations [3]. Note that, finding these non-obvious counties
by visualizing the time-series (Fig. 3(a)) across the cutpoint when
power failures of all other counties are decreasing is hard. These
TOIs can help DEs prioritize resource allocation for quick recovery.

Both the hurricane power failure datasets, and the segmentation
on these datsets are collected from the same source [23]. Our non-
trivial rationalizations are very similar with the results provided
by [23] even though the segmentation is black-box.

¢ [T} ¢
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Figure 4: Covid-19 pandemic: (a) Time-series and segmenta-
tion (interventions). (b) Majority of the states for the first
cutpoint ¢; inferred by Find-RaTSS had interventions in the
past 2 weeks. (c) Types of interventions that happened be-
fore 2 weeks.

COVID-19 Interventions: For the current COVID-19 pandemic,
our goal is to extract which states had interventions (like school
closures, etc.) using Find-RaTSS and the disease trajectories. We
collect (https://covidvis.github.io/) daily COVID incidences from
Jan-early May and consider cutpoints as the state emergencies after
2 weeks (mean incubation period of COVID is 2-14 days). For ¢;
(Fig. 4(b)), Find-RaTSS infers all the states which had some inter-
vention around 2 weeks back (Jan 19). Fig. 4(c) shows an example
of different interventions happened for the rationalizations across
c1 before 2 weeks. Overall, across all cutpoints, Find-RaTSS infers
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87% states with interventions >= 2 weeks. For most rationalized
states (60%), the interventions happened exactly 2 weeks back. This
is very useful as in real-time it is very hard to have a complete
knowledge of interventions, e.g., indeed, there is no centralized
database of such acts. Hence epidemiologists need to use indirect
methods (knowing which interventions are in place is crucial for
modeling the disease spread). Find-RaTSS can potentially give such
a method to the epidemiologists to direct attention to such states.
Diptheria (DIP): For Diphtheria and TB segmentation, we con-
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Figure 5: Find-RaTSS finds rationalizations in Diptheria and
TB. Fig.(c)-(f) are our rationalizations (larger size by higher
weight in r;) in US map found by Find-RaTSS for the second
and third cutpoint. Similar results for TB are also shown in

Fig.(g)-()-

sider the time period from 1900 to 1950. This segmentation includes
some historical significant events, i.e., campaign (c1), outbreak (c3),
and invention of vaccination (cs)°.

Our rationalizations across cj gives actionable insights on the
cities where Diptheria cases fluctuate the most after the campaign
started. If we compare rationalization weights from Fig 5(c)-5(f)
with Fig 5(g)-5(j) we observe, Find-RaTSS finds an interesting as-
sociation between TB and Diptheria. r}.‘ weights of the affected
cities are positively correlated for both Diptheria and TB across the
cutpoints. The same report (mentioned above) suggests this associ-
ation is mainly due to presence of an iron-repressor gene. Clearly,
by providing these insights, rationalizations can help DE under-
stand the correlation between the diseases and design vaccination
policies[28, 29].

4.3 Additional Case-study in general dataset
(Wikipedia)

Here we provide a case-study showing that our algorithm can suc-

cessfully identify culprits also in a general dataset even in a high

Shttps://timelines.issarice.com/wiki/Timeline_of_diphtheria
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Figure 6: Find-RaTSS finds the rationalization from
Wikipedia during the period 2015-2017.

dimensional time-series. To understand the importance of content
and improve advertisement strategies, we consider the web traffic
of 3000 Wikipedia articles from 2015 July-2017 October. The seg-
mentation mark a different season of a year (around the end of 2015,
middle of 2016, and beginning of 2017 in Fig. 6(a)). We find over-
all, the majority of articles/rationalizations (64%) by Find-RaTSS
are eventful. Fig. 6(b) shows an example of the rationalizations by
Find-RaTSS across the first cutpoint ¢;. We observe Find-RaTSS
considers some low-traffic articles, e.g., ‘World’s largest companies
by sector’ within top 10 along with the high traffic ones. The reason
is, ‘Forbes Global 2000’ for worlds largest companies was published
around June 2016 after ¢1% This is not easy to find such low traffic
easily by visualizing the time-series or using any other baselines
from Table. 3 (as buried with other high traffic articles).

5 RELATED WORK

In this section, we explore our closest line of research in time-series
mining. We also discuss in brief some remotely related work in
interpretable Al models. To the best of our knowledge, no methods
have been proposed so far for identifying actionable TOIs that can
work for any black-box segmentation on multivariate time-series.
Urban Analytics: Several urban analytics applications in energy
and public health domain have been stated for past years [31, 32].
Oak Ridge National Laboratory (ORNL) has developed a real-time
situational awareness tool Eagle-I [8] to monitor and analyze the
nation’s energy infrastructure. The ORNL EARSS team [6] has an au-
tomated model to take wind speed and location estimates provided
by hurricane experts a geospatial assessment on the impact to the
electric grid in terms of projected duration of the outage. [22] shows
how GPS mobility data can imply a spatial spread of influenza-like
infectious diseases. Various works have been discussed recently
on understanding and quantifying the impact of Covid-19 from
different types of Non-pharmaceutical (NPI) interventions and exit
strategies taken in Europe and China. [17, 25]. [33] developed an
interactive visualization tool to observe mobility and sociability
trends in different regions in the US due to Covid-19. [30] ana-
lyzed on time-series Tuberculosis (TB) data to characterize the
demographic and temporal trends of the impact of the disease. [10]
designed a change point detection process to detect the transition
in multidimensional environmental crowdsensing data.

Chttps://www.forbes.com/sites/forbespr/2016/05/25/forbes-14th-annual-global-2000-
the-worlds-biggest-public-companies-2/#21ca87643c44
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Time-series mining: For explaining time-series classification mod-
els, [27] proposed how to discover the significant characteristic
pattern of time-series using TF-IDF approach in vector space. Karls-
son et al. developed an algorithm to find out the minimum number
of tweaks in time-series data that can change a classifier decision
like random shapelet forest classifier [14]. Jain et al. [13] proposed
a problem to identify repeated sequences of pattern or motifs in
time-series segmentation. There has been a couple of works on
time-series segmentation algorithm to fulfill the objective in vari-
ous domains [15]. Chen et al. designed an algorithm to automati-
cally segment the sequences of any multivariate data without any
prior knowledge of data distribution using information bottleneck
principle [7]. Multivariate time-series segmentation algorithms,
such as using distance-based measure [11] on domain- agnostic
data, correlation network and variational EM [12] on automobile
sensors, multilevel Hidden Markov Model (HMM) [21] on motion
capture data, temporal mixture model [26] on railway data, and
Kalman filters [19] on motion capture and chlorine data. [18] pro-
posed a deep-learning approach for segmentation which automati-
cally learns the features of the time-series using Autoencoder and
detects a cutpoint when the difference of the features between
two consecutive windows reach local maximum. Recently a novel
spatio-temporal joint segmentation and explanation model has
been proposed to identify failure phases in cyber-physical data [23].
However their explanation can only explain based on the internal
state change of their segmentation model and their explanation
model assumes each cutpoint in the segmentation as independent.
Interpretable AI models: Recently, various explainability models
have been proposed to analyze influence of input features locally on
model agnostic Machine Learning (ML) classifiers [16, 24]. [20] pro-
posed to measure importance of instances considering the Shapley
global effect of the model prediction. [9] first proposed Al rational-
ization to interpret autonomous agents on a game environment in
terms of natural language entirely different from rationalization on
time-series segmentation. On time-series there are several works on
discovering characteristics of pattern [13, 27] and finding minimum
number of tweaks to change a classifier decision [14].

6 CONCLUSION

In this paper, we introduce a novel problem Rationalizing time-
series segmentation in terms of constituent time-series (RaTSS), to
identify actionable time-series of interests for urban domain experts
in a set of events found by time-series segmentation algorithms. We
propose an algorithm Find-RaTSS to solve RaTSS in terms of a novel
graph optimization problem using a segment graph data structure.
Find-RaTSS successfully finds TOIs in several domains such as
emergency management and the recent COVID-19. In addition we
compare its performance with non-trivial baselines using synthetic
and real-life general datasets with inferred ground-truth. As future
work, we plan to explore other formulations for rationalizations
like the average longest path instead of the longest path on the
segment graph. We also intend to explore more complex TOIs (like
scoring groups of time-series instead of individual ones as we do)
which may be more suitable for some other applications.
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