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Abstract

Understanding the complexity of approximately count-
ing the number of weighted or unweighted independent
sets in a bipartite graph (#BIS) is a central open prob-
lem in the field of approximate counting. Here we con-
sider a subclass of this problem and give an FPTAS for
approximating the partition function of the hard-core
model for bipartite graphs when there is sufficient im-
balance in the degrees or fugacities between the sides
(L, R) of the bipartition. This includes, among others,
the biregular case when A = 1 (approximating the num-
ber of independent sets of G) and A > 7TAp log(AL).
Our approximation algorithm is based on truncating the
cluster expansion of a polymer model partition function
that expresses the hard-core partition function in terms
of deviations from independent sets that are empty on
one side of the bipartition.

Further consequences of this method for unbalanced
bipartite graphs include an efficient sampling algorithm
for the hard-core model and zero-freeness results for the
partition function with complex fugacities. By utilizing
connections between the cluster expansion and joint cu-
mulants of certain random variables, we go beyond pre-
vious algorithmic applications of the cluster expansion
to prove that the hard-core model exhibits exponential
decay of correlations for all graphs and fugacities satis-
fying our conditions. This illustrates the applicability of
statistical mechanics tools to algorithmic problems and
refines our understanding of the connections between
different methods of approximate counting.

1 Introduction

The computational complexity of approximating the
number of independent sets in a bipartite graph is a
central open problem in the field of approximate count-
ing: neither a general polynomial-time algorithm nor a
proof of NP-hardness is known. The problem defines
a complexity class #BIS (bipartite independent set)
and many other important counting problems have been
shown to be as hard to approximate as #BIS, including
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counting weighted independent sets in bounded-degree
bipartite graphs when the weighting factor A is large
enough. Counting weighted independent sets arises nat-
urally in statistical physics as it is exactly the problem of
computing the partition function of the hard-core model
at fugacity A.

We give an FPTAS for both the weighted and un-
weighted counting problems, provided that the bipartite
graph has bounded degree and there is a sufficient im-
balance in the degrees or fugacities between the sides of
the bipartition.

More formally, the hard-core model on a graph G is
a probability distribution over the independent sets of
G given by

pl

where A > 0 is the fugacity and the normalizing
constant, or the partition function, is

Z(GN = > Al

1€Z(G)

where Z(G) is the set of all independent sets of G.

More generally, one can consider the multivariate
hard-core model, assigning a fugacity A, to each vertex
v € V(G). The resulting partition function is

ZG = > -

I€Z(G) vel

We focus here on a bivariate hard-core model, with a
fugacities Ay, Ag assigned to vertices on the respective
sides of a bipartite graph with bipartition (L, R). We
denote the partition function by Z(G, Ar, Ag) or Z(G)
for short.

There are two natural computational problems as-
sociated to spin models such as the hard-core model:
the approximate counting problem, where we wish to
estimate Z(G), and the approximate sampling problem,
where we wish to sample from a distribution that is close
to pg-

Formally, an e-relative approzimation to Z(G) is a
number Z so that

e 7 < Z(G) <eZ.

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



A fully polynomial-time approximation scheme (FP-
TAS) for Z(G) is an algorithm that given G and € > 0,
outputs an e-relative approximation to Z(G) and runs
in time polynomial in |V (G)| and 1/e. An efficient sam-
pling scheme is a randomized algorithm that outputs an
independent set from Z(G) with distribution fi so that
llie — f|lrv < € and runs in time polynomial in |V(G)]
and 1/e.

In general, the computational complexity of approx-
imating Z(G) is well understood. For graphs of max-
imum degree A, there is an FPTAS due to Weitz [29]
when A < A.(A), the uniqueness threshold for the in-
finite A-regular tree. On the other hand, Sly [27], Sly
and Sun [28], and Galanis, Stefankovic, and Vigoda [11]
showed that there is no polynomial-time approximation
algorithm for A > A.(A) unless NP=RP.

For bipartite graphs, however, the situation is far
from clear. There is no hardness known, and one might
expect that the problem becomes easier as A gets large
since finding a maximum size independent set in a bi-
partite graph is tractable, unlike in general graphs. In
fact, Dyer, Greenhill, Goldberg, and Jerrum [9] defined
the complexity class #BIS to capture the complexity
of approximating the number of independent sets (i.e.
approximating Z(G) at A = 1) in bipartite graphs. The
approximation complexity of #BIS is still unresolved,
but many other important approximate counting prob-
lems have been shown to be #BIS-hard, including ap-
proximating the partition function of the g-color ferro-
magentic Potts model (¢ > 3) [13, 12]. Refined results
of Cai, Galanis, Goldberg, Guo, Jerrum, Stefankovic,
and Vigoda show that for bipartite graphs of maximum
degree A, it is already #BIS-hard to approximate Z(QG)
for any A > A.(A) [5].

There are a handful of algorithmic results on ap-
proximating Z(G) that exploit bipartite structure. Liu
and Lu [23] gave an FPTAS for Z(G) at A = 1 on
bipartite graphs when the degrees on one side of the
bipartition are at most 5, with arbitrary degrees on
the other side. Helmuth, Perkins, and Regts [15] used
contour models from Pirogov-Sinai theory in statistical
physics to give an FTPAS for the hard-core model on
subsets of Z? for sufficiently large A. Building on this
approach, Jenssen, Keevash, and Perkins [16] gave an
FPTAS for the hard-core model on bipartite expander
graphs at large A, and these results were sharpened for
random regular bipartite graphs [17, 22]. Most relevant
for this paper, Barvinok and Regts [2] give an FPTAS
for Z(G) for biregular, bipartite graphs with unequal
degrees when the fugacity is sufficiently large, as an ap-
plication of a more general approximate counting result.

Here we give an FPTAS for the hard-core model on
bipartite graphs of bounded degree whenever there is

sufficient asymmetry in the degrees on either side of the
bipartition or in the fugacities assigned to the respective
sides of the bipartition. In most biregular cases our
results give significant improvement to the parameters
from [2], as we discuss below, and our algorithm does
not require biregularity.

More importantly, the method, based on the clus-
ter expansion and the Kotecky-Preiss condition [20] and
related to that of [15, 16], gives detailed probabilistic
information about the hard-core model in addition to
the algorithmic results. In particular, we show that on
bipartite graphs with parameters satisfying our condi-
tions, the correlation between the occupancies of two
vertices in the hard-core model decays exponentially fast
in their distance. Our results hold for a wide range of
parameters for which the hard-core model on the ap-
propriate infinite bi-regular tree exhibits phase coexis-
tence, and so our results cannot be obtained by methods
which exploit uniqueness on the tree. The connection
between convergence of the cluster expansion and de-
cay of correlation for lattice spin models is well studied
in statistical physics, but has not been widely utilized
in computer science. We hope that by illustrating the
applicability of these techniques to general graphs and
showing their connection to algorithmic results, we may
encourage their adoption.

1.1 Algorithmic results Let G(Ap,dr, Ag) be the
family of bipartite graphs G with bipartition (L, R) so
that each v € L has degree d, < Ay, and each v € R
has degree d,, satisfying dg < d, < Ag.

We consider the hard-core model on a graph G €
G(AL,0Rr, Ag) with fugacity Az, assigned to each vertex
v € L and fugacity Ar assigned to each v € R. Our
main algorithmic result is a sufficient condition on the
imbalance of the graph (in terms of Ay, dr, A, AL, AR)
to obtain an FPTAS for approximating Z(G, A, Ag).

THEOREM 1.1. Suppose

)
(1.1) 6ALARAR < (14 A)5E .
Then there is an FPTAS for approrimating the hard-
core partition function Z(G,\, Ar) and an efficient
sampling scheme for sampling from pg for oll G €
G(AL,dRr,AR) at fugacities Ay, and AR.

Some special cases of Theorem 1.1 for the bivariate
and univariate hard-core partition functions are given
in the following corollary. Throughout, we assume all
logarithms have base e.

COROLLARY 1.1. There is an FPTAS for approximat-
ing Z(G) and an efficient sampling scheme for pg when:
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1. G is a A-regular bipartite graph, and the fugacities
AL and AR satisfy

AL > 6A%\R.

2. G is a biregular bipartite graph with degrees
Agr > Ayp, and the fugacity \ satisfies

AL
A > (GALAR) AR—ApL

3. G is a bireqular bipartite graph with degrees Ap, and
AR satisfying

Agr > TArlog(Ar),
and the fugacity is A = 1.

We can compare Corollary 1.1, part (2), to the
condition given by Barvinok and Regts [2] for an FPTAS
for biregular, bipartite graphs at fugacity \: Ar > Ap

and AL +An
A > (6.7@) .

A
Our bound of A > (6ALAR)ﬁ gives a significant
improvement except in the case when Ar = Ap + 1.
In fact, for A, fixed, our bound on A decreases as Ag
grows.

1.2 Correlation decay We next show that for
graphs satisfying condition (1.1), vertex-to-vertex cor-
relations decay exponentially fast in their distance. We
are able to do this because the convergence of the clus-
ter expansion, which we use to obtain the FPTAS de-
scribed above, gives detailed probabilistic information
about the model.

Let I be a random independent set drawn from the
hard-core model pg. For v € V(G), let X, = Lyer,
and p, = EX, = Prlv € I. For u,v € V(G) let
Xuv = Lywer, and pyy = EXyy, = Prlu € IAv € T].
For ACV(G), let X4 =1acr, and us = Pr[A C1].

THEOREM 1.2. For AL7AR76R7>\L7)\R satisfy-
ing (1.1), there exists constants ¢ > 0,C > 0 so
that the following holds.

ForallG € G(AL,0Rr,AR), and for allu,v € V(GQ),
we have

(1.2) v — putto] < CemPlwv),

where D(-,-) is the graph distance in G, and pc is
the hard-core model on G with fugacities A, A\r. More
generally, suppose A C V(G),B C V(G). Then

(13) 7€D(A,B)

laup — papp| < C'e ;

where the constant C' depends on € and |A|,|B|,|N(A)],
and |N(B)|.

In fact, Theorem 1.2 follows from a bound on
the truncated m-point correlation functions (or semi-
invariants, or joint cumulants), a measure of correlation
decay that arises naturally in statistical mechanics (see
e.g. [25, 7]).

For A = {v1,...,ux} € V(G), the truncated
correlation function of A is defined as

= 621 ...&iklogE [ezvthv}

)

t,=0,v€V (G)

where the expectation is over the choice of random
independent set from pug.

In particular, we can recover the vertex marginals
and the correlation between two vertices, as one can
show:

r({v}) = po
and
p({u, v}) = fuw — frufto -
For a set of vertices A C R, let MST(A) (minimum
size Steiner tree) be the smallest k so that G' contains

a connected subgraph H with k edges containing all
vertices of A.

THEOREM 1.3. If Ap,0r, AR, AL, AR
there exists € > 0 so that for any A C R,

satisfy  (1.1),

|I€(A)| < Ce—eMST(A) ,
where C' depends only on € and |A|.

Theorem 1.3 immediately implies the bound (1.2) in
Theorem 1.2 for u,v € R since MST({u,v}) = D(u,v).
We show how to derive the full conclusion of Theo-
rem 1.2 from Theorem 1.3 in Section 3.

We remark that these correlation decay results (and
the preceding algorithmic results) cannot be obtained
by showing that the hard-core model on the infinite
bi-regular tree has a unique infinite volume Gibbs
measure: for a wide range of parameters, the infinite
tree exhibits phase coexistence while we are still able
to obtain unconditional correlation decay on all finite
graphs. For example, consider the case of biregular
graphs with A = 1. Our results give exponential decay
of correlations and efficient counting and sampling
algorithms when Agr > 7AplogAjp. In contrast, a
simple fixed point calculation (i.e. the method of [19])
shows that on the infinite biregular tree for large Ay,
the uniqueness threshold is Ag = (14 0(1))224% (with
phase coexistence below this threshold and uniqueness
above the threshold). Similarly, for the A-regular case,
we prove correlation decay and give efficient algorithms
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for \;, > 6A2)\g; on the infinite A-regular tree, the
uniqueness threshold is at
1+ Agr

o(1) eAgAZ?

In both cases there is an exponential gap between the
threshold at which we obtain correlation decay and the
tree uniqueness threshold. This gap is due to the fact
that in constructing a Gibbs measure on the infinite
tree we can use arbitrary boundary conditions, while
the boundary conditions typically encountered on a
subset of a finite graph are nicely behaved (see also
the recent work [24] exploiting the difference between
arbitrary and nice boundary conditions in the context
of colorings).

Ap=(1+ (1+Ap)2.

1.3 Complex zeroes of the partition function
The polynomial interpolation method, Barvinok’s ap-
proach to approximate counting [1, 2], involves deduc-
ing convergence of the Taylor series for the logarithm of
a univariate partition function from the existence of a
zero-free region of the partition function in the complex
plane. This convergence, along with the algorithm of
Patel and Regts [26] for efficient computation of low-
order coefficients of a partition function, leads to an
FPTAS in a wide variety of approximate counting prob-
lems.

Our approach of truncating the cluster expansion
was inspired by and is related to this approach. In fact,
convergence of the cluster expansion implies that the
partition function does not vanish, and while our algo-
rithmic approach does not require it (and the preceding
algorithmic and probabilistic theorems are stated for
positive fugacities), the Kotecky-Preiss convergence cri-
teria works naturally with complex fugacities. Thus we
can deduce the following result on zeroes of the bivariate
hard-core partition function.

THEOREM 1.4. Suppose A, A >0 and

(1.4) 6ALARAR < (14 AL)5E.
Then for all G € G(AL,0r,AR) and all \p,Agr € C
satisfying
[Ar| < Agr and
14+ AL >14+Ag,

the bivariate hard-core partition function satisfies

Z(G7)\L7)\R) #0

Theorem 1.4 follows from the proof of Theorem 1.1 with
AL, Ar replaced with Ay, ARr; we give the details in
Section 2.

1.4 Discussion The cluster expansion is a perturba-
tive technique, based on expressing a partition function
in terms of deviations from a simple, easy to understand
ground state. In high temperature (small \) regimes,
this ground state is the empty independent set. Barvi-
nok’s polynomial interpolation method is also a pertur-
bative technique, and interpolating from A = 0 is akin
to measuring deviations from the empty independent
set.

Previous algorithmic applications of the cluster
expansion in low temperature (large A) regimes [15, 16]
considered systems with multiple ground states, e.g.
the all L or all R occupied independent sets for the
hard-core model on a bipartite graph. A necessary
first step in these cases is to show that the partition
function of the entire system is well approximated by
the sum of partition functions representing deviations
from each ground state. The asymmetric setting of
this paper is in fact a simpler low-temperature case
than those previously considered cases. Condition (1.1)
ensures sufficient asymmetry in a bipartite graph that
the hard-core model can be expressed in terms of
deviations from a single ground state; this ground state
is dominant enough that Z(G) is well approximated by
small deviations from it. This simplifies the general
low-temperature argument, as the first approximation
step showing Z(G) is well-approximated by the sum
of multiple partition functions is not necessary. As
such, our algorithms and analysis are perhaps the most
pure application of the algorithmic cluster expansion
method and present the best opportunity for a deeper
understanding of the power and the limits of this
method. Our study of correlation decay in terms of
joint cumulants is one example of this, where we were
able to leverage the additional probabilistic information
we get from a convergent cluster expansion to prove
correlation decay for a wide range of parameters for
which correlation decay methods based on showing
uniqueness on an infinite tree cannot succeed.

As another example, it would be interesting to see
if Markov chains can be used to efficiently sample for a
similar range of parameters as our algorithms do here.
While we do not expect that the Glauber dynamics
for sampling from the hard-core model are rapidly
mixing for all graphs and parameters satisfying (1.1) (in
particular, when the infinite tree has phase coexistence
Glauber dynamics on a suitably chosen random graph
should be slow mixing), nevertheless we do expect that
Glauber dynamics can be used to sample efficiently from
the model if we carefully choose our starting state.

CONJECTURE 1. Suppose G € G(Ap,dr,ARr) and
AL, Ar satisfy (1.1). Let n = |V(G)|. Then if we start
the Glauber dynamics at the all L occupied independent
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set and run it for O(n/e-log(n/e€)) steps, the resulting
distribution is within € total variation distance of ug.

The intuition behind Conjecture 1 is that mixing
time can be too strict a notion for the successful
use of a Markov chain for sampling — there may be
‘good’ and ‘bad’ starting configurations, and if we know
these ahead of time we can start our chain in a good
configuration and avoid the bottleneck responsible for a
slow mixing time.

2 Convergence of the cluster expansion

Following [15, 16], our algorithms will be based on
approximating the partition function of a polymer
model [14, 20] using the cluster expansion (for a text-
book introduction to both polymer models and the clus-
ter expansion see Chapter 5 of [10]).

A polymer model consists of a set P of abstract
objects we call polymers. Each polymer v is equipped
with a real or complex-valued weight w,, and there
is a symmetric compatibility relation on P; we write
v ~ ~" if v and v/ are compatible, and v ~ ~ if they
are incompatible. We require that v » « for all v € P.

The partition function of a polymer model is

> Iw

ICP  ~el
compatible
where the sum is over all pairwise compatible collections
of polymers (the empty collection contributes 1 to the
sum). If the weights w., are real and non-negative then
we can define a probability measure v on 2, with

H’YEF w7

(25) =5

v(l) =

The cluster expansion is an infinite series represen-
tation of log Z(P). A cluster I" is an ordered multiset of
polymers from P whose incompatibility graph H(T) (a
vertex for every polymer and an edge between each pair
of incompatible polymers) is connected. Denote by C
the set of all clusters from P. As a formal power series
in the polymer weights, the cluster expansion is

logZ(P) = > w(I),

rec

where

w() = o(H(T) [ w, -

yel’
and the function ¢(H) is the Ursell function

1
v 2

ACE(H)
spanning, connected

(_1)|A\ )

A sufficient condition for the convergence of the
cluster expansion is given by a theorem of Kotecky and
Preiss [20].

THEOREM 2.1. Let a : P — [0,00) and b: P — [0,00)
be two given functions and suppose that for all v € P,

D |00 < (),

v ey

(2.6)

then the cluster expansion converges absolutely, and,
moreover, for all v € C we have

(2.7) > fw@)]e!™ <a(y),
rec:
Iy er,y =y
where

b(T) = b().

yel

Now we define a polymer model representation
of the hard-core model on a bipartite graph and use
the Kotecky-Preiss condition to obtain our algorithmic
and correlation decay results. We fix bipartite graph
G with bipartition (L,R) and respective minimum
and maximum degrees dr,,Ar and dr, Ag. Fix also
activities A\, and Ag for vertices in L and R respectively.

We define a polymer v to be a 2-linked subset of
R; that is, v C R is connected in the graph G2 in
which each vertex in V(G) is joined to all vertices within
distance 2 of it in G. Let P = P(G) be the set of all
polymers of G. Two polymers 7,7’ are compatible if
~ U~ is not 2-linked and incompatible otherwise. In
particular, as required, v »~ v for every polymer ~. For
each polymer 7, we let N () be all vertices in L adjacent
to a vertex in . We define the weight of a polymer v
to be

A
(1+ )\L)\N(v)l )

Let Z(P) be the corresponding polymer model parti-
tion function. This polymer model is almost the same
as the polymer models used in [17, 22] to approxi-
mate the hard-core partition function on random reg-
ular bipartite graphs; the difference being that in those
cases, two polymer models were defined, one represent-
ing L-dominant independent sets and one representing
R-dominant independent sets, and the sum of their par-
tition functions was shown to be a good approximation
of Z(G). Here in our asymmetric setting, one polymer
model suffices, and in fact the polymer model partition
function Z(P) is, up to scaling, exactly the hard-core
partition function.

’UJ’Y:

LEMMA 2.1.

(2.8) Z(G) = 1+ ) HE(P).
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Proof. To see this, consider an independent set I €
Z(G), and decompose I N R into its maximal 2-linked
components, call these vp,...,7x. Each of these is
a polymer since it is 2-linked, and they are pairwise
compatible since each is maximal. = Moreover, the
number of vertices in L that are blocked from being in
an independent set by a vertex in I N R is Zle [N (i)l
and so if we sum over all independents sets I' so

that I’ " R = I N R, the contribution to Z(G) is

Al . :
(1+2) T, AT Summing over all possible
sets I N R, we obtain (2.8). 0

Moreover, as the proof of Lemma 2.1 indicates, if we
let v be the probability measure on sets of compatible
polymers defined by (2.5), then it is easy to recover a
sample I from pg given a sample I' from v: include all
vertices of the polymers of I" in I and in addition, for
each vertex v € L that is not blocked from being in I by
one of these vertices, include it in I independently with
probability p%)\

Next we turn to using the cluster expansion algo-
rithmically. We define the size of a cluster I' of polymers
as the sum of their sizes:

Il=2>"hl.

yel

With this definition, we can define a truncated cluster
expansion that only sums over clusters up to a certain
size which we will use for the approximate counting
algorithm.

T'eC

|IT|<m
We can then ask when T,,(P) is a good additive
approximation of log Z(P).

LEMMA 2.2. Suppose that for some n > 0 and every
v E R,

S <

) APV VENED)

Yov

then the cluster expansion converges absolutely, the

cluster weights satisfy

> w@)en <1,

rec
I'sv

(2.10)

and, in particular,
(2.11) [T (P) —logZ2(P)| < |Rle™™".

Proof. We will apply Theorem 2.1 with the functions
a(y) = |y|/2 and b(y) = n|y|. Because any polymer

incompatible with v must include a vertex of v or a
vertex at distance 2 from +, for our polymer model we
see that

Z |w7,|ea(v’)+b('y’) < Z Z |w.ys e/ 2],
A oy veER />0

D(v,y)<2

The number of vertices in R with D(v,v) < 2 is at most
(AR(AL — 1)+ 1)]v|, and so

3wy e+
v Ay
< _ e(1/2+m)1y'|
< (Ar(Ar = 1)+ 1)y max 3 fwole
v 3v
<hl/2=a(v).

by (2.9), giving (2.6). Thus by Theorem 2.1 the cluster
expansion for log Z(P) converges absolutely.

To obtain the bound (2.10), we augment the set of
polymer we consider and use Theorem 2.1 again. We
adjoin to P a polymer v, for each v € R, with w,, =0
and v, ~ v for each v © v. We set a(y,) = 1 and
b(7yy) = 0. To verify the Kotecky-Preiss condition (2.6)
still holds for P with these new polymers added, we
must also verify that for all v € R,

Z ‘w7|6(1/2+n)\v| <1.

Yov

This is implied by (2.9). Using conclusion (2.7) of
Theorem 2.1 for the adjoined polymers, we see that for
allv € R,

Yo lw@le™ < YT ()]

rec rec:

I'Sv Iy ey =y,
<a(y)=1.

The bound (2.11) follows from (2.10) by observing
that

(212) > jw@)<em™™ Y jw(@)[e" < e,

rec rec

T'Sv I'sv
IT[>m IT[>m
and then summing over all v € R. 0

With this sufficient condition for the convergence
of the cluster expansion for logZ(P) we can prove
Theorem 1.1.

Proof. [Proof of Theorem 1.1] Let G € G(Ap,dr, AR),
and let n = |R|. Let A\ and Ar be such that (1.1) is
satisfied. Let P = P(G) be the set of polymers defined
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above (without the additional polymers ~, that were
adjoined in the previous proof).

We first consider the approximate counting algo-
rithm. By Lemma 2.1, to approximate Z(G) it suffices
to obtain an e-relative approximation to Z(P); we can
then get an e-relative approximation to Z(G) by multi-
plying by (1 + Ap)El.

The bound (2.11) suggests an algorithm for approx-
imating E(P) when (2.9) holds by calculating T,, (P) for
m = log(n/e)/n and exponentiating. This can be done
as follows:

1. Enumerate all clusters T € C with |T'| < m; call the
list of such clusters C,,.
2. For each cluster I' € C,,, compute ¢(H(I')) and
H’yEF Wry -
3. Compute T, (P) by summing:
Tn(P)= Y o(H(D) []w,.
reCm ~ver
4. Output exp(Ty, (P)).

It is shown in [17], using ideas and tools from [15, 26, 3],
that this algorithm can be implemented with run-
ning time O (n - (n/e)OUes(ALAr)/M) 'which for Ay, Ag
fixed is polynomial in n and 1/e.

What remains is to show that (2.9) holds for some
n > 0. By double counting the edge boundary of a
polymer v, we have that |[N(v)| > g—ih\, and so

vl
w,| < (H) )
(1+Ap)>2c

Then using the fact from [4] that the number of 2-

linked subsets of R containing a fixed vertex v of size k
(SAR(ALfl))k_l
k3/2

Z |wv‘e(1/2+m|7‘

=L

X\ (eAp(Ag — 1)k < AR
2 K312 (14 Ap)5%

(e(Ap(Ap —1) +1))F!
1

k3/2
k
</\R> (1/24m)k
SRr.
(1 =+ )\L)AL
T e(Ar(AL 1)+ 1)

k
i 1 ((AR(AL —1)+ 1)/\Re3/2+">
! 5
=k (14 Ap)5c

is at most , we have

IN

k
) (1/24m)k

>
Il
—

x>
Il
—

Thus it suffices to show that

00 k

1 (AR(AL — ].) + 1)>\R63/2+n <

Z k3/2 SR -
(1 + )\L)AL

(NN

k=1

Since 3,5, s¥/k%/? < e/2 for 0 < s < .832, it is enough
to show that

(AR(AL — 1) + 1)Aged/2Hn

E < 832,
SR
(L4 AL)=e
o Ar(A 1)+ 1)Age” 832
(Ar(Ap =)+ DAge” _ 832 o
SR e3/2
(1+AL)%e
In particular, if (1.1) holds then
(Ar(Ap — 1)+ 1)Agr -1
— 6 )

S
(1+Ap)3e

and so we can obtain (2.9) with n = .1 < log(6 - .1856).
Applying the algorithm of [17] gives the FPTAS for
Z(@G).

Next we turn to approximate sampling. The
usual approach to using an approximate counting al-
gorithm to obtain an approximate sampling algorithm
is via self-reducibility [18]. We cannot directly ap-
ply this in our setting, however, as reducing a graph
G € G(AL,0r,Agr) might result in a graph G’ ¢
G(ApL,dr,AR) because of the minimum degree condi-
tion. Instead we can apply self-reducibility on the level
of polymers, using [15, Theorem 5.1], which provides a
general reduction of approximate sampling to approxi-
mate counting for polymer models. The high-level idea
of the algorithm, applied to our setting, is to create a
compatible polymer configuration I' one polymer at a
time, with a final distribution close to v given in (2.5).
Once we have such a configuration I' we can extend this
to an independent set I € Z(G) as described in the re-
mark after Lemma 2.1.

To approximately sample from v, we order the ver-
tices in R arbitrarily, and then one-by-one we deter-
mine which, if any, polymer containing a given vertex
v is present in I". Based on the previous choices, some
polymers in P are excluded from future choices as their
addition would form an incompatible pair of polymers,
and so the calculation of marginal probabilities involves
approximating Z(P’), the partition function of a set of
polymers P’ C P. While the polymer model associ-
ated to an arbitrary set P’ C P may not map to the
hard-core model on any graph, this polymer model au-
tomatically satisfies (2.6) if the original polymer model
does, since the condition only becomes weaker on re-
moving polymers. Thus we can efficiently approximate
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E(P’) using the algorithm from [17], and thus sample
efficiently from v. |

Next we prove Corollary 1.1.

Proof. [Proof of Corollary 1.1] Parts (1) and (2) follow
from simple substitutions into (1.1).

For (3), we set A, = A and Ar = cAlog(A), and
ask for which ¢ we have

(2.13)
clog2log A — 2log A —loglog A —logc —1log6 >0,

which implies (1.1) is satisfied. Some simple calculus
shows that (2.13) is satisfied for A > 2 when ¢ > 11.
But if we use the fact that for A < 5, an FPTAS is given
by Liu and Lu [23], then we see that (2.13) is satisfied
for A > 6 when ¢ > 7. O

Finally we prove Theorem 1.4, which follows almost
immediately from the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.4] Condition (1.4) is the
same as Condition (1.1) with Az and A replaced with
A and Ag. If A\ and Ar are complex such that
[Ar| < Ag and |1+ Ap| > 14+ Ap, then for any polymer

7>
A o]
(1+Ap)5c

Condition (1.4) for Ay and Ag then suffices for the
analysis in the proof of Theorem 1.1 to show Condi-
tion (2.9) holds for Az and Ar. Lemma 2.2 then im-
plies the cluster expansion for A; and A converges
absolutely. Because the cluster expansion is a conver-
gent power series for log Z(P), for these Ay, and Ag the
polymer partition function Z(P) cannot be zero and so
Z(G) = (1 + A\p)IFIZ(P) is also nonzero. O

A
(1+ ,\L)\N(v)l

‘w'y| =

3 Correlation decay

As Dobrushin showed [6, 8] the cluster expansion and
the Kotecky-Preiss convergence condition are very well
suited to studying the cumulants and joint cumulants
of random variables that are functions of polymer
configurations.

It follows almost directly from estimates such
as (2.10) that the magnitudes of joint cumulants of ran-
dom variables that depend on disjoint polymers decay
exponentially in the distance between these polymers
(Theorem 1.3). The joint cumulant of a set of random
variables vanishes if there is a non-trivial partition of
the set into two sets of random variables that are in-
dependent of each other, and this holds approximately

as well. Showing joint cumulants decay exponentially
in the distance between polymers shows a form of de-
cay of correlations, and in fact implies the perhaps more
familiar form of (1.3).

While the techniques and calculations described
here are very similar to those in [6], and the properties
of joint cumulants are standard facts in the study of
statistical mechanics on lattices, we present the proofs
in a self-contained way in order to emphasize their
elementary nature and to encourage the use of these
methods in computer science and in non-lattice settings.

We again fix a graph G and consider the associated
polymer model with polymers P and partition function
E. We suppose that (2.9) holds for some n > 0 and
calculate exact expressions for the joint cumulants in
our setting using the cluster expansion. We begin by
introducing auxiliary polymer weights as follows. Given
variables t,, v € R, let

s t
Wy = wweZvev v,

and let = be the polymer model partition function
derived from these weights. Let X, = 1,1 for I
drawn from pe and recall that the distribution of IN R
(the set of occupied vertices in R) is identical to the
distribution of (J,cpv (the union of polymers) for a
polymer configuration I' drawn from v. Using this we

can write

EeEUER oy X =

v [ et

rcp yel
compatible
1
S | R
I'CP — ~el

compatible

[11] [11:

For a set A C R we can then write the joint
cumulant of A as

a‘Al log EeZuER t/”X’U

k(A) :
HuEA ot t,=0,0EV(G)
B 3|A‘ logé
HuEA atu t,=0,0€V(G)

For a vertex v € R, and a cluster T, define Y, (I") to be
the number of polymers in I' containing v:

Y1) => lye.

~eTl

Then using the cluster expansion for log = (and the fact

Copyright © 2020 by SIAM
Unauthorized reproduction of this article is prohibited



that it converges absolutely if ¢, < 7 for all v), we have

t,=0,0€V(G)
(3.14)

=> w(l) [] YD)

recC vEA

From this expression we can immediately derive Theo-
rem 1.3.

Proof. [Proof of Theorem 1.3] We will show that for

ACR,
Yo lw@) T Yo

r'eC veEA

(3.15) < Cem™MST(A)/2

where C' depends on 7 and |A|. The size of a cluster
I’ containing all vertices of A is at least MST(A)/2,
where MST(A) is the number of edges of the minimum
Steiner tree in G containing A; this Steiner tree will
contain MST(A) + 1 vertices, and at least half of these
vertices will be in R. More generally suppose a cluster
" contains Y, (T") > 1 copies of v for each v € A. Then

(A)/2+ > (Yol

vEA

(3.16) IT| > MST(A ~1)

since each additional copy of a vertex contributes 1 to
the size of T'.

We arrange the sum on the LHS of (3.15) based on
the number of copies of each v € A:

Y @] ] Yu(D)

rec vEA
= > X O]
{yo>1}vea T'eC vEA

Y, (T)=y,VveEA

Now since Condition (2.9) holds with constant n > 0,
we can use (2.12) and (3.16):

Y @] Y@

r'ecC vEA
< Z e~ MMST(A)/2437, c 4 (Yo — H Yo
{yv>1}vea veA
< ¢MST(4)/2 Z e vealyv—1)) H Yo
{yv>1}vea veA

< Ce—’r]MST(A)/Q ,

and so the conclusion of Theorem 1.3 holds with € = 7/2

and
>

{yuZl}ueA

C — e—nzveA(yv—l)) H Yo < 00.

vEA

To prove Theorem 1.2 we need to do two things.
First we need to show that the exponential decay of
joint cumulants in the minimum Steiner tree size implies
that |uaup—papp| decays exponentially in the distance
from A to B; second we need to extend these results
from sets of vertices contained solely in R to general
sets of vertices in L U R.

LEMMA 3.1. Suppose A C R and B C R are disjoint.
Suppose also that for any S C AU B so that SN A # ()
and SN B # (), we have

k(S| < .

Then
lpaus — paps| < Ce

where C' depends only on |A| and |B|.

Proof. We will use the following formula (see e.g. [21]):
> 1I#)
TEX(A) Sem

where X(A) is the family of all set partitions of A. This
gives

>, I~

TEL(AUB) Sem

> s

TEX(A) SeT

HAUB —MHARB =

> 1#9

TEX(B) Sem

Now if we restrict the first sum on the RHS to those
partitions whose parts are either entirely within A or
entirely within B, then we obtain exactly papp which
cancels the second term on the RHS, and so we obtain
(for || the number of sets in partition 7):

S ke

TeX(AUB) Serm
38’ en:S'NA#D,S' NB#(

HAUB — HAUB =

Now since |k(S")| < € for S’ that intersects both A and
B, and the partitions in the above sum have at least one
such S’, we have

lpaus — paps| < Ce

where C' is the number of set partitions of A U B,
times the maximum size of a joint cumulant of at
most |A| 4 |B] indicator random variables raised to the
|A|+ |B| power, which depends only on |A| and | B] [21].
O

With these ingredients we prove Theorem 1.2.
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Proof. [Proof of Theorem 1.2] It suffices to prove the
second statement in the theorem as the first follows by
taking A = {u}, B = {v}. First we consider the special
case AC R,BCR.

For any S C R that intersects both A and B, we
have MST(S) > D(A, B). Then from Theorem 1.3 we
have |k(S)| < Ce="(AB)/2 for such S. Then applying
Lemma 3.1, we obtain

\mauvs — papp| < Cle AR

Now we consider the general case A C V(G),B C
V(G). We assume that D(A,B) > 2 as otherwise
the statement is trivial. We can also assume that
both A and B are independent sets in G, as otherwise
both paup and papup are 0. We say a vertex v is
unblocked by the independent set [ if N(v) N1 = .
Let fi, = Pr[v unblocked], and for a set of vertices S,
fus = Pr[S unblocked]. Then if S is an independent set

itself,
A IS|
Hs = <1+/\) us -

To see this, note that S must be unblocked to be in
the independent set. Given that S is unblocked, since
S is independent itself, the probability that each vertex
v € S is in the independent set is 14%\ and these events
are conditionally independent over the vertices in S.

For S C V(G), we introduce the notation pg =
Pr[SNI = 0. If S C L, by definition, jis = ppy(s)-
Using inclusion exclusion, we have, for T' C R,

pT = Z (—1)|Q|MQ,
QCT

where the sum includes the empty set and pp = 1.

Now suppose A C V(G), B C V(G), and let Af, =
ANL,Ap=ANR, B =BNL,Bg = BN R. Then,
since A is an independent set in G, we can write

A [Ar|
MA:(I—FA) PI‘[ARQI/\N(AL)QI:@]

A [Ar|
~(133) X 0%
QCN(AL)

We can write similar formulae for pup and paygp.
Considering papp, and using the fact that N(Ap) N
N(BpL) = 0 since D(A, B) > 2, we can simplify

>

Q'CN(BL)

(1) g,

Z (*l)lQl:u'QUAR

QCEN(AL)

- =

QCEN(AL),Q SN (BL)

(=119 guanboruBs -

Therefore we have
HAUB — HAMB

N \AzrlFIBLl
:(1+)\> Z [HQUARLQ'UBR — HQUARIQ'UBR],
QCN(Ar)
Q'CN(BL)

and so, as A/(1+ X) <1,

|MAuB - NAMB|
SQ‘N(AL)‘JFUV(

BL)' ma. ’ — ’ .
QQN&(‘L)‘,U/QUARUQ UBr—HQUARMQ'UBR|

Q'CN(Br)

The first factor is bounded by a constant that depends
only on |[N(A)|,|N(B)|. Now let A = QU AR and
B =Q UBp. Then A C R and B C R, and moreover
D(A, B) > D(A, B)—2, and so we can apply the special
case above to obtain

|LQUARUQ'UBR — HQUARMQ UBR| < Cle~"P(AB)/241

and combining these bounds we get

\wavp — papp| < Ce"PAB)/2

for a constant C that depends only on
m, |A|a|B‘7|N(A)|a|N(B)‘ Setting € = 77/2 we ob-
tain Theorem 1.2. O
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