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Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by
the production of autoantibodies predominantly to nuclear material. Many aspects of
disease pathology are mediated by the deposition of nucleic acid containing immune
complexes, which also induce the type 1interferon response, a characteristic feature of
SLE. Notably, SLE is remarkably heterogeneous, with a variety of organs involved in
different individuals, who also show variation in disease severity related to their ancestries.
Here, we probed one potential contribution to disease heterogeneity as well as a possible
source of immunoreactive nucleic acids by exploring the expression of human
endogenous retroviruses (HERVs). We investigated the expression of HERVs in SLE
and their potential relationship to SLE features and the expression of biochemical
pathways, including the interferon gene signature (IGS). Towards this goal, we analyzed
available and new RNA-Seq data from two independent whole blood studies using
Telescope. We identified 481 locus specific HERV encoding regions that are differentially
expressed between case and control individuals with only 14% overlap of differentially
expressed HERVs between these two datasets. We identified significant differences
between differentially expressed HERVs and non-differentially expressed HERVs
between the two datasets. We also characterized the host differentially expressed
genes and tested their association with the differentially expressed HERVs. We found
that differentially expressed HERVs were significantly more physically proximal to host
differentially expressed genes than non-differentially expressed HERVs. Finally, we
capitalized on locus specific resolution of HERV mapping to identify key molecular
pathways impacted by differential HERV expression in people with SLE.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a prototypic autoimmune
disease with the primary demographic affected being women of
childbearing ages (1). At least 70% of lupus cases are systemic (2).
SLE is characterized by dysregulation of both the innate and
adaptive immune systems, resulting in the production of
pathogenic autoantibodies and increased activity of the type I
interferon system. Whereas a number of genetic regions have
been identified as associated with risk for lupus (3, 4), host
genetics alone has failed to fully explain the disease, suggesting
an important role for environmental stimuli. Exogenous stimuli,
such as ultraviolet light and cigarette smoking have been
implicated in SLE pathogenesis. Recent work has suggested
that endogenous elements, including transposable elements (5)
and human endogenous retroviruses (HERVs) (6) may also play
a pathogenic role in SLE.

HERVsmake up between 5-8% of the human genome and are a
subset of transposable genomic elements (7). HERVs are
structurally similar to infectious retroviruses and contain gag, pol,
and env genes in their genomes. These genes code for core viral
proteins, reverse transcriptase, and envelope proteins, respectively.
Their integration site preferences on chromosomes can vary widely
as well (8). Generally speaking, most HERVs have accumulated
mutations in important genes over the course of evolutionary time
that have rendered themnon-functional.However, it is increasingly
clear from the analysis of RNA-Sequencing (RNA-Seq) data that
functional HERVs, defined by the presence of 5’ and 3’ Long
Terminal Repeat (LTR) regions with an open reading frame in
between, remain in the human genome and their expression may
have roles in a diversity of diseases (9, 10).

HERVs have been implicated in the pathology of a number of
autoimmune diseases including type 1 diabetes and rheumatoid
arthritis, by a number of proposed mechanisms (11). Active
HERVs can insert themselves at different locations in the genome
and if they insert into the regulatory sequence of a gene,
expression of that gene can be altered (11). In SLE, the genes
of most interest to researchers have been those of the immune/
inflammatory systems, in particular the interferon response
genes which are commonly upregulated in SLE (12). It has
been suggested that HERVs may contribute, at least in part, to
the characteristic production of anti-nuclear antibodies (ANAs)
in SLE patients (13) by impacting the activation of the type I
interferon pathway causing dysregulation of tolerance and the
generation of autoantibodies (5). Since interferon related genes
are expressed in response to viral infections, there has been
speculation that their upregulation could be related to HERV-
mediated dysregulation. This leads to the second proposed
mechanism for HERVs, namely molecular mimicry.

HERVs have the structure of exogenous retroviruses even
though the HERVs themselves are not infectious. However,
certain human anti-nuclear antibodies may cross react with
HERV-encoded proteins (5, 14). Earlier experiments on lupus-
prone mice reported immune-complexes with the gp70
endogenous retroviral envelope protein, a finding also observed
in human patients (15–17). These were among the first
indications that endogenous retroviruses could be involved in

SLE, with later studies on elevated levels of antiretroviral
antibodies adding to this evidence (18). Mouse models have
also shown that the lupus susceptibility locus Sgp3 codes for a
Kruppel-associated box zinc finger protein (KRAB-ZFP) which
represses the expression of HERVs (19). Certain HERVs such as
HRES-1 are capable of protein expression and have been studied
in the context of cross reactivity with antibodies to the HTLV-1
virus (20). HRES-1 was also found to be inducible with IFN-g
and proposed to be involved in lupus susceptibility as well as the
perpetuation of the interferon response in SLE (21, 22). Studies
on DNA methylation have posited that defects in methylation
are a mechanism by which HERV expression is upregulated in
SLE (23, 24).

Despite this evidence of a potential pathogenic role, the
expression of HERV-encoded mRNAs has not been examined
in detail in SLE using next-generation sequencing technologies,
such as RNA-Seq, because effective analytical tools have not
existed until very recently to assess such data (25). Using our
computational pipeline Telescope (26), we characterized locus-
specific HERV expression in SLE whole blood data and identified
differentially expressed HERVs between case and control groups
from two independent datasets. We also characterized the
expression of annotated coding and non-coding RNAs. Finally,
we employed a novel deep learning approach to integrate these
different omics data types to identify biological pathways where
locus specific HERV differential expression and host gene
differential expression were significantly associated.

MATERIALS AND METHODS

RNA-Seq Datasets
We analyzed two independent datasets to identify differentially
expressed HERVs and differentially expressed host genes
associated with SLE. Both datasets were generated from the
analysis of whole blood RNA-Seq, one new to this study and
one publicly available (GSE72420).

The first dataset includes RNA-Seq data from whole blood
samples taken from 48 individuals, including 23 healthy female
controls and 25 individuals (22 females and 3 males) at varying
stages of SLE (Whole Blood 1 - WB 1). Data were collected
through the Temple University Lupus Program with an
approved IRB protocol #23022. The majority of the SLE
samples were from patients whose SLE was not currently active
(SLE Disease Activity Index, SLEDAI < 7). The samples were
sequenced using the Illumina HiSeq2000 platform using low-
input RNA-Seq with paired-end 100 base pair (bp) reads.

The second dataset (GSE72420) included whole blood data
from 117 patients, including 99 SLE patients (93 females and 6
males) and another 18 female control individuals (27) (Whole
Blood 2 - WB 2). This study provided limited clinical data
beyond gender, including ethnicity, and high or low ISM
(Interferon Score Metric). Sequence data were collected using
the Illumina HiSeq platform with single-end 50 bp reads.

This study was conducted in accordance with the ethical
principles that have their origin in the Declaration of Helsinki.
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RNA-Seq HERV Identification and
Expression
Telescope was used to identify HERVs and quantify their
expression from the RNA-Seq data (26). Telescope uses a
Bayesian mixture model and expectation-maximization
algorithm (28) to reassign ambiguously mapped RNA-Seq
fragments to the most likely originating locus, enabling accurate
locus-specific HERV quantification. Our software pipeline uses
Flexbar (29) to trim reads then Bowtie2 (30) to align them to the
Hg38 reference genome using the very-sensitive-local setting and
allowing for a maximum of 100 alignments per reads (–very-
sensitive-local -k 100 –score-min L,0,1.6). Telescope then takes the
bam files generated by the alignment to use Bayesian reassignment
and up to 200 iterations of an expectation-maximization
algorithm which has been modified to identify transposable
elements (TEs) (–max_iter 200 –theta_prior 200000). With the
Telescope software, TEs are inferred when the hallmark genomic
signatures of such elements are identified, including 5’ and 3’ LTRs
with an open reading frame between, thus inferring a functional
TE. This step reassigns the ambiguously mapped reads to a single
TE using a reference TE annotation containing 14,968 HERVs that
span 60 different HERV families and 18 family groups. The TE
annotation can be found at https://github.com/mlbendall/
telescope_annotation_db/tree/master/builds/retro.hg38.v1. The
output generated by Telescope is a table of TEs (labeled by
chromosomal location) and their relative expression, quantified
by read counts which were then used in the downstream analyses.

Locus-Specific HERV Characterization
The annotation used to examine the assigned HERVs was
created by Luis P. Iniguez and can be found at https://github.
com/LIniguez/Telescope_MetaAnnotations. The annotation
includes Coding-Non-Coding Identifying Tool (CNIT)
designations for protein coding potential of sequences (31).
CNIT analyzes adjoining nucleotide triplets (ANTs) to
determine coding potential for sequences. The annotation also
includes analyses on the HERV database by FANTOM5, which
identifies whether the HERVs are in enhancer regions of the
genome (32, 33). This solves a common issue in HERV analysis
where HERVs from a given family are very similar and many
software packages treat them identically, whereas Telescope can
map them to individual loci along the reference genome and
assess coding/non-coding status. An R script was created to
search for genes close to the differentially expressed HERVs on
their chromosomes in the ENSEMBL Hg38 reference, release 99.
The script starts by looking within 500bp upstream and
downstream of the HERV and expanding until it finds a gene
or hits a 10kb limit (34). The genes were then queried against the
PubMed database to find their function, if they are protein
coding genes. Furthermore, we generated a null distribution of
HERV locations by mapping non-significantly DE HERVs to the
human genome, calculating genomic distance to the nearest
protein coding gene. Then we used this distribution to test
(Wilcoxon Signed Rank test with ranks based on distance and
sign based on DE HERV) against the distribution of DE HERV

distances to ask whether these distributions have significantly
different means. Our goal in this particular genome distance
analysis was to identify potential targets where HERV expression
might alter gene regulation. These targets can then be studied in
more detail from a mechanistic perspective once they are placed
in a biochemical pathway framework (see below).

RNA-Seq Host Gene Expression
Analysis of the RNA-Seq data with respect to host gene
expression commenced with quality control of the raw
sequence reads. FastQC files were used to visualize the quality
of the reads in each sample (35). MultiQC was used to
summarize FastQC reports (36). When deemed necessary
following visual inspection, Trimmomatic was used to
eliminate low quality reads and bases in each sample (37). A
sliding window of 4 bases was used with an average quality of 30
as the cutoff. The first 14 bases were trimmed from each sequence
to eliminate highly duplicated bases from all reads from non-
random primer selection during the amplification process of the
RNA-Seq. The data were then aligned to the Hg38 reference
genome (RefSeq Accession: GCF_000001405.39) using the STAR
aligner (38). The resulting SAM files were sorted and converted
to BAM format using SamTools (39). FeatureCounts was then
used to obtain raw counts for transcripts that aligned to known
genes in the human genome (40).

Differential Gene Expression
The library DESeq2 (v1.24.0) (41) was used to evaluate
differential gene expression on counts values. Results were
plotted using ggPlot2(v3.2.1) (42). The BioConductor package
HTSFilter, which uses the Jaccard similarity index to calculate a
filtering threshold for replicated RNA sequencing data, was used
to filter out transcripts with low signal (43, 44). The
“pAdjustMethod = BH” argument was used to adjust the p-
value and control the false discovery rate (45). A minimum
filtering threshold of 1 (s.min = 1) and a maximum filtering
threshold of 200 (s.max = 200) were considered with 100 tested
thresholds total (s.len = 100). The DESeq normalization method
within HTSFilter was used (normalization = “DESeq”). An alpha
value of 0.05 was chosen as a threshold for significant p-values.
Any NA values were replaced with zeroes. The BioConductor
biomaRt package was used to identify gene symbols and gene
loci (46).

We performed a permutation test to statistically assess the
significance of the overlap in both DE genes and DE HERVs for
the two data sets (47). The permutation test consisted of
randomly choosing the same number of genes and HERVs as
were differentially expressed in each dataset from the lists of all
genes and HERVs which were found to be expressed in our data.
The number of genes and HERVs which were found to be
randomly picked from both datasets—i.e., the intersection of
the two lists—was then recorded. This was repeated for 200,000
iterations for both genes and HERVs separately. We then tested
for statistical significance by comparing the number of genes and
HERVs found to overlap between the datasets from random
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chance—via the permutations—versus our actual overlap. We
used PANTHER (48) to perform overrepresentation analysis and
MaAsLin2 to test associations in gene expression (49). MaAsLin2
allowed us to test for individual associations between the
expression of genes and HERVs instead of only testing for
differences in disease vs control. It accomplishes this by using
general linear models that account for the expression of the other
HERVs and genes, as well as their correlations with each other,
so that the correlation it generates for any given HERV/gene pair
is less influenced by the noise of the data. This provides a more
accurate correlation than other methods because it helps
compensate for the considerable noise in SLE data. The
resulting beta coefficients were also used as input for the
pathway analysis.

Omics Pathways Enrichment Analysis
To find enriched biochemical pathways (those pathways with an
observed overabundance of differentially expressed genes), we
used deepath (50) an open source R Package. deepath is a generic
tool for pathway enrichment analysis that allows users to
calculate importance scores for omics features (i.e., gene
expression in our study for both host genes and HERVs)
appropriate for their study design (e.g., adjusting for
multivariable testing and confounding factors). Employing user
reference databases for mapping omics features to pathways (e.g.,
KEGG and GO terms), deepath identifies which pathways have
significant associations with the underlying features. It performs
statistical tests (e.g., Kolmogorov–Smirnov test) using the feature
scores in the pathways against all ranks to calculate a p-value and
false discovery rate (FDR) for hypothesis testing. Here, beta
coefficients from MaAsLin2 linear models (51) were used as
importance scores for omics feature (i.e., genes and HERVs), and
ontology gene sets from the Molecular Signatures Database
(MSigDB) (52) were used to perform the enactment statistical
test. The Wilcoxon Sum Rank test (Mann Whitney U test) was
employed to calculate a p-value for the null hypothesis, that there
is no difference between the distribution of the score of a given
feature with the pathways of interest vs. all other features in the
study. Benjamini-Hochberg FDR correction (q = 0.1) was used as
a threshold to report significant pathways (53). To look
specifically at the interferon response, we searched Ensembl
gene ID in the Interferome database to determine association
specifically with the interferon response (54).

RESULTS

Datasets
We analyzed two datasets for this study, WB 1 (new to this study)
and WB 2 (publicly available) as described in the methods. Our
WB1 data set included 23 healthy female controls and 25
individuals (22 females and 3 males). The controls ranged in age
from 20-54 years of age average age 32.6 whereas the cases ranged
in age from 19 - 60 years old with an average age of 35.7 years old.
The cases had SLE Disease Activity Index) ranging from 0 to 21
with an average score of 4.3. The RNA-Seq output resulted in a
minimum and maximum number of input reads across the
samples of 71,275,250 and 79,606,353, respectively. The
minimum and maximum number of uniquely mapped reads for
the gene expression analysis was 50,681,878 (64.03% of the total
reads) and 69,654,926 (88.03% of the total reads), respectively. The
WB 2 dataset was characterized previously (27). In WB 1 the
average reads/kb for genes was 352.8 for all genes and 428.8 for
only genes which were DE. For WB 2 the reads/kb for genes was
423.4 for all genes and 456.8 when only examining the DE genes.
The HERV data reflected the same trend of DE HERVs having
more reads/kb than when looking at all detected HERVs as a
whole, albeit with much fewer numbers. In WB 1 and WB 2 the
average reads/kb for all HERVs were 10.3 and 3.7, respectively.
When looking at only HERVs identified as DE in WB 1 andWB 2
those numbers rose to 47.7 and 29.4 reads/kb.

Differential HERV Expression in SLE
In the WB 1 dataset, we identified 13,866 total expressed HERVs
of which 321 HERVs were significantly differentially expressed
between cases and controls in our DESeq2 with pAdjustMethod
analysis with a FDR <0.05 and log2 fold change of ≥1 (Figure 1A)
-see Supplementary Table 1 for a complete list of all expressed
and DE HERVs, their genomic locations, and distance to host
genes, nearest host gene and associated P-values. Of these, there
were 311 upregulated HERVs and only 10 downregulated HERVs.
The HERV families of the DE HERVs were primarily of the ERV-
L, ERV3, MER4, HERV-H, HERV-K, and HERV-L families
(Figure 2A). Using the CNIT HERV annotation, we found that
35 of the 321 DE HERVs were protein coding and 286 were
noncoding (31). The annotation also includes analyses on the
HERV database by FANTOM5, which identifies whether the
HERVs are in enhancer regions of the genome (32, 33).

A B

FIGURE 1 | Results of host HERV DE analysis of control vs SLE. The positive LFC corresponds to HERVs upregulated in SLE and negative LFC corresponds to
genes downregulated in SLE. (A) Volcano plot showing DE HERVs from the WB 1 dataset. (B) Volcano plot for WB 2.
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According to the annotation, 27 of the 321 total DE HERVs inWB
1 were in enhancer regions and 294 were not.

The WB 2 dataset yielded 12,376 expressed HERVs with 160
meeting theaforementionedcriteria for significance (Figure1B)with
a similar skew towards upregulated DEHERVs -see Supplementary
Table 2 for a complete list of all expressed and DE HERVs, their
genomic locations, and distance to host genes, nearest host gene and
associated P-values. The HERV families of the DE HERVs in WB2
had similar representations as inWB1 (Figure 2B). The DEHERVs
were predominantly upregulated in both datasets, although the
differences in sample size for each set contributed to variation in
the number of significant DEHERVs in each. There were 16HERVs
which were predicted as protein-coding and 144 that were
noncoding. The number of HERVs which were in enhancer
regions was 27, with 133 not being present in those regions.

Of the DE HERVs across the two datasets as well as their
overlap (WB 1 = 321, WB 2 = 160, overlap = 69), there was
higher representation in HERV families MER4, ERV-L, ERV-3,
HERV-L, HERV-K, and HERV-H (Figure 2). Of the 471

differentially expressed HERVs across the two datasets, 69
HERVs were DE in both datasets. Using a permutation test for
overlap (47), across 200,000 permutations the largest randomly
generated overlap was of size 15, resulting in our inference of
significant overlap of these 69 HERVs (p < 5e-6). Every family
from the WB1 and WB2 DE HERVs was present in the overlap
except the HERV-S family (Figure 2C). Among the 69
overlapping HERVs were 6 with a predicted protein product
and 63 which were designated as noncoding. Between the two
datasets, 15 of the 69 shared HERVs were in enhancer regions
(Supplementary Table 3). We also tested for correlations among
the identified HERVs between the two datasets. When all HERVs
were analyzed, there was no significant correlation (Pearson
correlation coefficient = 0.063; Supplemental Figure 1A), but
when the analysis was restricted to just the DE HERVs, the two
datasets were correlated (Pearson correlation coefficient = 0.602;
Supplemental Figure 1B). This further supports consistency of
inference relative to the impact of DE HERVs across these two
datasets. Furthermore, we also explicitly tested the significance of

A B

C

FIGURE 2 | Charts of HERV family distributions of the DE HERVs in WB 1, WB 2, and of the HERVs DE in both. (A) Pie chart showing HERV families of the WB 1
DE HERVs. (B) Pie chart showing HERV families of the WB 2 DE HERVs. (C) Pie chart of the HERV families of HERVs which were DE in both WB 1 and WB 2.

Stearrett et al. HERV Expression in SLE

Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6614375

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


the HERV DE and the association with each dataset by
conducting a Fisher’s Exact Test (WB1/WB2 by DE/not). This
test rejected the null hypothesis of no association with a
P<0.00001, suggesting while there is overlap in DE HERVs, the
DE HERVs in each dataset are independent.

Host Gene Expression
We identified 3,494 DE host genes in the WB 1 dataset (Figure 3A)
(Supplemental Table 4). Of these genes, 1059 were downregulated
and 2434 were upregulated. Imposing an absolute value log2 fold
change of 1 to these results yielded 552 upregulated genes and 7
downregulated genes. We identified 4576 differentially expressed
genes in the WB 2 dataset (Figure 3B) (Supplemental Table 5). Of
these genes, 1604 were downregulated and 2972 were upregulated.
Imposing an absolute value log2 fold change of 1 to these results
yielded 662 upregulated genes and 64 downregulated genes. The
two datasets were found to be independent using Fisher’s exact test
comparing the numbers of DE genes betweenWB 1 andWB 2 (P <
0.00001). However, we observed 300 overlapping DE genes between
the two data sets, but across 200,000 permutations the largest

randomly generated overlap was 57 resulting in the inference of
significant overlap in DE genes between the two datasets (p < 5e-6).
Of the 10 most significantly DE host genes in both, most were
interferon response related and have been implicated in lupus
before including IFI27, IFI44, IFI44L, OAS1, OAS3, OTOF, and
RSAD2 (55). SIGLEC-1 has been associated with the interferon
signature as well as ancestry differences in kidney damage in SLE
(56). PRAL is an lncRNA of interest in cancer research, including
lung cancer, because of its modulation of the p53 protein (57).

The results obtained from MaAsLin2 provided insight into the
consistency of the upregulated genes contrasted with the
inconsistency of the downregulated genes. The top 10 most DE
host genes fromWhole Blood 1 according to MaAsLin2 were also
uniformly upregulated in Whole Blood 2; whereas the top 10
downregulated genes did not show a consistent pattern (Figure 4).

Integrated Analyses of HERV and Host
Gene Expression
The DE host genes and HERVs had a relatively even spread
throughout the genome and did not disproportionately originate

A B

FIGURE 3 | Results of host gene DE analysis of control vs SLE. The right side of each panel indicates genes upregulated in SLE and the left side indicates genes
downregulated in SLE. (A) Volcano plot for the WB 1 dataset. (B) Volcano plot for the WB 2 dataset.

A B

FIGURE 4 | Gene expression patterns across datasets. Beta values calculated by MaAsLin2 are shown for up- and downregulated genes for the two datasets. Red
bars represent upregulated genes and green bars represent downregulated genes. Box plots of log-transformed transcript counts are paired with each bar to show
the distribution of counts in lupus (blue) and control (pink) samples. (A) The top 10 most DE genes in the up and down direction in WB 1 are shown. Top 10 genes
were selected by FDR adjusted p-value and then sorted by magnitude of beta value. (B) The expression patterns for the same set of genes depicted in (A) are
shown for WB 2.
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from a small number of chromosomes (Figure 5). We tested for
physical distance associations between DE HERVs and DE host
genes, with the underlying hypothesis that a shorter physical
distance allows for a greater opportunity for HERVs to impact
regulation of gene expression for neighboring genes. Thus, we
test for a shorter distance between DE HERVs and DE host genes
against the null hypothesis of no difference in physical distance.
To test for significance of reduced physical distance between DE
HERVs and host genes relative to non-DE HERVs, we measured
distances of all identified HERVs to host genes and then used the
Wilcoxon Signed Rank test to test for differences between DE
HERV distance to host genes relative to non-DE HERVs. We
rejected the null hypothesis of no difference using this test with a
P-value = 1.107e-07 (Supplemental Figure 2). We, therefore,
proceeded to characterize the DE HERVs relative to host genes in
greater detail. We found 284 genes in close proximity (<10kb) to
the DE HERVs in the WB 1 dataset, including genes intersected
by the HERVs. We determined that 162 of the 321 total HERVs
in this dataset were intersecting genetic elements in either

intronic or exonic gene regions. The genetic elements that the
DE HERVs intersected were evenly split between protein coding
genes and lncRNAs (82 vs 80, respectively). Some of the HERVs
(39) intersected multiple genetic elements, such as an lncRNA
and a protein-coding gene, with the remaining intersected genes
being pseudogenes or other genetic elements. There were 94
HERVs located in intronic regions and 68 located in exons
(Supplemental Table 1).

In WB 2, of the 160 DE HERVs, 103 intersected a host genetic
element, with 50 and 54 of these being protein-coding genes and
lncRNAs, respectively. The discrepancy between the total non-
intergenic HERVs and total genetic elements that were
intersected is caused by 25 HERVs that intersected multiple
elements. There were 171 genes found to be in close proximity to
the DE HERVs in the WB 2 dataset (Supplemental Table 2).

Once we observed that some of the genes near the DE HERVs
were involved in the immune response to viruses, we tested for
associations between the expression levels of the genes andHERVs
using MaAsLin2. The significant associations in the MaAsLin2

FIGURE 5 | Circos plot showing DE genes and HERVs across the genome. The outermost ring represents the chromosomes and their boundaries. The inner rings
show DE HERVs and genes in alternating order. The white rings are DE HERVs and genes from the WB 1, in that order. The grey rings represent the same for WB
2. The rings containing HERVs are colored by whether they were in an enhancer region, with red indicating HERVs in enhancer regions and green HERVs which
were not. The rings containing genes are colored by whether the gene was among the 50 most DE genes for that dataset (determined by adjusted p-value). Genes
which were among the top 50 most significantly DE are colored in red and genes which were not are colored black.
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association testing were often HERVs and genes close to each
other on their respective chromosomes. An example of that is the
association of LTR19_12p13.31 with LINC00612, A2M-AS1, A2M,
and PZP (Figure 6A). All four of those genes are located at the
12p13.31 locus with the DE HERV. Other examples are the
association between ERV316A3_12q24.13 and OAS1, as well as
the association of ERV316A3_3q27.3e with RTP4 (Figures 6B, C).
The latter two associations were highlighted because they were the
most significant DE HERVs of the WB 1 and WB 2
datasets, respectively.

We next focused on the 69 HERVs that were DE in both
whole blood datasets. A total of 83 host genes were found to be
within 10 kb of them in the genome (Supplementary Table 3).
Among the genes close to the HERVs, 52 were intersected by the
HERVs. The HERVs that were intersecting genes were relatively
evenly split between introns and exons (28 and 24, respectively).
Only 21 of the total 52 intersected genes coded for a protein, of
which 12 intersected an exon of a protein-coding gene. Whereas
the other 31 were lncRNAs and other genetic elements. As with
the results of the individual datasets, some of the HERVs (15)
were intersecting multiple types of genomic elements.

When MaAsLin2 was used to test for significant associations
between the 69 HERVs which were significant in both datasets
and the 83 host genes found within 10kb of them, only 7 HERV/
gene associations met the significance cutoff in WB1 (Table 1).
The same association testing was then carried out on WB 2 to

obtain the q-values and correlation coefficients for those HERVs
and genes in that dataset (Supplemental Tables 6 and 7). Five of
the resulting seven genes are part of the interferon response.

Pathway Analysis
The initial gene ontology enrichment analyses of the whole blood
gene DESeq results yielded GO terms relevant to lupus pathology.
The upregulated pathways in WB 1 were: immune system process
(GO:0002376, adjusted p-value 8.34E-36), response to
stress (GO:0006950, adjusted p-value 4.03E-33), immune response
(GO:0006955, adjusted p-value 4.96E-28), and immune effector
process (GO:0002252, adjusted p-value 1.65E-27). The top ten
upregulated pathways were identified in WB 1 and WB 2 (Figure
7). Interestingly, the overlap was in the ‘go defense response to other
organism’, ‘go response to biotic stimulus’, both suggesting a role of
HERV interaction, and ‘go myeloid leukocyte activation and ‘go
immune effector process’ both suggesting an immune response.

We then used deepath to assess pathway enrichment in greater
detail. The WB1 data had 400 total pathways significantly enriched
(FDR adjusted p-value of < 0.01). The WB2, likely due to its much
larger sample size, had 184 total pathways that were enriched in SLE.
The Response to Type I interferon pathway was highly significant in
bothdatasetswithavery consistentproportion (~75%)ofgenes in the
pathway being DE and upregulated (Figure 8A). The broader
category of Response to Virus was also highly significant in both

A B

C

FIGURE 6 | Integrative host gene and HERV associations. (A) 10 top associations between HERVs and host gene expression are shown. The associations are
ranked by spearman correlation. (B) OAS1 is the closest gene to ERV316A3_12q24.13 and there is a significant correlation between their expression (coefficient =
0.94). (C), The RTP4 gene codes for an interferon response protein and is the closest to ERV316A3_3q27.3e on chromosome 3.

TABLE 1 | Details of DE HERVs across both whole blood datasets, as well as the genes closest to the HERV and their MaAsLin2 correlation (closest within a 10kb
expanding window).

HERV Nearest Gene WB1 q-value WB1 Corr WB2 q-val WB2 Corr Gene Description

ERV316A3_12q24.13 OAS1 1.19E-17 0.94080054 1.26E-44 0.91881796 Interferon response protein
ERV316A3_3q27.3e RTP4 4.51E-18 0.94446275 5.07E-45 0.92023334 Interferon response protein
MER101_2p25.2 RSAD2 7.85E-18 0.94245529 9.91E-34 0.86730733 Interferon inducible antiviral binding protein
HERVFH19_2p22.2 EIF2AK2 5.01E-16 0.92348233 5.62E-47 0.92698783 Interferon inducible protein kinase
HERV4_4q22.1 HERC6 1.85E-17 0.93902961 7.68E-79 0.98104074 Ubiquitin ligase (IFN response)
HERVL18_3p21.31a LINC02009 4.70E-25 0.97668767 5.47E-85 0.98533999 lncRNA
ERVLB4_17q25.3b RNF213 2.61E-15 0.91444574 3.59E-15 0.67237303 Zinc finger protein

The q-value and correlation are for the beta value of the HERV/gene association in WB 1 and WB 2.
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datasets as well (Figure 8B). Other top pathways found by deepath
were related to the innate immune response.GOterms suchas Innate
Immune Response andDefense Response to Virus were all observed
to be significantly upregulated in lupus samples after adjustment for
multiple testing (Supplemental Tables 8 and 9). These GO terms
have some overlap with the response to type I interferon because of
the nature of the biological processes they define.

After examining pathways and overrepresentation for the
gene expression data, we then sought to categorize the host
genes near the DE HERVs by biological pathways as well. Some

of the GO terms of interest for WB 1 were innate immune
response and negative regulation of viral process (Figure 9). The
nearby host genes in WB 2 showed much greater diversity of
biological processes (42 versus 12) despite having only half (56
versus 95) of the number of proximal genes (Figure 10). The
enriched pathways for WB 2 include neutrophil activation and
degranulation, as well as leukocyte and neutrophil mediated
immunity. The pathways for both sets were consistently innate
immune response related and focused on the reaction of the
immune system to a viral process.

A B

FIGURE 7 | Top gene ontology (GO) terms for (A) WB 1 and (B) WB 2. Position on the horizontal axis is determined by significance and color is determined by the
percentage of genes for the pathway that are differentially expressed.

A

B

FIGURE 8 | Pathway enrichment of host gene expression. (A), Response to type I interferon was consistently upregulated in both WB 1 and WB 2. The increased
pattern of the pathways is consistent across both datasets (WB 1 and WB 2 in that order), and we observe ~75% of the pathway genes in the samples.
(B), Response to virus was also upregulated significantly, again with over 75% of the pathway genes being observed in both datasets.
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Based on the results indicating GO term enrichment of
response to a viral process, we analyzed the same host genes
co-located with the DE HERVs with an interferon response
database. Out of the 284 genes which were found to be in close
proximity (<10kb) to the DE HERVs in the WB 1, 55 (19.3%)
were associated with the interferon response including one
associated with type I interferon response, 29 with both the
type I and II interferon responses, and 25 with the type I/II/III
response. Similarly, of the 171 host genes found to be in close
proximity to the DE HERVs in WB 2, 40 (23.4%) were associated
with the interferon response. Among those 40 genes, 16 were
associated with the type I/II interferon response and 24 were

associated with types I/II/III. Of the 83 genes in close proximity
to the 69 shared HERVs of WB 1 and 2, 20 were part of the
interferon response including 8 genes for type I/II and 12 genes
with type I/II/III.

DISCUSSION

The goal of this study was to document the dysregulated
expression of HERVs in SLE and to examine the interplay of
HERVs and immune-related gene expression. The locus specific
HERV identification provided by Telescope allowed us to look at

FIGURE 9 | Overrepresentation analysis of the genes that were nearest to the significantly upregulated HERVs in WB 1. The position of the dot on the x-axis is
based on significance and the color of the dot is based on the log2 foldchange of the pathway.

FIGURE 10 | Overrepresentation analysis of the genes which were nearest to the significantly upregulated HERVs in WB 2. The position of the dot on the x-axis is
based on significance and the color of the dot is based on the log2 foldchange of the pathway.
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the expression of HERVs as well as the genes nearby them. This
was in contrast to previous studies on the role of transposable
elements in lupus, where HERVs were simply grouped
taxonomically based on a classification of repetitive elements
with resolution to the superfamily, class, and type level (58).
Limitations of previous approaches related to the high levels of
sequence homology among HERVs, which can cause a single
sequence to map onto many different HERVs, creating ambiguity
in specifically assigning these reads. Telescope addresses that
pervasive issue by using Bayesian reassignment to designate the
multi-mapped reads to a single HERV. This improves the
accuracy of the HERV assignment compared to other tools
that randomly assign or discard ambiguous reads (26, 59, 60).
As a result of using Telescope, we were able to accurately
quantify the locus specific expression of HERVs. This allowed
us to examine their neighboring genes, whether they were in
enhancer regions, as well as assess their protein coding potential.
The differences in the total number of HERVs and genes found
to be significant in WB 1 andWB 2 may be related to imbalances
in sample size between the two datasets. Whereas WB 2 had
more samples overall, the sampling was skewed towards
individuals with SLE, compared to the near 1:1 case/control
ratio in WB 1. This imbalance in cases/controls in WB 2 may
have impacted the output of our statistical approaches.

Whereas previous studies have looked at either host gene
expression or HERV expression to identify significant
associations with SLE, recent work has applied machine learning
(ML) approaches to predict clinical outcomes based on gene
expression (61). The integration of clinical data with multiomics
data is particularly well suited for unsupervised ML approaches.
However, multiomics data can present challenges to such
approaches as there are significant sources of noise in the data,
including different sequencing platforms and heterogeneity in
feature profiles. Deep learning models have previously been
employed to extract linear and non-linear relationships on the
large, high-dimensional datasets of genomics (62–67). Taking
advantage of the deep neural network allowed us to make
effective use of the data and to account for some of the
background noise inherent in the data. Therefore, a multi-
resolution clustering approach was applied here, coupling clinical
metadata and omics data to find significant clusters of omics data
associated with phenotypes of interest (e.g., SLE status). We then
employed a novel deep learning approach to identify biological
pathways where locus specific HERV and host gene differential
expression were significantly associated with SLE status.

The whole blood datasets demonstrated significant overlap in
their differentially expressed HERVs and genes (p < 5e-6). Almost
half [69] of the 160 significant HERVs in WB 2 were also
significantly over-expressed in WB 1, which was a highly
significant amount when compared with the amounts generated
by our permutation testing. This pattern is very different from that
observed in HERV expression in cancers (68). This points toward a
more consistent set of HERV expression in SLE, not random
differences in expression. The locus specific mapping of Telescope
allowed us to determine where the HERVs fell in relation to protein-
coding genes, lncRNAs, and other genetic elements. The majority of

HERVs intersected at least one type of genetic element, sometimes
multiple elements at once. But for the HERVs as a whole, the
intersected or nearby protein-coding genes were associated with the
host immune response to viruses. A number of HERV families
including HERV-K, HERV-H, and MER4 were over-expressed in
SLE. The HERV-K family specifically was moderately over-
represented (WB 1 = 9.65%, WB 2 = 10%, and overlap = 7.2%)
when compared to its total representation in the annotation (3.2%).
The slightly elevated representation of the ERV-K family in the DE
HERVswas interesting because previous research has suggested that
the ERV-K family is the most biologically active family of HERVs
capable of producing viral proteins (9). However, the low percentage
of ERV-K relative to the sum of the other HERV families could
mean that the contribution of HERVs to SLE pathology may be
more related to dysregulation of immune gene expression as
opposed to stimulation of autoantigens. Notably, the ‘protein-
coding potential’ of the DE HERVs was approximately 10% for
each dataset and that proportion was similar for the overlapping
HERVs (WB 1 = 10.9%,WB 2 = 10%, and overlap = 8.7%). HERVs
identified as protein coding could potentially produce intact viral
proteins, which could stimulate the host immune system. The
proportions of HERVs which were found in identified enhancer
regions variedmore between the two datasets (WB1= 8.4%,WB2=
16.9%, and overlap = 21.7%). Of note, the DE HERVs shared
between both datasets were more frequently found in enhancer
regions. The HERVs which were annotated as being in enhancer
regions were split between intergenic and intragenic regions, both of
which can harbor enhancers (69). Previous studies in multiple
sclerosis found that some of the increased HERV expression was a
byproduct of the activation of overlapping enhancers for genes
which were involved in the immune response (70). In SLE, a similar
phenomenonmay be occurring, inwhichHERVs are upregulated as
part of the response to type 1 interferon. On the other hand,
retroelements themselves can also act as enhancers or promoters
for certain interferon stimulated genes, as well as functioning in
other regulatory capacities. As an example of this, the IFN
inducibility of AIM2 is conferred by retroelements and ACE2 has
co-opted an intronic HERV to regulate expression via alternative
splicing (71). Interestingly, one of theHERVs that was DE in both of
our datasets (MER61_1q23.1c) is next to the AIM2 gene in an
intergenic region. Whether the HERVs in enhancer regions are
involved in the dysregulation of their neighboring genes requires
further validation and testing, but our results provide clear targets
for such follow-up work.

The biological pathways associated with the genes in close
proximity to DE HERVs were mostly related in some way to the
immune system or the innate immune response to viruses. This
is in agreement with other analyses of gene expression in people
with SLE and current understanding of lupus pathology. The two
whole blood datasets overlapped in DE genes as well as
overrepresentation for pathways related to immune response to
viruses, suggesting a pathogenic role for HERVs in SLE (Figure
7). This was further supported by the results of the deepath
analysis, which also showed significant pathways associated with
‘response to virus’ and ‘defense response to virus’, as well as the
type I interferon response and innate immune response.
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The proximity of the DE HERVs to genes involved in the innate
immune system is consistent with the involvement of innate
immunity in SLE. The correlation results showing only 7 total
host genes that were significantly correlated with their closest
neighboring HERVs was an unexpected result. We expected to
find a more widespread correlation between the expression of the
HERVs and the neighboring host genes. Whereas 5 of the 7 host
genes with a significant correlation to the HERVs closest to them
were interferon response genes, expression of many other genes
involved in host immunity did not have a significant correlation
with their HERV neighbors. This indicates that the DE of HERVs in
lupus cannot be solely attributed to the increased or decreased
expression of the nearest gene to them, even if those genes are
immune related. HERVs have been shown to play roles in the
immune regulatory networks of many mammals including
humans. HERVs with STAT1 (signal transducer and activator of
transcription) and IRF1 (interferon regulatory factor) binding sites
have been found to be enriched near interferon stimulated genes in
CD14+ macrophages as well (72). Many of the HERVs that were
found to be DE near immune-involved genes or in their regulatory
regions could also have direct or indirect roles in the dysregulation
of their expression in SLE.

Additional information is required onHERV expression in other
SLE datasets as well as the genes adjacent to them in order to obtain a
more complete picture of the influence thatHERVsmay exert on the
drivers of lupus pathology.Our studyhas identified anumber of clear
targets for further analysis of their impact on neighboring gene
expression and on lupus immunopathology overall.
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43. Rau A, Gallopin M, Celeux G, Jaffrézic F. Htsfilter: Independent Data-Based
Filtering for Replicated Transcriptome Sequencing Experiments (2013).
Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.592.
1109&rep=rep1&type=pdf.
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