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We present and rigorously analyze the behavior of a distributed, stochastic algorithm for separation19

and integration in self-organizing particle systems, an abstraction of programmable matter. Such20

systems are composed of individual computational particles with limited memory, strictly local21

communication abilities, and modest computational power. We consider heterogeneous particle22

systems of two different colors and prove that these systems can collectively separate into different23

color classes or integrate, indifferent to color. We accomplish both behaviors with the same fully24

distributed, local, stochastic algorithm. Achieving separation or integration depends only on a single25

global parameter determining whether particles prefer to be next to other particles of the same color26

or not; this parameter is meant to represent external, environmental influences on the particle system.27

The algorithm is a generalization of a previous distributed, stochastic algorithm for compression28

(PODC ’16), that can be viewed as a special case of separation where all particles have the same29

color. It is significantly more challenging to prove that the desired behavior is achieved in the30

heterogeneous setting, however, even in the bichromatic case we focus on. This requires combining31

several new techniques, including the cluster expansion from statistical physics, a new variant of the32

bridging argument of Miracle, Pascoe and Randall (RANDOM ’11), the high-temperature expansion33

of the Ising model, and careful probabilistic arguments.34
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54:2 Stochastic Separation in Self-Organizing Particle Systems

1 Introduction46

Across many disciplines spanning computational, physical, and social sciences, heterogeneous47

systems self-organize into both separated (or segregated) and integrated states. Exam-48

ples include molecules exhibiting attractive and repulsive forces, distinct types of bacteria49

competing for resources while collaborating towards common goals (e.g., [35, 39]), social50

insects tolerating or aggressing towards those from other colonies (e.g., [30, 20]), and inherent51

human biases that influence how we form and maintain social groups (e.g., [37, 16]). In52

each of these, individuals are of different “types”: integration occurs when the ensemble53

gathers together without much preference about the type of their neighbors, while separation54

occurs when individuals cluster with others of the same type. Here, we investigate these55

fundamental behaviors of separation or integration as they apply to programmable matter,56

a material that can alter its physical properties based on user input or stimuli from its57

environment. Instead of studying a particular instantiation of programmable matter, of58

which there are many [1, 7, 36, 31], we abstractly envision these systems as collections of59

simple, active computational particles that individually execute local distributed algorithms60

to collectively achieve some emergent behavior. We consider heterogeneous particle systems61

in which particles have immutable colors. We seek local, distributed algorithms that, when62

run by each particle independently and concurrently, result in emergent, self-organizing63

separation or integration of color classes.64

This work uses the stochastic approach to self-organizing particle systems first used for65

compression, where (monochromatic) particles self-organize to gather together as tightly as66

possible [6]. Using this stochastic approach, one first defines an energy function where desired67

configurations have the lowest energy values. One then designs a Markov chain whose long68

run behavior favors these low energy configurations. This Markov chain is carefully designed69

so that all its transition probabilities can be computed locally, allowing it to be translated to a70

fully local distributed algorithm each particle can run independently. The resulting collective,71

emergent behavior of this distributed algorithm is thus described by the long run behavior of72

the Markov chain. Using this stochastic approach, we previously extended our compression73

algorithm [6] to an algorithm for shortcut bridging [2] — or maintaining bridge structures74

that balance the tradeoff between bridge efficiency and cost — and developed the theoretical75

basis for an experimental study in swarm robotics [32]. While the process of designing76

distributed algorithms for self-organizing particle systems via this stochastic approach is77

fairly well-understood, proving that such algorithms achieve their desired objectives remains78

quite challenging. In particular, it is not enough to know the desired configurations have the79

highest long-run probability; there may be so many other, lower probability configurations80

that they collectively outweigh the desirable ones. This energy/entropy trade-off has been81

studied in various Markov chains for the purposes of proving slow mixing, but we analyze it82

directly to show our algorithms achieve the desired objectives with high probability.83

Here, we focus on separation and integration in heterogeneous systems. Our inspiration84

comes from the classical Ising model in statistical physics [18, 38], where the vertices of a85

graph are assigned positive and negative “spins” and there are rules governing the probability86

that adjacent vertices have the same spin. Connected to the Ising model is classical work87

from stochastic processes on the Schelling model of segregation [33, 34], which explores88

how individuals’ micro-motives can induce macro-level phenomena like racial segregation89

in residential neighborhoods. Recent variants of this model from computer science have90

investigated the degree of individual bias required to induce such segregation [5, 17], and91

a related distributed algorithm has been developed [29]. Our work differs from those on92
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the Ising and Schelling models because of natural physical constraints on systems of self-93

organizing, active particles like ours. For example, interpreting particles of one color to be94

vertices with positive spin and particles of another color to be particles with negative spin,95

this acts like an Ising model, but on a graph that evolves as particles more. Despite these96

obstacles, we apply ideas developed for rigorously analyzing the Ising and similar models97

to prove our distributed algorithm for separation and integration accomplishes the desired98

goals.99

While we are interested in distributed algorithms, it is worth noting that efficient stochastic100

algorithms for separation can be challenging even with centralized Markov chains. Separation101

of a region into equitably sized, compact districts has been widely explored recently in the102

context of gerrymandering, where the aim is to sample colorings of a weighted graph from103

an appropriately defined stationary distribution [10, 15]. Heuristics for random districting104

have been discussed in the media, but there are still no known rigorous, efficient algorithms.105

1.1 Results106

We present a distributed algorithm for self-organizing separation and integration that takes107

as input two bias parameters, λ and γ. Setting λ > 1 corresponds to particles favoring having108

more neighbors; this is known to cause compression in homogeneous systems when λ is large109

enough [6]. For separation in the heterogeneous setting, we introduce a second parameter γ,110

where γ > 1 corresponds to particles favoring having more neighbors of their own color. We111

then investigate for what values of λ and γ our algorithm yields compression and separation.112

Informally, a particle system is separated if there is a subset of particles such that (i) the113

boundary between this subset and the rest of the system is small, (ii) a large majority of114

particles in this subset are of the same color, say c, and (iii) very few particles with color115

c exist outside of this subset. This notion of separation (defined formally in Definition 3)116

captures what it means for a system to have large monochromatic regions of particles.117

We prove that for any λ > 1 and γ > 45/4 ∼ 5.66 such that λγ > 2(2 +
√

2)e0.0003 ∼ 6.83,118

our algorithm accomplishes separation with high probability.1 However, we prove the opposite119

for some values of γ close to one; counterintuitively, this even includes some values of γ > 1,120

the regime where particles favor having like-colored neighbors. Formally, we prove that121

for any λ > 1 and γ ∈ (79/81, 81/79) such that λ(γ + 1) > 2(2 +
√

2)e0.00003 ∼ 6.83, our122

algorithm fails to achieve separation (i.e., it achieves integration) with high probability.123

1.2 Proof Techniques124

Because our distributed algorithm is based on a Markov chain, we can use standard tools125

such as detailed balance to understand its long-term behavior and prove its convergence126

to a unique probability distribution π over particle system configurations. This stationary127

distribution π depends on the input parameters λ and γ. Our main contribution is analyzing128

π for various ranges of λ and γ, showing that a configuration drawn from distribution π is129

either very likely (for large γ) or very unlikely (for γ close to one) to be separated.130

To show separation occurs when λ and γ are both large, we modify the proof technique of131

bridging introduced by Miracle, Pascoe, and Randall [28]. To show separation does not occur132

when λ is large and γ is small (close to one), we use a probabilistic argument, a Chernoff-type133

1 We say an event A occurs with high probability (w.h.p.) if Pr[A] ≥ 1 − cnδ , where 0 < c < 1 and
δ > 0 are constants and n is the number of particles. Our w.h.p. results all have δ ∈ {1/2, 1/2− ε}, for
arbitrarily small ε > 0.

APPROX/RANDOM 2019



54:4 Stochastic Separation in Self-Organizing Particle Systems

bound, and a decomposition of configurations into different regions. These arguments —134

both for large and small γ — require that the particle system is compressed; i.e., that the135

system has perimeter Θ(
√
n). However, the arguments from [6] showing compression occurs136

for homogeneous systems when λ is large do not extend to the heterogeneous setting.137

We instead turn to the cluster expansion from statistical physics to show our separation138

algorithm achieves compression for large enough γ. The cluster expansion was first introduced139

in 1937 by Mayer [27], though a more modern treatment can be found in the textbook [12]140

where it is used to derive several properties of statistical physics models including the Ising141

and hard-core models. In the past year, the cluster expansion has received renewed attention142

in the computer science community due to the recent work of Helmuth, Perkins, and Regts143

that uses the cluster expansion to develop approximate counting and sampling algorithms144

for low-temperature statistical physics models on lattices including the Potts and hard-core145

models [14]. Subsequent work has considered similar techniques on expander graphs [19] and146

random regular bipartite graphs [23]. Inspired by the interpolation method of Barvinok [4, 3],147

these works give algorithms for estimating partition functions that explicitly calculate the148

first log n coefficients of the cluster expansion. We use the cluster expansion differently, to149

separate the volume and surface contributions to a partition function.150

The cluster expansion is a power series representation of lnZ where Z is a polymer151

partition function. We relate each of our quantities of interest to a particular polymer152

partition function, and then use a version of the Kotecký-Preiss condition [21] to show that153

the power series in the cluster expansion is convergent for the ranges of parameters we are154

interested in. We then use this convergent cluster expansion to split our polymer partition155

functions into a volume term, depending only on the size of the region of interest, and a156

surface term, depending only on its perimeter. This separation into volume and surface terms157

turns out to be the key to our compression argument, both for large γ and for γ close to one.158

While splitting partition functions into volume and surface terms is not a new idea in the159

statistical physics literature (for example, Section 5.7.1 of [12] uses it to derive an explicit160

expression for the infinite volume pressure of the Ising model on Zd with large magnetic161

field), we are the first to bring this approach into the computer science literature. We are162

hopeful it will be useful beyond its specific applications in this paper.163

2 Background164

We begin by defining our amoebot model for programmable matter and stating a few key165

results. We then extend the amoebot model to heterogeneous particle systems and formally166

define what it means for a system to be separated or integrated. We conclude with the167

necessary terminology and results on Markov chains.168

2.1 The Amoebot Model169

In the amoebot model, introduced in [9] and fully described in [8], programmable matter170

consists of individual, homogeneous computational elements called particles. In its geometric171

variant, particles are assumed to occupy nodes of the triangular lattice G∆ = (V,E) and172

can move along its edges (see Figure 1a). Each node in V can be occupied by at most one173

particle at a time. Each particle occupies either a single node in V (i.e., it is contracted) or174

a pair of adjacent nodes in V (i.e., it is expanded), as in Figure 1b. Particles move via a175

series of expansions and contractions: a contracted particle can expand into an unoccupied176

adjacent node to become expanded, and completes its movement by contracting to once177

again occupy a single node.178



S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:5

(a) (b)

Figure 1 (a) A section of the triangular lattice G∆. (b) Expanded and contracted particles (black
dots) on G∆ (gray lattice). Particles with a black line between their nodes are expanded.

Two particles occupying adjacent nodes are said to be neighbors. Each particle is179

anonymous, lacking a unique identifier, but can locally identify each of its neighboring180

locations and can determine which of these are occupied by particles. Each particle has181

a constant-size local memory that it can write to and its neighbors can read from for182

communication. In particular, a particle stores whether it is contracted or expanded in its183

memory. Particles do not have any access to global information such as a shared compass,184

coordinate system, or estimate of the size of the system.185

The system progresses through atomic actions according to the standard asynchronous186

model of computation from distributed computing (see, e.g., [25]). A classical result under187

this model states that for any concurrent asynchronous execution of atomic actions, there188

exists a sequential ordering of actions producing the same end result, provided conflicts that189

arise in the concurrent execution are resolved. In the amoebot model, an atomic action190

corresponds to the activation of a single particle. Once activated, a particle can (i) perform191

an arbitrary, bounded amount of computation involving information it reads from its local192

memory and its neighbors’ memories, (ii) write to its local memory, and (iii) perform at193

most one expansion or contraction. Conflicts involving simultaneous particle expansions194

into the same unoccupied node are assumed to be resolved arbitrarily such that at most195

one particle moves to some unoccupied node at any given time. Thus, while in reality many196

particles may be active concurrently, it suffices when analyzing algorithms under the amoebot197

model to consider a sequence of activations where only one particle is active at a time.198

2.2 Terminology and Results for Homogeneous Particle Systems199

We now recall the relevant terminology and notation from our previous work on compression [6].200

A particle system arrangement is the set of vertices of the triangular lattice G∆ occupied201

by particles. Two arrangements are equivalent if they are translations of each other; we202

define a particle system configuration to be an equivalence class of arrangements. An edge203

of a configuration is an edge of G∆ where both endpoints are occupied by particles. A204

configuration is connected if for any two particles in the system, there is a path of such edges205

between them. A configuration has a hole if there is a maximal, finite, connected component206

of unoccupied vertices in G∆.207

As we justify with Lemma 6, our analysis will focus on connected, hole-free configurations.208

The boundary of such a configuration σ is the closed walk P on edges of σ that encloses all209

particles of σ and no unoccupied vertices of G∆. The perimeter p(σ) of configuration σ is210

the length of this walk, also denoted |P|. The following bounds the number of configurations211

with a given perimeter.212

I Lemma 1 ([6], Lemma 4.3). For any ν > 2 +
√

2, there is an integer n1(ν) such that for all213

n ≥ n1(ν), the number of connected, hole-free particle system configurations with n particles214

APPROX/RANDOM 2019



54:6 Stochastic Separation in Self-Organizing Particle Systems

and perimeter k is at most νk.215

Let pmin(n) be the minimum possible perimeter for a configuration of n particles; it is216

easy to see that pmin(n) = Θ(
√
n). Given any α > 1, a configuration of n particles is said to217

be α-compressed if p(σ) ≤ α · pmin(n). The following lemma establishes a concrete upper218

bound on pmin(n).219

I Lemma 2. For any n ≥ 1, there is a connected, hole-free particle system configuration of220

n particles with perimeter at most 2
√

3
√
n. That is, pmin(n) ≤ 2

√
3
√
n.221

Proof. This lemma follows easily from noting that hexagonal configurations of n particles222

have perimeter on the order of 2
√

3
√
n; a proof can be found in Appendix A.1. J223

2.3 Heterogeneous Particle Systems224

Generalizing previous work on the amoebot model in which all particles are homogeneous225

and indistinguishable, we assume that each particle P has a fixed color c(P ) ∈ {c1, . . . , ck}226

that is visible to itself and its neighbors, where k � n is a constant. We extend the definition227

of configuration given in Section 2.2 to include both the vertices of G∆ occupied by particles228

as well as the colors of those particles. An edge of configuration σ with endpoints occupied229

by particles P and Q is homogeneous if c(P ) = c(Q) and heterogeneous otherwise.230

We further extend the original model by allowing neighboring particles to exchange their231

positions in a swap move. Swap moves have no meaning in homogeneous systems as all232

particles are indistinguishable, but they grant heterogeneous systems flexibility in allowing233

particles trapped in the interior of the system to move freely.2 These swap moves are not234

necessary for the correctness of our algorithm or our rigorous analysis, but enable faster235

convergence in practice.236

In this paper, we study heterogeneous systems with k = 2 color classes. As discussed237

in Section 5, our algorithm performs well in practice for larger values of k and we expect238

our proof techniques would generalize without needing significant new ideas. However, this239

generalization would be cumbersome; thus, for simplicity, we restrict our attention to systems240

with colors {c1, c2}. For 2-heterogeneous systems, we can formally define separation with241

respect to having large monochromatic regions.242

I Definition 3. For β > 0 and δ ∈ (0, 1/2), a 2-heterogeneous particle system configuration σ243

is said to be (β, δ)-separated if there is a subset of particles R such that:244

1. There are at most β
√
n edges of σ with exactly one endpoint in R;245

2. The density of particles of color c1 in R is at least 1− δ; and246

3. The density of particles of color c1 not in R is at most δ.247

Unpacking this definition, β controls how small a boundary there is between the monochro-248

matic region R and the rest of the system, with smaller β requiring smaller boundaries.249

The δ parameter expresses the tolerance for having particles of the wrong color within the250

monochromatic region R: small values of δ require stricter separation of the color classes,251

while larger values of δ allow for more integrated configurations. Notably, R does not need252

to be connected.253

2 In domains where physical swap moves are unrealistic, colors could be treated as in-memory attributes
that could be exchanged by neighboring particles to simulate a swap move.
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2.4 Markov Chains254

A thorough treatment of Markov chains can be found in the standard textbook [22]. A255

Markov chain is a memoryless random process on a state space Ω; for our purposes, Ω is256

finite and discrete. We focus on discrete time Markov chains, where one transition occurs257

per iteration (or step). Because of its stochasticity, we can completely describe a Markov258

chain by its transition matrix M , which is an |Ω| × |Ω| matrix where for x, y ∈ Ω, M(x, y) is259

the probability, if in state x, of transitioning to state y in one step. The t-step transition260

probability M t(x, y) is the probability of transitioning from x to y in exactly t steps.261

A Markov chain is ergodic if it is both irreducible (i.e., for all x, y ∈ Ω there is a t such that262

M t(x, y) > 0) and aperiodic (i.e., for all x ∈ Ω, gcd{t : M t(x, x) > 0} = 1) . A stationary263

distribution of a Markov chain is a probability distribution π over Ω such that πM = π.264

Any finite, ergodic Markov chain converges to a unique stationary distribution given by265

π(y) = limt→∞M t(x, y) for any x, y ∈ Ω; importantly, for such chains this distribution is266

independent of starting state x. To verify π′ is the unique stationary distribution of a finite267

ergodic Markov chain, it suffices to check that π′(x)M(x, y) = π′(y)M(y, x) for all x, y ∈ Ω268

(the detailed balance condition; see, e.g., [11]).269

Given a state space Ω, a set of allowable transitions between states, and a desired270

stationary distribution π on Ω, the Metropolis-Hastings algorithm [13] gives a Markov chain271

on Ω with those transitions that converges to π. For separation, the state space contains272

particle configurations and transitions correspond to configurations that differ by one particle273

move; the stationary distribution π favors well-separated configurations; and we calculate274

transition probabilities according to the Metropolis-Hasting algorithm (using a Metropolis275

filter). Importantly, we choose π so that these transition probabilities can be calculated by276

an individual particle using only information in its local neighborhood.277

3 The Separation Algorithm278

We now present our stochastic, local, distributed algorithm for separation. Our algorithm279

achieves separation by biasing particles towards moves that both gain them more neighbors280

overall and more like-colored neighbors. We use two bias parameters to control this preference:281

λ > 1 corresponds to particles favoring having more neighbors, and γ > 1 corresponds to282

particles favoring having more neighbors of their own color.283

In order to leverage powerful techniques from Markov chain analysis and statistical physics284

to prove the correctness of our algorithm, we design our algorithm to follow certain invariants.285

First, assuming the initial particle system configuration is connected, our algorithm ensures286

it remains connected; this is necessary because particles have strictly local communication287

abilities so a disconnected particle is unable to communicate with or even find the rest of288

the particles. Second, our algorithm eventually eliminates all holes in the configuration, and289

no new holes are ever formed. This is necessary because our proof techniques only apply to290

hole-free configurations. Third, once all holes have been eliminated, all moves allowed by our291

algorithm are reversible: if a particle moves from node u to an adjacent node v in one step,292

there is a nonzero probability that it moves back to u in the next step. Finally, the moves293

allowed by our algorithm suffice to transform any connected, hole-free configuration into any294

other connected, hole-free configuration.295

Our algorithm uses two locally-checkable properties that ensure particles do not disconnect296

the system or form a hole when moving (our first two invariants). We use the following297

notation. For a location ` — i.e., a node of the triangular lattice G∆ — let Ni(`) denote the298

particles of color ci occupying locations adjacent to `. For neighboring locations ` and `′, let299

APPROX/RANDOM 2019



54:8 Stochastic Separation in Self-Organizing Particle Systems

Ni(`∪`′) denote the set Ni(`)∪Ni(`′), excluding particles occupying ` and `′. When ignoring300

color, let N(`) =
⋃
iNi(`); define N(`∪ `′) analogously. Let S = N(`)∩N(`′) denote the set301

of particles adjacent to both locations. A particle can move from location ` to `′ if one of302

the following are satisfied:303

B Property 4. |S| ∈ {1, 2} and every particle in N(`∪ `′) is connected to exactly one particle304

in S by a path through N(` ∪ `′).305

B Property 5. |S| = 0, and both N(`) \ {`′} and N(`′) \ {`} are nonempty and connected.306

Note these properties do not need to be verified for swap moves, since swap moves do not307

change the set of occupied locations and thus cannot disconnect the system or create a hole.308

We now define the Markov chainM for separation. The state space Ω ofM is the set309

of all connected heterogeneous particle system configurations of n contracted particles, and310

Algorithm 1 defines its transition probabilities. We note that M, a centralized Markov311

chain, can be directly translated to a fully distributed, local, asynchronous algorithm A that312

can be run by each particle independently and concurrently to achieve the same system313

behavior. This translation is much the same as for previous algorithms developed using the314

stochastic approach to self-organizing particle systems [6, 2]; we refer the interested reader to315

those papers for details. Importantly, this translation is only possible because all probability316

calculations and property checks inM use strictly local information available to the particles317

involved. Simulations ofM can be found in Section 3.2.318

Algorithm 1 Markov ChainM for Separation and Integration
Beginning at any connected configuration σ0 of n particles, repeat:

1: Choose a particle P uniformly at random; let ci be its color and ` its location.
2: Choose a neighboring location `′ and q ∈ (0, 1) each uniformly at random.
3: if `′ is unoccupied then
4: P expands to occupy both ` and `′.
5: Let e = |N(`)| (resp., ei = |Ni(`)|) be the number of neighbors (resp., of color ci) P

had when contracted at location `, and define e′ = |N(`′)| and e′i = |Ni(`′)| analogously.
6: if (i) e 6= 5, (ii) ` and `′ satisfy Property 4 or 5, and (iii) q < λe

′−e · γe′i−ei then
7: P contracts to `′.
8: else P contracts back to `.
9: else if `′ is occupied by particle Q of color cj then

10: if q < γ|Ni(`
′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)| then P and Q perform a swap move.

3.1 The Stationary Distribution of Markov Chain M319

In this section, we prove that Markov chain M maintains the four invariants described320

previously and then characterize its stationary distribution.321

I Lemma 6. If the particle system is initially connected, it remains connected throughout the322

execution of M. Moreover, M eventually eliminates any holes in the initial configuration,323

after which no holes are ever introduced again.324

Proof. This follows directly from analogous results for compression [6]. Although the325

separation and compression algorithms assign different probabilities to particle moves, the326

set of allowed movements is exactly the same, excluding swap moves that do not change the327

set of occupied nodes of G∆, so they cannot disconnect the system or introduce a hole. J328
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I Lemma 7. Once all holes have been eliminated, every possible particle move is reversible;329

that is, if there is a positive probability of moving from configuration σ to configuration τ ,330

then there is a positive probability of moving from τ to σ.331

Proof. Suppose, for example, that a particle P moves from location ` to `′. In the next332

time step, it is possible for P to be chosen again (Step 1) and for ` to be chosen as the333

position to explore (Step 2). Because Properties 4 and 5 are symmetric with respect to `334

and `′, whichever was satisfied in the forward move will also be satisfied in this reverse move.335

Finally, the probability checked in Condition (iii) of Step 7 is always nonzero, so all together336

there is a nonzero probability that P moves back to ` in this reverse move. Swap moves can337

be shown to be reversible in a similar way. J338

I Lemma 8. Markov chain M is ergodic on the space of connected, hole-free configurations.339

Proof Sketch. One can show thatM is irreducible (i.e., the moves ofM suffice to transform340

any configuration to any other configuration) similarly to the proof of the same fact for341

compression [6]: it is first shown that any configuration can be reconfigured into a straight line;342

then, the line can be sorted by the color of the particles; finally, by reversibility (Lemma 7),343

the line can be reconfigured into any configuration. Additionally, it is easy to see that M is344

aperiodic: at each iteration ofM, there is a nonzero probability that the configuration does345

not change. Thus, becauseM is irreducible and aperiodic, we conclude it is ergodic. J346

BecauseM is finite and ergodic, it converges to a unique stationary distribution π that we347

now characterize. For a configuration σ, let h(σ) be the number of heterogeneous edges in σ.348

I Lemma 9. For Z =
∑
σ(λγ)−p(σ) · γ−h(σ), the stationary distribution of M is:349

π(σ) =
{

(λγ)−p(σ) · γ−h(σ)/Z if σ is connected and hole-free;
0 otherwise.350

Proof Sketch. By Lemma 6, when M starts at a connected configuration it eventually351

reaches and remains in the set of configurations that are connected and hole-free. Thus,352

disconnected configurations and configurations with holes have zero weight at stationarity.353

In Appendix A.2, we show using detailed balance that the unique stationary distribution of354

M can be written, for σ connected and hole-free, as π(σ) = λe(σ) · γa(σ)/Ze where e(σ) is the355

number of edges and a(σ) is the number of homogeneous edges of σ and Ze =
∑
σ λ

e(σ) ·γa(σ).356

This can be rewritten as in the lemma using two facts: (i) since every edge is either357

homogeneous or heterogeneous, e(σ) = a(σ) + h(σ); and (ii) for any connected, hole-free358

configuration σ, e(σ) = 3n− p(σ)− 3, a result shown in [6]. J359

The remainder of this paper will be spent analyzing this stationary distribution.360

3.2 Simulations361

We supplement our rigorous results with simulations that show separation occurs for even362

better values of λ and γ than our proofs guarantee, indicating that our proven bounds are363

likely not tight. We simulatedM on heterogeneous particle systems with two colors, using 50364

particles of each color. Figure 2 shows the progression ofM over time with bias parameters365

λ = 4 and γ = 4, the regime in which particles prefer to have more neighbors, especially366

those of their own color. The simulation ran for nearly 70 million iterations, but much of the367

system’s compression and separation occurs in the first million iterations. Separation still368

occurs even when swap moves are disallowed, but takes much longer to achieve.369
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Figure 2 A 2-heterogeneous particle system of 100 particles starting from an arbitrary initial
configuration after (from left to right) 0; 50,000; 1,050,000; 17,050,000; and 68,250,000; iterations of
M with λ = 4 and γ = 4.

Figure 3 compares the resulting system configurations after running M from the same370

initial configuration for the same number of iterations, varying only the values of λ and γ.371

We observe four distinct phases: compressed-separated, compressed-integrated, expanded-372

separated, and expanded-integrated. We rigorously verify the compressed-separated behavior373

(i.e., when λ and γ are large), and do the same for the compressed-integrated behavior (i.e.,374

when λ is large and γ is small). We do not give proofs for expanded configurations; in fact,375

our current definition of separation may not accurately capture what occurs in expanded376

configurations.377

4 Summary of Results and Proofs378

Here we summarize our results and proofs; details have been omitted due to length constraints.379

We want to know for which values of λ and γ separation does or does not occur. Our380

proof techniques only apply to compressed configurations, so we must first show that Markov381

chainM achieves compression for the values of λ and γ we are interested in. Previous proofs382

of compression in homogeneous particle systems break down for heterogeneous systems, so383

we utilize the cluster expansion to overcome this obstacle. The cluster expansion comes from384

statistical physics and allows us to rewrite a sum over collections of disjoint objects in terms385

of a sum over collections of overlapping objects. This latter sum is often much easier to386

work with. For the cluster expansion to be useful, the formal power series it involves must387

be convergent. We highly recommend Chapter 5 of [12] to learn more about the cluster388

expansion. Here we present only the relevant definitions and results from this chapter.389

In a polymer model, we consider a finite set Γ, the elements of which are called polymers.390

We will consider polymers that are collections of edges of G∆ having certain properties; for391

large γ, our polymers are minimal cut sets that we call loops, and when γ is close to one,392

our polymers are connected edge sets with an even number of edges incident on each vertex.393

Formally, polymers only need to satisfy:394

Each polymer ξ ∈ Γ has a real weight w(ξ).3395

There is a notion of pairwise compatibility for polymers.396

Polymers are typically compatible when they are well-separated in some sense. Our loop397

polymers will be compatible when they share no edges, and our even polymers will be398

compatible when they are not incident on any of the same vertices. We say a collection of399

polymers Γ′ ⊆ Γ is compatible if all polymers in Γ′ are pairwise compatible.400

3 In general w(ξ) can be complex, but for our purposes it will always be a (positive or negative) real
number.
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γ = 5.20 (Separation) γ = 0.58 (Integration)

λ = 5.20
(Compression)

λ = 0.58
(Expansion)

Figure 3 A 2-heterogeneous particle system of 100 particles starting in the leftmost configuration
of Figure 2 after 50,000,000 iterations ofM for various values of the parameters λ and γ.

The polymer partition function is defined as:401

Ξ =
∑
Γ′⊆Γ

compatible

∏
ξ∈Γ′

w(ξ).402

Many partition functions of spin systems, such as the Ising model or the hard-core lattice403

gas model, can be written in this form as polymer partition functions. Such an abstract sum404

can sometimes be hard to analyze, but the cluster expansion gives a way of rewriting this405

expression in terms of a sum over subsets Γ′ ⊆ Γ where many polymers are incompatible;406

because incompatible polymers ‘touch,’ we can enumerate such collections more easily and407

thus such sums are often easier to work with408

Formally, consider an ordered multiset X = {ξ1, ξ2, . . . , ξm} ⊆ Γ. Let HX be the incom-409

patibility graph on vertex set {1, 2, . . . ,m} where i ∼ j whenever ξi and ξj are incompatible.410

We say that the X is a cluster if HX is connected.4 Let |X| = m denote the number of411

polymers in cluster X (with polymers counted with the appropriate multiplicities).412

The cluster expansion is the formal power series for ln Ξ given in Equation 2. Often this413

power series does not converge, but the Kotecky-Preiss condition guarantees convergence414

and is often easy to verify [21]. The following theorem states the Kotecky-Preiss condition415

(Equation 1) and the cluster expansion of Ξ.416

I Theorem 10 ([12], Chapter 5). Let Γ be a finite set of polymers ξ with real weights w(ξ)417

and a notion of pairwise compatibility. If there exists a function a : Γ→ R>0 such that for418

all ξ∗ ∈ Γ,419 ∑
ξ∈Γ:

ξ,ξ∗ incompatible

|w(ξ)|ea(ξ) ≤ a(ξ∗), (1)420

421

4 Many sources define clusters to be unordered multisets, necessitating additional combinatorial terms in
the cluster expansion; for simplicity, we assume clusters are ordered.
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then the polymer partition function Ξ satisfies422

ln Ξ =
∑

X: cluster

1
|X|!


∑

G⊆HX :
connected,
spanning

(−1)|E(G)|


∏
ξ∈X

w(ξ)

 , (2)423

424

where G ⊆ HX means G is a subgraph of HX .425

The cluster expansion is derived and this theorem is proved in Chapter 5 of [12], for a slightly426

different (but equivalent) definition of a cluster.427

We apply the cluster expansion twice, with two different notions of polymers and com-428

patibility. In both cases, our polymers will be connected edge sets ξ ⊆ E(G∆), and we use429

that to state a general result here. Let Γ be an infinite set of such polymers that is invariant430

under translation and rotation of polymers. Two polymers in Γ will be compatible if they431

are well-separated in the model-dependent sense described above. Polymers are incompatible432

when they are ‘too close;’ for a polymer ξ ∈ Γ, let [ξ] ⊆ E(G∆) be the the minimal edge set433

such that if ξ′ is not compatible with ξ, then ξ′ must contain an edge of [ξ]. We use brackets,434

consistent with the notation of [12], because this is a type of closure of a polymer. For our435

loop polymers, which are compatible if they share no edges, [ξ] = ξ. For our even polymers,436

which are compatible if they are not incident on any of the same vertices, [ξ] is all edges that437

share an endpoint with an edges of ξ. We denote the size of this edge set as |[ξ]|.438

We will be interested in some finite region Λ ⊆ E(G∆), and we say ΓΛ ⊆ Γ is all polymers439

of Γ whose edges are contained in Λ. Let ∂Λ be an edge set such that a cluster containing an440

edge in Λ and an edge not in Λ must contain an edge of ∂Λ. We will consider loop polymers441

with edges from EintP , the set of edges with at least one endpoint strictly inside boundary P ,442

so in this case we use Λ = EintP and ∂Λ the edges in P. For even polymers, we use Λ = EP ,443

all edges on or inside P, and ∂Λ is all edges with one endpoint on P and the other outside.444

The following states the key fact about the cluster expansion that we will need. Namely,445

when a certain mild condition is satisfied, we can use the cluster expansion to give upper and446

lower bounds on the polymer partition function for Λ in terms of a volume term, depending447

only on |Λ|, and a surface term, depending only on |∂Λ|.448

I Theorem 11. Let Γ be an infinite set of polymers ξ ⊆ E(G∆) that is closed under449

translation and rotation, and let Λ ⊆ E(G∆) be finite. If there is a constant c such that for450

any edge e ∈ E(G∆),451 ∑
ξ∈Γ:
e∈ξ

|w(ξ)|ec|[ξ]| ≤ c,452

453

then for any Λ the partition function454

ΞΛ :=
∑

Γ′⊆ΓΛ
compatible

∏
ξ∈Γ′

w(ξ)455

satisfies456

eψ|Λ|−c|∂Λ| ≤ ΞΛ ≤ eψ|Λ|+c|∂Λ|,457

for some constant ψ ∈ [−c, c] that is independent of Λ.458
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We prove this theorem in Appendix A.3.459

This result is the key step needed to show that when λ and γ are both large, compression460

occurs; as our techniques for establishing separation first require configurations to be com-461

pressed, this is a necessary first step. For compression, we look at the partition function ZP462

for different fixed boundaries P , where ZP is the sum over all configurations σ with boundary463

P of their weights (λγ)−|P| · γ−h(σ). We cannot analyze ZP directly, so we instead relate ZP464

to a specific polymer partition function ΞLP which does have a cluster expansion. Using the465

sufficient condition of Theorem 10, we show the cluster expansion for ΞLP is convergent when466

γ > 45/4. We then use this expression of ln ΞLP as a convergent power series and Theorem 11467

to bound ΞLP in terms of a volume term, depending only on the number of particles n, and a468

surface term, depending only on |P|, the length of boundary P.469

I Lemma 12. When γ > 45/4, for c = 0.0001, there exists a constant ψ ∈ [−c, c] that470

depends on γ but is independent of P such that471

e(3n−3)ψ−3c|P| ≤ ΞLP ≤ e(3n−3)ψ+3c|P|.472

This means, in particular, that the ratios of ΞLP and ΞLP′ for different boundaries P and473

P ′ that enclose the same number n of particles can be bounded by an expression that is474

exponential in the lengths of these boundaries but independent of n. This is essential to our475

compression argument, which will focus on boundaries of various lengths. We note that it is476

straightforward, using the previous lemma, to get similar bounds on ZP , the quantity we are477

actually interested in. We use this to apply a Peierls argument similar to the one used to478

show compression in [6]. This argument relates the total weight of undesirable configurations479

— those with boundaries longer than α · pmin for some constant α > 1 — to the weight of480

configurations with minimum perimeter, pmin. The result is as follows.481

I Theorem 13. Consider algorithm M when there are n total particles of two different482

colors. For c = 0.0001, when constants α > 1, λ > 1, and γ > 45/4 satisfy483

2(2 +
√

2)e3c

λγ

(
e3cλγ3/2

)1/α
< 1,484

485

when n is sufficiently large then for M with parameters λ and γ, configurations drawn from486

distribution π are α-compressed with probability at least 1− ζ
√
n for some constant ζ < 1.487

One corollary is that if λ > 1 and γ > 45/4 such that λγ > 2(2 +
√

2)e0.0003 ∼ 6.83, there488

exists a constant α such that a configuration drawn from the stationary distribution π of489

M is α-compressed with high probability. (Recall, we say an event A occurs with high490

probability, or w.h.p., if Pr[A] ≥ 1− cnδ , where 0 < c < 1 and δ > 0 are constants. Unless491

we explicitly state otherwise, it will always be the case that δ = 1/2.) Conversely, for any492

α > 1, there exist λ and γ such thatM with these parameter values achieves α-compression493

at stationarity w.h.p.494

We next show, again when λ and γ are large enough, that separation provably occurs.495

By the previous theorem, it suffices to show this among compressed configurations. We496

use a technique known as bridging that was developed to analyze molecular mixtures called497

colloids [28]. Adapting the bridging approach to our setting required several new innovations498

to overcome obstacles such as the irregular shapes of particle system configurations, the499

non-self-duality of the triangular lattice, the interchangeability between color classes, and500

other technicalities related to interfaces between particles of different colors. The main result501

of this section is the following theorem. Recall that for a fixed boundary P , the probability502

distribution πP is over colored particle configurations with this boundary where πP(σ) is503

proportional to γ−h(σ).504
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I Theorem 14. Let P be the boundary of n particles with |P| ≤ αpmin. For any β > 2
√

3α505

and any δ < 1/2, if γ is large enough that506

3
2α
√

3
β 4

1+3δ
4δ γ−1+ 2α

√
3

β < 1507

then for sufficiently large n a configuration drawn from πP is (β, δ)-separated with probability508

at least 1− ζ
√
n for some constant ζ < 1.509

Combining this with the previous theorem, we see that for any λ > 1 and γ > 45/4 ∼ 5.66510

such that λγ > 2(2 +
√

2)e0.0003 ∼ 6.83, there exist constants β and δ such that for large511

enough n,M provably achieves (β, δ)-separation at stationarity w.h.p. Furthermore, for any512

β > 2
√

3 and any δ < 1/2, there are values for λ and γ such that for large enough n, M513

provably achieves (β, δ)-separation at stationarity w.h.p.514

We are also able to show that there are some values of γ close to one for which separation515

does not occur. This counterintuitively includes values where γ > 1 and particles have a516

preference for being next to particles of the same color. As we did for large values of γ, we517

first show that when λ is large and γ is close to one, compression provably occurs. The518

polymer partition function ΞLP from above does not have a convergent cluster expansion when519

γ is close to one, so we cannot use it to show compression. Instead, we carefully relate ZP to520

a different polymer partition function ΞHTP by considering the high temperature expansion,521

which rewrites a sum over configurations with a fixed boundary as a sum over even edge sets522

within that boundary. The high-temperature expansion is well-studied for the Ising model523

(see, e.g., [12], Section 3.7.3). We show ΞHTP has a convergent cluster expansion when γ is524

close to one. We then use the cluster expansion for this high temperature representation,525

much the same as above, to show compression provably occurs.526

I Theorem 15. Consider algorithm M when there are n total particles of two different527

colors. For a = 10−5, when constants α > 1, λ > 1, and γ ∈ (79/81, 81/79) satisfy528

2(2 +
√

2)e3a

λ(γ + 1)

(
λ(γ + 1)

2e−3a
( 79

81
))1/α

< 1529

530

when n is sufficiently large then for M with parameters λ and γ, configurations drawn from531

M’s stationary distribution π are α-compressed with probability at least 1− ζ
√
n for some532

constant ζ < 1.533

This theorem implies that for any λ > 1 and γ ∈ (79/81, 81/79) such that λ(γ + 1) >534

2(2 +
√

2)e0.00003 ∼ 6.83, there exists a constant α such that a configuration drawn from535

the stationary distribution π ofM is α-compressed w.h.p. Conversely, for any α > 1 and536

any γ ∈ (79/81, 81/79), for large enough λ algorithmM with parameters λ and γ achieves537

α-compression at stationarity w.h.p.538

Once we have shown that compression occurs for large λ and γ near one, we show that539

among these compressed configurations a large amount of separation between color classes540

is very unlikely. We prove this with a probabilistic argument in which we find a set of541

polynomially many events such that if separation occurs, then at least one of these events542

occurs. We then show that each event occurs with probability at most ζn1/2−ε for some ζ < 1543

and arbitrarily small ε > 0, which via a union bound over the polynomial number of events544

implies separation is very unlikely.545
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I Theorem 16. Let P be any α-compressed boundary. Let δ < 1/4 and γ close enough to546

one such that there exists a µ ∈ (δ/(1− 2δ), 1/2) where547 (
µ

1− µ

)(µ−δ/(1−2δ))/11
< γ <

(
1− µ
µ

)(µ−δ/(1−2δ))/11
.548

549

For any β and any c < 1/4, there is a constant ζ < 1 such that the probability a particle550

configuration drawn at random from πP is (β, δ)-separated is at most ζn2c .551

Combining this with the results above, we see that for λ > 1 and γ ∈ (79/81, 81/79) such that552

λ(γ + 1) > 2(2 +
√

2)e0.00003 ∼ 6.83, there are constants β and δ such that the probability553

M with parameters λ and γ achieves (β, δ)-separation at stationarity is at most ζn1/2−ε
,554

where ε > 0 and ζ < 1. Conversely, for any β > 0 and any δ < 1/4, there exists λ and γ such555

thatM with these parameters achieves (β, δ)-separation at stationarity with probability at556

most ζn1/2−ε for ε > 0 and ζ < 1.557

5 Conclusion558

We considered separation with two colors, but expect our proofs to generalize in a straight-559

forward way to heterogeneous systems with more colors using insights that generalize cluster560

expansion polymers from the Ising model to the Potts model (see the notion of a contour in561

Pirogov-Sinai theory, e.g., in Chapter 7 of [12]). The proofs would follow the same strategy562

for two colors, requiring little additional insight but a fairly large amount of technical detail.563

We note that, as with previous papers using stochastic, distributed algorithms for564

programmable matter, we are unable to give any nontrivial bounds on the mixing time of our565

Markov chainM. The difficulties in proving polynomial upper bounds on the mixing time566

are unsurprising, given similarities betweenM and a well-studied open problem in statistical567

physics about the mixing time of Glauber dynamics of the Ising model on Z2 with plus568

boundary conditions starting from the all minus state [26, 24] (see remarks concluding [6]).569

However, the mixing time may not be the best bound for characterizing when compression570

and separation occur. Simulations show that both compression and separation occur fairly571

quickly (Figure 2), although the algorithm continues to gradually achieve more compression572

and separation, confirming we likely achieve these goals well before converging to stationarity.573

We believe the stochastic approach to self-organizing particle systems, used here to develop574

a distributed algorithm for separation and integration in programmable matter, is much575

more broadly applicable. This approach can potentially be applied to any objective described576

by a global energy function (where the desirable configurations have low energy values),577

provided changes in energy due to particle movements can be calculated with only local578

information. Choosing the correct global energy function is the key; translating the energy579

function into a Markov chain and then into a distributed algorithm is, by now, fairly routine580

(see [6, 2]). However, proving that the stationary distribution has our desired properties with581

high probability remains challenging, requiring application-specific proof techniques.582

Last, we believe the proof techniques developed here extend beyond our current work.583

For separation and integration, the key ingredient is the cluster expansion, used recently to584

develop efficient low-temperature approximations and sampling algorithms, and the related585

Pirogov-Sinai theory, used to show slow mixing of certain Markov chains. Here, however, we586

used a completely different aspect of the cluster expansion by separating partition functions587

into surface and volume terms. The cluster expansion and Pirogov-Sinai theory have been588

widely used in statistical physics for many purposes, and we believe there are many more589

ways a thorough understanding of these methods can benefit computer science.590
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A Appendix692

Here we include the proofs of some of our claims that were omitted from the main body of693

this paper for conciseness and clarity. We do not include any detailed proofs of our technical694

results due to length constraints.695

A.1 Proof of Lemma 2696

Recall that Lemma 2 states that for any n ≥ 1, there is a connected, hole-free particle697

configuration of n particles with perimeter at most 2
√

3
√
n. That is, pmin(n) ≤ 2

√
3
√
n.698

Proof. The lemma can easily be verified for n ≤ 6. For n ≥ 7, we begin with the case699

where n = 3`2 + 3`+ 1 for some integer ` ≥ 1. A regular hexagon with side length ` can be700

decomposed into six triangles, each with `(`+ 1)/2 particles, and a single center vertex, for701

3`2 + 3`+ 1 total particles; see Figure 4a. Such a hexagon has perimeter 6`. We see that702

pmin(3`2 + 3`+ 1) ≤ 6` ≤ 2
√

3
√

3`(`+ 1) ≤ 2
√

3
√
n− 1 ≤ 2

√
3
√
n.703

Now we consider n = 3`2 + 3` + 1 + k, for integers ` and k, where k ∈ [1, 6` + 6). As704

(3`2 + 3` + 1) + 6` + 6 = 3(` + 1)2 + 3(` + 1) + 1, this covers all possible values of n. We705

construct a particle configuration on n = 3`2 + 3` + 1 + k particles by first constructing706

a regular hexagon of side length ` and then adding the remaining k particles around the707

outside of this hexagon in a single layer, completing one side before beginning the next; see708

Figure 4b, where ` = 3 and k = 6. For k ≤ `, the perimeter of this configuration is 6`+ 1.709

More generally, the perimeter increases by one when particles begin to be added to a new side710

of the hexagon, and so for i = 2, 3, 4, 5, 6, for (i− 1)`+ (i− 2) < k ≤ i`+ (i− 1) the perimeter711

of this configuration is 6`+ i. We see that (using i ≤ 6 and ` ≥ 1), for any i = 1, 2, 3, 4, 5, 6,712

pmin(3`2 + 3`+ 1 + k) ≤ 6`+ i ≤ 2
√

3

√(√
3`+ i

2
√

3

)2
= 2
√

3
√

3`2 + i2

12 + i713

≤ 2
√

3
√

3`2 + 3 + i714

≤ 2
√

3
√

3`2 + 3`+ 1 + i− 1715

≤ 2
√

3
√

3`2 + 3`+ 1 + k = 2
√

3
√
n.716

717

This concludes our proof. J718

(a) (b)

Figure 4 (a) The regular hexagon with side length ` = 3 with 3`2 + 3`+ 1 total particles. (b) A
configuration with n = 3`2 + 3`+ 1 + k particles for ` = 3 and k = 6 with perimeter 20 < 2

√
3
√
n.
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A.2 Detailed Balance Proof that π is the Stationary Distribution of M719

Recall that Lemma 9 states that the stationary distribution of M is given by π(σ) = 0720

if σ is disconnected or has holes, and by π(σ) = (λγ)−p(σ) · γ−h(σ)/Z otherwise, where721

Z =
∑
σ(λγ)−p(σ) · γ−h(σ). Here, we analyze the necessary cases to verify this with detailed722

balance.723

Proof. We first verify that π(σ) = λe(σ) · γa(σ)/Ze — where e(σ) is the number of edges of σ,724

a(σ) is the number of homogeneous edges of σ, and Ze =
∑
σ λ

e(σ) · γa(σ) — is the stationary725

distribution by detailed balance. We then show that this form of π can be rewritten as in726

the lemma.727

Consider any two connected, hole-free configurations σ, τ that differ by one move of some728

particle from location ` in σ to a neighboring location `′ in τ . By examiningM, we see that729

the probability of transitioning from σ to τ is:730

M(σ, τ) = min
{

1, λ|N(`′)|−|N(`)| · γ|Ni(`
′)|−|Ni(`)|

}
/6n.731

A similar analysis shows:732

M(τ, σ) = min
{

1, λ|N(`)|−|N(`′)| · γ|Ni(`)|−|Ni(`
′)|
}
/6n.733

Without loss of generality, suppose λ|N(`′)|−|N(`)| · γ|Ni(`′)|−|Ni(`)| < 1, meaning M(σ, τ) is734

this value over 6n and M(τ, σ) = 1/6n. Because the only edges that differ in σ and τ are735

incident to ` or `′,736

π(σ)M(σ, τ) = λe(σ) · γa(σ)

Ze
· 1
n
· 1

6 · λ
|N(`′)|−|N(`)| · γ|Ni(`

′)|−|Ni(`)|737

= λe(σ) · γa(σ)

Ze
· 1
n
· 1

6 · λ
e(τ)−e(σ) · γa(τ)−a(σ)

738

= λe(τ) · γa(τ)

Ze
· 1
n
· 1

6 · 1 = π(τ)M(τ, σ)739
740

Thus, detailed balance is satisfied for particle moves that are not swaps.741

Suppose instead that σ and τ differ by a swap move of particle P with color ci at location742

` in σ and particle Q with color cj at neighboring location `′ in σ. This move could occur if743

P or Q is chosen in Step 1 ofM, so:744

M(σ, τ) = min
{

1, γ|Ni(`
′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)|

}
/3n.745

Similarly, because τ has P at location `′ and Q at location `, we have:746

M(τ, σ) = min
{

1, γ|Ni(`)\{P}|−|Ni(`
′)|+|Nj(`′)\{Q}|−|Nj(`)|

}
/3n.747

Without loss of generality, suppose that γ|Ni(`′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)| < 1, so748

M(σ, τ) is this value over 3n and M(τ, σ) = 1/3n. Then,749

π(σ)M(σ, τ) = λe(σ) · γa(σ)

Ze
· 2
n
· 1

6 · γ
|Ni(`′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)|750

= λe(σ) · γa(σ)

Ze
· 2
n
· 1

6 · γ
(|Ni(`′)\{P}|+|Nj(`)\{Q}|)−(|Ni(`)|+|Nj(`′)|)751

= λe(σ) · γa(σ)

Ze
· 2
n
· 1

6 · γ
a(τ)−a(σ)

752

= λe(τ) · γa(τ)

Ze
· 2
n
· 1

6 · 1 = π(τ)M(τ, σ)753
754
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In both cases, detailed balance is satisfied, so we conclude the stationary distribution π (which755

is only non-zero over connected, hole-free configurations) is given by π(σ) = λe(σ) · γa(σ)/Ze.756

Since every edge of σ is either homogeneous or heterogeneous, we have e(σ) = a(σ)+h(σ).757

From [6], we have e(σ) = 3n− p(σ)− 3, where n is the number of particles in the system.758

Thus, we can rewrite this unique stationary distribution as follows:759

π(σ) = λe(σ) · γa(σ)

Ze
760

= λe(σ) · γa(σ)∑
σ λ

e(σ) · γa(σ)761

= (λγ)−3n+3 · (λγ)e(σ) · γa(σ)−e(σ)

(λγ)−3n+3 ·
∑
σ(λγ)e(σ) · γa(σ)−e(σ)762

= (λγ)e(σ)−3n+3 · γa(σ)−e(σ)∑
σ(λγ)e(σ)−3n+3 · γa(σ)−e(σ)763

= (λγ)−p(σ) · γ−h(σ)∑
σ(λγ)−p(σ) · γ−h(σ) .764

765

This concludes our proof. J766

A.3 Proof of Boundary-Volume Decomposition of Cluster Expansion767

In this section we provide the proof of Theorem 11, which is our decomposition of a polymer768

partition function into boundary and volume terms via the cluster expansion. For the sake769

of clarity we restate this theorem here, including all of its hypotheses and assumptions.770

I Theorem 11. Let Γ be an infinite set of polymers ξ ⊆ E(G∆) that is closed under771

translation and rotation, and let Λ ⊆ E(G∆) be finite. If there is a constant c such that for772

any edge e ∈ E(G∆),773 ∑
ξ∈Γ:
e∈ξ

|w(ξ)|ec|[ξ]| ≤ c, (3)774

775

then for any Λ the partition function776

ΞΛ :=
∑

Γ′⊆ΓΛ
compatible

∏
ξ∈Γ′

w(ξ)777

satisfies778

eψ|Λ|−c|∂Λ| ≤ ΞΛ ≤ eψ|Λ|+c|∂Λ|,779

for some constant ψ ∈ [−c, c] that is independent of Λ.780

Proof. We follow the same outline as the proof of the same fact for the Ising model in Section781

5.7.1 of [12].782

Let X be all clusters comprised of polymers from Γ, and let XΛ be all clusters of polymers783

in ΓΛ. Note that Equation 3 implies the hypothesis of Theorem 10 (Equation 1) is satisfied,784

with function a : Γ→ R given by a(ξ) = c|[ξ]|:785 ∑
ξ∈Γ:

ξ,ξ∗ incompatible

|w(ξ)|ea(ξ) ≤
∑
e∈[ξ∗]

∑
ξ∈Γ:
e∈ξ

|w(ξ)|ec|[ξ]| ≤ c|[ξ∗]|.786
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Because this hypothesis is satisfied for all ξ∗ ∈ Γ, it certainly holds when we restrict our787

attention to polymers in ΓΛ. By Theorem 10, because ΓΛ is a finite set, this means the788

cluster expansion for ΞΛ converges:789

ln ΞΛ =
∑
X∈XΛ

Ψ(X)790

Let X = ∪ξ∈Xξ be the support of cluster X and |X| the size of this support. Using791

Equation 3 and standard techniques (see [12], the proof of Theorem 5.4 and Equation (5.29)),792

the translation and rotation invariance of Γ imply that for any edge e ∈ E(G∆),793 ∑
X∈X :
e∈X

|Ψ(X)| ≤ c. (4)794

795

The proof of this fact is the reason we need a slightly stronger hypothesis (Equation 3) than796

is needed to guarantee the cluster expansion converges (Equation 1).797

For any cluster X ∈ XΛ, it trivially holds that 1 = (
∑
e∈Λ 1e∈X)/X. We can use this fact798

to rewrite the cluster expansion for ΞΛ:799

ln ΞΛ =
∑
X∈XΛ

Ψ(X) =
∑
X∈X :
X⊆Λ

Ψ(X) =
∑
e∈Λ

∑
X∈X :
e∈X,
X⊆Λ

1
|X|

Ψ(X)800

=
∑
e∈Λ


∑
X∈X :
e∈X

1
|X|

Ψ(X)−
∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|

Ψ(X)

801

=

∑
e∈Λ

∑
X∈X :
e∈X

1
|X|

Ψ(X)

−

∑
e∈Λ

∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|

Ψ(X)

 . (5)802

803

The two infinite sums in parentheses above are absolutely convergent by Equation 4, so this804

difference is well-defined.805

To analyze the first term of Equation 5, we note that by the translation and rotation806

invariance of Γ, the sum807

ψ :=
∑
X∈X :
e∈X

1
|X|

Ψ(X)808

809

is independent of e and of Λ and only depends on our particular polymer model; this is810

the value ψ that appears in the statement of the theorem, and by Equation 4, |ψ| ≤ c. We811

conclude the first term of Equation 5 is ψ|Λ|.812

To analyze the second term of Equation 5, recall if cluster X satisfies both e ∈ X for813

some e ∈ Λ and X 6⊆ Λ, then X must contain some edge f ∈ ∂Λ. We rewrite the absolute814
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value of this second sum as815 ∣∣∣∣∣∣∣∣∣∣∣
∑
e∈Λ

∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|

Ψ(X)

∣∣∣∣∣∣∣∣∣∣∣
≤
∑
e∈Λ

∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|
|Ψ(X)|816

≤
∑
f∈∂Λ

∑
X∈X :
f∈X

|X ∩ Λ| 1
|X|
|Ψ(X)|817

≤
∑
f∈∂Λ

∑
X∈X :
f∈X

|Ψ(X)| ≤ c |∂Λ| .818

819

The last inequality above follows from Equation 4 and the translation and rotation invariance820

of Λ.821

We conclude that Equation 5 implies822

ψ|Λ| − c|∂Λ| ≤ ln ΞΛ ≤ ψ|Λ|+ c|∂Λ|.823
824

Exponentiation proves the theorem. J825
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