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Abstract 
Electron microscopy is often required in order to precisely correlate the size and shape of 

plasmonic nanoparticles with their optical properties. Eliminating the need for electron microscopy 

is one crucial step towards in situ sensing applications, especially for complicated sample 

conditions such as during irreversible chemical reactions or when particles are embedded in a 

matrix. Here, we show that a machine learning decision tree can accurately predict gold nanorod 

dimensions over a wide range of sizes. The model is trained using ~450 nanorod geometries and 

corresponding scattering spectra obtained from finite-difference time-domain simulations. We test 

the model using a set of experimental spectra and sizes obtained from correlated scanning electron 

microscopy images, resulting in predictions of the dimensions of gold nanorods within ~10% of 

their true value (root mean squared percentage error) over a large range of sizes. Analysis of the 

decision tree structure reveals that a simple correlation with resonance energy and linewidth of the 

localized surface plasmon resonance is sufficient to predict nanorod dimensions, notably 

outperforming more complicated models. Our findings illustrate the advantages of using simple 

machine learning models to infer single particle structural features from their optical spectra.  
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Introduction 

Plasmonic metal nanoparticles are effective candidates for photovoltaic energy 

conversion,1-4 photocatalytic reactions,5-8 and surface-enhanced spectroscopies.9-12 The collective 

oscillation of the conduction band electrons, also known as the localized surface plasmon 

resonance, boosts the signal of scattering and absorption by enhancing the electromagnetic fields 

around and inside the nanoparticle.13, 14 Anisotropic nanoparticles like gold nanorods (AuNRs) 

have two plasmon resonance peaks corresponding to longitudinal and transverse modes. The 

longitudinal mode can be tuned by varying the aspect ratio and overall size of AuNRs, as the 

localized surface plasmon resonance is strongly linked to rod morphology15-22. The strong 

relationship between AuNR size and optical properties makes sensing applications attractive, but 

most synthesis methods generate distributions of morphologies, necessitating characterization 

before translation of such products to applications.23-25 By developing in situ optical approaches 

for real time size determination, independent verification of AuNR morphological features could 

be eliminated. 

Characterizing AuNRs requires electron microscopy and spectroscopic measurements. If 

carried out on the ensemble level, mean AuNR dimensions are related to averaged plasmon 

resonance maxima.24 Precise connections between AuNR morphology and optical properties are 

achieved using single particle spectroscopy correlated with electron microscopy of the same 

individual AuNRs.26-28 This approach is time-consuming and often destructive to the sample,29, 30 

and cannot be used when a process induces irreversible morphological changes. Sönnichsen and 

coworkers showed that it is possible to overcome these challenges using a numerical method to 

estimate the size of AuNRs from their measured optical spectra based on a database consisting of 

simulated spectra and their corresponding sizes.31 Their method predicts AuNR sizes with widths 
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up to 50 nm. For large AuNRs, radiation damping significantly broadens the spectral linewidths 

and phase retardation redshifts the resonance maxima.18, 32-35 This work, however, demonstrates 

the strong potential for the use of estimation methods that compensate for correlations between 

spectral features and morphological structure.31  

Implementation of machine learning (ML) in nanoscience experiments, sometimes called 

nanoinformatics, takes advantages of experimental/simulated data patterns for prediction and 

classification.36, 37 In recent years, ML has been used to characterize heterogeneous catalysts38-41 

and metallic nanostructures,42-50 as well as to optimize their structural parameters for desired 

optical properties.51-54 He et al.55 demonstrated that deep neural networks can predict the size of 

nanoparticles after training and testing with more than 2000 simulated spectra. Pashkov et al.49 

utilized supervised ML for the parametrization of the simulated UV-vis spectra of gold 

nanospheres and nanorods as a function of particle morphology. One avenue for simplifying 

characterization of AuNR dimensions is to use ML models trained on simulated spectra to predict 

experimental data. A simple model, such as a decision tree, is suitable due to ease of 

implementation, interpretation, and visualization.56-58 Training a decision tree can draw 

connections between experimental features and structural properties that are difficult or impossible 

to collect from a relatively small amount of simulated training data, potentially eliminating the 

need for time-consuming correlated electron microscopy. 

In this paper, we train a decision tree regressor (DTR) using a dataset of ~450 finite-

difference time-domain (FDTD) simulated spectra to correlate the linewidth (Γ) and the resonance 

energy (Eres) with AuNR width and length. When validated on simulated FDTD spectra, 90% of 

all predicted AuNR dimensions are within a relative error of 10% compared the ground truth. 

Predictions based on two experimental datasets of AuNRs with correlated dark-field scattering 
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(DFS) and scanning electron microscopy (SEM) measurements achieve an accuracy when 

expressed as the root mean squared percentage error (RMSPE) of ~10%. We show that other 

decision tree-based ML models that increase in complexity do not lead to higher accuracy 

predictions for the AuNR dimensions. Further, analysis of other spectral features such as the 

maximum intensity (Imax) suggests that Γ and Eres are sufficient for size prediction, but for more 

complex characterization, intensity could be another input for improving the ability to use ML to 

correlate spectral properties with AuNR dimensions. 

 

Experimental and Theoretical Methods 

AuNR Sample Preparation. Two different size distributions of chemically synthesized AuNRs, 

Sample 1 (small AuNRs: 29 ± 2 × 78 ± 9 nm) and Sample 2 (large AuNRs: 63 ± 4 × 151 ± 10 

nm) were used to test the predictive power of the DTR on experimental data (Figure 1A). Figures 

1B and 1C display experimental DFS spectra of representative AuNRs from each sample. 

Increasing AuNR size introduces significant broadening of Γ while Eres redshifts, especially when 

considering the actual aspect ratios of 3.2 and 1.9 for the small (Figure 1B) and large (Figure 1C) 

AuNRs, respectively. Small AuNRs were synthesized using a modified seed-mediated growth 

process developed by Ye et al.59 and large AuNRs were obtained via a synthesis method developed 

by Ming et al.60 Details of the synthesis protocols for these two samples and their structural 

characterization are described in previous publications.28, 61 Quartz substrates, indexed with an 

evaporated gold film pattern for correlated optical and electron microscopy, were cleaned with O2 

plasma for 2 minutes.61 AuNRs were then spin coated on the indexed quartz slides for 60 seconds 

at 2500 rpm to achieve single particle coverage.  
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Correlated SEM and DFS. For single particle DFS measurements, we used a home-built setup 

based on an inverted microscope (Zeiss Axio Observer.D1m) with a 50× air objective having a 0.8 

numerical aperture (Zeiss EC Epiplan-Neofluar). The excitation light focused on the sample with 

an oil immersion dark-field condenser was produced by a halogen lamp (Zeiss HAL 100). The 

scattered light passed through a pinhole with a 50 μm diameter (Thorlabs P50S) to achieve a 

confocal geometry. DFS images were constructed by moving the sample with a piezo scanning 

stage (Physik Instrumente P-517.3CL) and detecting the spatially filtered light on an avalanche 

photodiode (APD, PerkinElmer SPCM-AQRH-15). Single particle DFS spectra of the imaged 

particles were captured by redirecting the signal of each particle to a spectrometer (Shamrock 

SR193i-A) connected to a charge-coupled device (CCD) camera (Andor iDus 420 BEX2-DD). 

Spectral background noise was recorded with the same integration time of 3 seconds as used for 

the spectra and obtained from an area near the AuNR where no other nanoparticles were located. 

Furthermore, spectra were corrected for the white light spectrum from the halogen lamp, obtained 

by switching to the transmitted light mode of the condenser and recording the spectrum with the 

same CCD camera. Our confocal DFS setup yielded spectra with high signal-to-noise ratios 

(Sample 1: 154, Sample 2: 904), allowing for accurate fitting to a Lorentzian function (see Figures 

1B and 1C). After all optical measurements, correlated SEM images were taken using a FEI Quanta 

400 ESEM FEG in low-vacuum mode operating at a voltage of 30 kV with a final resolution of 

~1.5 nm. AuNR dimensions were determined from these correlated SEM images for all individual 

AuNRs. 
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FDTD Simulations. The commercial 

software package Lumerical FDTD 

Solutions was employed to create a 

dataset of 576 spectrally resolved 

scattering cross sections of AuNRs to be 

subsampled and used as training and 

validation data (see Figure S1 for the 

width and length distributions). The 

geometry was approximated as a 

hemisphere capped gold cylinder 

surrounded by a 3.5 nm 

cetyltrimethylammonium bromide shell 

with a refractive index of 1.44 to account 

for the ligand molecules.62 We employed 

the bulk gold dielectric function 

measured by Johnson and Christy to 

describe the AuNRs63 sitting on a semi-

infinite quartz substrate with a refractive 

index of 1.52.62 We illuminated the 

AuNRs using a total-field scattered-field 

source with a normal incidence wave 

vector using a 0.5 nm computational 

 

Figure 1: AuNR sample characterization.  (A) Distributions 
of width and length of Sample 1 and Sample 2. Representative 
DFS spectra of a AuNR from Sample 1 (B) and one from 
Sample 2 (C) and their correlated SEM images given as insets. 
The solid black lines are Lorentzian fits of the spectra while 
vertical and horizontal lines mark Eres and Γ, respectively. 
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mesh size. We used default convergence criteria with perfectly matched layers to avoid errors 

arising from reflections at the boundaries. 

 

Optical Feature Extraction. Γ  and Eres of the longitudinal surface plasmon resonance were 

selected as input features for the model (Figures 2A and 2B), as previous research has indicated 

that they are strongly correlated to AuNR dimensions.27, 28, 31, 35, 64 Three datasets were created to 

build the decision tree: training, validation, and testing. Training and validation data were sampled 

from a library of 576 FDTD simulated spectra where Eres and Γ were correlated to AuNR width 

and length. The testing data was comprised of 46 pairs of correlated experimental optical spectra 

and SEM measurements, providing real size measurements correlated to the trained input features 

Eres and Γ. Simulated spectra resembling data in the testing data were excluded from the training 

and validation data. All experimental and simulated spectra were fit with a Lorentzian function to 

obtain Eres and Γ. Spectra that could not be fit with a Lorentzian due to peaks trailing outside the 

range of measured wavelengths were excluded. 
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Decision Tree Construction. The decision 

tree was constructed through recursive 

partitioning of the Γ and Eres feature space to 

map similar outputs to matching input feature 

combinations. Mapping was achieved through 

construction of several layers of decision 

nodes, each with a machine-learned pivot 

value that makes a greater-than/less-than 

comparison for a single feature (Figure 2C). 

Teaching the decision tree using feature 

combinations with known outcomes, referred 

to as training data,65 determines the pivot 

values for each decision node and develops 

the branching conditions necessary to map 

different feature combinations to expected 

AuNR dimensions. Hyperparameters are user 

defined values that determine how a model 

learns patterns from training data and guides 

the structure of the decision tree in terms of number of layers and number of decision nodes per 

layer.65 All hyperparameters were tuned to find the best trade-off between the number of layers, 

number of decision nodes per layer, and highest accuracy for training data. Here, five layers were 

sufficient to predict AuNR width and eight layers to predict AuNR length, with the requirement 

that each terminal decision node contained at least one sample. The hyperparameters of each model 

 

Figure 2: Data flow and representative schematic of 
the DTR model. (A) FDTD simulated AuNR DFS 
spectrum with two key features, Eres and Γ annotated on 
the graph. (B) Experimental DFS spectrum with matching 
annotations and correlated SEM image shown in the inset. 
(C) A schematic of the DTR algorithm predicting width 
and length of a AuNR by assessing Eres or Γ through three 
layers of decision nodes, two representing branch 
conditions and one being length/width assignment. Final 
decision nodes correspond to a linear function f(Eres, Γ) 
that can predict nanorod dimensions for that range of Eres 
and  Γ. 
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were optimized using the machine learning library PyCaret (https://pycaret.org) and grid search,65 

which exhaustively generate the appropriate hyperparameters from a grid of hyperparameter 

values (see Table S1 for hyperparameters of other models). The following decision tree models 

were tested to compare prediction performance: Decision Tree Regressor (DTR),57, 58 Random 

Forest Regressor (RFR),66 Gradient Boosting Regressor (GBR),67 XGBoost Regressor (XGB),68 

CatBoost Regressor (CBR)69 and LightGBM Regressor (LGBM).70 All models were implemented 

in Python, leveraging code provided by Scikit-learn.71 After implementation, all models were 

compared based on the accuracy of predictions in the testing step in order to finalize the model 

selection (see below for a discussion on the comparison in accuracy). As an example of 

computational time needed, training the DTR took 3.58 ms ± 170 𝜇𝜇s and testing 20 spectra 1.48 

ms ± 52 𝜇𝜇s on a laptop computer running Mac OS Big Sur (Version 11.4) with a 2.3 GHz Quad-

Core Intel Core i7 processor and 16 GB of memory. An executable program based on our ML 

algorithm can be accessed at http://sizeprediction.rice.edu (see the Supporting Information for a 

user manual). The original code named “AuNR_DTR” is furthermore available for download 

through a GitHub repository (https://github.com/LandesLab/AuNR_DTR). 

 

 

https://sizeprediction.rice.edu/
https://github.com/LandesLab/AuNR_DTR
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Results and Discussion 

The prediction accuracy of our DTR converged using a notably small training dataset (~450 

spectra), indicating that a simple relationship between our input features and AuNR dimensions 

must exist.72, 73 One key concern in a ML implementation is the possibility of over/under fitting 

due to the limited scope of training data. 

We utilized ten-fold cross-validation on 

increasing data size to illustrate the 

generalizability of the model.65 Here, a 

subset of the simulated spectra were 

randomly selected and used for cross-

validation. The pool of simulated spectra 

was divided into ten unique subsets. Nine 

subsets were selected to train the model, 

while the remaining subset was used as 

validation data. The process of training/validating the model was repeated ten times where each 

iteration used a new combination of nine training subsets and one validation subset. Similar model 

output between different combinations of training/validation data indicate that the model is not 

skewed by the dataset and can be generalized to experimental results. To quantify the accuracy of 

our model, the RMSPE (the square root of the mean square of the relative error over a set of 

predictions) was averaged over all ten iterations of validation to form learning curves (see Table 

S2 for the definition of RMSPE).56 The learning curves generated by cross-validation detect 

over/under fitting by examining the convergence of the model error based on the number of 

samples in our data.  

 

Figure 3: Learning curves for the decision tree model 
performance on simulated data. RMSPE for (A) width and 
(B) length as a function of the data size. Validation curves are 
represented by squares and training curves are represented by 
circles. The shaded areas around each curve were generated by 
ten-fold cross-validation. Error curves converge at 8.5% and 
5.3% RMSPE for the width and length, respectively. 
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Figure 3 illustrates the convergence of training and validation learning curves to a shared 

asymptotic bound around 300 data points (see Figure S2 for the learning curves of other models). 

The prediction error stabilized at 8.5 % for the width (Figure 3A) and 5.3 % for the length (Figure 

3B) for both training and validation data. Reaching a convergent error of <9% with such a small 

dataset implies that the relationship between spectral shape and AuNR size is simple enough to be 

captured using just two features, Γ and Eres. However, the correlation between features, a factor 

avoided through the pattern recognition of a decision tree, complicates the implementation of a 

linear relationship between spectral features and AuNR dimensions.74 

Analysis of the validation results in 

Figure 4 demonstrates that the model 

predicts AuNR dimensions with 

<10% relative error on 90% of all 

samples. To better understand the 

results of our ML model, we 

aggregated all prediction results from 

the ten-fold validation process into 

histograms based on the relative error 

of the predictions from the true values 

provided by simulated data. Figure 4 

presents the distribution of relative 

errors for AuNR dimensions used in 

the FDTD simulations with annotations denoting the percentage of the population achieving a 

relative error of <10 %. Predictions for AuNR length are generally more accurate than predictions 

 

Figure 4: Evaluation of the model on simulated validation data. 
The histograms (bars, left y-axis) and cumulative densities (lines, 
right y-axis) of relative errors of width (blue) and length (red) for 
FDTD simulated validation data.  Note that we had a total of 576 
simulated data and randomly made 80% the training data and 20% 
the validation data. The horizontal dashed lines of width (blue) and 
length (red) indicate exact values of cumulative density where each 
population reaches 10 % relative error (vertical dashed black line). 
The inset shows the residuals for the predicted width and length at 
the 100th cycle compared to true sizes. 
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for width, likely a result of the higher sensitivity of the longitudinal surface plasmon resonance to 

AuNR length.15 Two key factors in the training data of a ML model are the breadth of coverage 

for different features and the skewing of data towards specific feature combinations. Both factors 

can be assessed as a function of prediction error over several iterations of training/validating and 

analysis of outliers, respectively. Error statistics were calculated by retraining the DTR 100 times 

using different subsets of 80% of the total 576 simulated spectra and validating against the 

remaining 20%. Variations in structure due to randomness in training were shown to have no effect 

on the quality of prediction. Here, low errors indicate that the dataset used for training adequately 

describes the range of feature combinations under investigation and that our results are not due to 

sampling errors between training and validation data. Regarding outliers, the inset of Figure 4 

illustrates that the prediction outliers are evenly distributed over sizes, indicating that the decision 

tree accuracy is not biased by AuNR size. 
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The DTR predicts experimental 

AuNR width and length over a broad 

range of sizes (Figure 5), suggesting that 

simulations are sufficient to learn the 

correlation between scattering spectra 

and AuNR dimensions. After training on 

461 (80% of 576) simulated spectra, the 

model was tested by predicting the width 

and length from experimental DFS 

spectra compared to correlated SEM 

measurements. Figure 5A compares the 

prediction to sizes measured via SEM for 

Samples 1 and 2 (see Figure S4 for 

additional testing of experimental 

datasets containing a mixture of AuNR 

sizes). Statistics were generated by 

performing predictions with 15 iterations 

of the decision tree and averaging the 

predicted sizes. Error bars in Figure 5A 

are representative of each experimental 

dataset and are the average of the 

standard deviations for each prediction 

(Sample 1: width: ± 0.73 nm, length: ± 

 
Figure 5: Evaluation of the model on experimental data.  
(A) Measured (x-axis) vs. predicted (y-axis) size scatter plot for 
width and length of 26 AuNRs in Sample 1 and 20 AuNRs in 
Sample 2. Error bars are located at the average of the dataset 
and are calculated from the error in the SEM measurement and 
the aggregate of 15 trained DTRs performing 15 independent 
predictions for the same experimental spectra. Each of the 15 
DTRs were trained with 461 simulated spectra chosen 
randomly from the entire dataset of 576, with spectra matching 
the experiments excluded. Dashed lines denote ±10% error in 
prediction (width: 71.7%; length: 76.1%). (B) The histograms 
(bars, left y-axis) and cumulative densities (lines, right y-axis) 
of relative errors of width (blue) and length (red) for both 
samples combined. Note that in this case the 15 independent 
predictions for each AuNR were not averaged. The vertical 
dashed line denotes relative error of 10% and the horizontal 
dashed line denotes cumulative density of 0.8.  The exact points 
of intersection for 10% relative error appear at cumulative 
densities of 0.74 for the width and 0.78 for the length. The inset 
shows the residuals for the predicted width and length at the 
15th cycle compared to true values determined by SEM. 
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3.91 nm and Sample 2: width: ± 1.44 nm, length: ± 3.10 nm). Variability in prediction results based 

on the number of iterations is discussed in Figure S3.  

Averaging 15 independent predictions for the width and length of each of the 46 

experimental AuNR spectra, we find that 74% of the predicted AuNR dimensions averaged over 

width and length are within a relative error of 10% compared to their SEM measured sizes (Figures 

5A). Increased accuracy over a wider range of sizes, compared to the reported method,31 is likely 

because decision trees natively incorporate correlations between variables into the decision-

making process,57 eliminating the need for feature independence required by other regressive 

methods. Although decision trees are a discriminative model that provides hard boundaries for 

classification,57 they do not offer mechanistic insight into how perturbations in Eres and Γ reflect 

changing AuNR dimensions. Relating feature values to ground truth physical chemistry is easier 

using regressive methods, which can connect results directly to experimental quantities in the form 

of weights to a fitted function, even if there are limitations to the range of predictable values. The 

selection of a classification method over a regressive method then represents a trade-off of 

accuracy at the detriment of interpretability.  

The DTR gives similar prediction accuracy for experimental testing data as for simulated 

validation data. Figure 5B, an analog of Figure 4, shows the histogram of relative errors of each 

width and length prediction for experimental data. Transitioning to predictions on experimental 

data only incurs a modest decrease in accuracy, with 76% of all predictions averaged over width 

and length achieving <10% error. Note that the histogram includes all predicted values obtained 

from 15 independently trained decisions trees and no averaging over these 15 iterations was 

performed unlike for Figure 5A. The slight difference in the percentage of AuNRs having a relative 

error <10% when comparing Figure 5A and Figure 5B likely reflects that the sizes predicted for a 
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subset of AuNRs had a greater variance among the different decision trees, as can be seen from 

the distribution in Figure 5B extending to relative errors of 40%. Finally, when the data in Figure 

5B is expressed in terms of RMSPE, accuracies of the width and length for Sample 1 are 11.4 ± 

1.9% and 12.0 ± 3.1%, respectively, while the corresponding values for Sample 2 are 8.7 ± 1.1% 

and 5.0 ± 1.1 %, compared to 9.7 ± 1.8% for the width and 9.2 ± 2.4% for the length when using 

simulated spectra for validation (Figure 4). Overall, this analysis demonstrates that ML predicts 

the dimensions of gold nanorods within ~10% of their true value over a large range of sizes. 

The sources of the greater error compared to validation of simulated spectra are likely due 

to real-world considerations not included in the simulated training data like signal-to-noise ratio 

and non-ideal AuNRs morphologies.75 Decision tree predictions could be improved through the 

inclusion of experimental data in the training process, especially if the data is sampled from the 

instrument used to collect testing data. In doing so, correlations between features of interest like 

Eres and Γ, driven by experimental measurement conditions, could be anticipated in the model and 

subsequently improve the prediction accuracy. However, the fact that experimental predictions 

approach an error limit very similar to that found during model validation further suggests that 

FDTD spectra are accurate approximations of real-world results. It is reasonable to expect 

predictions to be less accurate when shifting to testing from validation data, but our model still 

provides comparably accurate predictions. In addition to the inclusion of experimental spectra in 

the training data it could be further refined by also increasing the total amount of training data 

available spanning an even wider range of dimensions. Doing so could allow the DTR to categorize 

a wider range of feature-size relationships. 
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Figure 6 compares the performance of linear regression against DTR and other decision 

tree-based models using the metrics of R2 and RMSPE (see Table S2 for the definition of R2) for 

both Sample 1 and Sample 2. In all cases, 

decision tree-based models outperform 

linear regression65 in both metrics. Here, 

we see that AuNR sizes in Sample 2 

could be predicted with higher accuracy 

than those in Sample 1. As we show 

below in Figure 7, this increased 

accuracy for the larger AuNRs is due to 

larger linewidths being more beneficial 

for accurate size predictions. We 

conclude that the relationship between 

spectral features and AuNR dimensions 

is non-linear but not prohibitively 

complex, as a simple DTR using only two 

features achieves higher accuracy than 

other tree-based models that use higher 

complexity decision making. While 

linear models are easier to interpret for 

mechanistic insights, accurate 

predictions based on non-linear DTRs rely directly on recognition of the underlying patterns 

among features in the data. It is important to note that size predictions obtained from polynomial 

Figure 6: Statistical indices evaluating several different 
methods for predicting AuNR size from experimental 
spectra. The accuracy of several decision tree-based models 
compared to the linear regression (LR) prediction. The models 
tested include DTR, RFR, GBR, XGB, CBR, and LGBM for 
(A) Sample 1 and (B) Sample 2. Statistical indices were 
calculated for from all 46 predictions of AuNR width and 
length combined. The blue dotted lines mark R2 = 0.95 and the 
red dotted lines mark RMSPE = 10%. 
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interpolation of our simulated spectra and tested with Sample 1 and Sample 2 resulted in RMSPE 

values exceeding 50% (Table S3). This difference might be attributed to the compatibility of our 

simulated dataset with conventional interpolation methods because interpolation requires 

systematically varied data points to cover the entire range of AuNR aspect ratios without any 

gaps,31 while our simulated spectra were generated for a more random distribution of sizes (Figure 

S1). 

Prediction accuracy depends 

conditionally on the values of Γ and Eres 

while Imax has no impact on the model 

(Figure 7). Model success is correlated to 

the composite of all features selected, as 

the values of some features can reduce 

the accuracy of predictions. One way of 

measuring the contribution of different 

features to a ML model is to use SHarply 

Additive exPlanation (SHAP) values (see Table S2 for the definition of SHAP).76 In general, a 

positive or negative SHAP value corresponds to a feature being beneficial or detrimental to model 

accuracy, respectively. Figure 7 shows SHAP values calculated from training data used in Figure 

4, illustrating a correlation between the value of the feature (red-blue gradient) and the contribution 

to the model. SHAP values demonstrate that the larger Γ values in the distribution provided the 

greatest improvement in model prediction accuracy. Broader linewidths are indicative of larger 

AuNRs and likely serve as a discriminator for the aspect ratio when Eres values are similar. Larger 

Eres values proved detrimental for model prediction, likely because blue-shifting of Eres causes 

 

Figure 7: Impact of feature value on model prediction for 
simulated data. SHarply Additive exPlanation (SHAP) values 
for the spectral features Γ, Eres, and Imax in the order of impact 
on prediction of AuNR dimensions from the DTR. The red-
blue colormap represents larger/smaller values of  Γ and Eres, 
normalized to the range between the maximum and minimum 
values of the feature in the dataset. Negative/Positive SHAP 
value is detrimental/beneficial for the prediction, respectively. 
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spectral overlap with the interband transitions of gold near the L symmetry point (~2.4 eV), 

resulting in deviations from a Lorentzian spectral line shape.13, 77, 78  The value of Imax was found 

to have no discriminatory value, and as such was not included in the analysis presented in Figures 

3-6. One reason is that Imax is not only affected by the shape of the AuNR but is also dependent on 

instrumental settings like source power and integration time. While Imax scales with increasing 

AuNR size in simulation, incorporating it as a feature in training data would require normalization. 

Such normalization could potentially be achieved by always measuring an internal standard on the 

same sample substrate (e.g., gold nanospheres or polystyrene beads) and evaluating Imax as a ratio 

against this standard. Inclusion of other spectral features that are independent of instrumental 

contributions, such as other statistical moments of the Lorentzian like skewness or excess, could 

potentially increase the predictive power of the DTR though.  

 

Conclusions 

We trained a DTR model with simulated spectra, allowing accurate predictions of AuNR 

sizes, in lieu of correlated electron microscopy. The DTR was trained using a relatively small 

dataset (~450) of scattering spectra obtained from FDTD simulations of AuNRs to correlate Γ and 

Eres with the AuNR width and length. Our method predicts the width and length of AuNRs with 

within ~10% of their true value (RMSPE) over a large range of sizes Sample 1 for width 11.4 ± 

1.9% and length 12.0 ± 3.1%: Sample 2 for width 8.7 ± 1.1% and length 5.0 ± 1.1% of the true 

value for samples covering widths from 25 nm to 93 nm and lengths from 54 to 171 nm.  Even a 

training dataset of 200 performed well yielding only slightly larger RMSPE values for the same 

set of experimental AuNR spectra (Figure S5), highlighting the novelty of our approach that only 

a relatively small amount of training data is needed. Importantly, we deduced that the relationship 
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between a set of just two spectral features (Γ and Eres) and AuNR sizes is non-linear but can be 

captured using a relatively simple decision tree. ML can bridge the knowledge gap between optical 

measurements and morphological features through pattern recognition from simulations and 

incorporation of experimental correlated values.  We expect that this method of ML guided size 

extraction from optical properties will allow for real time, in situ size determination of single 

AuNR dimensions since our single particle hyperspectral imaging setup records spectra with a 

millisecond time resolution79 that is compatible with the processing time of our algorithm. This 

speed of acquisition and processing should therefore prove useful for the size predictions of 

AuNRs undergoing diffusion or irreversible shape changes.  Furthermore, the simple correlation 

between DFS features and AuNR dimensions indicates that our ML approach could likely be 

extended to predict the dimensions of other nanoparticles shapes, such as spheres, triangles, or 

cubes as well as mixtures of different shapes and nanoparticles made from other metals.  However, 

a sufficiently large parameter space of optical features would need to be trained, while overlapping 

plasmon modes creating complex line shapes that make feature extraction from experimental 

spectra difficult should be minimized. Ultimately these considerations will present limitations of 

our ML approach. 

 

 

Supporting Information Description 

Size and feature distributions of simulated spectra, learning curves of other models, prediction 

variation per iteration for plots in Figure 5, additional testing of the model on AuNR populations 

with mixed sizes, analysis for using only 200 training datasets in Figure 3, 4, and 5, evaluation 
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metrics, hyperparameters tuning of other models, comparisons of RMSPE between interpolation 

polynomials and DTR, and GUI overview. 
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