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ABSTRACT
As code search permeates most activities in software development,
code-to-code search has emerged to support using code as a query
and retrieving similar code in the search results. Applications in-
clude duplicate code detection for refactoring, patch identification
for program repair, and language translation. Existing code-to-code
search tools rely on static similarity approaches such as the com-
parison of tokens and abstract syntax trees (AST) to approximate
dynamic behavior, leading to low precision. Most tools do not sup-
port cross-language code-to-code search, and those that do, rely on
machine learning models that require labeled training data.

We present Code-to-Code Search Across Languages (COSAL), a
cross-language technique that uses both static and dynamic analy-
ses to identify similar code and does not require a machine learning
model. Code snippets are ranked using non-dominated sorting
based on code token similarity, structural similarity, and behavioral
similarity.We empirically evaluate COSAL on two datasets of 43,146
Java and Python files and 55,499 Java files and find that 1) code
search based on non-dominated ranking of static and dynamic sim-
ilarity measures is more effective compared to single or weighted
measures; and 2) COSAL has better precision and recall compared
to state-of-the-art within-language and cross-language code-to-
code search tools. We explore the potential for using COSAL on
large open-source repositories and discuss scalability to more lan-
guages and similarity metrics, providing a gateway for practical,
multi-language code-to-code search.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Information systems → Similarity measures.

KEYWORDS
code-to-code search, cross-language code search, non-dominated
sorting, static analysis, dynamic analysis
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1 INTRODUCTION
Code-to-code search describes the task of using a code query to
search for similar code in a repository. This task is particularly
challenging when the query and results belong to different lan-
guages due to syntactic and semantic differences between the lan-
guages [20]. Consider the case of code migration, where it is com-
mon for applications in a specific language to be re-written to
another language [52]. For example, while porting the video game
Fez from Microsoft XBox to Sony PlayStation, the developers faced
their biggest challenge in converting the original C# code to C++
as the PlayStation did not support the C# compiler [85]. Code-to-
code search is also involved in identifying code clones [63, 66],
finding translations of code in a different language [58], program
repair [10, 68], and supporting students in learning a new program-
ming language [3]. The growing prominence of large online code
repositories and the repetitive nature of source code [48, 70] lead to
the presence of large quantities of potentially similar code across
languages, providing a viable platform for code-to-code search.

We propose the first cross-language code-to-code search ap-
proach with dynamic and static similarity measures. The novelty is
in the application of non-dominated sorting [19] to code-to-code
search, allowing static and dynamic information (without aggre-
gation) to identify search results. COSAL leverages prior art in
clone detection using input-output (IO) behavior [51]. As dynamic
clone detection requires executable code, individually it cannot
achieve the recall required for practical search applications. This is
where the prior art in static analysis shines; we use token-based and
AST-based measures to complement the dynamic analysis. COSAL
reaps the benefits of dynamic analysis in finding code that behaves
similarly, when dynamic information is available, and the benefits
of static information when dynamic information is infeasible. It
provides results that balance how code looks with how it behaves, in
the spirit of returning code that looks more natural to the user.

We evaluate COSAL using 43,146 Java and Python files from
AtCoder, a programming contest dataset, and 55,499 Java files from
BigCloneBench [79], a Java based clone detection benchmark. We
show that combining static and dynamic analyses yields better pre-
cision and success rate compared to code search with individual
or weighted analyses. COSAL performs better in cross-language
and within-language contexts compared to the state-of-the-art
code search tool FaCoY and the industrial benchmark, GitHub.
COSAL can also detect more cross-language code clones compared
to SLACC and CLCDSA, the state-of-the-art code clone detection
techniques. The contributions of this work are:

• the first code-to-code search approach using non-dominated
sorting over static and dynamic similarity measures,

• an evaluation of COSAL with state-of-the-practice cross-
language code search in GitHub and ElasticSearch (RQ2),
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1 List<Integer> getEvens(int max) {

2 List<Integer> evens = new ArrayList<>();

3 for(int i = 0; i < max; i++)

4 if (i % 2 == 0)

5 evens.add(i);

6 return evens;

7 }

(a) Java: for loop to populate an array of even numbers

1 def all_odds(n):

2 odds = []

3 n = range(n)

4 for i in n:

5 if i % 2 == 0: continue
6 odds.append(i)

7 return odds

(b) Python: for loop to populate an array of odd numbers

1 Integer[] func(int x) {

2 int[] n = IntStream.range(0, x).toArray();

3 List<Integer> e = new ArrayList<>();

4 for (int i=0; i<n.length(); i++)

5 if (n.get(i) % 2 == 0)

6 e.add(n.get(i));

7 return e.toArray();

8 }

(c) Java: List of even numbers using version specific libraries

1 def even_nums(max_val):

2 nums = xrange(max_val)

3 return [i for i in nums if i % 2 == 0]

(d) Python: list of even numbers using list-comprehension

Figure 1: Different functions to return a filtered array of
numbers implemented in Java and Python. The code in (a), (c),
and (d) are functionally identical. The code in (b) is different.

• an evaluation of COSALwith state-of-the-art single-language
code search technique FaCoY (RQ3),

• an evaluation of COSAL against cross-language clone detec-
tion techniques CLCDSA and SLACC (RQ4), and

• an open-source tool that performs cross-language code search
on Java and Python and can be extended to other languages [2].

2 MOTIVATION
Effective code-to-code search requires code similarity measures
that cover a variety of developer concerns. Code-to-code search
should preserve code behavior, and thus IO similarity from dynamic
analysis is an important consideration. Prior work has shown that
identifiers impact source code comprehension, especially for be-
ginners [14], and as developers must understand the code returned
by search, tokens are an important consideration. Prior work in
code-to-code search that relies on ASTs have seen high precision
and recall [43, 63] suggesting that is an important consideration as
well. Individually, each measure has shortcomings. Taken together,
however, we show the whole is greater than the sum of its parts.

Consider the code snippets in Figure 1. Three of the functions
are behaviorally identical, taking an input integer and returning
an array of even integers: 1(a) is a Java function which uses a for
loop; 1(c) uses the stream library from Java v8; 1(d) is a Python
function which uses a filtered list-comprehension. 1(b) is different:
it is a Python function that takes an integer�푚�푎�푥 and returns a list

Fig. AST Tokens

�퐽 1(a)

getevens, get, evens,
max, list, integer, ar-
raylist, array, add

�푃 1(b)
allodds, all, odds,
range, append

�퐽 1(c)
func, intstream,
stream, range, toarray,
array, list, integer,
arraylist, length,get,
add

�푃 1(d) evennums, even,
nums, maxval, max,
val, xrange

Figure 2: Generic ASTs and Tokens for Java(�퐽 ) and Python(�푃)
functions from Figure 1

of odd numbers between [0,�푚�푎�푥). Figure 2 contains AST and token
information for the code snippets, discussed extensively in § 3.

To identify behaviorally identical Python code for Figure 1(a), a
code-to-code search engine should support both the programming
languages Java and Python. In this case, using a purely token-based
approach for cross-language search will not be very helpful. First,
the syntactic features of each language will skew the search. For
example, since Java is static typed, variables are declared with
a datatype, while variables in Python lack these tokens due to
dynamic typing in Python. Second, even if the language-specific
keywords are ignored, there is an over reliance on the names of vari-
ables and libraries to infer behavioral context whichmay not always
succeed. For example, 1(a) uses evens to denote a Java list, while 1(d)
uses nums to represent the same Python array. Still, identifier names
can be informative in describing the behavior of code [86, 87] and
are thereby useful as a metric.

Using an AST-based approach to identify similar code across
languages is useful but not consistently viable due to the language-
specific constructs. For example, 1(a) uses a standard for loop to
populate the list while 1(d) uses list-comprehension which is a
pythonic construct for the same task. The nearest structural match
would be 1(b) since it also uses a for loop. However, the func-
tions 1(a) and 1(b) are behaviorally different. In such cases, a dy-
namic approach based on IO similarity would reveal the differences.

Behavioral approaches also have their limitations. For example,
IntStream from 1(c) is specific to Java v8 and above. Similarly xrange

from 1(d) is specific to Python v2.x. Hence, the right version of the
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language and libraries is a prerequisite and in many cases a major
bottleneck for dynamic similarity.

There is no single best similarity measure for cross-language
code-to-code search. It depends on multiple varying criteria which
cannot be generalized for all cases. Hence, we need a code-to-code
search technique that enables search based on multiple similarity
measures. This can be handled by aggregating the multiple mea-
sures into a single measure or by using all the measures in tandem.

When aggregating into a single measure, it is easier to compare
but there are limitations. Search methods [38, 41] and evolution-
ary algorithms [25] convert multiple search objectives to a single-
objective search problem [53]. Using such methods is not very
optimal [92] as ranking the results would be very subjective if the
objectives are independent or weakly correlated to each other. An
aggregated approach can also lead to bias in comparison [17]. This
motivates the use of an approach to ranking that preserves each of
the similarity measures, using them in tandem. In this section, we
have shown that code that matches on one measure (e.g., AST simi-
larity would match 1(a) with 1(b)) may differ on another measure
(e.g., behavioral similarity shows 1(a) and 1(b) are different). When
aggregating into a single measure, such nuances are often lost.

Non-dominated ranking orders search results across multiple
independent search objectives without aggregating them. We se-
lect three similarity measures to represent the context, structure
and behavior across programming languages. These measures are
weakly and moderately correlated to each other, presenting non-
overlapping perspectives when used to compare code. Further,
non-dominated ranking could provide information sufficient to
explain why one result is ranked above another in a meaningful
way, an ability that is lacking in aggregated approaches (e.g., " 1(a)
and 1(b) have more structural similarity"). While we do not investi-
gate the value of the explanations in this work, we conjecture that
such explanations may be useful when developers discern between
search results and leave that for future exploration.

3 CODE-TO-CODE SEARCH ACROSS
LANGUAGES

Figure 3 depicts the general workflow of COSAL:

(1) Offline, a Repository is crawled to extract Code Snippets (e.g.,
GitHub, a local File System.)

(2) Offline, Indices are created for each of the following:
(a) A Token Index for code names and libraries ( § 3.1).
(b) A language-agnostic AST Index for code structures ( § 3.2).
(c) If the code can be executed, the IO Index is recorded ( § 3.3).

(3) During search, a Code Query is processed in the samemanner
as Steps 2(a)-(c), to gather Tokens, AST, and IO information.

(4) Non-Dominated Sorting identifies Search Results, which are
ranked and returned to the user ( § 3.4)

We illustrate COSAL using the code examples from Figure 1.

3.1 Token-Based Search
Fragments of code that are contextually similar often use simi-
lar variable names [69], though the naming conventions vary by
language. For example, Java primarily uses camelCase conventions
while Python uses snake_case. Libraries across languages tend to
share similar function names or contexts [4]; for example List

Figure 3: Overview of COSAL

class from java.util library and list from the Python __builtin__

library are both commonly used to represent an array. Develop-
ers tend to describe the code in comments based on the function-
ality [33]. We infer context by extracting non-language-specific
tokens from source code and comments as follows:

(1) Remove language-specific keywords based on the documen-
tation [18, 60]. For example, Java tokens public and static,
and Python tokens def and assert, are all removed.

(2) Remove frequently-used words used in a language based on
common coding conventions. For example, in Python, the
token self is often used to denote the class object. 1

(3) Remove common stopwords from the English vocabulary [15],
such as does and from.

(4) Split tokens to address language-specific nomenclature. Vari-
ables typically use camelCase in Java and snake_case in
Python. These are split into {“camel” and “case”} and {“snake”
and “case”}, respectively.

(5) Remove tokens of length less than MIN_TOK_LEN.
(6) Convert all the tokens to lower case.

A repository of code is tokenized using the above approach and
stored in an ElasticSearch [29] index. For a user’s code query, the
tokens generated from the indexing approach are looked up in the
search index and the best matched results are returned using the
token similarity distance (�푑�푡�표�푘�푒�푛). This distance is the same as the
Jaccard Coefficient [59] and is defined as follows:

�푑�푡�표�푘�푒�푛 =

|�푡�표�푘�푒�푛�푠�푞�푢�푒�푟+ ∩ �푡�표�푘�푒�푛�푠�푟�푒�푠�푢�푙�푡 |

|�푡�표�푘�푒�푛�푠�푞�푢�푒�푟+ ∪ �푡�표�푘�푒�푛�푠�푟�푒�푠�푢�푙�푡 |

�푑�푡�표�푘�푒�푛 will range from [0.0, 1.0]. Larger values of �푑�푡�표�푘�푒�푛 indicate
higher similarity between the query and result.

For the functions in Figure 1, the generated tokens using this
approach are shown in Figure 2 and the token similarity distance for
each pair of functions is shown in Table 1 (�푑�푡�표�푘�푒�푛). If the Java func-
tion 1(a) is the query, the best Python result would be 1(d) (�푑�푡�표�푘�푒�푛
= 0.067). The common token max extracted from these functions
help in identifying this similarity. Note that none of the functions
in Figure 1 have code comments, while in our implementation the
comments are analyzed.

In many cases the token-based analysis cannot yield ideal results.
It relies on self-describing snippets; the choice of variable names,
function names, libraries used, and comments all impact the results.

1Complete lists of the removed tokens are available [2].
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Table 1: Similarity measures for Java(�퐽 ) and Python(�푃) func-
tions from Figure 1. High similarity implies high values (↑)
of �푑�푡�표�푘�푒�푛 , low values (↓) of �푑�퐴�푆�푇 , and high values (↑) of �푑�퐼�푂 .

Snip 1 Snip 2 �풅�풕�풐�풌�풆�풏 (↑) �풅�푨�푺�푻 (↓) �풅�푰�푶 (↑)

(s1, s2) (s2, s1)

�퐽 - 1(a) �푃 - 1(b) 0.0 1 0.0 0.0
�퐽 - 1(a) �퐽 - 1(c) 0.333 16 1.0 1.0
�퐽 - 1(a) �푃 - 1(d) 0.067 7 1.0 1.0
�푃 - 1(b) �퐽 - 1(c) 0.0 17 0.5 0.3
�푃 - 1(b) �푃 - 1(d) 0.0 8 0.5 0.5
�퐽 - 1(c) �푃 - 1(d) 0.059 21 1.0 1.0

Not all code snippets adhere to intuitive naming conventions. For
example, in 1(c), the programmer chose very generic names. Still,
we show in § 6.1 that our approach for tokenization yields more
precise results compared to full text search.

3.2 AST-Based Search
A tree-based representation for comparison across languages is
challenging since there is no generic AST representation that en-
compasses syntactic features of different languages. Traditional
AST parsers like ANTLR [61], JavaParser [83], python-ast [65] mod-
ules use different grammars to denote similar features. For example,
a function node in JavaParser is represented as MethodDeclaration
while the python-ast parser represents the node as FunctionDef. As
a result, to compare ASTs of different languages requires a mapping
scheme between each pair of programming languages.

For better scalability to additional programming languages, we
built a parser for a generic AST. By mapping the ASTs for Java
and for Python onto the generic AST, we can compare across these
languages (see § 7.3.2 for a discussion on scalability). The generic
AST is based on our intuition and chosen languages, and there may
be more effective or efficient representations. It contains a superset
of the language features, as follows:

• Common control structures: Control structures are sim-
plified and clustered. For example, the loop node is used for
the Java constructs: for, forEach, while and do-while; and
Python constructs: for, while, and list-comprehension.

• Normalizing Variable: Variables are denoted as var nodes.
• Normalizing Literals: Literals are denoted as lit nodes.
• NormalizingOperators: Operators are denoted as op nodes.
• Language specific features: If a feature is implemented in
only one language, a custom node is created. For example,
switch is specific to Java and not supported in Python. As a
result, a custom node switch is created for this statement.

Similarity between ASTs is computed using the Zhang-Sasha
algorithm [90] (�푑�퐴�푆�푇 ). The algorithm computes the minimum num-
ber of edits required to transform an ordered labeled tree to another
ordered labeled tree in quadratic time. �푑�퐴�푆�푇 will range from [0,∞).
Lower values of �푑�퐴�푆�푇 are associated with higher similarity.

For the functions in Figure 1, the generated ASTs are shown
in Figure 2 and the AST edit distance for each pair of functions
is shown in Table 1 (�푑�퐴�푆�푇 ). Based on �푑�퐴�푆�푇 , a query with Python

function 1(d) yields 1(a) as the best Java result (�푑�퐴�푆�푇 = 7). No-
tably, the syntactic constructs of the two functions are also dif-
ferent. The Python search query 1(d) uses a list-comprehension

which is a Python feature and the Java search result 1(a) uses a
for loop. Identifying the matching search result is possible, since
list-comprehension and the for loop are denoted as loop nodes in
the grammar for the generic AST.

There are cases where a generic AST-based approach is non-
ideal. For example, if the Java function 1(a) is queried using �푑�퐴�푆�푇 ,
the best Python result would be 1(b). This is because both functions
use traditional for loops and updates the return array sequentially,
and yet, the search result is behaviorally different from the query.
Such scenarios can be handled using dynamic similarity.

3.3 Input-Output Based Search
Dynamic search in COSAL, is performed by clustering code based
on the their IO relationship. To determine the IO relationship be-
tween two pieces of code, we use SLACC [51], a publicly-available
IO-based cross-language code clone detection tool. SLACC seg-
ments code into executable snippets of size greater than MIN_STMTS

and executed on ARGS_MAX arguments generated using a grey-box
strategy. The executed functions are then clustered using a similar-
ity measure (�푠�푖�푚) based on the inputs and outputs of the functions.
Consider a query �푞 and a potential search result �푠 . Let �푄 and �푆 be
sets of segments identified by SLACC from �푞 and �푠 respectively. We
define the IO similarity as:

�푑�퐼�푂 (�푞, �푠) =
1

|�푄 |

∑

�푞�푖 ∈�푄

�푚�푎�푥�푖�푚�푖�푧�푒
�푠�푘 ∈�푆

�푠�푖�푚(�푞�푖 , �푠�푘 )

The value �푑�퐼�푂 range from [0.0, 1.0]. Higher similarity corresponds
to higher values of �푑�퐼�푂 .

The IO similarity between any �푞 and �푠 is not commutative.
This is because it is often preferred for a search result to con-
tain extra behavior as compared to the query [76]. Also, there
may be a many-to-one mapping where multiple query segments
match with a single segment in the result. Consider an example: let
�푄 = {�푞1,�푞2,�푞3,�푞4,�푞5} be set of five segments and �푆 = {�푠1, �푠2, �푠3}
be set of three segments identified by SLACC. Segments �푞1, �푞2 and
�푞3 find segments �푠1, �푠2 and �푠1 to be the most similar, respectively,
with similarity scores (�푠�푖�푚) of �푠�푖�푚(�푞1, �푠1) = 0.8, �푠�푖�푚(�푞2, �푠2) = 0.95
and �푠�푖�푚(�푞3, �푠1) = 0.7. Notice how �푠1 is identified as the closest
match for both �푞1 and �푞3. Segments �푞4 and �푞5 did not find seg-
ments in �푆 with similarity greater than 0.0. In this case, �푑�퐼�푂 (�푞, �푠) =
0.8+0.95+0.7+0.0+0.0

5 = 0.49.
As a practical example, say a developer is looking for a Java API

for QuickSelect2, which finds the �푘�푡ℎ smallest number from an array
of integers. It has a method that identifies a random pivot in the
array and a method that swaps values. However, these methods do
not call each other. Thus, to characterize the behavior of this file,
we characterize and aggregate the behavior of segments of the file.
Then, when comparing to a custom Python QuickSort3 API that
has a function to recursively find a random pivot and perform a
swap operation, a match is identified even though the number of
methods and how they accomplish the same task are different.

2from org.apache.datasketches
3stackabuse.com/quicksort-in-python
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The dynamic similarity between all the functions in Figure 1 is
shown in Table 1. We noticed in § 3.2 that 1(a) and 1(b) were very
similar based on �푑�퐴�푆�푇 , but functionally different. Using behavioral
analysis, we see that they are indeed functionally different as �푑�퐼�푂 =

0.5 for both measures of �푑�퐼�푂 . In contrast, 1(a) and 1(c) are similar
based on behavior (�푑�퐼�푂 = 1.0), even though structural similarity
(�푑�퐴�푆�푇 ) is low.

3.4 Non-dominated Ranking
We use Non-dominated Sorting, which is a component of NSGA-
II [19], and orders results with multiple objectives without aggre-
gation. COSAL uses this algorithm to rank search results based on
�푑�푡�표�푘�푒�푛 , �푑�퐴�푆�푇 , and �푑�퐼�푂 . We note that the similarity measures consid-
ered in this work are weakly correlated, as described in § 7.2, making
this an appropriate algorithmic choice. We use the algorithm in a
novel context; this is the first work that uses non-dominated sorting
for code-to-code search.

In our context, each similarity measure is an objective. COSAL
incorporates non-dominated ranking as follows:

(1) Individual Search: For a query, top TOP_N search results
are fetched using each similarity measure (�푑�푡�표�푘�푒�푛 , �푑�퐴�푆�푇 and
�푑�퐼�푂 ) independently.

(2) Merge: The individual search results are merged such that
duplicate instances of search results are removed.

(3) Sort: The merged results are sorted by NSGA-II [19] by mea-
suring the dominance of one result over the other.

A search result �푠 is said to dominate a search result �푡 , if �푠 is no
worse than �푡 in any objective and is better than �푡 in at least one
objective. Otherwise, there is a tie. In case of a tie, we select the
result that has the dominant objective closest to the optimal value.
For example, consider the following scenarios of the relationship
between �푠 and �푡 and three hypothetical similarity measures, �푑�퐴 , �푑�퐵 ,
and �푑�퐶 , where higher values mean higher similarity:

scenario �풅�푨 �풅�푩 �풅�푪 winner

1 s > �푡 s > �푡 s > �푡 �푠
2 �푠 = �푡 �푠 = �푡 s > �푡 �푠
3 �푠 = �푡 �푠 < t s > �푡 tie
4 �푠 < t �푠 < t s > �푡 tie

For scenario 1, �푠 is better than �푡 on all measures, making �푠 thewinner.
In scenario 2, since �푠 is better than �푡 on one measure, and is never
worse than �푡 , �푠 is the winner. In the third scenario, �푠 is better than
�푡 on one measure (�푑�퐶 ), and worse on another (�푑�퐵 ). Therefore, there
is a tie. Similarly on scenario 4, �푠 is worse than �푡 on two measures
and better on one, so it is also a tie. Ties are broken by looking at
the search results that are better for each similarity measure and
then comparing to optimal values (typically 1 or 0, depending on
whether high or low values represent better similarity).

Using the examples from § 2, consider the Python functions 1(d)
and 1(b) in Figure 1 as queries. The potential cross-language results
are 1(a) and 1(c). We show the relationships between the potential
results using three similarity measures; see Table 1 for specific
values. The winner for each comparison is bolded for clarity.

query �풅�풕�풐�풌�풆�풏�풔 (↑) �풅�푨�푺�푻 (↓) �풅�푰�푶 (↑) winner

1(d) 1(a) > 1(c) 1(a) < 1(c) 1(a) = 1(c) 1(a)
1(b) 1(a) = 1(c) 1(a) < 1(c) 1(a) < 1(c) tie

When the query is 1(d), 1(a) is better than 1(c) on two of the
measures, and equal on the third, thus making 1(a) the winner.
When the query is 1(b), 1(a) is the winner for �푑�퐴�푆�푇 and 1(c) is the
winner for �푑�퐼�푂 , meaning we need to break the tie.

To break ties, we compute distances between each search result
and the optimal value for each similarity measure (omitting similar-
ity measures on which the results are tied). The optimal value for
�푑�퐴�푆�푇 is 0, as that represents isomorphic ASTs. The optimal value for
�푑�퐼�푂 is 1, as that represents a perfect match in code behavior (i.e., the
search result and query return the same output for all the provided
inputs). The optimal value for �푑�푡�표�푘�푒�푛 is also 1, as this represents
highly similar syntax. We use a normalized distance because the
similarity measures have different ranges of values. Thus, normal-
izing ensures a uniform comparison scale between the different
similarity measures and subsequently avoid the precedence of one
similarity measure over other similarity measures. The normalized
distance of a similarity measure (�푋 ) on a snippet �푠 is computed

as �푑�푋 (�푠)−�푚�푖�푛 (�푑�푋 )
�푚�푎�푥 (�푑�푋 )−�푚�푖�푛 (�푑�푋 )

. For �푑�푡�표�푘�푒�푛 and �푑�퐼�푂 , the�푚�푎�푥 and�푚�푖�푛 values

are 0.0 and 1.0 respectively. In the case of �푑�퐴�푆�푇 , the�푚�푖�푛 value is 0
and the max value is set to the largest value of �푑�퐴�푆�푇 from all the
individual search results. This is because �푑�퐴�푆�푇 , can theoretically be
infinitely large so we use the largest observed value. For example,
�푚�푎�푥 (�푑�퐴�푆�푇 ) for the query 1(d) is 21 from Table 1.

Continuing with the example, the normalized distance for 1(a) to
the optimal �푑�퐴�푆�푇 is 0.048. We do not need to consider the distance
for 1(c) since 1(a) was thewinner for�푑�퐴�푆�푇 . The normalized distance
between �푑�퐼�푂 of 1(c) is 0.5. Since the normalized �푑�퐴�푆�푇 of 1(a) is
closer to the optimal value compared to the normalized �푑�퐼�푂 of 1(c),
COSAL ranks 1(a) as the winner for the query 1(b).

We note that similarity measures characterizing other code re-
lationships, such as software metrics [9, 62], could be added with
relative ease. Non-domination ranking preserves each objective’s in-
dependence and there are no weights that require tuning; see § 7.3.3.

4 RESEARCH QUESTIONS
There does not exist a cross-language code-to-code search tool to
compare against directly (see § 8). Thus, our evaluation assesses
each part of COSAL: the ranking algorithm, within-language code-
to-code search compared to state-of-the-practice and state-of-the-
art tools, and cross-language clone detection. The first research
question (RQ) examines the similarity measures and ranking:

RQ 1
Does non-dominated ranking using tokens, AST and IO yield
better results for cross-language code-to-code search as com-
pared to any subset or aggregation of those search similarity
measures?

After validating the choice of using multiple code similarity
measures and non-domination ranking, COSAL is compared to the
state-of-the-practice search in GitHub Search and ElasticSearch
which are based on full text search. We ask:

RQ 2
How effective is COSAL in cross-language code-to-code search
compared to state-of-the-practice public code search tools?
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Table 2: Summary of RQs with the application (code-to-code search, clone detection), baselines, benchmarks (AtCoder or Big-
CloneBench) and the language(s). COSAL<�푠�푖�푛�푔�푙�푒 > represents COSAL using a single similarity measure.

RQ Purpose Application Baselines Language(s) Benchmarks

1 Merit of using multiple similarity measures Code-to-Code Search COSAL <�푠�푖�푛�푔�푙�푒> Java↔ Python AtCoder
2 Vs state-of-the-practice cross-language tools Code-to-Code Search ElasticSearch, GitHub Java↔ Python AtCoder
3 Vs state of the art within-language tools Code-to-Code Search FaCoY Java AtCoder, BigCloneBench
4 Using COSAL to identify similar code Clone Detection CLCDSA, ASTLearner Java↔ Python AtCoder

FaCoY [40], the state-of-the-art in code-to-code search is within-
language, but COSAL is a multi-language tool. We limit our tool to
within-language code-to-code search and evaluate it against FaCoY.

RQ 3
How effective is COSAL in within-language code-to-code
search as compared to the state-of-the-art?

Code-to-code search is often used in clone detection [66, 68]. Us-
ing COSAL for clone detection, we compare against ASTLearner [63],
CLCDSA [56], and SLACC [51]:

RQ 4
Can COSAL effectively detect cross-language code clones?

5 STUDY
The setup for each RQ is different. In all evaluations we make a
best effort to be fair in the comparison. The RQs are summarized in
Table 2, which lists the application (either code-to-code search or
clone detection), baseline approaches, language(s), and benchmarks.

5.1 Data
The data used in this study are available online [2].

5.1.1 AtCoder (AtC). We require a labeled set of similar code snip-
pets in multiple programming languages for queries and search
results. Hence, like prior studies [56, 63], we use AtCoder [5] to cre-
ate a dataset of similar code snippets across different programming
languages. Competitive programming contests like AtCoder [5]
have open problems where users can submit their solutions in most
common programming languages. Solutions which are syntactically
incorrect or do not pass the extensive test suite are filtered out by
AtCoder. All the accepted solutions for a single problem implement
the same functionality and are behavioral code clones. If a search
query and a result belong to the same problem, we consider the
result to be valid and the query-result pair as valid code clones;
the problem solutions are the ground truth in our experiments. We
limit our study to the most recent 398 problems which had solutions
in Java or Python. For these problems, we crawled 43,146 files from
all the accepted Java and Python solutions. Table 3 lists an overview
of the dataset used for the study; 307 of the 398 problems have both
a Java and Python solutions.

5.1.2 BigCloneBench (BCB). BigCloneBench [79] is one of the
largest publicly available code clone benchmarks for Java with over
55,000 source code files harnessed from approximately 25,000 open-
source repositories. Table 3 lists a summary of BigCloneBench. We
consider query-result snippets belonging to the same functionality
as a valid search result. Fragments of code with less than 6 lines or

50 tokens are not considered which is a standard minimum clone
size for benchmarking [12, 40, 79].

5.2 Baselines
We compare COSAL to each of the other tools by searching over
the same data sets. For RQ3 and RQ4, we used the source code in
the GitHub repositories of the tools for experimentation.

5.2.1 RQ2 – Text Search. Google search is commonly used by de-
velopers for code search [75]. Textual queries can take the form of
keywords, expected code, or exceptions raised. In our study, Google
failed to index our code repository after a six week wait. As a result,
we turned to a custom full text search using ElasticSearch [29]
which takes in a code snippet, tokenizes the code and identifies
results based on Lucene’s Practical Scoring Engine [6]. For this
study, each Java and Python file is added to an ElasticSearch index
and searched using the ElasticSearch programmatic search API.

5.2.2 RQ2 – GitHub Search. GitHub search engine is an IR-based
search model over code repositories, including issues, pull request,
documentation, and code data [81]. Using the built-in code search
on GitHub, code can be searched globally across all of GitHub, or
searched within a particular repository or organization. We add the
Java and Python files from the dataset to a single GitHub repository
and search within the repository using the GitHub Search API [80].

5.2.3 RQ3 – FaCoY. FaCoY [40] is a Java-based code-to-code search
tool that uses a query alternation approach using relevant keywords
from StackOverflow Q&A posts. FaCoY can be modified to change
its search database from Q&A posts to custom datasets. In our ex-
periments, we redirected the search to the repositories of code from
the AtCoder and BigCloneBench datasets. Similar to the experi-
ments in the FaCoY evaluation when comparing against research
tools, FaCoY does not use StackOverflow in our baseline.

5.2.4 RQ4 – ASTLearner. Perez and Chiba developed a semi-
supervised cross-language syntactic clone detection method that
we call ASTLearner [63]. It uses a skip-gram model and an LSTM
based encoder. The encodings train a feed forward neural network
classifier using negative sampling to identify clones. ASTLearner
considered code as clones if the classifier score is greater than 0.5.

5.2.5 RQ4 – CLCDSA. Cross Language Code Clone Detection [56]
(CLCDSA), uses syntactic features and API documentation to detect
cross-language clones in Java, Python and C#. Nine features are
extracted from the AST; API call similarity is learned using API
documentation and aWord2Vec [54] model. The vectorized features
train a reconfigured Siamese architecture [8] using a large amount
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Table 3: Summaries of AtCoder and BigCloneBench datasets

AtCoder (AtC) BigCloneBench (BCB)
Metric Java Python Metric Java

#Problems 364 333 #Features 43
#Files 20,828 22,318 #Files 55,499
Avg. Files/Problem 57 67 Avg. Files/Feature 1291
#Methods 81,896 10,020 #Methods 765,331
Avg. Lines/File 51 14 Avg. Lines/File 278

of labeled data. CLCDSA uses cosine similarity to detect clones; the
best F1 scores were when the similarity threshold was 0.5.

5.2.6 RQ4 – SLACC. Simion-based Language-Agnostic Code
Clones [51] (SLACC), uses IO behavior to identify clones. It is
also used in COSAL for dynamic similarity. Here, we use SLACC
as a baseline in its original context, clone detection. We use the
same values for the hyper-parameters set by the authors of SLACC:
MIN_STMTS is set to 1; ARGS_MAX is set to 256; SIM_T is set to 1.0.

5.3 Metrics
5.3.1 Code Search. For code search applications (RQ1, RQ2, RQ3),
we use Precision@k, SuccessRate@k, and MRR.

Precision@k or P@k is the average percentage of relevant results
in the top-k search results for a query [31, 40]. SuccessRate@k or
SR@k is the percentage of queries for which one or more relevant
result exists among the top-k search results [31, 49]. MRR is the
Mean Reciprocal Rank of the relevant results for a query [31, 40, 49].

Consider a query �푞 in a set of queries �푄 . �푅�푘�푞 is set of all relevant
results in the top k results for�푞.�퐵�푅(�푞) is the rank of the first relevant
search result for �푞. �훿�푘 is an indicator function which returns 1 if the
input is less than or equal to �푘 and 0 otherwise. Mathematically,

�푃@�푘 =

∑
�푞∈�푄

|�푅�푘
�푞 |

�푘

|�푄 |
�푆�푅@�푘 =

∑
�푞∈�푄

�훿�푘 (�퐵�푅 (�푞))

|�푄 |
�푀�푅�푅 =

∑
�푞∈�푄

1
�퐵�푅 (�푞)

|�푄 |

Precision@k, SuccessRate@k and MRR range [0.0, 1.0]. For better
readability, in the rest of study, we report these metrics as per-
centages ranging between [0, 100]. For �푘 = 1, Precision@k and
SuccessRate@k are the same. For higher values of �푘 , SuccessRate@k
indicates whether there is something relevant in the results, Preci-
sion@k measures how relevant the �푘 results are on average. We set
�푘 = {1, 3, 5, 10}. Higher values of MRR imply relevant results are
ranked higher in the results.

5.3.2 Clone Detection. For clone detection [56, 63] (RQ4), we use
Precision, Recall and F1 score. Precision (P) is the ratio of valid
clones to the number of retrieved clones. Recall (R) is the ratio of
the number of accurately detected clones to the number of total
actual clones. F1 or F-Measure, is the harmonic mean of precision
and recall. We define |�퐶+| as the number of valid clones identified,
|�퐶− | as the number of valid clones not identified, and |�푁�퐶+| as the
number of invalid clones identified:

�푃 =

|�퐶+|

|�퐶+| + |�푁�퐶+|
�푅 =

|�퐶+|

|�퐶+| + |�퐶− |
�퐹1 =

2 ∗ �푃 ∗ �푅

�푃 + �푅

Precision, Recall and F1 range from [0.0, 1.0]. Like the code search
metrics, we report Precision, Recall and F1 as percentages between

[0, 100] for better readability. Higher values of precision mean the
detected clones contain fewer false positives and higher values of
recall mean more clones were identified with fewer false negatives.

5.4 Experimental Setup
Our experiments were run on a Ubuntu 18.04 LTS Virtual Machine
with 32 CPUs and 64GB memory using a Dell PowerEdge R640
server with Intel Xeon Silver 4210 CPU @ 2.2 GHz and VMware
ESXi 6.7.0 hypervisior. The experiments have four hyper-parameters:

5.4.1 Minimum Token Size. (MIN_TOK_SIZE in § 3.1) This is set to
three. IR based techniques [33, 86] on source code find that tokens
less than three characters are irrelevant.

5.4.2 Minimum Segment Size. (MIN_STMTS in § 3.3) A small value
of MIN_STMTS results in more granular snippets. We set it to 1 for
maximum number of behavioral snippets of code.

5.4.3 Maximum Number of Arguments. (ARGS_MAX in § 3.3) Prior
work finds ARGS_MAX=256 was sufficient for cross-language clones
in Google Code Jam [27] , so we use the same.

5.4.4 Number of Individual Search Results. (TOP_N in § 3.4) This is
set to 100. We experimented on COSAL with 10% of the AtCoder
dataset varying TOP_N in {10, 20, 50, 100, 200, 500}. For TOP_N greater
than 100, we see aminimal change in the code searchmetrics. Hence,
for each individual search, we fetch the top 100 search results.

6 RESULTS
We present the results of each RQ in turn.

6.1 RQ1: Single vs Multiple Search Similarity
Measures

In a cross-language search context, we compare the results of
COSAL with multiple search similarity measures to COSAL with
subsets of the similarity (e.g., COSAL�퐴�푆�푇 is COSAL with only the
AST similarity). The validation of this study was performed using
‘leave-one-out’ cross-validation [72] where each code fragment is
used as a query against all other fragments in the repository. We
use this approach over the traditional k-fold cross validation since
‘leave-one-out’ is approximately unbiased and more thorough [50].

Each of the 43,146 code fragments is used as a query. The results
are detailed in Table 4. Overall, COSAL outperforms the other
formulations that use subsets of the similarity measures. It also
outperforms an alternate ranking approach based on weighted
measures (KDTree [13]).

We observe that token-based search (COSAL�푡�표�푘�푒�푛�푠 ) and AST-
based search (COSAL�퐴�푆�푇 ) are less precise individually compared
to dynamic search (COSAL�푆�퐿�퐴�퐶�퐶 ), but have higher success rate for
�푘 = {5, 10}. When both the static similarity measures are used as
parts of a bi-similarity search (COSAL�푠�푡�푎�푡�푖�푐 ), we see better metrics
compared to each similarity individually, and better metrics than
the dynamic approach COSAL�푆�퐿�퐴�퐶�퐶 in P@k and SR@k when �푘 > 1.

The power of the technique comes from using static and dynamic
information without converting them into a single search metric.
Rather than non-dominated ranking, an alternate avenue would be
a weighted approach. For example, KD�퐼�푂+�퐴�푆�푇+�푡�표�푘�푒�푛 uses �푑�푡�표�푘�푒�푛 ,
�푑�퐴�푆�푇 and �푑�퐼�푂 to build a KDTree [13], a common approach used
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Table 4: RQ1 & RQ2: Cross-language code search re-
sults on AtCoder dataset comparing COSAL against the
state-of-the-practice (SotP) GitHub, and ElasticSearch.
COSAL�푡�표�푘�푒�푛 , COSAL�퐴�푆�푇 , COSAL�푆�퐿�퐴�퐶�퐶 use single search
similarities (Single Sim.) �푑�푡�표�푘�푒�푛 , �푑�퐴�푆�푇 and �푑�퐼�푂 respectively.
COSAL�푠�푡�푎�푡�푖�푐 uses �푑�푡�표�푘�푒�푛 and �푑�퐴�푆�푇 with non-domination.
KD�퐼�푂+�퐴�푆�푇+�푡�표�푘�푒�푛performs code search with KDTree using
�푑�푡�표�푘�푒�푛 , �푑�퐴�푆�푇 and �푑�퐼�푂 . Code search techniques using multiple
similarity measures are represented with Multi Sim.

Search MRR P@1/3/5/10 SR@1/3/5/10

SotP
ElasticSearch 29 27/25/23/24 27/44/57/75
GitHub 37 32/36/38/39 32/49/60/73

Single

Sim.

COSAL�푡�표�푘�푒�푛 31 27/31/40/42 27/48/58/72
COSAL�퐴�푆�푇 34 34/41/45/44 34/41/58/82
COSAL�푆�퐿�퐴�퐶�퐶 45 42/42/35/27 42/45/47/47

Multi

Sim.

COSAL�푠�푡�푎�푡�푖�푐 43 40/45/44/48 40/72/85/86
KD�퐼�푂+�퐴�푆�푇+�푡�표�푘�푒�푛 39 39/41/40/37 39/56/71/89
COSAL 64 58/64/65/61 58/88/91/94

for information retrieval [21, 30]. Although KD�퐼�푂+�퐴�푆�푇+�푡�표�푘�푒�푛 and
COSAL use the same similaritymeasures for code search, the former
under-performs on all metrics compared to the latter. This suggests
that aggregation of similarity measures into a single measure does
not help code search as these measures complement each other.

Using non-dominated ranking with static and dynamic similarity
measures improves the quality of results for code-to-code search
compared to subsets or a weighted aggregation of measures.

6.2 RQ2: State-of-the-Practice Cross-Language
Code-to-Code Search

We compare COSAL against GitHub Search ( § 5.2.2) and a custom
full text search based on ElasticSearch ( § 5.2.1). We use ‘leave-one-
out’ cross-validation with each of the 43,146 code fragments as a
query. Results are shown in Table 4.

We observe that between the textual code search tools, GitHub
Search has better MRR, Precision@k and SuccessRate@k compared
to ElasticSearch except for SuccessRate@10. Yet, GitHub Search and
ElasticSearch are worse off compared to COSAL in all metrics.

COSAL obtains better Precision@k, SuccessRate@k andMRR com-
pared to GitHub Search and ElasticSearch.

6.3 RQ3: State-of-the-Art Code-to-Code Search
FaCoY [40] is a state-of-the-art code-to-code search tool for Java.
Hence, we compare COSAL against FaCoY using Java code snippets
only. This reduces the AtCoder dataset to 351 problems with 20,673
Java files. To ensure that the dataset is not skewed due to outlier
projects with limited submissions, we use Java projects with 10
or more submissions. Like RQ1 and RQ2, we use ‘leave-one-out’
cross-validation with each of the 20,673 code fragments as a query
and the remaining problems as the search index.

Table 5: RQ3: Single-language Java code search comparing
COSAL to the state-of-the-art (SotA) FaCoY on AtCoder and
BigCloneBench.

Search MRR P@1/3/5/10 SR@1/3/5/10

A
tC

o
d
er

SotA FaCoY 51 37/35/33/32 37/40/49/63

Single

Sim.

COSAL�푡�표�푘�푒�푛�푠 46 36/32/31/29 36/40/45/58
COSAL�퐴�푆�푇 40 38/33/31/28 38/42/51/69
COSAL�푆�퐿�퐴�퐶�퐶 40 39/39/38/32 39/48/52/59

Multi

Sim.

COSAL�푠�푡�푎�푡�푖�푐 53 43/45/44/41 43/58/65/77
COSAL 57 50/53/54/48 50/63/75/88

B
ig
C
lo
n
eB

en
ch SotA FaCoY 76 70/68/68/65 70/72/74/81

Single

Sim.

COSAL�푡�표�푘�푒�푛�푠 75 69/65/61/59 69/72/74/81
COSAL�퐴�푆�푇 72 68/61/55/51 68/74/76/83
COSAL�푆�퐿�퐴�퐶�퐶 07 06/02/01/01 06/07/07/09

Multi

Sim.

COSAL�푠�푡�푎�푡�푖�푐 81 76/73/72/67 76/81/89/94
COSAL 81 77/73/72/68 77/81/89/94

The results for MRR, Precision@k and SuccessRate@k are tabu-
lated in Table 5. COSAL has better scores on all metrics compared to
FaCoY. Even if COSAL is used with only static similarity measures
(COSAL�푠�푡�푎�푡�푖�푐 ), it consistently performs better than FaCoY.

Since, FaCoY supports only Java, we also compare FaCoY to
COSAL using BigCloneBench. This experiment moves us toward
evaluating the feasibility of COSAL with open-source projects. We
again use ‘leave-one-out‘ cross-validation where each file from
BigCloneBench is used as a query and the other files are used as
search results. A search result is considered valid if it has the same
functionality group as the search query.

Compared to AtCoder, the BigCloneBench dataset yields better
results for all techniques. This is because the 43 functionalities in
BigCloneBench have minimal overlap. This can be corroborated by
the better scores for token-based search compared to the AST-based
search on BigCloneBench dataset. In contrast, on AtCoder, AST-
based search out-performs token-based search. Like the AtCoder
dataset, search based on a combination of measures (COSAL�푠�푡�푎�푡�푖�푐 ,
COSAL) yield better results compared to FaCoY.

Only 4,984 (9%) of the files from BigCloneBench are executable
by SLACC; the remaining files depend on external libraries. Thus,
dynamic similarity (COSAL�푆�퐿�퐴�퐶�퐶 ) has much lower scores in Ta-
ble 5. Subsequently, the inclusion of dynamic similarity hardly
contributes to the results of COSAL as highlighted by their similar
values for COSAL�푠�푡�푎�푡�푖�푐 and COSAL. We dive deeper into the role
of dynamic similarity in § 7.1.

Compared to state-of-the-art Java code-to-code search FaCoY,
using dynamic information helps COSAL obtains better search
results when executable code snippets are present. In the absence
of dynamic information, a combination of AST and token-based
similarity measures still yields better results than FaCoY.

6.4 RQ4: Cross-Language Code Clone Detection
As there is no existing tool for cross-language code-to-code search,
we instead compare to cross-language code clone detection tech-
niques: ASTLearner, CLCDSA and SLACC. While code-to-code
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Table 6: RQ4: Cross-language performance of COSAL in
clone detection compared to ASTLearner, CLCDSA, and
SLACC on AtCoder.

Clone Detector Precision Recall F1

Single Sim.
ASTLearner 25 80 38
CLCDSA 49 83 62
SLACC 66 19 30

Multi Sim.
COSAL�푠�푡�푎�푡�푖�푐 48 85 61
COSAL 55 89 68

search can be part of clone detection, they are different. For a given
code snippet, code clone detection returns an identical code snip-
pet and code-to-code search returns a set of potentially relevant
snippets. Hence, to use COSAL as a clone detection tool, we select
the top-1 ranked search result returned by non-dominated ranking.

ASTLearner and CLCDSA build deep learning models and re-
quire a training, validation and testing set. Hence we randomly
divide our dataset into these three sets using the same approach
adopted in CLCDSA [56]. We only consider projects with at least
20 Java and 20 Python submissions, reducing the dataset to 302
different problems. For each problem, we select ten submissions
each from Java and Python as part of the training set, five for the
validation set and five for the test set. We used the default hyper-
parameters from ASTLearner and CLCDSA to build their models.
Since COSAL and SLACC do not use machine learning models, we
add all the submissions from the training set to the search data-
base and use the test set for evaluation. We do not include the
validation set in the search database to ensure a fair comparison to
ASTLearner and CLCDSA. To account for variance, we repeat this
step 10 times and report the mean precision, recall and F1 scores.

Results are shown in Table 6, separating the techniques that
use a single similarity measure (Single Sim.) from those that use
multiple similarity measures (Multi Sim.). SLACC is the most precise
technique on this dataset but has extremely low recall compared to
other techniques, and hence the lowest F1. The low recall on SLACC
is because it requires executable code snippets. COSAL has better
precision and recall compared to the static similarity approaches
ASTLearner and CLCDSA. If COSAL is used only with the static
similarity measures (COSAL�푠�푡�푎�푡�푖�푐 ), the precision and recall is still
better than ASTLearner and comparable to CLCDSA.

For code clone detection, COSAL obtains better precision, recall
and F1 scores compared to ASTLearner and CLCDSA, without
the need to build models. COSAL has lower precision to SLACC
but much better recall and F1 score.

7 DISCUSSION
We have evaluated COSAL extensively against prior work in code-
to-code search and clone detection. In all cases, it outperforms the
competition without the need to build, train, or update models. In
this section, we discuss the cost/benefit of dynamic analysis, the
potential for scalability, and threats to the validity.

Table 7: Performance based on 4,984 executable code snip-
pets from BigCloneBench.

Search MRR P@1/3/5/10 SR@1/3/5/10

SotP GitHub 68 64/58/54/46 64/68/72/75

SotA FaCoY 79 74/70/68/57 74/76/81/84

Single
Sim.

COSAL�푆�퐿�퐴�퐶�퐶 82 81/78/74/67 81/83/89/94

Multi

Sim.

COSAL�푠�푡�푎�푡�푖�푐 80 78/75/72/66 79/83/87/91
COSAL 83 81/79/74/68 81/86/91/96

Table 8: Pearson’s correlation (�푟 ) between �푑�푡�표�푘�푒�푛 , �푑�퐴�푆�푇 and
�푑�퐼�푂 for cross-language snippets on AtCoder (AtC) and
within-language Java snippets on AtCoder and on 4,984 ex-
ecutable BigCloneBench(BCB) datasets.

Dataset Language
Correlations (�푟 )

�푡�표�푘�푒�푛,�퐴�푆�푇 �푡�표�푘�푒�푛, �퐼�푂 �퐴�푆�푇 , �퐼�푂

AtC Java↔ Python -0.38 0.33 -0.41
AtC Java↔ Java -0.49 0.51 -0.68
BCB Java↔ Java -0.46 0.53 -0.71

7.1 On the Cost/Benefit of Dynamic Analysis
In § 6.3 and Table 5, we observe a low scores for code search using
IO-based similarity (COSAL�푆�퐿�퐴�퐶�퐶 ) compared to other techniques
due to the small sample of files in BigCloneBench (9%) with exe-
cutable code. To study the relative contribution of dynamic analysis
to COSAL results, we repeat the validation study on BigCloneBench
but restricted to the files that can be executed (4,984).

Results on the executable dataset are slightly better for all the
techniques compared to the complete BigCloneBench dataset (Ta-
ble 7). Although COSAL�푆�퐿�퐴�퐶�퐶 is slightly better than COSAL�푠�푡�푎�푡�푖�푐 ,
executing snippets takes more time and memory, making code
search slow and impractical if the runtime data are not cached.
Since the gains are not very high with the BigCloneBench dataset,
it might be sufficient to rely on static similarity in this case.

However, this cannot be generalized across datasets as Big-
CloneBench is built on Java code from open-source projects. For
cross-language search (Table 4), using dynamic and static similarity
measures vastly improves the results. This is due to the syntactic dif-
ferences between languages which can be overcome in many cases
with dynamic information [35]. Hence, the benefit of including
dynamic similarity must be balanced against the cost and context.

7.2 On Non-dominated Sorting
For cross-language code search, combining the similarity measures
using an aggregated weighted approach (KD�퐼�푂+�퐴�푆�푇+�푡�표�푘�푒�푛) results
in lower MRR, P@k and SR@k compared to the non-dominated
sorting approach (Table 4). As one potential explanation, this poorer
performance for the aggregation approach could be a result of bias
due to the independence or weak correlation between the three
similarity measures [17] . In this section, we explore the impact of
the correlations between the similarity measures.
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1 class HashMultiSet<E> ... {

2 ...

3 public int count(Object element) {

4 Count frequency = Maps.safeGet(backingMap, element);

5 return (frequency == null) ? 0 : frequency.get();

6 }

7 ...

8 }

(a) Method that returns count of a MultiSet from google-guava
1 class Counter(dict):

2 """

3 ... count ...

4 """

5 ...

6 def __getitem__(key):

7 return self.get(key, 0)

8 ...

(b) Function to get count of a key from a Counter from
collections library.

Figure 4: Open Source code; the query in (a) yields (b) based
on cross-language static and dynamic information

Table 8 shows the Pearson’s correlation (�푟 ) between the three sim-
ilarity measures for cross-language and within-language snippets
on 20 repeats of 1000 random pairs of snippets. Overall, for the cross-
language analysis, we observe lower correlations compared to the
within-language analyses. The cross-language correlations areweak
(0.20 ≤ |�푟 | ≤ 0.39) [55] to moderate (0.40 ≤ |�푟 | ≤ 0.59). The single-
language correlations are moderate to strong (0.60 ≤ |�푟 | ≤ 0.79).

Connecting this to our results, the weak to moderate correlations
in the cross-language context may have contributed to relatively
better performance of non-dominated sorting. Since non-dominated
sorting is effective for search objectives with low correlation [82,
92], it seems appropriate for cross-language code-to-code search.
Studies have also shown that non-dominated sorting works best for
fewer objectives [23, 91]. As COSAL is extended with more metrics
in the future, we will want to revisit this analysis.

However, as correlation impacts the performance of the ranking
algorithm, non-dominated sorting is not a panacea. When the simi-
larity measures are more strongly correlated, which our analysis
shows is true for single-language code search, a different approach
may be needed, such as aggregation or evolutionary algorithms.

7.3 Scalability Exploration
We explore three scalability concerns: indexing and searching open-
source code, adding new languages, and adding similarity measures.

7.3.1 Open-Source Repositories. We used the AtCoder and Big-
CloneBench datasets to benchmark our experiments, similar to
prior art in code search and clone detection [40, 71, 77, 78]. Yet,
neither dataset is particularly realistic. AtCoder is composed of
programming contest submissions and is not a true representation
of open-source code. BigCloneBench contains example code clones,
making clone detection and code search relatively easier. To some
extent, these datasets set us (and the baselines) up for success.

We want to explore how COSAL could work with an arbitrary
open-source project. To do this, we consider three popular open-
source libraries for Java and Python: Guava Java library by Google,
commons-collections Java library by Apache Software Foundation,
and collections Python 2.7 system library.

Consider the code snippets in Figure 4. For this example, COSAL
uses 4(a) as the query, which counts the number of occurrences

of an object in the MultiSet. Across languages, COSAL identifies a
similar code snippet from the collections library in Python: 4(b)
returns the count of an element from a Counter. A Counter is a
Python collection, like a bag, that takes elements and maintains
a count of their occurrences. For this pair, we can see that they
share few common tokens (count, get), do not have similar ASTs,
but are behaviorally similar. Hence, the token-based and IO-based
similarity in COSAL influence the ranking of search results and
returns 4(b) as a valid search result for the query 4(a).

In our experiments, we see low scores for COSAL�푆�퐿�퐴�퐶�퐶 since
only around 9% of the files in BigCloneBench had executable code.
In this open-source exploration, around 68% of the Java and all the
Python classes had executable code. The presence of dependent
code in the libraries compared to the isolated files in BigCloneBench
actually facilitated more widely applicable behavioral analysis.

Thus, we conclude that COSAL can be scaled to support open-
source projects in the current implementation. The token-based
and AST-based similarity measures for COSAL can be used on
any project or file(s) in its current version. Since the behavioral
similarity measure used by COSAL is heavily dependent on SLACC,
scaling to support new projects would require the projects have all
its dependencies satisfied and executable.

7.3.2 Support for New Languages. COSAL currently supports Java
and Python. While we have not demonstrated scalability to new
languages, we comment on the effort required.

For dynamic behavior, COSAL is dependent on SLACC [51], so
adding a new language to COSAL requires support in SLACC. How-
ever, COSAL�푠�푡�푎�푡�푖�푐 can be extended to new languages by adapting
the token and AST analyses. A language-specific tokenizer like
c-tokenizer [32] or a generic tokenizer like ANTLR [61] can be
used to parse code and convert it into tokens as detailed in § 3.1.
For the AST, COSAL uses a generic AST to represent source code
across different languages. Using a language-specific AST Parser
like clang for C [45] or roslyn for .NET [22], code could be parsed
and converted to the generic AST-based on the grammar available
in the GitHub code repository for COSAL [2]. If a feature specific
to a language is not supported by the grammar, a new node should
be created based on the feature’s syntactic structure.

7.3.3 Adding New Search Similarity Measures. COSAL uses three
search similarity measures for code-to-code search, which provides
a start for this line of research. New search similarity measures
can be added or existing similarity measures can be replaced in
COSAL. First, a similarity measure to compare code snippets has
to be defined. The similarity measure has to be a numerical value
to support non-dominated ranking of the search results. Next, an
index must be created characterizing the similarity measure. Lastly,
the similarity measure has to be updated in the configuration file.

7.4 Threats to Validity
Language Bias. COSAL was implemented for Java and Python

and may not generalize to other languages.
Baseline Bias. The ElasticSearch baseline for cross-language code-

to-code search (in RQ2) is not an exact representation of a code-to-
code search tool used by developers [70].
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Data Bias. The datasets are from a programming contest and a
code clone benchmark, which are not representative of industrial
or open-source coding practices. However, our initial investiga-
tion into open-source code ( § 7.3.1) revealed that COSAL can be
successful in that context, but more exploration is needed.

Similarity Bias. COSAL uses three similarity measures based on
syntactic and semantic features for code search based on the context,
structure and IO behavior. Other similarity measures [9, 62] are
not explored in this study. But, COSAL can be extended to support
these similarity measures as described in Section § 7.3.3.

8 RELATEDWORK
We present work in code similarity, search, and clone detection.

8.1 Code Similarity
Source code similarity is used to characterize the relationship be-
tween pieces of code in software engineering applications such as
program repair [28, 37, 57, 74, 75], code search [40, 49, 66], soft-
ware security [67, 84, 89] and identifying plagiarized code [7]. Code
similarity can be measured through static or dynamic analyses.

Techniques that use static code attributes to compute similar-
ity often parse code into an intermediate representation based on
text [7, 36, 47], AST [11, 34] or graph-based [26, 46] and compute
a measure for syntactic similarity. For cross-language syntactic
similarity, most techniques are text-based [43, 56, 58]. Tree- and
graph-based approaches have not been explored for cross-language
similarity due to language specific grammar. We tackle this chal-
lenge by creating a language-agnostic grammar by abstracting out
common features across languages to build a generic AST ( § 3.2)

Techniques that execute code to determine similarity are classi-
fied as dynamic. For some techniques, functions are adjudged to
be similar if they have similar inputs, outputs, and side-effects [24,
35, 51, 78]. Other techniques use abstract program states after exe-
cutions to analyze the behaviors of the code fragments [39, 64, 77].
Dynamic measures are particularly successful in detecting code
clones across languages since it does not rely on syntactic prop-
erties [35, 51]. Limitations to this approach include the need to
execute the code which dictates the granularity [20] and runtime.

8.2 Code Search
In code search, the goal is to find code that is similar to a given query.
Historically, developers have preferred general search engines such
as Google and Bing when searching for code to reuse [73, 75, 76].
Some code search tools [1, 44] use code snippets as the query, a prob-
lem called code-to-code search. Solutions to code-to-code search
vary in several dimensions, we list three: within [31, 40] vs. across
languages [49, 56, 63], static [1, 34, 36] vs. dynamic analysis [51, 68],
and index-based [40, 49, 81] vs. model based [31, 56, 63].

In cross-language code-to-code search, the query is a code snip-
pet in one source language and the results are from a different target
language(s). AROMA [49], supports cross-language code-to-code
search across Java, Hack, JavaScript, and Python using static analy-
sis based on the parse tree. Since AROMA is not publicly available,
it is not used as a baseline in this study. InferCode [16] is a self su-
pervised cross-language (Java, C, C++ and C#) code representation
approach using Tree-based Convolutional Neural Networks based

on syntax subtrees. Since this work was performed in parallel to
our study, we have not benchmarked COSAL against InferCode
and leave that for future work. FaCoY [40] is a within-language
code-to-code search tool on JAVA that uses query alteration to find
semantically similar code snippets using Q&A posts.

8.3 Clone Detection
Clone detection is a special case of code-to-code search; results are
identified as clones if they meet a specified similarity threshold.
Clones are often categorized into four types: types I-III are based
on syntax and type IV is based on behavior.

Most code clone detection tools [11, 26, 34–36, 46, 47, 78] have
been proposed for single language clone detection and on static
typed languages like Java [34, 42] and C [11, 34, 36, 88]. A small
number of tools support cross-language code clone detection [51,
56, 58, 63]. API2Vec [58] detects clones between two syntacti-
cally similar languages by embedding source code into a vectors
and subsequently comparing the similarity between the vectors.
CLCDSA [56] identifies nine features from the source code AST and
uses a deep neural network to learn the features and detect cross
language clones. Perez and Chiba [63] propose an LSTM-based
deep learning architecture using ASTs to detect clones in Java and
Python code. These three tools build machine learning models to
detect code clones. As a result, these techniques require a large
number of annotated training data to build the model and the hyper-
parameters need to be carefully optimized to avoid over-fitting.

SLACC [51] is a cross-language code clone detection tool that
uses IO profiles. It succeeds in detecting code clones with high
precision between programming languages with different typing
schemes. However, SLACC requires the code snippets to be exe-
cutable and as a result has low recall and a large runtime.

In a clone detection context, we use CLCDSA, the Perez and
Chiba approach, and SLACC as baselines for comparison (§ 6.4).

9 CONCLUSION
We present COSAL, a cross-language code-to-code search tool that
uses static and dynamic analyses. It uses two static similarity mea-
sures based on extracted tokens from source code and a tree edit dis-
tance based on a generic AST, and one dynamic similarity measure
to compute IO similarity. For a given code search query, these three
similarity measures find results using non-dominated sorting. Our
experimental evaluation on 98,645 Java and Python files from At-
Coder and BigCloneBench datasets show that COSAL outperforms
state-of-the-art code search tools FaCoY and industrial benchmark
of GitHub code search. We also compare COSAL to state-of-the-
art clone detection techniques using the AtCoder dataset and find
that COSAL has better Recall and F1. Cross-language code-to-code
search appears to have a bright future, but more work is needed to
evaluate it for more languages and in relevant applications.
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