Machine-learned Decision Trees for Predicting

Gold Nanorod Sizes from Spectra

Katsuya Shiratori'", Logan D.C. Bishop?*, Behnaz Ostovar’, Rashad Baiyasi®, Yi-Yu Cai>',

Peter J. Rossky>*>, Christy F. Landes***°, and Stephan Link*?°

'Applied Physics Graduate Program, *Department of Chemistry, *Department of Electrical and
Computer Engineering, “Department of Chemical and Biomolecular Engineering, *Smalley Curl

Institute, Rice University, 6100 Main Street, Houston, Texas 77005, USA.



Abstract
Electron microscopy is often required in order to precisely correlate the size and shape of

plasmonic nanoparticles with their optical properties. Eliminating the need for electron microscopy
is one crucial step towards in situ sensing applications, especially for complicated sample
conditions such as during irreversible chemical reactions or when particles are embedded in a
matrix. Here, we show that a machine learning decision tree can accurately predict gold nanorod
dimensions over a wide range of sizes. The model is trained using ~450 nanorod geometries and
corresponding scattering spectra obtained from finite-difference time-domain simulations. We test
the model using a set of experimental spectra and sizes obtained from correlated scanning electron
microscopy images, resulting in predictions of the dimensions of gold nanorods within ~10% of
their true value (root mean squared percentage error) over a large range of sizes. Analysis of the
decision tree structure reveals that a simple correlation with resonance energy and linewidth of the
localized surface plasmon resonance is sufficient to predict nanorod dimensions, notably
outperforming more complicated models. Our findings illustrate the advantages of using simple

machine learning models to infer single particle structural features from their optical spectra.



Introduction

Plasmonic metal nanoparticles are effective candidates for photovoltaic energy
conversion,'™ photocatalytic reactions,”® and surface-enhanced spectroscopies.”!? The collective
oscillation of the conduction band electrons, also known as the localized surface plasmon
resonance, boosts the signal of scattering and absorption by enhancing the electromagnetic fields
around and inside the nanoparticle.!> ' Anisotropic nanoparticles like gold nanorods (AuNRs)
have two plasmon resonance peaks corresponding to longitudinal and transverse modes. The
longitudinal mode can be tuned by varying the aspect ratio and overall size of AuNRs, as the
localized surface plasmon resonance is strongly linked to rod morphology!'>??. The strong
relationship between AuNR size and optical properties makes sensing applications attractive, but
most synthesis methods generate distributions of morphologies, necessitating characterization
before translation of such products to applications.??>> By developing in situ optical approaches
for real time size determination, independent verification of AuNR morphological features could
be eliminated.

Characterizing AuNRs requires electron microscopy and spectroscopic measurements. If
carried out on the ensemble level, mean AuNR dimensions are related to averaged plasmon
resonance maxima.?* Precise connections between AuNR morphology and optical properties are
achieved using single particle spectroscopy correlated with electron microscopy of the same
individual AuNRs.26-2® This approach is time-consuming and often destructive to the sample,>*°
and cannot be used when a process induces irreversible morphological changes. S6nnichsen and
coworkers showed that it is possible to overcome these challenges using a numerical method to
estimate the size of AuNRs from their measured optical spectra based on a database consisting of

simulated spectra and their corresponding sizes.?! Their method predicts AuNR sizes with widths



up to 50 nm. For large AuNRs, radiation damping significantly broadens the spectral linewidths
and phase retardation redshifts the resonance maxima.'® 32> This work, however, demonstrates
the strong potential for the use of estimation methods that compensate for correlations between
spectral features and morphological structure.’!

Implementation of machine learning (ML) in nanoscience experiments, sometimes called
nanoinformatics, takes advantages of experimental/simulated data patterns for prediction and

classification.® 37 In recent years, ML has been used to characterize heterogeneous catalysts®s4!

and metallic nanostructures,**>°

as well as to optimize their structural parameters for desired
optical properties.’!">* He et al.>> demonstrated that deep neural networks can predict the size of
nanoparticles after training and testing with more than 2000 simulated spectra. Pashkov et al.*’
utilized supervised ML for the parametrization of the simulated UV-vis spectra of gold
nanospheres and nanorods as a function of particle morphology. One avenue for simplifying
characterization of AuNR dimensions is to use ML models trained on simulated spectra to predict
experimental data. A simple model, such as a decision tree, is suitable due to ease of
implementation, interpretation, and visualization.’®>® Training a decision tree can draw
connections between experimental features and structural properties that are difficult or impossible
to collect from a relatively small amount of simulated training data, potentially eliminating the
need for time-consuming correlated electron microscopy.

In this paper, we train a decision tree regressor (DTR) using a dataset of ~450 finite-
difference time-domain (FDTD) simulated spectra to correlate the linewidth (I') and the resonance
energy (Eres) with AuNR width and length. When validated on simulated FDTD spectra, 90% of

all predicted AuNR dimensions are within a relative error of 10% compared the ground truth.

Predictions based on two experimental datasets of AuNRs with correlated dark-field scattering



(DFS) and scanning electron microscopy (SEM) measurements achieve an accuracy when
expressed as the root mean squared percentage error (RMSPE) of ~10%. We show that other
decision tree-based ML models that increase in complexity do not lead to higher accuracy
predictions for the AuNR dimensions. Further, analysis of other spectral features such as the
maximum intensity (Imax) suggests that I' and Eres are sufficient for size prediction, but for more
complex characterization, intensity could be another input for improving the ability to use ML to

correlate spectral properties with AuNR dimensions.

Experimental and Theoretical Methods

AuNR Sample Preparation. Two different size distributions of chemically synthesized AuNRs,
Sample 1 (small AuNRs: 29 + 2 X 78 + 9 nm) and Sample 2 (large AuNRs: 63 +4 x 151 £ 10
nm) were used to test the predictive power of the DTR on experimental data (Figure 1A). Figures
IB and 1C display experimental DFS spectra of representative AuNRs from each sample.
Increasing AuNR size introduces significant broadening of I' while Eres redshifts, especially when
considering the actual aspect ratios of 3.2 and 1.9 for the small (Figure 1B) and large (Figure 1C)
AuNRs, respectively. Small AuNRs were synthesized using a modified seed-mediated growth
process developed by Ye et al.’® and large AuNRs were obtained via a synthesis method developed

by Ming et al.*°

Details of the synthesis protocols for these two samples and their structural
characterization are described in previous publications.?® ! Quartz substrates, indexed with an
evaporated gold film pattern for correlated optical and electron microscopy, were cleaned with O2

plasma for 2 minutes.®! AuNRs were then spin coated on the indexed quartz slides for 60 seconds

at 2500 rpm to achieve single particle coverage.



Correlated SEM and DFS. For single particle DFS measurements, we used a home-built setup
based on an inverted microscope (Zeiss Axio Observer.D1m) with a 50x air objective having a 0.8
numerical aperture (Zeiss EC Epiplan-Neofluar). The excitation light focused on the sample with
an oil immersion dark-field condenser was produced by a halogen lamp (Zeiss HAL 100). The
scattered light passed through a pinhole with a 50 um diameter (Thorlabs P50S) to achieve a
confocal geometry. DFS images were constructed by moving the sample with a piezo scanning
stage (Physik Instrumente P-517.3CL) and detecting the spatially filtered light on an avalanche
photodiode (APD, PerkinElmer SPCM-AQRH-15). Single particle DFS spectra of the imaged
particles were captured by redirecting the signal of each particle to a spectrometer (Shamrock
SR193i-A) connected to a charge-coupled device (CCD) camera (Andor iDus 420 BEX2-DD).
Spectral background noise was recorded with the same integration time of 3 seconds as used for
the spectra and obtained from an area near the AuNR where no other nanoparticles were located.
Furthermore, spectra were corrected for the white light spectrum from the halogen lamp, obtained
by switching to the transmitted light mode of the condenser and recording the spectrum with the
same CCD camera. Our confocal DFS setup yielded spectra with high signal-to-noise ratios
(Sample 1: 154, Sample 2: 904), allowing for accurate fitting to a Lorentzian function (see Figures
1B and 1C). After all optical measurements, correlated SEM images were taken using a FEI Quanta
400 ESEM FEG in low-vacuum mode operating at a voltage of 30 kV with a final resolution of
~1.5 nm. AuNR dimensions were determined from these correlated SEM images for all individual

AuNRs.
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Figure 1: AuNR sample characterization. (A) Distributions
of width and length of Sample 1 and Sample 2. Representative
DFS spectra of a AuNR from Sample 1 (B) and one from
Sample 2 (C) and their correlated SEM images given as insets.
The solid black lines are Lorentzian fits of the spectra while
vertical and horizontal lines mark E.s and T, respectively.

FDTD Simulations. The commercial
software package Lumerical FDTD
Solutions was employed to create a
dataset of 576 spectrally resolved
scattering cross sections of AuNRs to be
subsampled and used as training and
validation data (see Figure S1 for the
width and length distributions). The
geometry was approximated as a
hemisphere capped gold cylinder
surrounded by a 3.5 nm
cetyltrimethylammonium bromide shell
with a refractive index of 1.44 to account
for the ligand molecules.®> We employed
the bulk gold dielectric function
measured by Johnson and Christy to
describe the AuNRs® sitting on a semi-
infinite quartz substrate with a refractive
index of 1.52. We illuminated the
AuNRs using a total-field scattered-field
source with a normal incidence wave

vector using a 0.5 nm computational



mesh size. We used default convergence criteria with perfectly matched layers to avoid errors

arising from reflections at the boundaries.

Optical Feature Extraction. I' and Ers of the longitudinal surface plasmon resonance were
selected as input features for the model (Figures 2A and 2B), as previous research has indicated
that they are strongly correlated to AuNR dimensions.?” 28 31:35.64 Three datasets were created to
build the decision tree: training, validation, and testing. Training and validation data were sampled
from a library of 576 FDTD simulated spectra where Eres and I' were correlated to AuNR width
and length. The testing data was comprised of 46 pairs of correlated experimental optical spectra
and SEM measurements, providing real size measurements correlated to the trained input features
Eres and T'. Simulated spectra resembling data in the testing data were excluded from the training
and validation data. All experimental and simulated spectra were fit with a Lorentzian function to
obtain Eres and I'. Spectra that could not be fit with a Lorentzian due to peaks trailing outside the

range of measured wavelengths were excluded.
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Figure 2: Data flow and representative schematic of
the DTR model. (A) FDTD simulated AuNR DFS
spectrum with two key features, E.s and I" annotated on
the graph. (B) Experimental DFS spectrum with matching
annotations and correlated SEM image shown in the inset.
(C) A schematic of the DTR algorithm predicting width
and length of a AuNR by assessing E, or " through three
layers of decision nodes, two representing branch
conditions and one being length/width assignment. Final
decision nodes correspond to a linear function f(Ers, I')
that can predict nanorod dimensions for that range of Eyes
and T.

Decision Tree Construction. The decision
tree was constructed through recursive
partitioning of the I' and E:es feature space to
map similar outputs to matching input feature
combinations. Mapping was achieved through
construction of several layers of decision
nodes, each with a machine-learned pivot
value that makes a greater-than/less-than
comparison for a single feature (Figure 2C).
Teaching the decision tree using feature
combinations with known outcomes, referred
to as training data,®> determines the pivot
values for each decision node and develops
the branching conditions necessary to map
different feature combinations to expected
AuNR dimensions. Hyperparameters are user

defined values that determine how a model

learns patterns from training data and guides

the structure of the decision tree in terms of number of layers and number of decision nodes per

layer.®> All hyperparameters were tuned to find the best trade-off between the number of layers,

number of decision nodes per layer, and highest accuracy for training data. Here, five layers were

sufficient to predict AuNR width and eight layers to predict AuNR length, with the requirement

that each terminal decision node contained at least one sample. The hyperparameters of each model



were optimized using the machine learning library PyCaret (https://pycaret.org) and grid search,®
which exhaustively generate the appropriate hyperparameters from a grid of hyperparameter
values (see Table S1 for hyperparameters of other models). The following decision tree models
were tested to compare prediction performance: Decision Tree Regressor (DTR),”” 8 Random
Forest Regressor (RFR),% Gradient Boosting Regressor (GBR),®” XGBoost Regressor (XGB),®
CatBoost Regressor (CBR)® and LightGBM Regressor (LGBM).”® All models were implemented
in Python, leveraging code provided by Scikit-learn.”! After implementation, all models were
compared based on the accuracy of predictions in the testing step in order to finalize the model
selection (see below for a discussion on the comparison in accuracy). As an example of
computational time needed, training the DTR took 3.58 ms + 170 us and testing 20 spectra 1.48
ms + 52 us on a laptop computer running Mac OS Big Sur (Version 11.4) with a 2.3 GHz Quad-
Core Intel Core i7 processor and 16 GB of memory. An executable program based on our ML
algorithm can be accessed at http://sizeprediction.rice.edu (see the Supporting Information for a
user manual). The original code named “AuNR DTR” is furthermore available for download

through a GitHub repository (https://github.com/LandesLab/AuNR_DTR).
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Results and Discussion

The prediction accuracy of our DTR converged using a notably small training dataset (~450

spectra), indicating that a simple relationship between our input features and AuNR dimensions

must exist.”>’* One key concern in a ML implementation is the possibility of over/under fitting
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Figure 3: Learning curves for the decision tree model
performance on simulated data. RMSPE for (A) width and
(B) length as a function of the data size. Validation curves are
represented by squares and training curves are represented by
circles. The shaded areas around each curve were generated by
ten-fold cross-validation. Error curves converge at 8.5% and
5.3% RMSPE for the width and length, respectively.

due to the limited scope of training data.
We utilized ten-fold cross-validation on
increasing data size to illustrate the
generalizability of the model.®> Here, a
subset of the simulated spectra were
randomly selected and used for cross-
validation. The pool of simulated spectra
was divided into ten unique subsets. Nine
subsets were selected to train the model,

while the remaining subset was used as

validation data. The process of training/validating the model was repeated ten times where each

iteration used a new combination of nine training subsets and one validation subset. Similar model

output between different combinations of training/validation data indicate that the model is not

skewed by the dataset and can be generalized to experimental results. To quantify the accuracy of

our model, the RMSPE (the square root of the mean square of the relative error over a set of

predictions) was averaged over all ten iterations of validation to form learning curves (see Table

S2 for the definition of RMSPE).*® The learning curves generated by cross-validation detect

over/under fitting by examining the convergence of the model error based on the number of

samples in our data.
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Figure 3 illustrates the convergence of training and validation learning curves to a shared

asymptotic bound around 300 data points (see Figure S2 for the learning curves of other models).

The prediction error stabilized at 8.5 % for the width (Figure 3A) and 5.3 % for the length (Figure

3B) for both training and validation data. Reaching a convergent error of <9% with such a small

dataset implies that the relationship between spectral shape and AuNR size is simple enough to be

captured using just two features, I' and Ers. However, the correlation between features, a factor

avoided through the pattern recognition of a decision tree, complicates the implementation of a

linear relationship between spectral features and AuNR dimensions.”
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Figure 4: Evaluation of the model on simulated validation data.
The histograms (bars, left y-axis) and cumulative densities (lines,
right y-axis) of relative errors of width (blue) and length (red) for
FDTD simulated validation data. Note that we had a total of 576
simulated data and randomly made 80% the training data and 20%
the validation data. The horizontal dashed lines of width (blue) and
length (red) indicate exact values of cumulative density where each
population reaches 10 % relative error (vertical dashed black line).
The inset shows the residuals for the predicted width and length at

Analysis of the validation results in
Figure 4 demonstrates that the model
predicts AuNR dimensions with
<10% relative error on 90% of all
samples. To better understand the
results of our ML model, we
aggregated all prediction results from
the ten-fold validation process into
histograms based on the relative error
of the predictions from the true values
provided by simulated data. Figure 4
presents the distribution of relative

errors for AuNR dimensions used in

the FDTD simulations with annotations denoting the percentage of the population achieving a

relative error of <10 %. Predictions for AuNR length are generally more accurate than predictions
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for width, likely a result of the higher sensitivity of the longitudinal surface plasmon resonance to
AuNR length.!> Two key factors in the training data of a ML model are the breadth of coverage
for different features and the skewing of data towards specific feature combinations. Both factors
can be assessed as a function of prediction error over several iterations of training/validating and
analysis of outliers, respectively. Error statistics were calculated by retraining the DTR 100 times
using different subsets of 80% of the total 576 simulated spectra and validating against the
remaining 20%. Variations in structure due to randomness in training were shown to have no effect
on the quality of prediction. Here, low errors indicate that the dataset used for training adequately
describes the range of feature combinations under investigation and that our results are not due to
sampling errors between training and validation data. Regarding outliers, the inset of Figure 4
illustrates that the prediction outliers are evenly distributed over sizes, indicating that the decision

tree accuracy is not biased by AuNR size.
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Figure 5: Evaluation of the model on experimental data.
(A) Measured (x-axis) vs. predicted (y-axis) size scatter plot for
width and length of 26 AuNRs in Sample 1 and 20 AuNRs in
Sample 2. Error bars are located at the average of the dataset
and are calculated from the error in the SEM measurement and
the aggregate of 15 trained DTRs performing 15 independent
predictions for the same experimental spectra. Each of the 15
DTRs were trained with 461 simulated spectra chosen
randomly from the entire dataset of 576, with spectra matching
the experiments excluded. Dashed lines denote +10% error in
prediction (width: 71.7%; length: 76.1%). (B) The histograms
(bars, left y-axis) and cumulative densities (lines, right y-axis)
of relative errors of width (blue) and length (red) for both
samples combined. Note that in this case the 15 independent
predictions for each AuNR were not averaged. The vertical
dashed line denotes relative error of 10% and the horizontal
dashed line denotes cumulative density of 0.8. The exact points
of intersection for 10% relative error appear at cumulative
densities of 0.74 for the width and 0.78 for the length. The inset
shows the residuals for the predicted width and length at the
15th cycle compared to true values determined by SEM.

The DTR predicts experimental
AuNR width and length over a broad
range of sizes (Figure 5), suggesting that
simulations are sufficient to learn the
correlation between scattering spectra
and AuNR dimensions. After training on
461 (80% of 576) simulated spectra, the
model was tested by predicting the width
and length from experimental DFS
spectra compared to correlated SEM
measurements. Figure SA compares the
prediction to sizes measured via SEM for
Samples 1 and 2 (see Figure S4 for
additional testing of experimental
datasets containing a mixture of AuNR
sizes). Statistics were generated by
performing predictions with 15 iterations
of the decision tree and averaging the
predicted sizes. Error bars in Figure SA
are representative of each experimental
dataset and are the average of the

standard deviations for each prediction

(Sample 1: width: = 0.73 nm, length: +

14



3.91 nm and Sample 2: width: + 1.44 nm, length: + 3.10 nm). Variability in prediction results based
on the number of iterations is discussed in Figure S3.

Averaging 15 independent predictions for the width and length of each of the 46
experimental AuNR spectra, we find that 74% of the predicted AuNR dimensions averaged over
width and length are within a relative error of 10% compared to their SEM measured sizes (Figures
5A). Increased accuracy over a wider range of sizes, compared to the reported method,?! is likely
because decision trees natively incorporate correlations between variables into the decision-
making process,’’ eliminating the need for feature independence required by other regressive
methods. Although decision trees are a discriminative model that provides hard boundaries for
classification,”’ they do not offer mechanistic insight into how perturbations in Eres and T reflect
changing AuNR dimensions. Relating feature values to ground truth physical chemistry is easier
using regressive methods, which can connect results directly to experimental quantities in the form
of weights to a fitted function, even if there are limitations to the range of predictable values. The
selection of a classification method over a regressive method then represents a trade-off of
accuracy at the detriment of interpretability.

The DTR gives similar prediction accuracy for experimental testing data as for simulated
validation data. Figure 5B, an analog of Figure 4, shows the histogram of relative errors of each
width and length prediction for experimental data. Transitioning to predictions on experimental
data only incurs a modest decrease in accuracy, with 76% of all predictions averaged over width
and length achieving <10% error. Note that the histogram includes all predicted values obtained
from 15 independently trained decisions trees and no averaging over these 15 iterations was
performed unlike for Figure SA. The slight difference in the percentage of AuNRs having a relative

error <10% when comparing Figure 5A and Figure 5B likely reflects that the sizes predicted for a
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subset of AuNRs had a greater variance among the different decision trees, as can be seen from
the distribution in Figure 5B extending to relative errors of 40%. Finally, when the data in Figure
5B is expressed in terms of RMSPE, accuracies of the width and length for Sample 1 are 11.4 +
1.9% and 12.0 + 3.1%, respectively, while the corresponding values for Sample 2 are 8.7 + 1.1%
and 5.0 = 1.1 %, compared to 9.7 + 1.8% for the width and 9.2 + 2.4% for the length when using
simulated spectra for validation (Figure 4). Overall, this analysis demonstrates that ML predicts
the dimensions of gold nanorods within ~10% of their true value over a large range of sizes.

The sources of the greater error compared to validation of simulated spectra are likely due
to real-world considerations not included in the simulated training data like signal-to-noise ratio
and non-ideal AuNRs morphologies.’” Decision tree predictions could be improved through the
inclusion of experimental data in the training process, especially if the data is sampled from the
instrument used to collect testing data. In doing so, correlations between features of interest like
Eres and I, driven by experimental measurement conditions, could be anticipated in the model and
subsequently improve the prediction accuracy. However, the fact that experimental predictions
approach an error limit very similar to that found during model validation further suggests that
FDTD spectra are accurate approximations of real-world results. It is reasonable to expect
predictions to be less accurate when shifting to testing from validation data, but our model still
provides comparably accurate predictions. In addition to the inclusion of experimental spectra in
the training data it could be further refined by also increasing the total amount of training data
available spanning an even wider range of dimensions. Doing so could allow the DTR to categorize

a wider range of feature-size relationships.
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Figure 6 compares the performance of linear regression against DTR and other decision

tree-based models using the metrics of R?> and RMSPE (see Table S2 for the definition of R?) for
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Figure 6: Statistical indices evaluating several different
methods for predicting AuNR size from experimental
spectra. The accuracy of several decision tree-based models
compared to the linear regression (LR) prediction. The models
tested include DTR, RFR, GBR, XGB, CBR, and LGBM for
(A) Sample 1 and (B) Sample 2. Statistical indices were
calculated for from all 46 predictions of AuNR width and
length combined. The blue dotted lines mark R?= 0.95 and the
red dotted lines mark RMSPE = 10%.

both Sample 1 and Sample 2. In all cases,
decision tree-based models outperform
linear regression® in both metrics. Here,
we see that AuNR sizes in Sample 2
could be predicted with higher accuracy
than those in Sample 1. As we show
below in Figure 7, this increased
accuracy for the larger AuNRs is due to
larger linewidths being more beneficial
for accurate size predictions. We
conclude that the relationship between
spectral features and AuNR dimensions
is non-linear but not prohibitively
complex, as a simple DTR using only two
features achieves higher accuracy than
other tree-based models that use higher
complexity decision making. While
linear models are easier to interpret for
accurate

mechanistic insights,

predictions based on non-linear DTRs rely directly on recognition of the underlying patterns

among features in the data. It is important to note that size predictions obtained from polynomial
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interpolation of our simulated spectra and tested with Sample 1 and Sample 2 resulted in RMSPE
values exceeding 50% (Table S3). This difference might be attributed to the compatibility of our
simulated dataset with conventional interpolation methods because interpolation requires
systematically varied data points to cover the entire range of AuNR aspect ratios without any

gaps,’! while our simulated spectra were generated for a more random distribution of sizes (Figure

S1).
Prediction accuracy depends
Max
r VT I O — 0. conditionally on the values of I' and Eres
R —"““ . 23 . .
Eres $s while Imax has no impact on the model
|max
Detrimental | Beneficial . .
' L Min (Figure 7). Model success is correlated to
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Figure 7: Impact of feature value on model prediction for
simulated data. SHarply Additive exPlanation (SHAP) values
for the spectral features I', Eres, and Imax in the order of impact
on prediction of AuNR dimensions from the DTR. The red-
blue colormap represents larger/smaller values of I' and E,

the values of some features can reduce
the accuracy of predictions. One way of

normalized to the range between the maximum and minimum | Measuring the contribution of different

values of the feature in the dataset. Negative/Positive SHAP )
value is detrimental/beneficial for the prediction, respectively. features to a ML model is to use SHarply

Additive exPlanation (SHAP) values (see Table S2 for the definition of SHAP).”® In general, a
positive or negative SHAP value corresponds to a feature being beneficial or detrimental to model
accuracy, respectively. Figure 7 shows SHAP values calculated from training data used in Figure
4, illustrating a correlation between the value of the feature (red-blue gradient) and the contribution
to the model. SHAP values demonstrate that the larger I' values in the distribution provided the
greatest improvement in model prediction accuracy. Broader linewidths are indicative of larger
AuNRs and likely serve as a discriminator for the aspect ratio when Eres values are similar. Larger

Eres values proved detrimental for model prediction, likely because blue-shifting of Eres causes
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spectral overlap with the interband transitions of gold near the L symmetry point (~2.4 eV),
resulting in deviations from a Lorentzian spectral line shape.!> 7”78 The value of Imax was found
to have no discriminatory value, and as such was not included in the analysis presented in Figures
3-6. One reason is that Imax is not only affected by the shape of the AuNR but is also dependent on
instrumental settings like source power and integration time. While Imax scales with increasing
AuNR size in simulation, incorporating it as a feature in training data would require normalization.
Such normalization could potentially be achieved by always measuring an internal standard on the
same sample substrate (e.g., gold nanospheres or polystyrene beads) and evaluating Imax as a ratio
against this standard. Inclusion of other spectral features that are independent of instrumental
contributions, such as other statistical moments of the Lorentzian like skewness or excess, could

potentially increase the predictive power of the DTR though.

Conclusions

We trained a DTR model with simulated spectra, allowing accurate predictions of AuNR
sizes, in lieu of correlated electron microscopy. The DTR was trained using a relatively small
dataset (~450) of scattering spectra obtained from FDTD simulations of AuNRs to correlate I' and
Eres with the AuNR width and length. Our method predicts the width and length of AuNRs with
within ~10% of their true value (RMSPE) over a large range of sizes Sample 1 for width 11.4 +
1.9% and length 12.0 + 3.1%: Sample 2 for width 8.7 + 1.1% and length 5.0 + 1.1% of the true
value for samples covering widths from 25 nm to 93 nm and lengths from 54 to 171 nm. Even a
training dataset of 200 performed well yielding only slightly larger RMSPE values for the same
set of experimental AuNR spectra (Figure S5), highlighting the novelty of our approach that only

a relatively small amount of training data is needed. Importantly, we deduced that the relationship
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between a set of just two spectral features (I' and Eres) and AuNR sizes is non-linear but can be
captured using a relatively simple decision tree. ML can bridge the knowledge gap between optical
measurements and morphological features through pattern recognition from simulations and
incorporation of experimental correlated values. We expect that this method of ML guided size
extraction from optical properties will allow for real time, in situ size determination of single
AuNR dimensions since our single particle hyperspectral imaging setup records spectra with a
millisecond time resolution” that is compatible with the processing time of our algorithm. This
speed of acquisition and processing should therefore prove useful for the size predictions of
AuNRs undergoing diffusion or irreversible shape changes. Furthermore, the simple correlation
between DFS features and AuNR dimensions indicates that our ML approach could likely be
extended to predict the dimensions of other nanoparticles shapes, such as spheres, triangles, or
cubes as well as mixtures of different shapes and nanoparticles made from other metals. However,
a sufficiently large parameter space of optical features would need to be trained, while overlapping
plasmon modes creating complex line shapes that make feature extraction from experimental
spectra difficult should be minimized. Ultimately these considerations will present limitations of

our ML approach.

Supporting Information Description
Size and feature distributions of simulated spectra, learning curves of other models, prediction
variation per iteration for plots in Figure 5, additional testing of the model on AuNR populations

with mixed sizes, analysis for using only 200 training datasets in Figure 3, 4, and 5, evaluation
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metrics, hyperparameters tuning of other models, comparisons of RMSPE between interpolation

polynomials and DTR, and GUI overview.
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